数学锐角三角函数的专项培优练习题(含答案)及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、锐角三角函数真题与模拟题分类汇编(难题易错题)
1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数
值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
【答案】6.4米
【解析】
解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.
∴DC=BC•cos30°=3
=⨯=米,
639
2
∵CF=1米,
∴DC=9+1=10米,
∴GE=10米,
∵∠AEG=45°,
∴AG=EG=10米,
在直角三角形BGF中,
BG=GF•tan20°=10×0.36=3.6米,
∴AB=AG-BG=10-3.6=6.4米,
答:树高约为6.4米
首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高
2.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.
(1)求∠BPQ的度数;
(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,
【答案】(1)∠BPQ=30°;
(2)该电线杆PQ的高度约为9m.
【解析】
试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;
(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.
试题解析:延长PQ交直线AB于点E,
(1)∠BPQ=90°-60°=30°;
(2)设PE=x米.
在直角△APE中,∠A=45°,
则AE=PE=x米;
∵∠PBE=60°
∴∠BPE=30°
在直角△BPE中,33
米,
∵AB=AE-BE=6米,
则x-
3
3
x=6,
解得:3
则BE=(3)米.
在直角△BEQ中,QE=
3
3
BE=
3
3
(3+3)=(3)米.
∴3(3)3(米).
答:电线杆PQ的高度约9米.
考点:解直角三角形的应用-仰角俯角问题.
3.问题背景:
如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.
(1)实践运用:
如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为.
(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.
【答案】解:(1)22.
(2)如图,在斜边AC上截取AB′=AB,连接BB′.
∵AD平分∠BAC,∴点B与点B′关于直线AD对称.
过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE.
则线段B′F的长即为所求 (点到直线的距离最短) .
在Rt△AFB/中,∵∠BAC=450, AB/="AB=" 10,
∴.
∴BE+EF的最小值为
【解析】
试题分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置,根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值:
如图作点B关于CD的对称点E,连接AE交CD于点P,此时PA+PB最小,且等于A.作直径AC′,连接C′E,
根据垂径定理得弧BD=弧DE.
∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°.∴∠AOE=90°.
∴∠C′AE=45°.
又AC为圆的直径,∴∠AEC′=90°.
∴∠C′=∠C′AE=45°.∴C′E=AE=AC′=22.
∴AP+BP的最小值是22.
(2)首先在斜边AC上截取AB′=AB,连接BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE,则线段B′F的长即为所求.
4.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.
(1)求tan∠DBC的值;
(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
【答案】(1)tan∠DBC=;
(2)P(﹣,).
【解析】
试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形
的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;
(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知