第十六章 习题课:动量守恒定律的应用
6 习题课2 三种碰撞模型
(2)430vg20
栏目 导引
第十六章 动量守恒定律
[针对训练 2] 如图所示,在光滑水平面上放置 一个质量为 M 的滑块,滑块的一侧是一个14圆 弧形凹槽 OAB,凹槽半径为 R,A 点切线水 平.另有一个质量为 m 的小球以速度 v0 从 A 点冲上凹槽,重力 加速度大小为 g,不计摩擦.下列说法中正确的是( ) A.当 v0= 2gR时,小球能到达 B 点 B.如果小球的速度足够大,则小球将从滑块的左侧离开滑块后 落到水平面上 C.当 v0= 2gR时,小球在弧形凹槽上运动的过程中,滑块的 动能一直增大 D.如果滑块固定,则小球返回 A 点时对滑块的压力为 mvR20
栏目 导引
(1)离开弹簧时 a、b 球的速度大小;
第十六章 动量守恒定律
(2)释放小球前弹簧具有的弹性势能.
解析:(1)设两个小球离开弹簧时的速度分别为 va、vb,弹簧的 弹性势能为 Ep,根据题意 ma=m,对 b 球,由机械能守恒定律
有12mbv2b=mbg·10R
对 a 球,由机械能守恒定律有12mav2a=12mav2A+mag·2R a 球恰好能通过圆环轨道最高点 A 需满足 mag=mRav2A
栏目 导引
(1)求该物块的质量;
第十六章 动量守恒定律
(2)若物块最终未从平板车上滑落,求物块在平板车上滑动过程
中产生的热量.
解析:(1)设四分之一圆弧的半径为 R,物块的质量为 m,在 b 点轨道对物块的支持力为 F,物块从 a 到 b 由机械能守恒定律
有 mgR=12mv2b 物块运动到 b 点,由牛顿第二定律有 F-mg=mvR2b 联立解得 F=3mg. 由牛顿第三定律知 F=30 N 联立解得 m=1 kg.
栏目 导引
反冲运动火箭及习题课
反冲是生活和生产实践中常见的一种现象, 如何处理反冲运动的问题?
分析:发生反冲运动时间极短,作用力非常大,
两部分相互作用的内力会远远大于外力, 可以认为动量守恒
因此,反冲运动可用动量守恒处理
例1.机关枪重M=8kg,射出的子弹质量m=20克,
若子弹的出口速度是V0=1000m/s,则机枪的后退速 度V是多少?
例5:在沙堆上有一木块,M=5K g,木块上放一 爆竹,质量为m=0.10Kg,点燃后木块陷入沙中5 cm,若沙对木块运动的阻力恒为58N,不计火药 质量和空气阻力,求爆竹上升的最大高度?
Mgs fs 0 1 Mv2 2
Mv mv' 0 h v'2
2g
h=1.7m
1. 定义:向气体喷出的反方向
长
逃逸塔
征
整流罩
二
号
二级火箭
型F
运 载
一级火箭
火
箭
助推器
演示:神舟7号发射全程
有一只长为L=3m,质量为M=120kg的小船停在静水 中,一个质量为m=60kg的人立在船头,若不计水的 阻力,当人从船头走到船尾的过程中,船和人对地面 的位移各是多少?
船1米 人2米
总结
一、反冲运动 1、定义:一个静止的物体在内力的作用下分裂
提示:发射人造卫星的最小速度是7.9Km/s
喷气的速度 目前常用的液体燃料是液氢,用液氧做 氧化剂,喷气速度在2000m/s到4000m/s
质量比 火箭的质量比在6-10 左右, 要发射人造卫星,这样的火箭还不能达到所需的速度
问题:如何解决卫星发射问题?
为了解决这个问题,人们想到了利用多 级火箭,结构如下页图所示
m V0
(M m
高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)
高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案)一、高考物理精讲专题动量守恒定律的应用1.竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ;(3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量.【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。
0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量,由圆方程可知S 1m 2 代入数据可得:v 0 4m/s(2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 21 2 1 2 12由机械能守恒可得 m a v 0m a v 1 (m b m c )v 222 2解得 V 1 0, V 2 4m/ sA E阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求小球c运动到Q点时,小球b恰好运动到P点,由动能定理1 2 1 2 m c gR qER ㊁血 mjv ㊁血 mjv ?代入数据可得v 2m/ s⑶由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为 从c 球运动到Q 点到减速到零的过程列能量守恒可得:1 2(m b m c )v qERsin 22.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 '点,绳子刚好被拉直且偏离竖直方向的角度0 =60.小明从A 点由静止往下摆,达到 O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m ,浮漂圆心与 C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径 R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量 m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:_*』吩(1) 轻绳能承受最大拉力不得小于多少? (2) 小明跳离平板车时的速度在什么范围?(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ?【答案】(1) 1200N (2) 4m/s Wv< 5m/s( 3) 480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒规律计算即可. 【详解】解(I)从A 到B .由功能关系可得1 2 mgL(1 cos ) mv ①2代人数据求得v=4 m/s ②m b gR(1cos ) m c gRsin 解得sin0637因此小球c 电势能的增加量: E p qER(1 sin ) 3.2J2在最低点B处,T mg mv③联立①②解得,轻绳能承受最大拉力不得小于T=1200N(2) 小明离开滑板后可认为做平抛运动1 2竖直位移y gt1 2 3④2离C点水平位移最小位移x R v min t⑤离C点水平位移最大为X R V min t⑥联立④⑤⑥解得小明跳离滑板时的速度 4 m/s Wvw 5 m/s(3) 小明落上滑板时,动量守恒mv (m m0)V| ⑦代人数据求得V i=3 m/s⑧离开滑板时,动量守恒(m m0)v| mv C m o V2⑨将⑧代人⑨得V2=-3 m/s由功能关系可得1 2 1 2 1 2 W ( — mv C m0v2) m m0 v1⑩.2 2 2解得W=480 J3. 某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、B C置于水平导轨上, B C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度V0=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起•碰撞时间极短,滑块C脱离弹簧后滑上倾角0 =37的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C与传送带之间的动摩擦因数卩=0.8重力加速度g=10m/s2, sin37=0.6, cos37°0.8.1滑块A、B碰撞时损失的机械能;2滑块C在传送带上因摩擦产生的热量Q;3若每次实验开始时滑块A的初速度V。
习题课动量守恒定律的应用
01
适用范围
动量守恒定律适用于宏观低速运动的物体,在微观高速运动领域(如相
对论)中需进行修正。
02
适用条件
系统不受外力或所受外力矢量和为零。这意味着在碰撞、爆炸等过程中,
只要系统内力远大于外力,就可以近似认为动量守恒。
03
注意点
在运用动量守恒定律时,需要选取合适的系统,确保系统内的相互作用
力属于内力,并且要考虑外力的影响。同时,要注意动量的矢量性,正
反冲问题解析
通过分析反冲前后物体的运动状 态和相互作用力,利用动量守恒 定律求解相关问题。
解题思路与技巧
在解决爆炸、反冲问题时,需要 注意分析物体的运动状态和相互 作用力,正确运用动量守恒定律 进行求解。同时,还需要注意选 择合适的坐标系和参考系,以便 简化问题并方便求解。
05 动量守恒定律在综合问题 中应用
易错点一
易错点二
忽视动量守恒的条件。在应用动量守恒定 律时,必须确保系统不受外力或所受外力 的矢量和为零。
忽视动量的矢量性。在解题过程中,容易 忽视动量的矢量性,从而导致计算错误。
计算题答题规范及步骤梳理
规范一
明确已知条件。在解答计算题时,首 先要明确题目中给出的已知条件,包 括物体的质量、速度等。
典型问题二
两物体在光滑水平面上发生非弹性正碰。解析:根据动量守恒条件,结合能量损失情况,求解得到碰撞后两物体的速 度。
典型问题三
两物体在光滑水平面上发生斜碰。解析:通过矢量分解将速度分解为沿碰撞方向和垂直于碰撞方向的两 个分量,分别应用动量守恒定律进行求解。对于弹性斜碰,还需应用机械能守恒条件进行联立求解。
案例分析:历年高考真题剖析
案例一
(某年某地高考真题)。题目描述了一个碰撞过程,要求考生判断碰撞前后动量的 变化情况。通过分析可知,碰撞过程中系统不受外力作用,因此动量守恒。根据动 量守恒定律可知,碰撞前后系统的总动量保持不变。
习题课 动量守恒定律的应用
习题课动量守恒定律的应用题组一动量守恒条件及系统和过程的选取1.在匀速行驶的船上,当船上的人相对于船竖直向上抛出一个物体时,船的速度将(水的阻力不变) ()A.变大B.变小C.不变D.无法判定2. 如图10所示,A、B两木块紧靠在一起且静止于光滑水平面上,物块C以一定的初速度v0从A的左端开始向右滑行,最后停在B木块的右端,对此过程,下列叙述正确的是() 图10A.当C在A上滑行时,A、C组成的系统动量守恒B.当C在B上滑行时,B、C组成的系统动量守恒C.无论C是在A上滑行还是在B上滑行,A、B、C三物块组成的系统动量都守恒D.当C在B上滑行时,A、B、C组成的系统动量不守恒3. 平板车B静止在光滑水平面上,在其左端另有物体A以水平初速度v0向车的右端滑行,如图11所示.由于A、B间存在摩擦,因而A在B上滑行后,A开始做减速运动,B做加速运动(设B车足够长),则B车速度达到最大时,应出现在()图11A.A的速度最小时B.A、B速度相等时C.A在B上相对静止时D.B车开始做匀速直线运动时4. 如图12所示,在质量为M的小车上挂有一单摆,摆球的质量为m0,小车和摆球以恒定的速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列可能发生的情况是() 图12A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=M v1+m v2+m0v3B.摆球的速度不变,小车和木块的速度分别变为v1、v2,有M v=M v1+m v2C.摆球的速度不变,小车和木块的速度都变为v′,有M v=(M+m)v′D.小车和摆球速度都变为v1,木块的速度变为v2,有(M+m0)v=(M+m0)v1+m v25. 如图13所示,小车放在光滑的水平面上,将系着绳的小球拉开一定的角度,然后同时放开小球和小车,那么在以后的过程中( ) 图13A .小球向左摆动时,小车也向左运动,且系统动量守恒B .小球向左摆动时,小车向右运动,且系统动量守恒C .小球向左摆到最高点,小球的速度为零而小车的速度不为零D .在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反6. 如图14所示,小车放在光滑水平面上,A 、B 两人站在车的两端,这两人同时开始相向行走,发现车向左运动,分析小车运动的原因可能是( ) 图14A .A 、B 质量相等,但A 比B 速率大 B .A 、B 质量相等,但A 比B 速率小C .A 、B 速率相等,但A 比B 的质量大D .A 、B 速率相等,但A 比B 的质量小 题组二 多物体多过程动量守恒定律的应用7.一弹簧枪对准以6 m/s 的速度沿光滑桌面迎面滑来的木块发射一颗铅弹,射出速度为10 m/s ,铅弹射入木块后未穿出,木块继续向前运动,速度变为5 m/s.如果想让木块停止运动,并假定铅弹射入木块后都不会穿出,则应再向木块迎面射入的铅弹数为( )A .5颗B .6颗C .7颗D .8颗8. 如图15所示,一轻质弹簧两端连着物体A 和B ,放在光滑的水平面上,物体A 被水平速度为v 0的子弹射中并且子弹嵌在其中.已知物体A的质量m A 是物体B 的质量m B 的34,子弹的质量m 是物体B 的质量的14,求弹簧压缩到最短时B 的速度. 图159. 如图16所示,在光滑水平面上有两个木块A、B,木块B左端放置小物块C并保持静止,已知m A=m B=0.2 kg,m C=0.1kg,现木块A以初速度v=2 m/s沿水平方向向右滑动,木块A与B相度(但不粘连),C与A、B间均有摩擦.求:图16(1)木块A与B相碰瞬间A木块及小物块C的速度大小;(2)设木块A足够长,求小物块C的最终速度.题组三综合应用10.以初速度v0与水平方向成60°角斜向上抛出的手榴弹,到达最高点时炸成质量分别是m和2m的两块.其中质量大的一块沿着原来的方向以2v0的速度飞行.求质量较小的另一块弹片速度的大小和方向.11.如图17所示,质量分别为m1和m2的两个等半径小球,在光滑的水平面上分别以速度v1、v2向右运动,并发生对心正碰,碰后m2被墙弹回,与墙碰撞过程中无能量损失,m2返回后又与m1相向碰撞,碰后两球都静止,求第一次碰后m1球的速度.图1712.质量为M=2 kg的小平板车静止在光滑水平面上,车的一端静止着质量为m A=2 kg的物体A(可视为质点),如图18所示,一颗质量为m B=20 g的子弹以600 m/s的水平速度射穿A后,速度变为100 m/s,最后物体A相对车静止,若物体A与小车间的动摩擦因数μ=0.5,取g=10 m/s2,求平板车最后的速度是多大.图1813.光滑水平轨道上有三个木块A、B、C,质量分别为m A=3m、m B=m C=m,开始时B、C均静止,A以初速度v0向右运动,A与B碰撞后分开,B又与C发生碰撞并粘在一起,此后A与B间的距离保持不变.求B与C碰撞前B的速度大小.图1914.如图20所示,滑块A、C的质量均为m,滑块B的质量为32m.开始时A、B分别以v1、v2的速度沿光滑水平轨道向固定在右侧的挡板运动,现将C无初速地放在A上,并与A粘合不再分开,此时A与B相距较近,B与挡板相距足够远.若B与挡板碰撞将以原速率反弹,A与B碰撞将粘合在一起.为使B能与挡板碰撞两次,v1、v2应满足什么关系?图201、C2、BC 3.ABCD 4.BC5. BD6. AC7. D弹木块停止,有(m 1+m 2)v 1-nm 2v =0,解得n =8.8.答案 v 08解析 弹簧压缩到最短时,子弹、A 、B 具有共同的速度v 1,且子弹、A 、B 组成的系统,从子弹开始射入物体A 一直到弹簧被压缩到最短的过程中,系统所受外力(重力、支持力)之和始终为零,故整个过程系统的动量守恒,由动量守恒定律得m v 0=(m +m A +m B )v 1,又m =14m B ,m A =34m B ,故v 1=m v 0m +m A +m B =v 08, 即弹簧压缩到最短时B 的速度为v 08.9.答案 (1)1 m/s 0(2)23 m/s 方向水平向右解析 (1)木块A 与B 相碰瞬间C 的速度为0,A 、B 木块的速度相同,由动量守恒定律得m A v =(m A +m B )v A ,v A =v 2=1 m/s.(2)C 滑上A 后,摩擦力使C 加速,使A 减速,直至A 、C 具有共同速度,以A 、C 整体为系统,由动量守恒定律得m A v A =(m A +m C )v C ,v C =23 m/s ,方向水平向右.10.答案 2.5v 0 与爆炸前速度方向相反解析 手榴弹爆炸过程中,爆炸产生的作用力是内力,远大于重力,因此爆炸过程中各弹片组成的系统动量守恒.斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前的速度v 1=v 0cos 60°=12v 0.设v 1的方向为正方向,如图所示,由动量守恒定律得3m v 1=2m v 1′+m v 2.其中爆炸后大块弹片的速度v 1′=2v 0,小块弹片的速度v 2为待求量,解得v 2=-2.5v 0,“-”号表示v 2的速度方向与爆炸前速度方向相反.11.答案 m 1v 1+m 2v 22m 1方向向右解析 设m 1、m 2碰后的速度大小分别为v 1′、v 2′,则由动量守恒定律知m 1v 1+m 2v 2=m 1v 1′+m 2v 2′m 1v 1′-m 2v 2′=0,解得v 1′=m 1v 1+m 2v 22m 1,方向向右. 12.答案 2.5 m/s 解析 子弹击穿A 后,A 在水平方向上获得一个速度v A ,最后当A 相对车静止时,它们的共同速度为v .子弹射穿A 的过程极短,因此车对A 的摩擦力、子弹的重力作用可略去,即认为子弹和A 组成的系统水平方向动量守恒,同时,由于作用时间极短,可认为A 的位置没有发生变化,设子弹击穿A 后的速度为v ′,由动量守恒定律有m B v 0=m B v ′+m A v A ,得v A =m B (v 0-v ′)m A =0.02×(600-100)2m/s =5 m/s A 获得速度v A 相对车滑动,由于A 与车间有摩擦,最后A 相对车静止,以共同速度v 运动,对于A 与车组成的系统,水平方向动量守恒,因此有:m A v A =(m A +M )v ,所以v =m A v Am A +M =2×52+2 m/s =2.5 m/s. 13.答案 65v 0解析 设A 与B 碰撞后,A 的速度为v A ,B 与C 碰撞前B 的速度为v B ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得对A 、B 木块:m A v 0=m A v A +m B v B①对B 、C 木块:m B v B =(m B +m C )v②由A 与B 间的距离保持不变可知v A =v③。
高中物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)及解析
4.在游乐场中,父子两人各自乘坐的碰碰车沿同一直线相向而行,在碰前瞬间双方都关闭了动力,此时父亲的速度大小为v,儿子的速度大小为2v.两车瞬间碰撞后儿子沿反方向滑行,父亲运动的方向不变且经过时间t停止运动.已知父亲和车的总质量为3m,儿子和车的总质量为m,两车与地面之间的动摩擦因数均为μ,重力加速度大小为g,求:
(2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R;
(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q.
【详解】
(1)设弹簧恢复到自然长度时A、B的速度分别为vA、vB,由动量守恒定律: 由能量关系:
解得vA=2m/s;vB=4m/s
(2)设B经过d点时速度为vd,在d点:
v′= 0.4m/s
(2)小球与小滑块碰撞过程,动量守恒
mv= -mv′+m1v1
v1= (v+v′) = 1.2m/s
小滑块在木板上滑动过程中,动量守恒
m1v1=(m1+m2)v2
v2= v1= 0.6m/s
由能量守恒可得
μm1gL= m1v12- (m1+m2)v22
第十六章 专题 动量和能量的综合应用
第16章 动量守恒定律 专题 动量和能量的综合应用题型一 滑块—木板模型例1.如图所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?练习1.如图所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )A .L B.3L 4C.L 4D.L 2【小结】:1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.班级: 姓名:题型二子弹打木块模型例2.如图所示,在水平地面上放置一质量为M的木块,一质量为m的子弹以水平速度v射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g)(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.练习2.矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图所示,则上述两种情况相比较,下列说法不正确的是()A.子弹的末速度大小相等B.系统产生的热量一样多C.子弹对滑块做的功相同D.子弹和滑块间的水平作用力一样大【小结】:1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.题型三 弹簧类模型例3.两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k 的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m 4,速度为v 0,子弹射入木块A 并留在其中.求:(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小.(2)在子弹击中木块后的运动过程中弹簧的最大弹性势能.练习3.如图所示,与水平轻弹簧相连的物体A 停放在光滑的水平面上,物体B 沿水平方向向右运动,跟与A 相连的轻弹簧相碰.在B 跟弹簧相碰后,对于A 、B 和轻弹簧组成的系统,下列说法中正确的是( )A .弹簧压缩量最大时,A 、B 的速度相同B .弹簧压缩量最大时,A 、B 的动能之和最小C .弹簧被压缩的过程中系统的总动量不断减少D .物体A 的速度最大时,弹簧的弹性势能为零【小结】:1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大.例4.(动量与能量的综合应用)如图所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:(1)滑块A与B碰撞后瞬间的共同速度的大小;(2)小车C上表面的最短长度.第16章 动量守恒定律专题 动量和能量的综合应用课后练习(一)1.如图所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )A.12m v 2 B .μmgLC.12NμmgLD.mM v 22(m +M )3.用不可伸长的细线悬挂一质量为M 的小木块,木块静止,如图4所示.现有一质量为m 的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v 0,重力加速度为g ,则下列说法正确的是( )A .从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B .子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v 0M +mC .忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D .子弹和木块一起上升的最大高度为m 2v 022g (M +m )24.如图所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )A .3 JB .4 JC .12 JD . 6 J班级: 姓名:5.如图所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 与A 分开后能达到的最大高度为h 4D .B 与A 分开后能达到的最大高度不能计算6.如图所示,光滑水平面上一质量为M 、长为L 的木板右端紧靠竖直墙壁.质量为m 的小滑块(可视为质点)以水平速度v 0滑上木板的左端,滑到木板的右端时速度恰好为零.(1)求小滑块与木板间的摩擦力大小;(2)现小滑块以某一速度v 滑上木板的左端,滑到木板的右端时与竖直墙壁发生弹性碰撞,然后向左运动,刚好能够滑到木板左端而不从木板上落下,试求v v 0的值.动量守恒定律专题 动量和能量的综合应用课后练习(二)1.如图,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)(1)小滑块的最终速度大小;(2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少?2.两物块A 、B 用水平轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,质量为4 kg 的物块C 静止在前方,如图所示.B 与C 碰撞后二者会粘在一起运动.则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大?(2)系统中弹性势能的最大值是多少?班级: 姓名:3.如图所示,物体A置于静止在光滑水平面上的平板小车B的左端,在A的上方O点用不可伸长的细线悬挂一小球C(可视为质点),线长L=0.8 m.现将小球C拉至水平(细线绷直)无初速度释放,并在最低点与A物体发生水平正碰,碰撞后小球C反弹的最大高度为h=0.2 m.已知A、B、C的质量分别为m A=4 kg、m B=8 kg和m C=1 kg,A、B间的动摩擦因数μ=0.2,A、C碰撞时间极短,且只碰一次,取重力加速度g =10 m/s2.(1)求小球C与物体A碰撞前瞬间受到细线的拉力大小;(2)求A、C碰撞后瞬间A的速度大小;(3)若物体A未从小车B上掉落,则小车B的最小长度为多少?4.如图所示,质量m B=2 kg的平板车B上表面水平,在平板车左端相对于车静止着一块质量m A=2 kg 的物块A,A、B一起以大小为v1=0.5 m/s的速度向左运动,一颗质量m0=0.01 kg的子弹以大小为v0=600 m/s的水平初速度向右瞬间射穿A后,速度变为v=200 m/s .已知A与B之间的动摩擦因数不为零,且A 与B最终达到相对静止时A刚好停在B的右端,车长L=1 m,g=10 m/s2,求:(1)A、B间的动摩擦因数;(2)整个过程中因摩擦产生的热量为多少?微型专题 动量和能量的综合应用[学习目标] 1.进一步熟练掌握动量守恒定律的应用.2.综合应用动量和能量观点解决力学问题.一、滑块—木板模型1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.例1 如图1所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )图1(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?答案 (1)v 04 (2)15v 0232μg (3)3v 028μg解析 (1)由题意知,A 向右减速,B 向右加速,当A 、B 速度相等时B 速度最大.以v 0的方向为正方向,根据动量守恒定律:m v 0=(m +3m )v ①得:v =v 04② (2)A 向右减速的过程,根据动能定理有-μmgx 1=12m v 2-12m v 02③ 则木块A 所发生的位移为x 1=15v 0232μg④ (3)方法一:B 向右加速过程的位移设为x 2.则μmgx 2=12×3m v 2⑤ 由⑤得:x 2=3v 0232μg木板的最小长度:L =x 1-x 2=3v 028μg方法二:从A 滑上B 至达到共同速度的过程中,由能量守恒得:μmgL =12m v 02-12(m +3m )v 2 得:L =3v 028μg. 二、子弹打木块模型1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.例2 如图2所示,在水平地面上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g )图2(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.答案 (1)Mm v 22(M +m )(2)m 2v 22(M +m )2μg解析 因子弹未射出,故碰撞后子弹与木块的速度相同,而系统损失的机械能为初、末状态系统的动能之差.(1)设子弹射入木块后,二者的共同速度为v ′,取子弹的初速度方向为正方向,则由动量守恒得:m v =(M +m )v ′①射入过程中系统损失的机械能ΔE =12m v 2-12(M +m )v ′2② 解得:ΔE =Mm v 22(M +m ). (2)子弹射入木块后二者一起沿地面滑行,设滑行的距离为x ,由动能定理得:-μ(M +m )gx =0-12(M +m )v ′2③ 由①③两式解得:x =m 2v 22(M +m )2μg.子弹打木块模型与滑块—木板模型类似,都是通过系统内的滑动摩擦力相互作用,系统动量守恒.当子弹不穿出木块时,相当于完全非弹性碰撞,机械能损失最多. 三、弹簧类模型1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大. 例3 两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m4,速度为v 0,子弹射入木块A 并留在其中.求:图3(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小. (2)在子弹击中木块后的运动过程中弹簧的最大弹性势能. 答案 (1)v 05 v 02 (2)140m v 02解析 (1)在子弹打入木块A 的瞬间,由于相互作用时间极短,弹簧来不及发生形变,A 、B 都不受弹簧弹力的作用,故v B =v 02;由于此时A 不受弹簧的弹力,木块A 和子弹构成的系统在这极短过程中所受合外力为零,系统动量守恒,选向左为正方向,由动量守恒定律得: m v 02-m v 04=(m4+m )v A 解得v A =v 05(2)由于子弹击中木块A 后木块A 、木块B 运动方向相同且v A <v B ,故弹簧开始被压缩,分别给A 、B 木块施以弹力,使得木块A 加速、B 减速运动,弹簧不断被压缩,弹性势能增大,直到二者速度相等时弹簧弹性势能最大,在弹簧压缩过程木块A (包括子弹)、B 与弹簧构成的系统动量守恒,机械能守恒. 设弹簧压缩量最大时共同速度为v ,弹簧的最大弹性势能为E pm , 选向左为正方向,由动量守恒定律得:54m v A +m v B =(54m +m )v 由机械能守恒定律得:12×54m v A 2+12m v B 2=12×(54m +m )v 2+E pm 联立解得v =13v 0,E pm =140m v 02.1.(滑块—木板模型)如图4所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )图4A .L B.3L 4 C.L 4 D.L2答案 D解析 长木板固定时,由动能定理得:-μMgL =0-12M v 02,若长木板不固定,以物块初速度的方向为正方向,有M v 0=2M v ,μMgs =12M v 02-12×2M v 2,得s =L2,D 项正确,A 、B 、C 项错误.2.(子弹打木块模型)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图5所示,则上述两种情况相比较,下列说法不正确的是( )图5A .子弹的末速度大小相等B .系统产生的热量一样多C .子弹对滑块做的功相同D .子弹和滑块间的水平作用力一样大 答案 D解析 设子弹的质量是m ,初速度是v 0,滑块的质量是M ,选择子弹初速度的方向为正方向,由动量守恒定律知滑块获得的最终速度(最后滑块和子弹的共同速度)为v.则:m v0=(m+M)v所以:v=m v0M+m可知两种情况下子弹的末速度是相同的,故A正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,而子弹减少的动能一样多(子弹初、末速度相等),滑块增加的动能也一样多,则系统减少的动能一样,故系统产生的热量一样多,故B正确;滑块的末速度是相等的,所以获得的动能是相同的,根据动能定理,滑块动能的增量是子弹做功的结果,所以两次子弹对滑块做的功一样多,故C正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,Q=F f·x相对,由于两种情况相比较子弹能射穿的厚度不相等,即相对位移x相对不相等,所以两种情况下子弹和滑块间的水平作用力不一样大,故D错误.3.(弹簧类模型)(多选)如图6所示,与水平轻弹簧相连的物体A停放在光滑的水平面上,物体B沿水平方向向右运动,跟与A相连的轻弹簧相碰.在B跟弹簧相碰后,对于A、B和轻弹簧组成的系统,下列说法中正确的是()图6A.弹簧压缩量最大时,A、B的速度相同B.弹簧压缩量最大时,A、B的动能之和最小C.弹簧被压缩的过程中系统的总动量不断减少D.物体A的速度最大时,弹簧的弹性势能为零答案ABD解析物体B与弹簧接触时,弹簧发生形变,产生弹力,可知B做减速运动,A做加速运动,当两者速度相等时,弹簧的压缩量最大,故A正确.A、B和弹簧组成的系统动量守恒,压缩量最大时,弹性势能最大,根据能量守恒,此时A、B的动能之和最小,故B正确.弹簧在压缩的过程中,A、B和弹簧组成的系统动量守恒,故C错误.当两者速度相等时,弹簧的压缩量最大,然后A继续加速,B继续减速,弹簧逐渐恢复原长,当弹簧恢复原长时,A的速度最大,此时弹簧的弹性势能为零,故D正确.4.(动量与能量的综合应用)如图7所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:图7(1)滑块A 与B 碰撞后瞬间的共同速度的大小; (2)小车C 上表面的最短长度. 答案 (1)2.5 m/s (2)0.375 m解析 (1)设滑块A 滑到圆弧末端时的速度大小为v 1,由机械能守恒定律得:m A gh =12m A v 12①代入数据解得v 1=2gh =5 m/s ②设A 、B 碰后瞬间的共同速度为v 2,滑块A 与B 碰撞瞬间与车C 无关,滑块A 与B 组成的系统动量守恒,以向右的方向为正方向, m A v 1=(m A +m B )v 2③ 代入数据解得v 2=2.5 m/s ④(2)设小车C 上表面的最短长度为L ,滑块A 与B 最终恰好没有从小车C 上滑出,三者最终速度相同设为v 3,以向右的方向为正方向 根据动量守恒定律有: (m A +m B )v 2=(m A +m B +m C )v 3⑤ 根据能量守恒定律有:μ(m A +m B )gL =12(m A +m B )v 22-12(m A +m B +m C )v 32⑥联立⑤⑥式代入数据解得L =0.375 m.一、选择题考点一 滑块-木板模型1.如图1所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )图1A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能答案 A解析 开始阶段,物块向左减速,薄板向右减速,当物块的速度为零时,设此时薄板的速度为v 1,规定向右为正方向,根据动量守恒定律得:(M -m )v =M v 1代入数据解得:v 1≈2.67 m/s <2.9 m/s ,所以物块处于向左减速的过程中.2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图2所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )图2A.12m v 2 B .μmgL C.12NμmgL D.mM v 22(m +M )答案 D解析 由于箱子M 放在光滑的水平面上,则由箱子和小物块组成的整体动量始终是守恒的,直到箱子和小物块的速度相同时,小物块与箱子之间不再发生相对滑动,以v 的方向为正方向,有m v =(m +M )v 1 系统损失的动能是因为摩擦力做负功ΔE k =-W f =μmg ·NL =12m v 2-12(M +m )v 12=mM v 22(m +M ),故D 正确,A 、B 、C 错误.考点二 子弹打木块模型3.如图3所示,木块静止在光滑水平桌面上,一子弹水平射入木块的深度为d 时,子弹与木块相对静止,在子弹入射的过程中,木块沿桌面移动的距离为L ,木块对子弹的平均阻力为F f ,那么在这一过程中下列说法不正确的是( )图3A .木块的机械能增量为F f LB .子弹的机械能减少量为F f (L +d )C .系统的机械能减少量为F f dD .系统的机械能减少量为F f (L +d )答案 D解析子弹对木块的作用力大小为F f,木块相对于桌面的位移为L,则子弹对木块做功为F f L,根据动能定理得知,木块动能的增加量,即机械能的增量等于子弹对木块做的功,即为F f L.故A正确.木块对子弹的阻力做功为-F f(L+d),根据动能定理得知:子弹动能的减少量,即机械能的减少量等于子弹克服阻力做功,大小为F f(L+d),故B正确.子弹相对于木块的位移大小为d,则系统克服阻力做功为F f d,根据功能关系可知,系统机械能的减少量为F f d,故C正确,D错误.4.(多选)用不可伸长的细线悬挂一质量为M的小木块,木块静止,如图4所示.现有一质量为m的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v0,重力加速度为g,则下列说法正确的是()图4A.从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B.子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v0M+mC.忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D.子弹和木块一起上升的最大高度为m2v022g(M+m)2答案BD解析从子弹射向木块到一起运动到最高点的过程可以分为两个阶段:子弹射入木块的瞬间系统动量守恒,但机械能不守恒,有部分机械能转化为系统内能,之后子弹在木块中与木块一起上升,该过程只有重力做功,机械能守恒但总能量小于子弹射入木块前的动能,故A、C错误;规定向右为正方向,由于弹簧射入木块瞬间系统动量守恒可知:m v0=(m+M)v′所以子弹射入木块后的共同速度为:v′=m v0M+m,故B正确;之后子弹和木块一起上升,该阶段根据机械能守恒得:12(M+m)v′2=(M+m)gh,可得上升的最大高度为:h=m2v022g(M+m)2,故D正确.考点三弹簧类模型5.如图5所示,位于光滑水平桌面上的小滑块P和Q质量相等,都可视作质点.Q与水平轻质弹簧相连.设Q静止,P以某一初速度向Q运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于( )图5A .P 的初动能B .P 的初动能的12C .P 的初动能的13D .P 的初动能的14答案 B解析 把小滑块P 和Q 以及弹簧看成一个系统,系统的动量守恒.在整个碰撞过程中,当小滑块P 和Q 的速度相等时,弹簧的弹性势能最大.设小滑块P 的初速度为v 0,两滑块的质量均为m ,以v 0的方向为正方向,则m v 0=2m v ,v =v 02所以弹簧具有的最大弹性势能E pm =12m v 02-12×2m v 2=14m v 02=12E k0,故B 正确.6.如图6所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )图6A .3 JB .4 JC .12 JD .6 J 答案 D7.(多选)如图7所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )图7A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh2C .B 与A 分开后能达到的最大高度为h4D .B 与A 分开后能达到的最大高度不能计算答案 BC解析 根据机械能守恒定律可得B 刚到达水平面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12×2m v 2=12mgh ,即A 错误,B 正确;当弹簧再次恢复原长时,A 与B 分开,B 以大小为v 的速度向左沿曲面上滑,根据机械能守恒定律可得mgh ′=12m v 2,B 能达到的最大高度为h ′=14h ,即C 正确,D 错误. 二、非选择题8.(滑块—木板模型)如图8,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)图8(1)小滑块的最终速度大小; (2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少? 答案 (1)0.6 m/s (2)0.072 J (3)0.135 m 解析 (1)小滑块与长木板组成的系统动量守恒, 规定向右为正方向,由动量守恒定律得: m v 0=(m +M )v 解得最终速度为:v =m v 0M +m =0.2×1.20.2+0.2 m/s =0.6 m/s (2)由能量守恒定律得: 12m v 02=12(m +M )v 2+Q 代入数据解得热量为:Q =0.072 J (3)对小滑块应用动能定理: -μmgs =12m v 2-12m v 02代入数据解得距离为s =0.135 m.9.(子弹打木块模型)如图9所示,质量m B =2 kg 的平板车B 上表面水平,在平板车左端相对于车静止着一块质量m A =2 kg 的物块A ,A 、B 一起以大小为v 1=0.5 m/s 的速度向左运动,一颗质量m 0=0.01 kg 的。
16.3练习 动量守恒定律的应用
到的合外力等于零,由动量守恒定律得:
m V0= m V1+M V2 ①
要使滑块刚好不从木板上滑出,
则必须满足: V1= V2 ②
根据能量守恒定律得:
1 2
mv02
1 (m 2
M )v12
mgL
③
联立以上三式代入数据得:L=0.8m
即木板长度至少为0.8m。
针对练习
• 静止在光滑水平面上质量为M的木块, 一颗质量为m的子弹从木块的左端以v0 打进。设子弹在打穿木块的过程中受到 大小恒为Ff的阻力,子弹刚好从木块的 右端打出,木块的长度多大?
1 mv2 2
1 (m 2
M )v12
mgH
③
联立以上二式可得小球能滑至弧形槽内的最大
高度
H
Mv2
2m M
g
小结:
• 解决临界问题,一般有两种方法:
• 第一是以定理、定律为依据,首先求出 所研究问题的一般规律和一般解的形式, 然后再分析、讨论临界特殊规律和特殊 解;
• 第二是直接分析、讨论临界状态,找出 临界条件,从而通过临界条件求出临界 值。
V
【思路点拨】
由临界条件知,小球到达最高点时, 小球在竖直方向的分速度等于零,小球 和小车在水平方向应具有相同的速度。
解(1)小球到达最高点时,小球在竖直方向
的分速度等于零,小球和小车在水平方向应 具有相同的速度。由动量守恒定律得:
mv
v1
(m M
mv M m
)v1
① ②
(2)由能量守恒定律可知:
专题训练: 动量守恒定律应用中的临界问题
高二物理备课组
在动量守恒定律的应用中,常常 会遇到相互作用的两个物体相距最远、 避免相撞和开始反向等临界问题,而 分析临界问题的关键是寻找临界状态. 在与动量相关的临界问题中,临界条 件常常表现为:
易错点16 动量守恒定律及其应用(解析版) -备战2023年高考物理考试易错题
易错点16 动量守恒定律及其应用例题1. (2021·浙江1月选考·12)在爆炸实验基地有一发射塔,发射塔正下方的水平地面上安装有声音记录仪.爆炸物自发射塔竖直向上发射,上升到空中最高点时炸裂成质量之比为2∶1、初速度均沿水平方向的两个碎块.遥控器引爆瞬间开始计时,在5 s 末和6 s 末先后记录到从空气中传来的碎块撞击地面的响声.已知声音在空气中的传播速度为340 m/s ,重力加速度大小g 取10 m/s 2,忽略空气阻力.下列说法正确的是( )A .两碎块的位移大小之比为1∶2B .爆炸物的爆炸点离地面高度为80 mC .爆炸后的质量大的碎块的初速度为68 m/sD .爆炸后两碎块落地点之间的水平距离为340 m【答案】B【解析】设碎块落地的时间为t ,质量大的碎块水平初速度为v ,则由动量守恒定律知质量小的碎块水平初速度为2v ,爆炸后的碎块做平抛运动,下落的高度相同,则在空中运动的时间相同,由水平方向x =v 0t 知落地水平位移之比为1∶2,碎块位移s =x 2+y 2,可见两碎块的位移大小之比不是1∶2,故A 项错误;据题意知,v t =(5 s -t )×340 m/s ,又2v t =(6 s-t )×340 m/s ,联立解得t =4 s ,v =85 m/s ,故爆炸点离地面高度为h =12gt 2=80 m ,所以B 项正确,C 项错误;两碎块落地点的水平距离为Δx =3v t =1 020 m ,故D 项错误.【误选警示】误选A 的原因:水平位移和位移没有区分清楚。
误选CD 的原因:没有定量推导声音传播时间和传播距离和平抛水平位移的关系,从而求解落地时间、爆炸后两物块的速度、两物块的水平位移大小。
例题2. 在发射地球卫星时需要运载火箭多次点火,以提高最终的发射速度.某次地球近地卫星发射的过程中,火箭喷气发动机每次喷出质量为m =800 g 的气体,气体离开发动机时的对地速度v =1 000 m/s ,假设火箭(含燃料在内)的总质量为M =600 kg ,发动机每秒喷气20次,忽略地球引力的影响,则( )A .第三次气体喷出后火箭的速度大小约为4 m/sB .地球卫星要能成功发射,速度大小至少达到11.2 km/sC .要使火箭能成功发射至少要喷气500次D .要使火箭能成功发射至少要持续喷气17 s【答案】 A【解析】设喷出三次气体后火箭的速度为v3,以火箭和喷出的三次气体为研究对象,以竖直向上为正方向,由动量守恒定律得:(M-3m)v3-3m v=0,解得:v3≈4 m/s,故A正确;地球卫星要能成功发射,喷气n次后至少要达到第一宇宙速度,即:v n=7.9 km/s,故B错误;以火箭和喷出的n次气体为研究对象,以竖直向上为正方向,由动量守恒定律得:(M-nm)v n-nm v=0,代入数据解得:n≈666,故C错误;至少持续喷气时间为:t=n20=33.3 s,故D错误.【误选警示】误选B的原因:没有把第一宇宙速度和第二宇宙速度区分清楚。
子弹打木块模
(3)若能射穿木块,则子弹和木块的最终速度是多少?
v0
人教版选修3-5
第十六章 动量守恒定律
解:( 1)由动量守恒定律 mv0 =(M+m)v
v =6m/s
系统增加的内能等于系统减少的动能 Q = fd=1/2×mv02 -1/2× (M+m)v2 =900-1/2×36=882J ( 2)设以400m/s射入时,没有打穿木块,则射入木块的深度为d ′
第十六章 动量守恒定律
题8.如图所示,质量均为m的物体A和B,
用轻弹簧连接后放置在光滑水平面上,一颗 质量为m/4的子弹,以水平速度v0射向A并嵌 入A内,在A、B向前运动的过程中,B的最 大动能是多少?
v0
A
A
B
B
人教版选修3-5
第十六章 动量守恒定律
(3)设射穿后,最终子弹和木块的速度分别为v子和v木, 由动量守恒定律 系统能量守恒 fL= 1/2×mv0 2 - 1/2× Mv木2 - 1/2× mv子2 解得: v子=106 m/s v木=6 m/s mv0 =mv子+Mv木
(2)若子弹是以v0 = 400m/s的水平速度从同一方向射向 该木块的,则它能否射穿该木块?
(3)若能射穿木块,则子弹和木块的最终速度是多少?
v0
人教版选修3-5
第十六章 动量守恒定律
题7.如图所示,在光滑水平桌面上静置一质量为
M=980g的长方形匀质木块,现有一颗质量为 m=20g的子 弹以v0 = 300m/s 的水平速度沿其轴线射向木块,结果子 弹留在木块中没有射出,和木块一起以共同的速度运动。 已知木块沿子弹运动方向的长度为L=10cm,子弹打进木 块的深度为d=6cm,设木块对子弹的阻力保持不变。
《创新设计课堂讲义》习题课 动量守恒定律的应用
预习导学
第十六章 动量守恒定律
【例2】 如图2所示,一辆砂车的总质量为M,
静止于光滑的水平面上.一个质量为m的
物体A以速度v落入砂车中,v与水平方向
成θ角,求物体落入砂车后车的速度v′.
图2
答案 mvcos θ/(M+m)
解析 物体和车作用时总动量不守恒,而水平面光滑,
系统在水平方向上动量守恒,即mvcos θ=(M+m)v′,得
图5
预习导学 课堂讲义
预习导学
第十六章 动量守恒定律
(1)若甲将箱子以速度 v 推出,甲的速度变为多少?(用字母表 示) (2)设乙抓住迎面滑来的速度为 v 的箱子后反向运动,乙抓住箱 子后的速度变为多少?(用字母表示) (3)若甲、乙最后不相撞,甲、乙的速度应满足什么条件?箱子 被推出的速度至少多大? 答案 (1)M+mMv0-mv (2)mmv-+MMv0 (3)v1≤v2 5.2 m/s
预习导学 课堂讲义
预习导学
第十六章 动量守恒定律
【例4】 如图5所示,甲、乙两小孩各乘一辆冰车在水平冰 面上游戏,甲和他的冰车总质量共为M=30 kg,乙和他 的冰车总质量也是30 kg.游戏时,甲推着一个质量为m= 15 kg的箱子和他一起以v0=2 m/s的速度滑行,乙以同样 大小的速度迎面滑来,为了避免相撞,甲突然将箱子沿 冰面推给乙,箱子滑到乙处,乙迅速抓住.若不计冰面 摩擦.
预习导学 课堂讲义
预习导学
第十六章 动量守恒定律
解析 (1)甲将箱子推出的过程,甲和箱子组成的整体动量守
恒,由动量守恒定律得:(M+m)v0=mv+Mv1
①
解得 v1=M+mMv0-mv
②
(2)箱子和乙作Biblioteka 的过程动量守恒,以箱子的速度方向为正方
第16章 第4节 动量守恒定律的运用
甲
乙
动量守恒定律应用中的临界问题
1、在动量守恒定律的应用中常见的临界问题有:
相互作用的两物体相距最近、避免相碰和物体开始 反向运动等.
2、分析临界问题的关键:
关键是寻找临界状态,临界状态的出现是有条件 的,这种条件就是临界条件.临界条件往往表现 为某个(或某些)物理量的特定取值.在与动量相 关的临界问题中,临界条件常常表现为两物体的 相对速度关系与相对位移关系,这些特定关系的 判断是求解这类问题的关键. 具体分析如下:
求某物体的运动时间时,优先考虑用动量定理(注意动 量定理和动量守恒定律的研究对象和求解方法的区别)
例3、如图所示,质量为M=1kg,长为L=1m的长木板, 静止放置在光滑水平桌面上,有一个质量为m=0.2kg 大小不计的物体以6m/s的水平速度从木板左端冲上木 板,滑到木板右端时跟木板相对静止(g取10m/s2)。
求:(1)木板获得的速度
(2)木块与木板间的动摩擦因素
v0
总结:
1、子弹打木块的模型具有下列力学规律:
2、如图所示,甲、乙两船的总质量(包括船、人 和货物)分别为10m、12m,两船沿同一直线同 一方向运动,速度分别为2v0、v0。为避免两船 相撞,乙船上的人将一质量为m的货物沿水平方 向抛向甲船,甲船上的人将货物接住,求抛出货 物的最小速度。(不计水的阻力)
3、如图所示,甲车质量m1=20 kg,车上有质 量M=50 kg的人,甲车(连同车上的人)以v=3 m/s的速度向右滑行.此时质量m2=50 kg的乙 车正以v0=1.8 m/s的速度迎面滑来,为了避免两 车相撞,当两车相距适当距离时,人从甲车跳到 乙车上,求人跳出甲车的水平速度(相对地面)应 当在什么范围以内才能避免两车相撞?不计地面 和小车的摩擦,且乙车足够长.
2023-2024(上高中物理 选择性必修第一册动量定理习题课:动量守恒定律的应用练习册含答案
2023-2024(上)全品学练考高中物理选择性必修第一册动量定理习题课:动量守恒定律的应用建议用时:40分钟◆知识点一多物体、多过程中动量守恒的判断1.[2022·长沙一中月考] 如图所示,光滑水平面上放置一足够长木板A,其上表面粗糙,两个质量和材料均不同的物块B、C,以不同的水平速度分别从两端滑上长木板A.当B、C在木板A 上滑动的过程中,由A、B、C组成的系统 ()A.动量守恒,机械能守恒B.动量守恒,机械能不守恒C.动量不守恒,机械能守恒D.动量不守恒,机械能不守恒2.(多选)[2022·湖北宜昌一中月考] A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面水平且光滑.当两物体被同时释放后,则()A.若A、B与平板车上表面间的动摩擦因数相同,则A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,则A、B、C组成系统的动量守恒C.若A、B所受的摩擦力大小相等,则A、B组成系统的动量守恒D.若A、B所受的摩擦力大小相等,则A、B、C组成系统的动量守恒◆知识点二多物体、多过程中动量守恒定律的应用3.[2022·广州广雅中学月考] 质量相同的A、B两小车置于光滑的水平面上,有一个质量为m 的人静止在A车上,两车都静止,当这个人自A车跳到B车上,接着又跳回A车上,最终相对A 车静止,则A车最终的速率 ()A.等于零B.小于B车的速率C.大于B车的速率D.等于B车的速率4.[2022·浙江效实中学月考] 质量相等的五个物块在一光滑水平面上排成一条直线,且彼此隔开一定的距离,具有初速度v0的第5号物块向左运动,依次与其余四个静止物块发生碰撞,如图所示,最后这五个物块粘成一个整体,则它们最后的速度为()A.v0B.v05C.v03D.v04◆知识点三动量守恒定律应用的临界问题5.[2022·山师大附中月考] 如图所示在光滑的水平面上静止放置着一个质量为4m的木板B,它的左端静止放置着一个质量为2m的物块A,现让A、B一起以水平速度v0向右运动,与其前方静止的另一个相同的木板C相碰后粘在一起,在两木板相碰后的运动过程中,物块恰好没有滑下木板,且物块A可视为质点,则两木板的最终速度为()A.v02 B.2v05C.3v05D.4v056.将两个完全相同的磁铁(磁性极强)分别固定在质量相等的甲、乙两车上,水平面光滑.开始时甲车速度大小为3 m/s,乙车速度大小为2 m/s,方向相反并在同一直线上,如图所示.(1)当乙车速度为零时,甲车的速度为多大?方向如何?(2)由于磁铁的磁性极强,故两车不会相碰,那么两车间的距离最小时,乙车的速度是多大?方向如何?7.如图所示,三辆完全相同的平板小车a、b、c成一直线排列,静止在光滑水平面上.c车上有一小孩跳到b车上,接着又立即从b车跳到a车上.小孩跳离c车和b车时对地的水平速度相同.他跳到a车上相对a车保持静止,此后()A.a、b两车运动速率相等B.a、c两车运动速率相等C.三辆车的速率关系为v c=v b>v aD.a、c两车运动方向相反8.[2022·浙江海盐高级中学月考] 如图所示,在光滑的水平地面上有一平板小车质量为M=2 kg,靠在一起的滑块甲和乙质量均为m=1 kg,三者处于静止状态.某时刻起滑块甲以初速度v1=2 m/s向左运动,同时滑块乙以v2=4 m/s向右运动.最终甲、乙两滑块均恰好停在小车的两端.小车长L=9.5 m,两滑块与小车间的动摩擦因数相同,求:(g取10 m/s2,滑块甲和乙可视为质点)(1)最终甲、乙两滑块和小车的共同速度的大小;(2)两滑块与小车间的动摩擦因数;(3)两滑块运动前滑块乙离右端的距离.9.[2022·北京东城区期中] 甲、乙两个小孩各乘一辆冰车在水平地面上游戏,甲和他的冰车的质量为M=30 kg,乙和他的冰车的质量也是M=30 kg .游戏时甲推一个质量m=15 kg 的箱子,以大小为v 0=3.0 m/s 的速度向东滑行,乙以同样大小的速度迎面滑来.不计水平地面的摩擦力.(1)若甲向东以5 m/s 的速度将箱子推给乙,甲的速度变为多少?(2)甲至少以多大的速度将箱子推给乙,才能避免相撞?(题中各速度均以地面为参考系)10.(多选)如图所示,在质量为M 的小车上用细线挂有一小球,小球的质量为m 0,小车和小球以恒定的速度v 沿光滑水平地面运动,与位于正前方的质量为m 的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列哪些情况是可能发生的 ( )A .小车、木块、小球的速度都发生变化,分别变为v 1、v 2、v 3,满足(M+m 0)v=Mv 1+mv 2+m 0v 3B .小球的速度不变,小车和木块的速度变为v 1和v 2,满足Mv=Mv 1+mv 2C .小球的速度不变,小车和木块的速度都变为v 1,满足Mv=(M+m )v 1D .小车和小球的速度都变为v 1,木块的速度变为v 2,满足(M+m 0)v=(M+m 0)v 1+mv 2习题课:动量守恒定律的应用1.B [解析] 依题意,因水平面光滑,则A 、B 、C 组成的系统合力为零,满足动量守恒条件,系统动量守恒,木板A 上表面粗糙,物块B 、C 在其上滑行时,会摩擦生热,系统机械能有损失,则系统机械能不守恒,故A 、C 、D 错误,B 正确.2.BCD [解析] 若A 、B 与平板车上表面间的动摩擦因数相同,由于A 、B 两物体的质量之比为m A ∶m B =3∶2,由滑动摩擦力F f =μmg 可知弹簧释放时,小车对A 、B 的滑动摩擦力大小之比为3∶2,所以A 、B 组成的系统所受合外力不等于零,系统的动量不守恒,A 错误;对于A 、B 、C 组成的系统,由于地面光滑,系统所受的合外力为零,则系统动量守恒,B 、D 正确;若A 、B 所受的摩擦力大小相等,则A 、B 组成的系统所受合外力为零,A 、B 组成的系统动量守恒,C 正确.3.B [解析] 设车的质量为M ,A 、B 两车以及人组成的系统动量守恒,规定由A 指向B 为正方向,有0=Mv B -(M+m )v A ,解得v A v B=MM+m ,则A 车最终的速率小于B 车的速率,故选B .4.B [解析] 由于五个物块组成的系统沿水平方向不受外力作用,故系统在水平方向上动量守恒,由动量守恒定律得mv 0=5mv ,得v=15v 0,即它们最后的速度为15v 0,B 正确.5.C [解析] 设两木板碰撞后的速度为v 1,以v 0的方向为正方向,由动量守恒定律得4mv 0=8mv 1,解得v 1=v02,设物块与木板共同的速度为v 2,由动量守恒定律得2mv 0+8mv 1=(2m+8m )v 2,解得v 2=3v 05,故选C .6.(1)1 m/s 向右 (2)0.5 m/s 向右[解析] 两车及磁铁组成的系统在水平方向不受外力作用,两磁铁之间的磁力是系统内力,系统动量守恒.设向右为正方向.(1)据动量守恒定律得mv 甲-mv 乙=mv'甲 则v'甲=v 甲-v 乙=1 m/s,方向向右.(2)两车相距最近时,两车的速度相同,设为v',由动量守恒定律得 mv 甲-mv 乙=mv'+mv' 解得v'=mv 甲-mv 乙2m=v 甲-v 乙2=3-22 m/s =0.5 m/s,方向向右.7.D [解析] 若人跳离b 、c 车时相对地面的水平速度为v ,以水平向右为正方向,由动量守恒定律知,水平方向,对人和c 车组成的系统有0=m 人v+m 车v c ,对人和b 车有m 人v=m 车v b +m 人v ,对人和a 车有m 人v=(m 车+m 人)v a ,所以v c =-m 人v m 车,v b =0,v a =m 人vm 人+m 车,即三辆车的速率关系为v c >v a >v b ,并且v c 与v a 方向相反,故选D . 8.(1)0.5 m/s (2)0.1 (3)7.5 m[解析] (1)两滑块与小车组成的系统动量守恒,以向右为正方向,由动量守恒定律得 mv 2-mv 1=(M+m+m )v 解得 v=0.5 m/s(2)对整体由能量守恒定律得 12m v 12+12m v 22=12(M +m +m )v 2+μmgL解得μ=0.1(3)经分析,滑块甲运动到左端时速度刚好减为0,在滑块甲运动至左端前,小车静止,之后滑块甲和小车一起向右做匀加速运动到三者共速.甲、乙从开始运动到最终两滑块均恰好停在小车的两端的过程中,设滑块乙的对地位移为x 1,滑块甲和小车一起向右运动的位移为x 2.由动能定理,对滑块乙有 -μmgx 1=12mv 2-12m v 22对滑块甲和小车有 μmgx 2=12(m +M )v 2滑块乙离右端的距离 s=x 1-x 2 解得s=7.5 m9.(1)2 m/s (2)7.8 m/s[解析] (1)取向东为正方向,由动量守恒定律有 mv 0+Mv 0=mv 1+Mv 解得v=2 m/s(2)设甲至少以速度v'将箱子推出,推出箱子后甲的速度为v 甲,乙接到箱子后的速度为v 乙,取向东为正方向.则根据动量守恒定律得 (M+m )v 0=Mv 甲+mv' mv'-Mv 0=(m+M )v 乙当甲与乙恰好不相撞时,有v甲=v乙联立解得v'=7.8 m/s10.BC[解析] 在小车与木块发生碰撞的瞬间,彼此作用力很大,所以它们的速度在瞬间发生改变,作用过程中它们的位移可看成为零,而小球并没有直接与木块发生力的作用,在它与小车共同匀速运动时,细线沿竖直方向,因此细线的拉力不能改变小球速度的大小,即小球的速度不变,A、D错误;而小车和木块碰撞后,可能以不同的速度继续向前运动,也可能以共同速度向前运动,B、C正确.章末学业测评(一)建议用时:40分钟一、选择题1.[2022·湖北黄冈中学期中] 关于物体的动量,下列说法中正确的是()A.物体的动量越大,其惯性也越大B.动量相同的物体,速度一定相同C.物体的速度方向改变,其动量一定改变D.运动的物体在任一时刻的动量方向一定是该时刻的加速度方向2.[2022·唐山一中月考] 如图所示,一个质量为m=0.5 kg的铁锤,以v=5 m/s的速度竖直打在木桩的钉子上,钉子的质量为2 g,经0.01 s后铁锤速度减小到0,重力加速度g取10 m/s2,则铁锤对钉子的作用力大小为()A.1 NB.245 NC.250 ND.255 N3.[2022·北京四中月考] 蹦极是一项刺激的极限运动,如图所示运动员将一端固定的弹性长绳绑在腰或踝关节处,从几十米高处跳下.在某次蹦极中,质量为60 kg的运动员在弹性绳绷紧后又经过2 s速度减为零,假设弹性绳长为45 m,重力加速度g取10 m/s2(忽略空气阻力),下列说法正确的是()A.弹性绳在绷紧后2 s内对运动员的平均作用力大小为2 000 NB.运动员在弹性绳绷紧后动量的变化量等于弹性绳的作用力的冲量C.运动员从开始起跳到下落到最低点的整个运动过程中重力冲量与弹性绳作用力的冲量大小相等D.运动员从开始起跳到下落到最低点的整个运动过程中重力冲量小于弹性绳作用力的冲量4.(多选)如图所示,小车放在光滑水平面上,A端固定一轻弹簧,B端粘有油泥,小车及油泥的总质量为M,质量为m的木块C放在小车上,用细绳连接于小车的A端并使弹簧压缩,开始时小车和C 都静止,当突然烧断细绳时,C 被释放,C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽略一切摩擦,下列说法正确的是( )A .弹簧伸长过程中C 向右运动,同时小车也向右运动B .C 与B 端碰前,C 与小车的速率之比为M ∶m C .C 与油泥粘在一起后,小车立即停止运动D .C 与油泥粘在一起后,小车继续向右运动5.一只爆竹竖直升空后,在高为h 处到达最高点并发生爆炸,分成质量不同的两块,两块质量之比为3∶1,其中质量小的一块获得大小为v 的水平速度,重力加速度为g ,不计空气阻力,则两块爆竹落地点的距离为 ( ) A .v4√2ℎg B .2v3√2ℎg C .4v3√2ℎg D .4v √2ℎg6.(多选)如图所示,小车的上面固定一个光滑弯曲圆管道,整个小车(含管道)的质量为2m ,原来静止在光滑的水平面上.今有一个可以视为质点的小球,质量为m ,半径略小于管道半径,以水平速度v 从左端滑上小车,小球恰好能到达管道的最高点,然后从管道左端滑离小车.关于这个过程,下列说法正确的是 ( )A .小球滑离小车时,小车回到原来位置B .小球滑离小车时相对小车的速度大小为vC .管道最高点距小车上表面的高度为v 23gD .小球从滑进管道到滑到最高点的过程中,小车的动量变化量大小是mv37.(多选)[2022·天津一中月考] 如图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接,并静止在光滑的水平面上.现使B 瞬时获得水平向右的速度3 m/s,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图像信息可得 ( )A .在t 1、t 3时刻两物块达到共同速度1 m/s,且弹簧都处于伸长状态B .从t 3到t 4时刻弹簧由压缩状态恢复到原长C .两物块的质量之比为m 1∶m 2=1∶2D .在t 2时刻A 与B 的动能之比为E k1∶E k2=8∶18.(多选)[2022·杭二中月考] 物理兴趣小组在研究竖直方向的碰撞问题时,将网球和篮球同时从某高度处自由释放(如图所示),发现网球反弹的高度比单独释放时的高度高很多.若两球均为弹性球,释放时两球互相接触,且球心在同一竖直线,某同学将两球从离地高为h处自由落下,此高度远大于两球半径,已知网球质量为m,篮球质量为7m,重力加速度为g,设所有碰撞均为弹性碰撞且只发生在竖直方向上.忽略空气阻力,则下列说法正确的是()A.两球下落过程中,网球对篮球有竖直向下的压力B.篮球与网球相碰后,篮球的速度为零C.落地弹起后,篮球上升的最大高度为ℎ4D.篮球从地面反弹与网球相碰后网球上升的最大高度为6.25h二、计算题9.如图甲所示,质量均为m=0.5 kg的相同物块P和Q(可视为质点),分别静止在水平地面上A、C两点.P在水平力F作用下由静止开始向右运动,力F与时间t的关系如图乙所示,3 s末撤去力F,此时P运动到B点,之后继续滑行并与Q发生弹性碰撞.已知B、C两点间的距离L=3.75 m,P、Q与地面间的动摩擦因数均为μ=0.2,g取10 m/s2,求:(1)P到达B点时的速度大小v及P与Q碰撞前瞬间的速度大小v1;(2)Q运动的时间t.10.如图甲,打桩船是海上风电场、跨海大桥、港口码头等海洋工程建设的重要装备.其工作原理等效简化图如图乙所示,某次打桩过程中,质量为M=200 t的桩竖直放置,质量为m=50 t 的打桩锤从离桩上端h=0.8 m处由静止释放,下落后垂直打在桩上,打桩锤与桩作用时间极短,然后二者以相同速度一起向下运动h1=0.4 m后停止.桩向下打入海床过程中受到海床的阻力大小不恒定.重力加速度g取10 m/s2.(1)求打桩锤击中桩后,二者的共同速度的大小;(2)求打桩锤与桩作用的极短时间内损失的机械能;(3)打桩后,锤与桩向下打入海床的运动过程中,求克服阻力做功.甲 乙章末学业测评(一)1.C [解析] 惯性只与质量有关,质量越大惯性越大,根据公式p=mv 可知,物体的动量越大,物体的质量不一定大,故A 错误;根据公式p=mv 可知,动量相同的物体,速度不一定相同,故B 错误;动量是矢量,有大小也有方向,动量的方向即为物体运动的速度方向,与该时刻加速度方向无直接关系,物体的速度方向改变,其动量一定改变,故D 错误,C 正确.2.D [解析] 以铁锤为研究对象,设钉子对铁锤的平均作用力为F ,取竖直向上为正方向,由动量定理得(F-mg )t=0-(-mv ),代入数据解得F=255 N,根据牛顿第三定律知,铁锤打击钉子的平均作用力为255 N,方向竖直向下,故D 正确,A 、B 、C 错误.3.C [解析] 由机械能守恒得mgh=12mv 2,绳在刚绷紧时人的速度大小为v=√2gh=30 m/s,以竖直向上为正方向,在绷紧的过程中根据动量定理有(F-mg )t=0-(-mv ),代入数据解得F=1500 N,故A 错误;根据动量定理可知,运动员在弹性绳绷紧后,动量的变化量等于弹性绳作用力的冲量与重力冲量的和,故B 错误;运动员整个过程中动量的变化量为零,则重力冲量与弹性绳作用力的冲量等大反向,故C 正确,D 错误.4.BC [解析] 小车与C 组成的系统在水平方向上动量守恒,C 向右运动时,小车应向左运动,故A 错误;设碰前C 的速率为v 1,小车的速率为v 2,则0=mv 1-Mv 2,得v 1v 2=Mm ,故B 正确;设C 与油泥粘在一起后,小车与C 的共同速度为v 共,则0=(M+m )v 共,得v 共=0,故C 正确,D 错误. 5.C [解析] 设其中一块质量为m ,另一块质量为3m.爆炸过程中系统在水平方向上动量守恒,由动量守恒定律得mv-3mv'=0,解得v'=13v ,设两块爆竹落地用的时间为t ,根据h=12gt 2,解得t=√2ℎg ,两块爆竹落地点的距离为x=(v+v')t=4v 3√2ℎg.6.BC [解析] 小球恰好能到达管道的最高点,说明在管道最高点时小球和管道之间相对静止,小球从滑进管道到滑到最高点的过程中,由动量守恒定律,有mv=(m+2m )v',得v'=v3,小车动量变化量大小Δp 车=2m ·v3=23mv ,D 错误;小球从滑进管道到滑到最高点的过程中,由机械能守恒定律,有mgH=12mv 2-12(m+2m )v'2,得H=v 23g ,C 正确;小球从滑上小车到滑离小车的过程,由动量守恒定律和机械能守恒定律,有mv=mv 1+2mv 2,12mv 2=12m v 12+12×2m v 22,得v 1=-v3,v 2=23v ,则小球滑离小车时相对小车的速度大小为23v+13v=v ,B 正确;由以上分析可知,在整个过程中小车一直向右运动,A 错误.7.BD [解析] 由A 的速度图像可知,t 1时刻正在加速,说明弹簧被拉伸,t 3时刻正在减速,说明弹簧被压缩,故选项A 错误;t 3时刻A 正在减速,说明弹簧被压缩,t 4时刻A 的加速度为零,说明弹簧处于原长,故选项B 正确;对0~t 1过程,由动量守恒定律得m 2×3 m/s =(m 1+m 2)×1 m/s,故m 1∶m 2=2∶1,选项C 错误;动能E k =12mv 2,t 2时刻A 与B 的速度大小之比为2∶1,则动能之比为8∶1,故选项D 正确.8.CD [解析] 两球下落过程中,均处于完全失重状态,两球间没有作用力,故A 错误;根据自由落体运动规律可知,两球落地前瞬间速度大小相等,设为v ,篮球从地面反弹与网球相碰过程,根据动量守恒和能量守恒有7mv-mv=7mv 1+mv 2,12×7mv 2+12mv 2=12×7m v 12+12m v 22,解得v 1=v2,v 2=52v ,故B 错误;根据机械能守恒定律有7mgh=12×7mv 2,7mgh'=12×7m v 12,解得,篮球上升的最大高度为h'=ℎ4,故C 正确;根据机械能守恒定律有mgh″=12m v 22,解得,网球上升的最大高度为h″=6.25h ,故D 正确.9.(1)8 m/s 7 m/s (2)3.5 s[解析] (1)以向右为正方向,在0~3 s 内,对P ,由动量定理有 F 1t 1+F 2t 2-μmg (t 1+t 2)=mv-0其中F 1=2 N,F 2=3 N,t 1=2 s,t 2=1 s 解得v=8 m/s设P 在B 、C 两点间滑行的加速度大小为a ,由牛顿第二定律有 μmg=maP 在B 、C 两点间做匀减速直线运动,有v 2-v 12=2aL 解得v 1=7 m/s .(2)设P 与Q 发生弹性碰撞后瞬间P 、Q 的速度大小分别为v'1、v 2,有 mv 1=mv'1+mv 212m v 12=12mv '12+12m v 22碰撞后Q 做匀减速直线运动,Q 运动的加速度大小为 μmg=ma'Q 运动的时间为t=v2a '解得t=3.5 s .10.(1)0.8 m/s (2)3.2×105 J (3)1.08×106 J [解析] (1)打桩锤击中桩前瞬间的速度为v 1=√2gℎ=4 m/s打桩锤与桩作用时间极短,作用过程动量守恒,有 mv 1=(M+m )v 共 解得v 共=0.8 m/s(2)打桩锤与桩作用的极短时间内损失的机械能为ΔE=12m v 12-12(M+m )v 共2=3.2×105 J(3)打桩后,锤与桩向下打入海床的运动过程中,根据动能定理,有(M+m )gh 1+W=0-12(M+m )v 共2解得W=-1.08×106 J,所以克服阻力做功为1.08×106 J。
高中物理第十六章动量守恒定律本章整合课件新人教版
上。某时刻小孩将冰块以相对冰面3 m/s的速度向斜面体推出,冰
块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3 m(h小
于斜面体的高度)。已知小孩与滑板的总质量为m1=30 kg,冰块的
质量为m2=10 kg,小孩与滑板始终无相对运动。重力加速度的大小
专题二 动量与能量相结合的问题
处理力学问题的基本思路有三种:一是动力学的观点,即利用牛
顿运动定律和运动学公式处理问题的方法;二是动量的观点,即利
用动量定理、动量守恒定律处理问题的方法;三是能量的观点,即
利用功能关系(如动能定理)、能量守恒定律处理问题的方法。分
析问题时,若涉及有关物理量的瞬时对应关系,一般用动力学的观
解析:设物块与小车的共同速度为v,以水平向右为正方向,根据
动量守恒定律得m2v0=(m1+m2)v
设物块与车面间的滑动摩擦力为Ff,对物块应用动量定理得Fft=m2v-m2v0
又Ff=μm2g
1 0
解得 t= ( +
1
2 )
代入数据解得t=0.24 s。
答案:0.24 s
专题一
专题二
能守恒定律有
m2v20=m2v2+m3v3⑥
1
1
1
2
2
220 = 22 + 33 2 ⑦
2
2
2
联立③⑥⑦式并代入数据得v2=1 m/s⑧
由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同
且处在后方,故冰块不能追上小孩。
答案:(1)20 kg (2)见解析
面上,车长l=1.5 m,现有质量m2=0.2 kg、可视为质点的物块,以水平
习题课:动量守恒定律的应用第十六章动量守恒定律
例3 如图2所示,A、B两个木块质量分别为2 kg与0.9 kg,A、B与水平地面间接触光滑,上表 面粗糙,质量为0.1 kg的铁块以10 m/s的速度从 A的左端向右滑动,最后铁块与B的共同速度大
小为0.5 m/s,求:
(1)A的最终速度大小;
解析 选铁块和木块A、B为一系统,取水平向右为正方向,
例1 如图1所示,质量为0.5 kg的小球在离车底面高度20 m处以一定的初速度
向左平抛,落在以7.5 m/s的速度沿光滑的水平面向右匀速行驶的敞篷小车中,
小车的底面上涂有一层油泥,车与油泥的总质量为4 kg,若小球在落在车的底 面前瞬间的速度是25 m/s,则当小球和小车相对静止时,小车的速度是(g
m+M 答案 mv-Mv0
m+M
第十六页,编辑于星期一:十解五点析四答十案六分。
(3)若甲、乙最后不相撞,则箱子被推出 的速度至少多大?
解析 甲、乙不相撞的条件是v1≤v2
图4
其中v1=v2为甲、乙恰好不相撞的条件.
即v≥5M.2+mm/sM.v0-mv≤mmv-+MMv0,代入数据得
所以箱子被推出的速度为5.2 m/s时,甲、乙恰好不相撞.
第十三页,编辑于星期一:十五点 四十六分。
例3 如图4所示,甲、乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他的
冰车总质量共为M=30 kg,乙和他的冰车总质量也是30 kg.游戏时,甲推着一
个质量为m=15 kg的箱子和他一起以v0=2 m/s 的速度滑行,乙以同样大小
的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处, 乙迅速抓住.若不计冰面摩擦. (1)若甲将箱子以速度v推出,甲的速度变
高中物理 第十六章 动量守恒定律 习题课:动量守恒定
习题课:动量守恒定律的应用同步[目标定位] 1.加深对动量守恒定律的理解.2.进一步练习用动量守恒定律解决问题.一、动量守恒条件及研究对象的选取1.动量守恒定律成立的条件动量守恒定律的研究对象是相互作用的物体组成的系统,其成立的条件可理解为:(1)理想条件:系统不受外力.(2)实际条件:系统所受合外力为零.(3)近似条件:系统所受外力比相互作用的内力小得多.(4)推广条件:系统所受外力之和不为零,但在某一方向上,系统不受外力或所受外力的矢量和为零,则系统在这一方向上动量守恒.2.动量守恒定律的五性动量守恒定律是自然界最重要、最普遍的规律之一.它是一个实验定律,应用时应注意其:系统性、矢量性、相对性、同时性、普适性.【例1】 (多选)质量为M和m0的滑块用轻弹簧连接,以恒定速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图1所示,碰撞时间极短,在此过程中,下列情况可能发生的是( )图1A.M、m0、m速度均发生变化,碰后分别为v1、v2、v3,且满足(M+m0)v=Mv1+mv2+m0v3 B.m0的速度不变,M和m的速度变为v1和v2,且满足Mv=Mv1+mv2C.m0的速度不变,M和m的速度都变为v′,且满足Mv=(M+m)v′D.M、m0、m速度均发生变化,M和m0的速度都变为v1,m的速度变为v2,且满足(M+m0)v =(M+m0)v1+mv2解析M和m碰撞时间极短,在极短的时间内弹簧形变极小,可忽略不计,因而m0在水平方向上没有受到外力作用,动量不变(速度不变),可以认为碰撞过程中m0没有参与,只涉及M 和m,由于水平面光滑,弹簧形变极小,所以M和m组成的系统水平方向动量守恒,两者碰撞后可能具有共同速度,也可能分开,所以只有B、C正确.答案BC分析多个物体组成的系统时,系统的划分非常重要,划分时要注意各物体状态的变化情况,分清作用过程中的不同阶段.【例2】如图2所示,质量为0.5 kg的小球在离车底面高度20 m处以一定的初速度向左平抛,落在以7.5 m/s的速度沿光滑的水平面向右匀速行驶的敞蓬小车中,小车的底面上涂有一层油泥,车与油泥的总质量为4 kg,若小球在落在车的底面前瞬间的速度是25 m/s,则当小球和小车相对静止时,小车的速度是(g=10 m/s2)( )图2A.5 m/s B.4 m/sC.8.5 m/s D.9.5 m/s解析由平抛运动规律可知,小球下落的时间t=2hg=2×2010s=2 s,在竖直方向的速度v y=gt=20 m/s,水平方向的速度v x=252-202m/s=15 m/s,取小车初速度的方向为正方向,由于小球和小车的相互作用满足水平方向上的动量守恒,则m车v0-m球v x=(m车+m 球)v,解得v=5 m/s,故A正确.答案 A系统整体上不满足动量守恒的条件,但在某一特定方向上,系统不受外力或所受外力远小于内力,则系统沿这一个方向的分动量守恒.可沿这一方向由动量守恒定律列方程解答.二、多物体多过程动量守恒定律的应用对于由多个物体组成的系统,由于物体较多,作用过程较为复杂,这时往往要根据作用过程中的不同阶段,将系统内的物体按作用的关系分成几个小系统,对不同阶段、不同的小系统准确选取初、末状态,分别列动量守恒定律方程求解.【例3】如图3所示,光滑水平轨道上放置长木板A(上表面粗糙)和滑块C,滑块B置于A 的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B 再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A与C发生碰撞后瞬间A的速度大小.图3解析长木板A与滑块C处于光滑水平轨道上,两者碰撞时间极短,碰撞过程中滑块B与长木板A间的摩擦力可以忽略不计,长木板A与滑块C组成的系统,在碰撞过程中动量守恒,则m A v0=m A v A+m C v C①两者碰撞后,长木板A与滑块B组成的系统,在两者达到共同速度之前系统所受合外力为零,系统动量守恒,m A v A+m B v0=(m A+m B)v②长木板A和滑块B达到共同速度后,恰好不再与滑块C碰撞,则最后三者速度相等,v C=v③联立①②③式,代入数据解得:v A=2 m/s答案 2 m/s处理多物体多过程动量守恒应注意的问题1.正方向的选取.2.研究对象的选取,是取哪几个物体为系统作为研究对象.3.研究过程的选取,应明确哪个过程中动量守恒.三、动量守恒定律应用中的临界问题分析分析临界问题的关键是寻找临界状态.如在动量守恒定律的应用中,常常出现相互作用的两物体相距最近、避免相碰和物体开始反向运动等临界状态.其临界条件常常表现为两物体的相对速度关系与相对位移关系,这些特定关系的判断是求解这类问题的关键.【例4】如图4所示,甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车总质量为M=30 kg,乙和他的冰车总质量也是30 kg.游戏时,甲推着一个质量为m=15 kg 的箱子和他一起以v0=2 m/s的速度滑行,乙以同样大小的速度迎面滑来,为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处,乙迅速抓住.若不计冰面摩擦.图4(1)若甲将箱子以速度v 推出,甲的速度v 1为多少?(用字母表示)(2)设乙抓住迎面滑来的速度为v 的箱子后反向运动,乙抓住箱子后的速度v 2为多少?(用字母表示)(3)若甲、乙最后不相撞,甲、乙的速度应满足什么条件?箱子被推出的速度至少多大? 解析 (1)甲将箱子推出的过程,甲和箱子组成的系统动量守恒,由动量守恒定律得: (M +m )v 0=mv +Mv 1①解得v 1=M +m v 0-mv M② (2)箱子和乙作用的过程动量守恒,以箱子的速度方向为正方向,由动量守恒定律得: mv -Mv 0=(m +M )v 2③解得v 2=mv -Mv 0m +M④ (3)甲、乙不相撞的条件是v 1≤v 2⑤其中v 1=v 2为甲、乙恰好不相撞的条件.联立②④⑤三式,并代入数据得v ≥5.2 m/s.答案 (1)M +m v 0-mv M (2)mv -Mv 0m +M(3)v 1≤v 2 5.2 m/s1.(某一方向上动量守恒问题)(多选)如图5所示,在光滑的水平面上放着一个上部为半圆形光滑槽的木块,开始时木块是静止的,把一个小球放到槽边从静止开始释放,关于两个物体的运动情况,下列说法正确的是( )图5A .当小球到达最低点时,木块有最大速率B .当小球的速率最大时,木块有最大速率C .当小球再次上升到最高点时,木块的速率为最大D .当小球再次上升到最高点时,木块的速率为零答案 ABD解析 小球和木块组成的系统在水平方向上动量守恒,初状态系统动量为零,当小球到达最低点时,小球有最大速率,所以木块也有最大速率;小球上升到最高点时,小球速率为零,木块的速率也为零.2. (多过程中的动量守恒问题)如图6所示,质量为M 的盒子放在光滑的水平面上,盒子内表面不光滑,盒内放有一块质量为m 的物块.从某一时刻起给m 一个水平向右的初速度v 0,那么在物块与盒子前、后壁多次往复碰撞后( )图6A .两者的速度均为零B .两者的速度总不会相等C .物块的最终速度为mv 0M ,向右 D .物块的最终速度为mv 0M +m ,向右 答案 D解析 物块与盒子组成的系统所受合外力为零,物块与盒子前、后壁多次往复碰撞后,以速度v 共同运动,由动量守恒定律得:mv 0=(M +m )v ,故v =mv 0M +m,向右. 3. (多过程中的动量守恒问题)如图7所示,甲车的质量是2 kg ,静止在光滑水平面上,上表面光滑,右端放一个质量为1 kg 的小物体,乙车质量为4 kg ,以5 m/s 的速度向左运动,与甲车碰撞以后甲车获得8 m/s 的速度,物体滑到乙车上,若乙车足够长,上表面与物体的动摩擦因数为0.2,则物体在乙车上表面滑行多长时间相对乙车静止?(g 取10 m/s 2)图7答案 0.4 s解析 乙与甲碰撞动量守恒:m 乙v 乙=m 乙v 乙′+m 甲v 甲′得v 乙′=1 m/s小物体在乙上滑动至有共同速度v 时,对小物体与乙车运用动量守恒定律得m乙v 乙′=(m+m 乙)v ,得v =0.8 m/s对小物体应用牛顿第二定律得a=μg=2 m/s2所以t=vμg,代入数据得t=0.4 s4. (临界问题)如图8所示,甲车质量m1=20 kg,车上有质量M=50 kg的人,甲车(连同车上的人)以v=3 m/s的速度向右滑行,此时质量m2=50 kg的乙车正以v0=1.8 m/s的速度迎面滑来,为了避免两车相撞,当两车相距适当距离时,人从甲车跳到乙车上,求人跳出甲车的水平速度(相对地面)应当在什么范围以内才能避免两车相撞?不计地面和小车的摩擦,且乙车足够长.图8答案大于等于3.8 m/s解析人跳到乙车上后,如果两车同向,甲车的速度小于或等于乙车的速度就可以避免两车相撞,以人、甲车、乙车组成的系统为研究对象,由水平方向动量守恒得:(m1+M)v-m2v0=(m1+m2+M)v′,解得v′=1 m/s.以人与甲车为一系统,人跳离甲车过程水平方向动量守恒得:(m1+M)v=m1v′+Mu,解得u=3.8 m/s.因此,只要人跳离甲车的速度u≥3.8 m/s,就可避免两车相撞.题组一动量守恒条件及系统和过程的选取1.(多选)下列四幅图所反映的物理过程中,系统动量守恒的是( )答案 AC2.把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、子弹和车,下列说法中正确的是( )A .枪和子弹组成的系统动量守恒B .枪和车组成的系统动量守恒C .三者组成的系统因为子弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可忽略不计,故系统动量近似守恒D .三者组成的系统动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零答案 D解析 由于枪水平放置,故三者组成的系统除受重力和支持力(两外力平衡)外,不受其他外力,动量守恒,子弹和枪筒之间的力应为系统的内力,对系统的总动量没有影响,故选项C 错误;分开枪和车,则枪和子弹组成的系统受到车对其的外力作用,车和枪组成的系统受到子弹对其的外力作用,动量都不守恒,正确选项为D.3.两辆质量相同的小车,置于光滑的水平面上,有一人静止在小车A 上,两车静止,如图1所示.当这个人从A 车跳到B 车上,接着又从B 车跳回A 车并与A 车保持相对静止,则A 车的速率( )图1A .等于零B .小于B 车的速率C .大于B 车的速率D .等于B 车的速率 答案 B解析 选A 车、B 车和人组成的系统作为研究对象,两车均置于光滑的水平面上,在水平方向上无论人如何跳来跳去,系统均不受外力作用,故满足动量守恒定律.设人的质量为m ,A 车和B 车的质量均为M ,最终两车速度分别为v A 和v B ,由动量守恒定律得0=(M +m )v A -Mv B ,则v A v B =M M +m,即v A <v B ,故选项B 正确. 4.如图2所示,光滑水平面上停着一辆小车,小车的固定支架左端用不计质量的细线系一个小铁球.开始将小铁球提起到图示位置,然后无初速度释放.在小铁球来回摆动的过程中,下列说法中正确的是( )图2A .小车和小球系统动量守恒B .小球向右摆动过程小车一直向左加速运动C .小球摆到右方最高点时刻,由于惯性,小车仍在向左运动D .小球摆到最低点时,小车的速度最大答案 D解析 小车与小球组成的系统在水平方向动量守恒,在竖直方向动量不守恒,系统整体动量不守恒;小球从图示位置下摆到最低点,小车受力向左加速运动,当小球到最低点时,小车的速度最大.当小球从最低点向右边运动时,小车向左减速,当小球运动到与左边图示位置相对称的位置时,小车静止.故小球向右摆动过程小车先向左加速运动,后向左减速运动. 题组二 多物体多过程动量守恒定律的应用5.质量相等的五个物块在一光滑水平面上排成一条直线,且彼此隔开一定的距离,具有初速度v 0的第5号物块向左运动,依次与其余四个静止物块发生碰撞,如图3所示,最后这五个物块粘成一个整体,则它们最后的速度为( )图3A .v 0 B.15v 0 C.v 03 D.v 04答案 B解析 由五个物块组成的系统,沿水平方向不受外力作用,故系统动量守恒,由动量守恒定律得:mv 0=5mv ,v =15v 0,即它们最后的速度为15v 0. 6.一弹簧枪对准以6 m/s 的速度沿光滑桌面迎面滑来的木块发射一颗铅弹,射出速度为10 m/s ,铅弹射入木块后未穿出,木块继续向前运动,速度变为5 m/s.如果想让木块停止运动,并假定铅弹射入木块后都不会穿出,则应再向木块迎面射入的铅弹数为( )A .5颗B .6颗C .7颗D .8颗答案 D解析 设木块质量为m 1,铅弹质量为m 2,第一颗铅弹射入,有m 1v 0-m 2v =(m 1+m 2)v 1,代入数据可得m 1m 2=15,设再射入n 颗铅弹木块停止运动,有(m 1+m 2)v 1-nm 2v =0,解得n =8.7.如图4所示,一轻质弹簧两端连着物体A 和B ,放在光滑的水平面上,物体A 被水平速度为v 0的子弹射中并且子弹嵌在其中.已知物体A 的质量m A 是物体B 的质量m B 的34,子弹的质量m 是物体B 的质量的14,弹簧压缩到最短时B 的速度为( )图4A.v 02B.v 04C.v 08D.v 03答案 C解析 弹簧压缩到最短时,子弹、A 、B 具有共同的速度v 1,且子弹、A 、B 组成的系统,从子弹开始射入物体A 一直到弹簧被压缩到最短的过程中,系统所受外力(重力、支持力)之和始终为零,故整个过程系统的动量守恒,由动量守恒定律得mv 0=(m +m A +m B )v 1,又m =14m B ,m A =34m B ,故v 1=v 08,即弹簧压缩到最短时B 的速度为v 08. 8.如图5,在一光滑的水平面上,有质量相同的三个小球A 、B 、C ,其中B 、C 静止,中间连有一轻弹簧,弹簧处于自由伸长状态,现小球A 以速度v 与小球B 正碰并粘在一起,碰撞时间极短,则在此碰撞过程中( )图5A .A 、B 的速度变为v 3,C 的速度仍为0 B .A 、B 、C 的速度均为v 3C .A 、B 的速度变为v 2,C 的速度仍为0 D .A 、B 、C 的速度均为v 2答案 C解析 A 、B 碰撞过程时间极短,弹簧没有发生形变,A 、B 系统所受合外力为零,以向右为正方向,由动量守恒定律得:mv =2mv ′,解得:v ′=v 2,A 、B 碰撞过程,C 所受合外力为零,C 的动量不变,速度仍为0.题组三 综合应用9.在如图6所示的光滑水平面上,小明站在静止的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的质量为2m ,木箱运动一段时间后与竖直墙壁发生无能量损失的碰撞,反弹回来后被小明接住.求:图6(1)推出木箱后小明和小车一起运动的速度v 1的大小;(2)小明接住木箱后三者一起运动的速度v 2的大小.答案 (1)12v (2)23v 解析 (1)由动量守恒定律得2mv 1-mv =0解得v 1=12v (2)小明接木箱的过程中动量守恒2mv 1+mv =(2m +m )v 2解得v 2=23v . 10.质量为M =2 kg 的小平板车静止在光滑水平面上,车的一端静止着质量为m A =2 kg 的物体A (可视为质点),如图7所示,一颗质量为m B =20 g 的子弹以600 m/s 的水平速度射穿A 后,速度变为100 m/s ,最后物体A 相对车静止,求平板车最后的速度.图7答案 2.5 m/s解析 子弹射穿A 后,A 在水平方向上获得一个速度v A ,最后当A 相对车静止时,它们的共同速度为v .子弹射穿A 的过程极短,因此车对A 的摩擦力、子弹的重力作用可略去,即认为子弹和A 组成的系统水平方向动量守恒,同时,由于作用时间极短,可认为A 的位置没有发生变化,设子弹射穿A 后的速度为v ′,由动量守恒定律有m B v 0=m B v ′+m A v A ,得v A =m B v 0-v m A =-2 m/s =5 m/sA 获得速度v A 相对车滑动,由于A 与车间有摩擦,最后A 相对车静止,以共同速度v 运动,对于A 与车组成的系统,水平方向动量守恒,因此有:m A v A =(m A +M )v ,所以v =m A v A m A +M =2×52+211 m/s =2.5 m/s.11.如图8所示,甲、乙两船的总质量(包括船、人和货物)分别为10m 、12m ,两船沿同一直线同一方向运动,速度分别为2v 0、v 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图7
解析答案
1234
4.如图8所示,甲车的质量是2 kg,静止在光滑水平面上,上表面光滑, 右端放一个质量为1 kg的小物体,乙车质量为4 kg,以5 m/s的速度向左运 动,与甲车碰撞以后甲车获得8 m/s的速度,物体滑到乙车上,若乙车足 够长,上表面与物体的动摩擦因数为0.2,则物体在乙车上表面滑行多长 时间相对乙车静止?(g取10 m/s2)
二、多物体、多过程动量守恒定律的应用
求解这类问题时应注意: (1)正确分析作用过程中各物体状态的变化情况; (2)分清作用过程中的不同阶段,并按作用关系将系统内的物体分成几 个小系统,既要符合守恒条件,又方便解题. (3)对不同阶段、不同的小系统准确选取初、末状态,分别列动量守恒 方程.
例3 如图2所示,A、B两个木块质量分别
图4
解析答案
(2)设乙抓住迎面滑来的速度为v的箱子后返向运动,乙抓住箱子后的速 度变为多少?(用字母表示)
解析 箱子和乙作用的过程动量守恒, 以箱子的速度方向为正方向,由动量守 恒定律得:
图4 mv-Mv0=(m+M)v2 解得v2=mmv-+MMv0 答案 mv-Mv0
m+M
解析答案
(3)若甲、乙最后不相撞,则箱子被推出 的速度至少多大?
图8
解析答案
返回
有一个小球从斜面顶端由静止释放,在小球下滑的过程中,以下说法
正确的是( )
A.斜面和小球组成的系统动量守恒
B.斜面和小球组成的系统仅在水平方向上动量守恒
C.斜面向右运动
图5
D.斜面静止不动
解析答案
1234
2.如图6所示,质量为M的盒子放在光滑的水平面上,盒子内表面不光滑,
盒内放有一块质量为m的物体.从某一时刻起给m一个水平向右的初速度
解析 甲、乙不相撞的条件是v1≤v2
图4
其中v1=v2为甲、乙恰好不相撞的条件. 即v≥5M.2+mm/sM.v0-mv≤mmv-+MMv0 ,代入数据得
所以箱子被推出的速度为5.2 m/s时,甲、乙恰好不相撞.
答案 5.2 m/s
解析答案
返回
1234
达标检测
1.(多选)如图5所示,在光滑的水平面上有一静止的斜面,斜面光滑,现
为2 kg与0.9 kg,A、B与水平地面间接触光
滑,上表面粗糙,质量为0.1 kg的铁块以10
m/s的速度从A的左端向右滑动,最后铁块
与B的共同速度大小为0.5 m/s,求:
图2
(1)A的最终速度大小; 解析 选铁块和木块A、B为一系统,取水平向右为正方向,
由系统总动量守恒得:mv=(MB+m)vB+MAvA 可求得:vA=0.25 m/s
第十六章 动量守恒定律
习题课:动量守恒定律的应用
学习目标
1.进一步理解动量守恒定律的含义及守恒条件. 2.进一步熟练掌握应用动量守恒定律解决问题的方法和步骤.
典例精析 达标检测
一、动量守恒条件的扩展应用
典例精析
1.动量守恒定律成立的条件: (1)系统不受外力或所受外力的合力为零; (2)系统的内力远大于外力; (3)系统在某一方向上不受外力或所受外力的合力为0. 2.动量守恒定律的研究对象是系统.研究多个物体组成的系统时,必须合 理选择系统,再对系统进行受力分析.分清系统的内力与外力,然后判 断所选系统是否符合动量守恒的条件.
例1 如图1所示,质量为0.5 kg的小球在离车底面高度20 m处以一定的初 速度向左平抛,落在以7.5 m/s的速度沿光滑的水平面向右匀速行驶的敞 篷小车中,小车的底面上涂有一层油泥,车与油泥的总质量为4 kg,若 小球在落在车的底面前瞬间的速度是25 m/s,则当小球和小车相对静止 时,小车的速度是(g=10 m/s2)( )
A.5 m/s
Байду номын сангаас
B.4 m/s
C.8.5 m/s
D.9.5 m/s
图1
解析答案
例2 一弹丸在飞行到距离地面5 m高时仅有水平速度v=2 m/s,爆炸成 为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,取重力 加速度g=10 m/s2.则下列图中两块弹片飞行的轨迹可能正确的是( )
解析答案
答案 0.25 m/s
解析答案
(2)铁块刚滑上B时的速度大小.
图2 解析 设铁块刚滑上B时的速度为v′,此时A、B的速度均为vA=0.25 m/s. 由系统动量守恒得:mv=mv′+(MA+MB)vA 可求得v′=2.75 m/s 答案 2.75 m/s
解析答案
针对训练 如图3所示,光滑水平面上有三个木块A、B、C,质量分别为 mA=mC=2m、mB=m.A、B用细绳连接,中间有一压缩的弹簧(弹簧与木块 不拴接).开始时A、B以共同速度v0运动,C静止.某时刻细绳突然断开,A、 B被弹开,然后B又与C发生碰撞并粘在一起,最终三木块速度恰好相同, 求B与C碰撞前B的速度.
v0,那么在物块与盒子前后壁多次往复碰撞后( )
A.两者的速度均为零
B.两者的速度总不会相等
C.物体的最终速度为,mv0 向右 M
D.物体的最终速度为,mv0 向右
图6
M+m
解析答案
1234
3.质量为M=2 kg的小平板车静止在光滑水平面上,车的一端静止放着质 量为mA=2 kg的物体A(可视为质点),如图7所示.一颗质量为mB=20 g的 子弹以600 m/s的水平速度射穿A后,速度变为100 m/s,最后物体A仍静 止在小平板车上,取g=10 m/s2.求平板车最后的速度大小.
图3
解析答案
三、动量守恒定律应用中的临界问题分析
分析临界问题的关键是寻找临界状态,在动量守恒定律的应用中, 常常出现相互作用的两物体相距最近、避免相碰和物体开始反向 等临界状态,其临界条件常常表现为两物体的相对速度关系与相 对位移关系,这些特定关系的判断是求解这类问题的关键.
例3 如图4所示,甲、乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他 的冰车总质量共为M=30 kg,乙和他的冰车总质量也是30 kg.游戏时, 甲推着一个质量为m=15 kg的箱子和他一起以v0=2 m/s 的速度滑行,乙 以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙, 箱子滑到乙处,乙迅速抓住.若不计冰面摩擦. (1)若甲将箱子以速度v推出,甲的速度 变为多少?(用字母表示).