【最新整理】初中中考数学基础知识(知识点)合集
整理(中考数学知识点(全)
1、一元二次方程根的情况△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
最全面中考数学知识点归纳总结
最全面中考数学知识点归纳总结中考数学知识点的归纳总结主要包括几何、代数、函数、概率与统计和解题方法等方面的内容。
下面是一个较为全面的中考数学知识点归纳总结,共计132个知识点。
一、几何部分:1.直线、射线、线段、角度的概念及其表示方法;2.同位角、对顶角、相邻角、互补角、补角的概念及性质;3.平行线的概念及判定方法;4.垂直线的概念及判定方法;5.直线与平面的位置关系;6.角的平分线、垂直平分线和中垂线的性质;7.基本图形(三角形、正方形、矩形、平行四边形、菱形、梯形)的特性;8.三角形的高、中线、角平分线、垂心、外心、内心的性质;9.相似三角形的判定方法及性质;10.三角形的全等判定方法及性质;11.三角形的重心、外接圆、内切圆的性质;12.直角三角形的性质及勾股定理的应用;13.倍数关系、比例关系的概念及解题方法;14.圆的概念及周长、面积的计算方法;15.扇形、弓形、弦的概念及其性质;16.圆上的切线的概念及切线与半径的关系;二、代数部分:17.有理数的概念及其基本运算;18.有理数的比较大小及其运算性质;19.小数、百分数与分数之间的相互转化;20.无理数的概念及四舍五入与有理数的关系;21.整式和多项式的概念及其加减乘除运算;22.分布恒等式的概念及应用;23.因式分解的概念及方法;24.同底数幂的积与商、幂的幂、幂的乘方;25.0次幂、负指数幂的概念及运算规律;26.小数与分数的乘除运算;27.分式的定义及分式的加减乘除运算;28.一次方程的概念及解一次方程的“相等原理”;29.一次方程的解的判别及含参量的一次方程;30.二次方程的概念及解二次方程的“因式分解法”、“配方法”、“求根公式”等方法;31.开平方的概念及开平方的运算法则;32.平方根与立方根的应用;33.平方差公式的应用;34.利用二元一次方程组解题;35.进一法与折半法的应用;三、函数部分:36.函数的概念及自变量、函数值、变量区间的含义;37.函数的输入输出、定义域、值域和图象的关系;38.一次函数与函数图象的特点;39.一次函数的斜率与截距的概念及其性质;40.直线与y轴平行的判定及斜率的计算方法;41.一次函数方程的应用;42.二次函数与函数图象的特点;43.二次函数的顶点坐标及对称轴的求解;44.二次函数图象的开口方向、焦点和准顶点的位置关系;45.函数的相等、不等、图象平移、伸缩的概念及表示方法;46.函数的和、差、积、商运算及复合函数;47.用函数的性质解答实际问题;48.绝对值函数的概念、图象及性质;49.幂函数的概念、图象及性质;50.线性函数、常函数、反比例函数的图象及性质;51.分段函数的概念及解答实际问题;四、概率与统计部分:52.实验、样本空间、事件、随机事件的概念;53.事件的发生与否的表示方法;54.事件的包含、互斥及事件间的关系;55.概率的概念及计算公式;56.等可能概型的计算方法;57.样本空间中的点与事件的对应关系;58.随机事件的发生与否的概率计算;59.从历史发展的角度看概率的概念;60.百分位数、分位数的概念及计算方法;61.数据的统计分析及统计图形的画法;62.频数分布表及频数分布直方图的制作;63.正态分布的概念及性质;64.数据的可视化处理及用统计方法解答实际问题;五、解题方法:65.算术运算法则及四则运算的性质;66.四则运算的顺序及提取公因式;67.带分数、分数的四则运算及混合运算;68.指数法则的应用;69.理解与运用算式的概念及递推算式的应用;70.用变量表示数的关系及数的线性关系;71.应用百分数求解实际问题;72.比例关系的运算及其应用;73.消元与代入法解一元一次方程组;74.联立一元一次方程组解题;75.两步走结合法解一元一次方程;76.使用平方根解二次方程的应用;77.二次函数的图象与应用;78.函数的性质与应用;79.根据函数图象表示解的方法;80.初步理解函数模型及其应用;81.理解数据的统计特征及其应用;82.根据统计图表做出合理判断;83.理解概率的基本概念及计算概率;84.基本概率模型的理解与应用;85.从概率模型的角度解答实际问题;86.根据实际问题建立数学模型解题;87.运用合理的方法解决较复杂的数学问题;88.根据问题解答合理化对策。
中考数学知识点总结归纳完整版
中考数学知识点总结归纳完整版数学是一门基础学科,也是中考必考科目之一、掌握中考数学的知识点对于考生来说非常重要。
下面将对中考数学的知识点进行归纳总结。
1.数的认识与数制转换-自然数、整数、有理数、实数、复数的概念和性质-十进制数、二进制数、八进制数和十六进制数的相互转换-百分数、百分数的基本关系和计算-科学计数法的表示和应用2.代数基础-代数式的概念、分类和性质-代数式的加减法、乘法和除法-一元一次方程、一元一次方程组的解法3.几何知识-二维几何图形的基本概念和性质,如点、线、角等-三角形、四边形、圆的面积和周长的计算-各种三角形的性质,如等边三角形、等腰三角形等-直角三角形的性质和勾股定理的应用-平行线、相交线和角平分线的性质-圆的基本性质和常见定理,如切线定理、弦切角定理等-三视图的绘制和三视图间的关系4.函数与方程-函数的概念和性质,如定义域、值域等-一次函数、二次函数的概念、图像和性质-初等函数的性质和应用,如指数函数、对数函数等-一元二次方程和一元一次不等式的解法5.统计与概率-样本、频数、频率的概念和统计图的制作与分析-可能性、事件和概率的基本概念和计算方法-正态分布、平均值和标准差的概念和计算方法6.运算与推理-分数的四则运算和混合运算-百分数的四则运算和混合运算-数列的概念和性质,如公差、通项等-算术平均数、加权平均数的概念和计算方法-推理和证明的基本方法和步骤以上是中考数学的主要知识点。
中考数学不仅考察了基本知识的掌握程度,还会涉及到应用能力和解决问题的能力。
因此,考生在备考过程中还应注重练习题的多样性和难度的提升,培养灵活思维和解决问题的能力。
同时,考生在备考过程中也要注意复习方法的正确性和科学性,合理安排时间,掌握好知识点的学习重点和难点,通过多种途径进行知识的巩固和强化,以提高备考效果。
最后,考生还要注意备考的心态和态度,保持冷静、积极的心态,相信自己的实力,坚持努力,相信自己一定可以取得好成绩。
初三数学知识点总结梳理
初三数学知识点总结梳理第一章:有理数与实数1. 整数的概念与性质- 整数的定义及其表示方法- 整数的比较、运算规则和性质- 整数的绝对值及其性质- 整数的约数与倍数- 整数的倒数的概念与性质2. 有理数的概念与性质- 有理数的定义及其表示方法- 有理数的比较、运算规则和性质- 有理数的绝对值及其性质- 有理数的相反数和倒数的概念与性质- 有理数的大小关系3. 实数的概念与性质- 实数的定义与分类- 实数的基本性质- 实数的大小关系- 实数的逼近性质第二章:代数式与方程式1. 代数式的概念与性质- 代数式的定义与表示方法- 同类项与同类项合并- 代数式的化简与展开2. 方程式的概念与性质- 方程式的定义与性质- 一元一次方程的解的存在与唯一性- 一元一次方程的变形与解法- 一元一次方程组的概念与解法- 一元二次方程的求解与判别式3. 不等式的概念与性质- 不等式的定义与性质- 不等式的解集的表示- 一元一次不等式与一元一次方程的联系与比较- 一元一次不等式组的概念与解法第三章:平面图形与空间图形1. 平面图形的概念与性质- 点、线、面的定义与性质- 角的定义、性质及其分类- 平行线与垂直线的判定条件- 三角形的定义及其分类- 三角形的内角和及其应用- 三角形的相似与全等的概念与判定条件2. 空间图形的概念与性质- 四面体、正四面体、正六面体的定义与性质- 柱、锥棱的定义与性质- 平面与空间图形的相交关系3. 图形的投影与观察- 立体图形的投影与观察方法- 投影的性质与应用- 平行线与投影的关系第四章:初等几何与解析几何1. 初等几何的基本概念与定理- 点、线、面、角的定义与性质- 垂线、平分线、中位线的概念与性质- 垂直、平行、全等三角形的判定条件- 三角形内角和的计算方法- 直角三角形、等腰三角形、等边三角形的定理2. 解析几何的基本概念与方法- 点、坐标系的定义与性质- 坐标的运算法则与性质- 直线、圆的方程与性质- 直线的稳定与相关性质- 圆的位置关系与性质3. 二次函数的概念与性质- 二次函数的定义与表示方法- 二次函数的图像与性质- 二次函数的最值与零点的求解方法- 二次函数与方程、不等式、直线的关系与应用第五章:数与变量1. 整式的概念与性质- 整式的定义与运算规则- 整式的因式分解与乘法公式- 整式的化简- 整式的值与单位问题2. 分式的概念与性质- 分式的定义与基本运算规则- 分式的化简与恒等式- 分式的值与解3. 幂与根的概念与性质- 幂的定义与运算规则- 根的定义与运算规则- 幂与根的化简- 幂与根的近似计算与应用。
整理(中考数学知识点(全)
整理(中考数学知识点(全))一、整数1、定义:整数是可以把连续的自然数从小到大用来表达数量大小的一组数字。
2、正数、负数:正数是大于0的整数,负数是小于0的整数。
3、绝对值:绝对值表示一个整数的绝对大小,不带符号。
4、整数的四则运算:整数的四则运算可以分为加、减、乘、除。
5、优先级:整数四则运算从左至右按照加法和减法优先,乘法和除法优先的原则进行计算二、分数1、定义:分数是一种表示小数的表示形式,是将特定的整数等分分开,分子表示分等份的那一部分,分母表示等分的份数。
2、真分数:分子小于分母的分数称为真分数。
3、分数的四则运算:分数的加减运算要求分母相等,分数乘除运算要求分子分母分开运算,然后再将分子分母约分三、小数1、定义:小数即位数,小数是将整数用指定的分数形式表示出来的数。
2、有理数与无理数:有理数是一个可以用有限个整数或有限几分数的形式表示的小数,无理数是不能用有限的整数或有限几分数的形式表示的小数。
四、比例1、定义:比例是比较两个数字的比较,可以表示两个及以上数量之间的关系或比较大小。
2、比例分析:比例分析是指对比例进行分析和利用,以求得相关信息的过程。
3、正比:正比是指两个或多个量之间的关系是关于某变量的值成正比的关系。
4、反比:反比是指两个以上变量之间的关系,当其中一个变量的值增大时,另一个变量的值变小。
五、指数和对数1、定义:指数是对数的一种特殊情况,是将连乘归为一个易于处理的运算式,而对数即利用某个基数为底数的数量级。
2、指数运算:指数运算是基于某一底数进行乘方运算,运算中可以利用乘方快速计算公式。
3、对数:对数是以一定的指数表达另一个数,是一种反乘方的处理方法。
4、对数的基数:常用的对数基数有以次幂表示的10、2、以及以平方根表示的3。
六、平面几何1、定义:平面几何是在平面(即x-y坐标系)上处理图形和关系的数学问题。
2、直线:直线是一种没有转折点的连续线段。
3、圆:圆是指一个正圆,即圆心到圆上任一点的距离都相等的图形。
中考知识点归纳2024数学
中考知识点归纳2024数学中考数学知识点归纳是帮助学生系统复习和掌握数学基础的重要工具。
以下是2024年中考数学的知识点归纳,涵盖了初中数学的主要领域。
# 数与代数1. 数的认识:包括自然数、整数、有理数、无理数和实数的概念及分类。
2. 数的运算:掌握四则运算法则,分数、小数的加减乘除,以及混合运算。
3. 代数基础:变量与常数,代数式的基本运算,包括合并同类项、分配律等。
4. 方程与不等式:一元一次方程、一元二次方程的解法,不等式的基本性质和解法。
5. 函数:函数的概念,自变量与因变量,线性函数和二次函数的图像及性质。
# 几何1. 平面图形:点、线、面的概念,直线、射线、线段的性质,角的分类和性质。
2. 三角形:三角形的分类,全等三角形的判定,相似三角形的性质。
3. 四边形:平行四边形、矩形、菱形、正方形的性质和判定。
4. 圆:圆的性质,圆周角,弧长和扇形面积的计算。
5. 立体几何:立体图形的认识,包括长方体、圆柱、圆锥和球体的体积和表面积。
# 统计与概率1. 数据的收集与处理:数据的收集方法,数据的整理,图表的绘制。
2. 描述统计:平均数、中位数、众数、极差、方差等统计量的概念和计算。
3. 概率:概率的基本概念,事件的独立性,概率的计算。
# 解题技巧1. 审题:仔细阅读题目,理解题意,明确已知条件和求解目标。
2. 画图:对于几何问题,绘制图形有助于理解问题和发现解题线索。
3. 转化思想:将复杂问题转化为简单问题,将不熟悉的问题转化为熟悉的问题。
4. 检查:解题后要进行验算,确保答案的正确性。
# 结束语通过以上的知识点归纳,希望能够帮助同学们在2024年的中考中取得优异的成绩。
数学学习不仅仅是为了应对考试,更是培养逻辑思维和解决问题能力的重要途径。
希望同学们能够享受数学学习的过程,不断进步。
【精编】中考必备:人教版初中数学知识点总结(完整版)2023
【精编】中考必备:人教版初中数学知识点总结(完整版)2023一、数与式1.数的认识1.1 自然数自然数是人们最早形成的概念之一,即从1开始逐一加1的数字序列。
自然数包括正整数和零。
1.2 负数负数是小于零的整数。
负数在数轴上表示为向左移动。
1.3 整数整数由自然数、0和负数组成。
1.4 分数分数表示除法的一种形式。
分数由分子和分母组成,分子表示被除数,分母表示除数。
1.5 小数小数是不能化为整数比的数,可以写成分数的带分数形式或非循环小数和循环小数的形式。
2.有理数有理数是可以表示为两个整数之比的数,包括整数、分数和小数。
3.实数实数是有理数和无理数的统称。
4.函数函数是一种特殊的关系,它把一个数集的每个元素都对应到另一个数集的唯一元素上。
函数包括定义域、值域、图像等概念。
5.代数式及其计算代数式是用数和字母表示的式子。
代数式的计算包括合并同类项、提取公因式、配方法、乘法公式、因式分解等。
二、图形与几何1.平面图形平面图形包括点、线段、射线、直线、角、三角形、四边形、多边形和圆等。
2.三视图及等腰三角形三视图是一个物体分别在正、左、上三个方向上的投影图。
等腰三角形是指两边边长相等的三角形。
3.全等三角形及判断相似全等三角形是指对应的三边和三个内角全部相等的三角形。
相似三角形是指对应的两个角相等的三角形。
4.平行线及其性质平行线是指在同一个平面上不相交的直线。
平行线的性质包括平行公理、平行线性质、平行线定理等。
5.比例与分析比例是指两个数或两个量之间的相等关系。
比例的应用包括比例尺、比例方程、比例的四性质等。
6.圆与圆周角圆是指平面上任意一点与一个确定的点之间的距离相等的点的集合。
圆周角是指与圆心角对应的两条弧所夹的角。
7.计算器的使用计算器是辅助学习数学的工具之一,学生需要学会合理使用、读取和解读计算器上的数值。
三、数据与概率1.统计图及频数分布统计图用直方图、折线图、饼图等形式将数据进行可视化展示。
最新中考数学知识点总结(完整版)
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001,,;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ;(2)a 和b 互为相反数a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数1ab ;(3)注意0没有倒数3、绝对值:(1)一个数 a 的绝对值有以下三种情况:,0,00,aa a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a 叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。
中考数学复习知识点归纳总结6篇
中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。
3. 代数表达式:用字母表示数,表达数量关系和变化规律。
4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。
二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。
2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。
3. 面积与体积:计算平面图形的面积,计算立体图形的体积。
4. 解析几何:理解直线的方程,理解圆及其方程。
三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。
2. 函数的运算:函数的加减法,函数的乘法,复合函数。
3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。
4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。
四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。
2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。
3. 概率的概念:理解概率的基本概念,会计算事件的概率。
4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。
五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。
2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。
3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。
4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。
在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。
同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。
此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。
希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。
(完整版)初中数学知识点归纳总结(精华版)(最新整理)
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
考点二、角(3分)1、角的度量:角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’ 的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’=60”2、角的平分线及其性质一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
角的平分线有下面的性质定理:(1)角平分线上的点到这个角的两边的距离相等。
(2)到一个角的两边距离相等的点在这个角的平分线上。
第五章相交线与平行线考点一、平行线(3~8分)1、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
2、平行线的判定平行线的判定公理:同位角相等,两直线平行。
平行线的两条判定定理:(1)内错角相等,两直线平行。
(2)同旁内角互补,两直线平行。
补充平行线的判定方法:(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
3、平行线的性质(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
考点二、命题、定理、证明(3~8分)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
考点三、投影与视图(3分)1、投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。
数学中考知识点归纳2024
数学中考知识点归纳2024一、数与代数。
(一)有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 能准确区分有理数和无理数,无理数是无限不循环小数,如π、√(2)等。
2. 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
- 减法:减去一个数,等于加上这个数的相反数。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0;几个不为0的数相乘,负因数的个数为偶数时,积为正,负因数的个数为奇数时,积为负。
- 除法:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n中,a 叫做底数,n叫做指数。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
- 运算顺序:先算乘方,再算乘除,最后算加减;有括号的先算括号里面的。
(二)实数。
1. 平方根、算术平方根、立方根。
- 平方根:如果x^2 = a(a≥slant0),那么x叫做a的平方根,记作x=±√(a)。
- 算术平方根:正数a的正的平方根叫做a的算术平方根,记作√(a),0的算术平方根是0。
- 立方根:如果x^3 = a,那么x叫做a的立方根,记作x = sqrt[3]{a}。
2. 实数的大小比较。
- 正数大于0,0大于负数,正数大于负数。
- 两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
- 还可以通过数轴比较实数大小,数轴上右边的数总比左边的数大。
(三)代数式。
1. 代数式的概念。
- 用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
初中中考数学知识点(合集8篇)
初中中考数学知识点(合集8篇)初中中考数学知识点第1篇平方差公式:a^2;-b^2;=(a+b)(a-b);完全平方公式:a^2;±2ab+b^2;=(a±b)^2;;注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
立方和公式:a^3;+b^3;=(a+b)(a^2;-ab+b^2;);立方差公式:a^3;-b^3;=(a-b)(a^2;+ab+b^2;);完全立方公式:a^3;±3a^2;b+3ab^2;±b^3;=(a±b)^3;.其他公式:(1)a^3;+b^3;+c^3;+3abc=(a+b+c)(a^2;+b^2;+c^2;-ab-bc-ca)例如:a^2; +4ab+4b^2; =(a+2b)^初中中考数学知识点第2篇圆的知识:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
圆心:(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4) 垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
计算时,通常取它的近似值,π≈3.14。
初三数学知识点归纳总结(通用5篇)
初三数学知识点归纳总结第1篇1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质。
(2)矩形的四个角都是直角。
(3)矩形的对角线相等。
(4)矩形是轴对称图形。
3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形。
(2)定理1:有三个角是直角的四边形是矩形。
(3)定理2:对角线相等的平行四边形是矩形。
4、矩形的面积:S矩形=长×宽=ab初三数学重点知识点(四)1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的.等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形;再证明它是菱形(或矩形);最后证明它是矩形(或菱形)。
初三数学知识点归纳总结第2篇第一轮数学复习主要知识点总结1第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
初中数学知识点整理大全中考数学所有知识点总结
初中数学知识点整理大全中考数学所有知识点总结一、整数与有理数1.整数的概念与运算2.整数的加法与减法3.整数的乘法与除法4.整数的混合运算5.有理数的概念与运算6.有理数的加法与减法7.有理数的乘法与除法8.有理数的混合运算二、比例与消费税1.比例的概念与性质2.比例的等价性质3.比例的四则运算4.比例与图形5.比与比例6.相似形与比例7.比例的应用8.消费税的概念与计算三、代数基础1.代数式的概念与运算2.代数式的加减法与混合运算3.同类项与合并同类项4.代数式的乘法与乘法公式5.代数式的除法与除法公式6.代数式的开方与乘方7.代数方程的概念与解法8.代数方程的应用四、图形的认识1.平面图形的基本概念2.三角形的分类与性质3.三角形的周长与面积4.四边形的分类与性质5.矩形、正方形与平行四边形6.五边形、六边形与圆7.图形的变换8.图形的相似与全等五、分数与百分数1.分数的意义与表示2.分数的化简与约分3.分数的加法与减法4.分数的乘法与除法5.分数与整数的混合运算6.分数与小数的相互转换7.百分数的概念与表示8.百分数的相互转化与运算六、数据的分析1.统计图的认识与应用2.统计图的制作与解读3.数据的集中趋势与分散程度4.数据的描摹与预测5.概率的概念与计算6.概率的实际应用7.信息的收集与处理8.统计的思想与方法七、线性方程组1.一元一次方程和一元一次不等式2.一元一次方程和一元一次不等式的应用3.线性方程组的概念与解法4.线性方程组的应用5.二元一次方程组与不等式组的概念与解法6.二元一次方程组与不等式组的应用7.二元一次方程组与不等式组的图像与性质8.多个线性方程组与不等式组的解法和应用八、几何运动与不等式1.坐标系与平面直角坐标系2.二次函数与直线3.不等式的解法与应用4.不等式系统的解法与应用5.几何运动的基本概念与性质6.几何运动的应用7.速度与加速度8.解直线方程与几何运动的应用九、角与三角函数1.角的概念与度量2.角的几何关系3.角的平分线与垂直线4.角的合角与差角5.三角函数的概念与计算6.三角函数的应用7.三角恒等变换与证明8.三角函数的图象与性质十、平面向量与解析几何1.平面向量的概念与运算2.平面向量的线性运算3.平面向量的共线与垂直4.平面向量的坐标表示与加法5.平面向量与三角形的关系6.平面向量与中点、向量积7.解析几何基础知识8.解析几何的应用。
中考数学知识点复习总复习资料大全(精华版)
中考数学总复习资料大全第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:整数正整数0有理数实数(有限或无限循环性数)分数正无理数负整数正分数负分数无理数(无限不循环小数)说明:“分类”的原则:1)相称(不重、不漏)2)有标准负无理数正数实数0负数整数有理数分数无理数整数有理数分数无理数2.非负数:正实数与零的统称。
(表为:x≥0)常见的非负数有:a 2│a│(a 为一切实数)a (a≥0)性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法②性质: A.a ≠1/a (a≠±1);B.1/a 中,a≠0;C.0 <a<1 时1/a >1;a >1 时,1/a <1;D. 积为1。
4.相反数:①定义及表示法②性质: A.a ≠0 时,a≠-a;B.a 与-a 在数轴上的位置;C. 和为0, 商为-1 。
5.数轴:①定义(“三要素”)②作用: A. 直观地比较实数的大小;B. 明确体现绝对值意义;C. 建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n 为自然数)7.绝对值:①定义(两种):代数定义:│a│= a(a ≥0) -a(a<0)几何定义:数 a 的绝对值顶的几何意义是实数 a 在数轴上所对应的点到原点的距离。
②│a│≥0, 符号“││”是“非负数”的标志; ③数 a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[ 乘法] 交换律、结合律;[ 乘法对加法的] 分配律)3.运算顺序: A. 高级运算到低级运算;B. (同级运算)从“左”到“右”(如5÷1 ×55);C.( 有括号时) 由“小”到“中”到“大”。
初中中考数学知识点总结
初中中考数学知识点总结一、数与代数1. 整数和有理数- 整数的概念、性质和运算规则- 有理数的概念、性质和运算规则- 绝对值的含义和性质- 正数和负数的概念及其运算2. 代数表达式- 单项式和多项式的定义和运算- 合并同类项、配方法- 因式分解的基本概念和方法3. 一元一次方程与不等式- 一元一次方程的解法- 解含有字母系数的方程- 不等式的性质和解法- 用不等式解决实际问题4. 二元一次方程组- 代入法和消元法解二元一次方程组- 三元一次方程组的解法5. 函数的基本概念- 函数的定义和表示方法- 常见函数(一次函数、二次函数、反比例函数)的图像和性质 - 函数的基本运算和性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念和分类- 三角形、四边形的性质和计算- 圆的基本性质和计算2. 空间图形- 空间直线和平面的位置关系- 简单几何体(如棱柱、棱锥、圆柱、圆锥、球)的性质和计算3. 图形的变换- 平移、旋转、对称(轴对称、中心对称)的概念和性质- 坐标系中的图形变换4. 相似与全等- 全等三角形的判定和性质- 相似三角形的判定和性质- 相似多边形的判定和性质5. 解析几何- 坐标系中点的坐标表示- 直线和曲线的方程表示- 点、线、面之间的位置关系三、统计与概率1. 统计- 数据的收集、整理和描述- 统计图表(如条形图、折线图、饼图)的绘制和解读- 统计量(如平均数、中位数、众数、方差、标准差)的计算和意义2. 概率- 随机事件的概念和分类- 概率的计算方法(如经典概率、相对频率概率)- 概率公式的应用四、综合应用题1. 数列的基本概念和简单数列的求和2. 应用题的解题策略,如列方程解应用题3. 探索性问题,如图形的变化规律、最优化问题4. 开放性问题,如存在性问题、推理证明五、解题技巧与策略1. 审题技巧:准确把握题目要求和条件2. 画图技巧:利用图形辅助解题3. 转化技巧:将复杂问题转化为简单问题4. 检验技巧:解题后的结果验证以上是初中中考数学的主要知识点总结,学生在复习时应重点掌握每个部分的核心概念、性质和计算方法,并结合实际题目进行练习,以提高解题能力和应试技巧。
中考数学知识点总结(完整版)
中考数学知识点总结(完整版)中考数学知识点总结一、整数及其运算1. 整数的概念:包括正整数、负整数和零。
2. 整数的比较:根据绝对值的大小进行比较,绝对值越大的整数越小。
3. 整数的加法和减法:- 同号相加,取相同符号,数值相加;- 异号相加,取绝对值较大的符号,数值取较大的减去较小的;- 整数减法可以转换为加法运算。
二、分数及其运算1. 分数的概念:由分子和分母组成,表示部分与整体的比例关系。
2. 分数的比较:可以先通分,再比较分子的大小。
3. 分数的加法和减法:- 分母相同,分子相加或相减;- 分母不同,先通分,再进行加减运算。
4. 分数的乘法和除法:- 分子相乘,分母相乘;- 除法转换为乘法,将除数倒数乘以被除数。
三、代数式及其运算1. 代数式的概念:由数字、字母和算符组成,可表示一个或多个数的和、差、积、商。
2. 代数式的加法和减法:将同类项相加或相减,并合并同类项。
3. 代数式的乘法:使用分配律,将每一项与其他项相乘。
4. 代数式的除法:将除法转换为乘法,将除数的倒数乘以被除数。
四、方程与方程组1. 方程的概念:由等号连接的两个代数式构成,表示两个量相等的关系。
2. 解一元一次方程:通过逆运算,使得未知数单独在一边,求出未知数的值。
3. 解一元一次不等式:通过运算规则,求出不等式的解集。
4. 方程组的概念:由多个方程组成,表示多个变量之间的关系。
5. 解二元一次方程组:通过消元法或代入法,求出方程组的解。
五、几何图形与计算1. 平面图形:包括点、线、线段、射线、角、三角形、四边形等。
2. 空间图形:包括立体图形如球体、长方体、正方体等。
3. 相似与全等:相似图形的对应边比值相等,全等图形各边和角相等。
4. 长度、面积、体积的计算公式:根据几何图形的特点,计算对应的量。
六、统计与概率1. 统计图表的读取与分析:理解直方图、折线图、饼图等的含义。
2. 平均数的计算:包括算术平均数、加权平均数等。
中考数学知识点一口气看完
中考数学知识点一口气看完一、知识概述《中考数学知识点》①基本定义:中考数学包含的知识点那可太多啦,像数与代数、图形与几何、统计与概率这些大板块。
数与代数就是和数字、式子打交道,像整数、分数、方程式等;图形与几何就是研究形状、大小、位置关系等,像三角形、四边形;统计与概率呢,就是数据怎么统计、事件发生的可能性大小等。
②重要程度:这在中考里可超级重要啊。
数学成绩在中考总分里占了很大比例呢。
要是数学学得好,能把总分拉上去一大截。
③前置知识:小学的数学知识那是基础喽,像四则运算啦。
另外,对一些基本的图形概念也得有认识。
④应用价值:在日常生活里处处都有数学的影子。
比如买东西算账就是简单的数与代数;装修房子看空间布局得用图形与几何知识;统计某件事情发生的频率用的就是统计与概率。
二、知识体系①知识图谱:数学学科就像一颗大树,这些知识点分布在不同的枝干上。
数与代数在一根大枝干上,里面的有理数、无理数等就像这枝干上的小分支。
②关联知识:数与代数和图形与几何有时候得结合起来。
比如说求一个三角形的边长,可能用到方程式来求解;而计算图形的面积可能需要用到代数式。
③重难点分析:我觉得函数部分比较难。
像二次函数,它的图象多样化,性质复杂这就是掌握的难点。
关键点呢,就是要理解函数的概念和图象的关系。
④考点分析:考试的时候,数与代数、图形与几何占的比重特别大。
考查方式也是多种多样的,有填空题、选择题、解答题等。
三、详细讲解【理论概念类】①概念辨析:拿有理数来说吧,有理数就是能写成两个整数之比的数,简单说就是整数和分数。
整数好理解,像1、- 2等,分数就是像1/2、- 3/4这样子的。
②特征分析:有理数有很多特征,比如说它可以在数轴上表示出来。
对于分数,分子分母变化时,数的大小就变化。
③分类说明:有理数分整数和分数。
整数又分正整数、零和负整数;分数分正分数和负分数。
④应用范围:在计算商品的折扣、几分之几这些实际销售和分配场景里就经常用到。
初中数学知识点整理大全,中考数学所有知识点总结(完整版)
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、常用数学公式公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系1+2=-b/a1*2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角二、基本方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它证明平面几何题有时会收到事半功倍的效果。
运用面积关系证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。
面积法的特点是把已知和未知各量用面积公式联系起,通过运算达到求证的结果。
所以用面积法解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。
所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。
中学数学中所涉及的变换主要是初等变换。
有一些看很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。
另一方面,也可将变换的观点渗透到中学数学教学中。
将图形从相等静止条件下的研究和运动中的研究结合起,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。
选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。
下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。
当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。
这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点判断,作出正确的选择称为图解法。
图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。
三、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数的平方等于A,那么这个正数就叫做A的算术平方根。
②如果一个数的平方等于A,那么这个数就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数的立方等于A,那么这个数就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点表示。
3、代数式代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。