matlab矩阵表示和简单操作

合集下载

MATLAB矩阵及运算

MATLAB矩阵及运算

重点
y矩阵中每一列最大的值
y向量中最大的值
最大值的位置
最大值的位置
注意:输入矩阵类型不同, 则执行的操作不同。
2.1.4 函数
因为matlab函数太多,所以要养成使用help
命令,得到有关函数的具体用法:
例:help max
2.1表达式
表达式
(即语句):将变量、数值、函 数用操作符连接起来,就构成了表达式 。
应用:可以和其它语言程序进行数据通信。 举例:
通过MATLAB提供的函数产生矩阵
用内部函数可生成一些特殊矩阵 (函数见书上P50)
重点
通过MATLAB提供的函数产生矩阵
1、单位矩阵(
E方阵)和广义单位矩阵的
产生
重点
通过MATLAB提供的函数产生矩阵
2、随机数矩阵的产生
随机数的产生常常用在控制系统仿真以 及信号分析,是一个非常重要的手段。 MATLAB提供了很好的随机数产生函数: rand() randn()
A/ B A*B
1
A\B A
重点
1
*B
Matlab右除法表示形式:
C=A/B 或 C=A * i n v ( B )
Matlab左除法表示形式: C=A\B 或 C=i n v ( A ) * B
注意:只有行列式不为0的方阵才存在逆阵!!!
矩阵元素的右除、左除
a1 A a3 a2 a4
2)变量名由字母、数字和下划线构成。第一个 字母必须是英文字母。 3)有字符个数限制(版本5.0 :最多31个字符)
2.1.2 变量

MAT
重点
(注意大小写!)
i或j: 错误:5+j7

MATLAB中对矩阵的基本操作

MATLAB中对矩阵的基本操作

MATLAB中对矩阵的基本操作在MATLAB中,可以对矩阵进行多种基本操作,包括创建矩阵、访问元素、改变矩阵的大小、插入和删除元素、矩阵的运算等。

以下是对这些操作的详细说明:1.创建矩阵:在MATLAB中,可以使用多种方式创建矩阵。

其中最常用的方式是使用方括号将元素排列成行或列,例如:```A=[1,2,3;4,5,6;7,8,9];```这将创建一个3x3的矩阵A,其元素为1到92.访问元素:可以使用括号和下标来访问矩阵中的元素。

下标从1开始计数。

例如,要访问矩阵A的第二行第三列的元素,可以使用以下代码:```A(2,3);```这将返回矩阵A的第二行第三列的元素。

3.改变矩阵的大小:可以使用函数如reshape和resize来改变矩阵的大小。

reshape函数可以将矩阵重新组织为不同的行和列数。

例如,以下代码使用reshape 将3x3的矩阵A重新组织为1x9的矩阵B:```B = reshape(A, 1, 9);```resize函数可以改变矩阵的大小,可以用来增加或减少矩阵的行和列数。

例如,以下代码将矩阵A的大小改变为2x6:```A = resize(A, 2, 6);```4.插入和删除元素:可以使用括号和下标来插入和删除矩阵中的元素。

例如,以下代码会在矩阵A的第二行的末尾插入一个元素10:```A(2, end+1) = 10;```同时,可以使用括号和下标来删除矩阵中的元素。

以下代码将删除矩阵A的第一行的第二个元素:```A(1,2)=[];```这将删除矩阵A的第一行的第二个元素。

5.矩阵的运算:-矩阵乘法:使用*符号进行矩阵乘法运算。

例如,以下代码将矩阵A 与矩阵B相乘:```C=A*B;```-矩阵加法和减法:使用+和-符号进行矩阵加法和减法运算。

例如,以下代码将矩阵A和矩阵B相加得到矩阵C:```C=A+B;```-矩阵转置:使用'符号进行矩阵的转置操作。

例如,以下代码将矩阵A转置:```B=A';```-矩阵相乘:使用.*符号进行矩阵的元素级相乘运算。

MATLAB矩阵操作大全

MATLAB矩阵操作大全

MATLAB矩阵操作大全1. 创建矩阵:可以使用函数`zeros`、`ones`、`eye`、`rand`等来创建全零矩阵、全一矩阵、单位矩阵和随机矩阵。

2.矩阵索引:可以使用`(`或`[]`来访问矩阵中的元素。

例如,`A(3,2)`表示访问矩阵A中第3行第2列的元素。

3.矩阵运算:可以使用`+`、`-`、`*`、`/`等运算符对矩阵进行加法、减法、乘法和除法运算。

4. 矩阵转置:可以使用`'`符号或`transpose`函数来对矩阵进行转置操作。

例如,`B = A'`表示将矩阵A转置为矩阵B。

5.矩阵加法和减法:可以使用`+`和`-`运算符对两个矩阵进行逐元素的加法和减法运算。

6.矩阵乘法和除法:可以使用`*`和`/`运算符对矩阵进行乘法和除法运算。

注意,矩阵乘法是按照矩阵相应元素进行乘法运算,并不是简单的逐元素乘法。

7. 矩阵求逆:可以使用`inv`函数来求矩阵的逆矩阵。

例如,`B =inv(A)`表示求矩阵A的逆矩阵,并将结果保存在矩阵B中。

8. 矩阵转换:可以使用转换函数`double`、`single`、`int8`、`int16`、`int32`、`int64`等将矩阵的数据类型转换为指定类型。

9. 矩阵求解线性方程组:可以使用`solve`函数来求解线性方程组。

例如,`x = solve(A, b)`表示求解线性方程组Ax = b,并将结果保存在向量x中。

10. 矩阵求特征值和特征向量:可以使用`eig`函数来求矩阵的特征值和特征向量。

例如,`[V, D] = eig(A)`表示求矩阵A的特征值和特征向量,并将结果保存在矩阵V和对角矩阵D中。

11. 矩阵的行列式:可以使用`det`函数来计算矩阵的行列式。

例如,`D = det(A)`表示计算矩阵A的行列式,并将结果保存在变量D中。

12. 矩阵的秩:可以使用`rank`函数来计算矩阵的秩。

例如,`r = rank(A)`表示计算矩阵A的秩,并将结果保存在变量r中。

Matlab中的矩阵操作技巧指南

Matlab中的矩阵操作技巧指南

Matlab中的矩阵操作技巧指南在科学计算和数据处理中,矩阵操作是一个非常重要的环节。

Matlab作为一种功能强大的计算工具,提供了丰富的矩阵操作函数和技巧,帮助用户更高效地处理数据。

本文将为大家介绍一些在Matlab中常用的矩阵操作技巧,希望对广大Matlab用户有所帮助。

一、矩阵的创建和赋值在Matlab中,创建矩阵有多种方式。

可以使用数组、函数、特殊值或其他操作创建矩阵。

下面是一些常见的创建矩阵的方法。

1.1 使用数组创建矩阵使用数组创建矩阵是一种简单直观的方式。

可以通过一维或多维数组来创建矩阵。

```matlabA = [1, 2, 3; 4, 5, 6; 7, 8, 9] % 创建一个3x3的矩阵B = [1, 2, 3; 4, 5, 6] % 创建一个2x3的矩阵```1.2 使用函数创建矩阵除了使用数组,还可以使用Matlab提供的函数来创建矩阵。

常用的函数有zeros, ones, eye等。

```matlabC = zeros(3, 3) % 创建一个3x3的全零矩阵D = ones(2, 4) % 创建一个2x4的全一矩阵E = eye(5) % 创建一个5x5的单位矩阵```1.3 特殊值的矩阵Matlab中还提供了一些特殊值的矩阵,如全1矩阵、全0矩阵等。

```matlabF = ones(3, 3) % 创建一个3x3的全1矩阵G = zeros(2, 4) % 创建一个2x4的全0矩阵```二、矩阵的索引和切片在Matlab中,可以使用索引和切片操作来获取矩阵的元素或对矩阵进行切片操作。

2.1 矩阵的索引可以使用单个索引、行索引或列索引来获取矩阵的元素。

```matlabA = magic(3) % 创建一个3x3的魔方矩阵element = A(2, 3) % 获取第2行第3列的元素row = A(1, :) % 获取第1行的所有元素column = A(:, 2) % 获取第2列的所有元素```2.2 矩阵的切片可以使用切片操作来获取矩阵的子矩阵。

matlab simulink 里的矩阵运算

matlab simulink 里的矩阵运算

matlab simulink 里的矩阵运算Matlab Simulink 中的矩阵运算矩阵运算是Matlab Simulink 中常用到的一种操作,通过矩阵运算,我们可以进行高效且方便的线性代数计算。

本文将详细介绍Matlab Simulink 中的矩阵运算,并逐步回答与之相关的问题。

一、Matlab Simulink 中的矩阵在Matlab Simulink 中,矩阵是一种经常用到的数据结构。

矩阵是由行和列组成的二维数组,用于存储和处理多个相关数据。

1.1 矩阵的定义和表示在Matlab Simulink 中,可以通过使用方括号"[]" 表示矩阵。

下面是一个简单的例子:A = [1, 2, 3; 4, 5, 6; 7, 8, 9]这个例子定义了一个3x3 的矩阵A,其中包含了9 个元素。

1.2 矩阵的运算Matlab Simulink 提供了一系列矩阵运算函数,用于执行各种矩阵操作。

下面我们将逐步回答与矩阵运算相关的问题。

问题1:如何计算两个矩阵的加法和减法?答:在Matlab Simulink 中,可以使用"+" 运算符执行矩阵的加法操作,使用"-" 运算符执行矩阵的减法操作。

下面是一个示例代码:A = [1, 2; 3, 4];B = [5, 6; 7, 8];C = A + B 矩阵加法D = A - B 矩阵减法在这个示例中,我们定义了两个2x2 的矩阵A 和B,并计算了它们的加法和减法。

结果存储在矩阵C 和D 中。

问题2:如何计算矩阵的乘法?答:在Matlab Simulink 中,可以使用"*" 运算符执行矩阵的乘法操作。

下面是一个示例代码:A = [1, 2; 3, 4];B = [5, 6; 7, 8];E = A * B 矩阵乘法在这个示例中,我们定义了两个2x2 的矩阵A 和B,并计算了它们的乘法。

MATLAB矩阵

MATLAB矩阵

MATLAB矩阵一、MATLAB矩阵的基本概念。

MATLAB矩阵是由数值或符号元素组成的二维数组,它是MATLAB中最基本的数据类型之一。

矩阵中的每个元素都有一个行索引和一个列索引,这样可以方便地对矩阵进行操作和计算。

在MATLAB中,矩阵的表示方式非常简单,只需要使用方括号将元素排列起来即可。

例如,一个3行2列的矩阵可以表示为:A = [1 2; 3 4; 5 6]这个矩阵中有6个元素,分别是1、2、3、4、5和6,它们按照从左到右、从上到下的顺序排列在一起。

在MATLAB中,矩阵的行数和列数分别可以通过size 函数来获取,这样可以方便地了解矩阵的大小和结构。

二、MATLAB矩阵的常见操作。

1. 创建矩阵。

在MATLAB中,可以通过直接输入元素的方式来创建矩阵,也可以通过一些特定的函数来生成特定类型的矩阵。

例如,可以使用zeros函数来创建全零矩阵,使用ones函数来创建全一矩阵,使用eye函数来创建单位矩阵等等。

这些函数可以帮助用户快速地生成需要的矩阵,提高工作效率。

2. 访问元素。

可以通过行索引和列索引来访问矩阵中的元素,也可以使用冒号操作符来访问矩阵的子集。

这样可以方便地获取矩阵中的特定元素或者子矩阵,进行进一步的计算和处理。

3. 矩阵运算。

MATLAB中支持矩阵的加法、减法、乘法、除法等基本运算,也支持矩阵的转置、逆矩阵、行列式等高级运算。

这些运算可以帮助用户进行各种复杂的数学计算和工程分析,解决实际问题。

4. 矩阵函数。

MATLAB中有许多内置的矩阵函数,可以对矩阵进行各种操作和变换。

例如,可以使用svd函数进行奇异值分解,使用eig函数进行特征值分解,使用inv函数求解逆矩阵等等。

这些函数可以帮助用户更方便地进行数学建模和数据处理。

三、MATLAB矩阵的实际应用。

1. 科学计算。

在科学研究中,经常需要对各种复杂的数学模型进行求解和分析,这时MATLAB矩阵就可以发挥重要作用。

例如,可以使用矩阵来表示线性方程组,然后通过矩阵运算来求解方程组的解。

MATLAB矩阵及矩阵操作

MATLAB矩阵及矩阵操作

MATLAB矩阵及矩阵操作数值数组(Numeric Array)和数组运算(Array Operations)始终是MATLAB的核心内容。

自MATLAB5.x版起,由于其“面向对象”的特征,这种数值数组(以下简称为数组)成为了MATALB最重要的一种内建数据类型(Built-in Data Type),而数组运算就是定义在这种数据结构上的方法(Method)。

本节系统阐述:一、二维数值数组的创建、寻访;数组运算和矩阵运算的区别;实现数组运算的基本函数;多项式的表达、创建和操作;常用标准数组生成函数和数组构作技法;高维数组的创建、寻访和操作;非数NaN、“空”数组概念和应用;关系和逻辑操作。

顺便指出:(1)本章所涉内容和方法,不仅使用于数值数组,而且也将部分地延伸使用于在其他数据结构中。

一、变量和数据1 数据类型MATLAB7.3定义了15种基本的数据类型1.1 建立double类型数据:例:(注:double为系统默认数据类型)a=3.3a =3.3000方法一:whos 要查看的变量名注:查看多个变量时各变量之间用空格分开,不能用逗号分开例:查看上面定义的变量awhos aName Size Bytes Classa 1x1 8 double arrayGrand total is 1 element using 8 bytes方法二:使用class函数,函数调用常用格式:str = class(object) ——函数返回object的类型例:class(a)ans =double方法三:使用isa函数,函数调用常用格式:n = is(object,'类型')——函数返回值为1,说明object为第二个参数指定的类型,0表示不是。

例:isa(a,'double') ans =1 isa(a,'char') ans =1.2建立其他数值类型数据的方法●使用single、int_、uint_分别建立单精度、有符号整型、无符号整型的数据例:b=single(a)%建立单精度变量bb =3.3000whos a b %查看变量a b的详细信息Name Size Bytes Classa 1x1 8 double arrayb 1x1 4 single arrayGrand total is 2 elements using 12 bytesclass(b) %获取变量b的数据类型ans =single isa(b,'single') ans =1c=int8(a) %尝试把变量a的值改为3.8,看结果有何变化,得出什么结论?c =3class(c)%获取变量c的数据类型ans =int8 isa(c,'int8') ans =1结论:a的值改为3.8后变量c的值变为4,说明在MATLAB中将一个浮点型数据转换为整型数据是遵循“四舍五入”的法则2、数值●需了解MATLAB表达方式的组成、类型●了解数组(array)、矩阵(matrix)、向量(vector)、标量(数字)(scalar)的概念和它们之间的关系。

matlab 矩阵 语法

matlab 矩阵 语法

matlab 矩阵语法MATLAB是一种高级的数学计算软件,支持矩阵运算。

矩阵是MATLAB中最基本的数据类型之一,它可以用来存储和处理数字、字符和逻辑数据。

在MATLAB中,矩阵有着非常重要的作用,因为它们可以用来表示向量、多项式、转换矩阵、图像等等。

一、MATLAB矩阵的定义在MATLAB中,可以使用以下方式来定义一个矩阵:1. 使用方括号[] 来创建一个矩阵,并使用逗号或空格来分隔每个元素。

例如:A = [1, 2, 3; 4, 5, 6; 7, 8, 9]这将创建一个3x3的矩阵A,其中第一行为1、2、3,第二行为4、5、6,第三行为7、8、9。

2. 使用内置函数来创建特殊类型的矩阵。

例如:- zeros(m,n):创建一个m×n全零矩阵- ones(m,n):创建一个m×n全1矩阵- eye(n):创建一个n×n的单位矩阵- rand(m,n):创建一个m×n随机数矩阵例如:B = zeros(3,4)这将创建一个3x4全零矩阵B。

二、MATLAB矩阵的索引在MATLAB中,可以使用以下方式来访问矩阵中的元素:1. 使用下标索引。

例如:A(1,2)这将返回矩阵A中第一行第二列的元素。

2. 使用冒号运算符:来访问某个范围内的元素。

例如:A(1:2, 2:3)这将返回矩阵A中第一行到第二行,第二列到第三列的元素。

三、MATLAB矩阵的运算在MATLAB中,可以对矩阵进行多种类型的运算,包括加减乘除、转置、求逆等等。

1. 加减乘除运算使用加减乘除运算符可以对两个矩阵进行相应的操作。

例如:C = A + B这将对两个矩阵A和B进行相加,并将结果存储在新的矩阵C中。

2. 转置运算使用单引号 ' 或者函数transpose可以对一个矩阵进行转置操作。

例如:D = A'这将把矩阵A进行转置,并将结果存储在新的矩阵D中。

3. 求逆运算使用函数inv可以对一个方阵求逆。

matlab 矩阵汉字

matlab 矩阵汉字

matlab 矩阵汉字摘要:1.MATLAB 简介2.MATLAB 中的矩阵操作3.在MATLAB 中使用汉字4.汉字矩阵的显示和操作正文:一、MATLAB 简介MATLAB(Matrix Laboratory)是一款广泛应用于科学计算、数据分析、可视化等领域的软件。

它以矩阵计算为基础,提供了丰富的函数库和工具箱,为用户提供了高效、便捷的编程环境。

二、MATLAB 中的矩阵操作在MATLAB 中,矩阵操作非常简单。

用户可以通过以下方式创建矩阵:1.使用方括号直接创建矩阵:`A = [1, 2, 3; 4, 5, 6; 7, 8, 9]`。

2.使用命令创建矩阵:`A = zeros(3, 3)`,其中3 表示矩阵的行数和列数,0 表示元素全为0。

此外,MATLAB 还提供了许多矩阵操作函数,如加法、乘法、求逆等。

例如:1.两个矩阵相加:`B = A + C`。

2.两个矩阵相乘:`D = A * B`。

3.求矩阵逆:`A = inv(B)`。

三、在MATLAB 中使用汉字在MATLAB 中,可以直接使用汉字作为矩阵的元素。

在创建矩阵时,只需将汉字作为元素放入方括号中即可。

例如:`name = ["张三", "李四", "王五"];` 创建一个包含姓名的矩阵。

四、汉字矩阵的显示和操作对于汉字矩阵,MATLAB 同样提供了许多常用的显示和操作功能。

例如:1.显示矩阵:`disp(A)`。

2.矩阵转置:`A = transpose(A)`。

3.矩阵行交换:`A = swaprows(A, 1, 2)`。

4.矩阵列交换:`A = swapcolumns(A, 1, 2)`。

MATLAB中的矩阵操作技巧

MATLAB中的矩阵操作技巧

MATLAB中的矩阵操作技巧MATLAB(Matrix Laboratory)是一种强大的数值计算和科学分析软件,特别擅长处理矩阵操作。

本文将介绍一些在MATLAB中进行矩阵操作的技巧和方法,帮助读者更好地利用MATLAB进行数据处理和分析。

一、矩阵基本操作1. 创建矩阵:在MATLAB中,可以使用矩阵的行向量或列向量来创建一个矩阵。

例如,要创建一个3x3的矩阵A,可以使用以下命令:```MATLABA = [1 2 3; 4 5 6; 7 8 9];```这样就创建了一个包含1到9的3x3的矩阵A。

2. 矩阵转置:矩阵的转置可以使用单引号来实现,例如,要将矩阵A进行转置操作,可以使用以下命令:```MATLABA_transpose = A';```这样就得到了矩阵A的转置矩阵A_transpose。

3. 矩阵相加:两个相同大小的矩阵可以进行相加操作,即对应位置的元素相加。

例如,要计算两个3x3矩阵A和B的和,可以使用以下命令:```MATLABC = A + B;```这样就得到了矩阵C,它的每个元素都是对应位置的元素相加的结果。

4. 矩阵相乘:两个矩阵的相乘操作通常是指矩阵的乘法运算。

在MATLAB中,矩阵相乘可以使用*运算符来实现。

例如,要计算两个3x3矩阵A和B的乘积,可以使用以下命令:```MATLABD = A * B;```这样就得到了矩阵D,它的每个元素都是对应位置的元素相乘的结果。

二、矩阵求解和方程组1. 矩阵求逆:在MATLAB中,可以使用inv函数来求解矩阵的逆。

例如,要求解一个3x3的矩阵A的逆矩阵,可以使用以下命令:```MATLABA_inverse = inv(A);```如果矩阵A的逆存在,则得到了逆矩阵A_inverse。

2. 矩阵求解线性方程组:MATLAB提供了一个名为“左除”的操作符\,可以用来求解线性方程组。

例如,要求解线性方程组Ax = b,其中A是一个3x3的矩阵,b是一个3x1的列向量,可以使用以下命令:```MATLABx = A \ b;```这样就求解出了方程组的解x。

matlab中矩阵的表示

matlab中矩阵的表示

matlab中矩阵的表示
Matlab中矩阵是一种非常重要的数据类型,它被广泛应用于各种科学和工程领域。

矩阵的表示方式也非常灵活多样,常见的有以下几种:
1. 行向量和列向量:行向量和列向量是矩阵的两种特殊形式,行向量用一组方括号“[]”表示,元素之间用逗号“,”分隔;列向量用一组圆括号“()”表示,元素之间也用逗号“,”分隔。

2. 矩阵:矩阵是最常见的一种矩阵表示形式,用一组方括号“[]”表示,每一行之间用分号“;”隔开,每一列之间用逗号“,”隔开。

3. 稀疏矩阵:稀疏矩阵是一种特殊的矩阵表示形式,它只存储非零元素。

稀疏矩阵可以用spars函数创建,也可以通过将矩阵转化为稀疏矩阵来实现。

4. 单位矩阵和零矩阵:单位矩阵是对角线上元素为1,其余元素均为0的矩阵,可以用eye函数创建;零矩阵是所有元素均为0的矩阵,可以用zeros函数或者使用“[]”表示来创建。

除了以上几种常见的矩阵表示方式外,Matlab还提供了一些高级矩阵运算和函数,如矩阵乘法、转置、逆矩阵、特征值和特征向量等等,这些功能使得Matlab成为矩阵操作和运算的强大工具。

- 1 -。

MATLAB命令大全和矩阵操作大全

MATLAB命令大全和矩阵操作大全

MATLAB命令大全和矩阵操作大全 -dengjianqiang2011的专栏 - 博客频道 -MATLAB矩阵操作大全一、矩阵的表示在MATLAB中创建矩阵有以下规则:a、矩阵元素必须在”[ ]”内;b、矩阵的同行元素之间用空格(或”,”)隔开;c、矩阵的行与行之间用”;”(或回车符)隔开;d、矩阵的元素可以是数值、变量、表达式或函数;e、矩阵的尺寸不必预先定义。

二,矩阵的创建:1、直接输入法最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则。

建立向量的时候可以利用冒号表达式,冒号表达式可以产生一个行向量,一般格式是:e1:e2:e3,其中e1为初始值,e2为步长,e3为终止值。

还可以用linspace函数产生行向量,其调用格式为:linspace(a,b,n),其中a和b是生成向量的第一个和最后一个元素,n是元素总数。

2、利用MATLAB函数创建矩阵基本矩阵函数如下:(1)ones()函数:产生全为1的矩阵,ones(n):产生n*n维的全1矩阵,ones(m,n):产生m*n维的全1矩阵;(2) zeros()函数:产生全为0的矩阵;(3) rand()函数:产生在(0,1)区间均匀分布的随机阵;(4) eye()函数:产生单位阵;(5) randn()函数:产生均值为0,方差为1的标准正态分布随机矩阵。

3、利用文件建立矩阵当矩阵尺寸较大或为经常使用的数据矩阵,则可以将此矩阵保存为文件,在需要时直接将文件利用load命令调入工作环境中使用即可。

同时可以利用命令reshape对调入的矩阵进行重排。

reshape(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成m*n的二维矩阵。

二、矩阵的简单操作1.获取矩阵元素可以通过下标(行列索引)引用矩阵的元素,如 Matrix(m,n)。

也可以采用矩阵元素的序号来引用矩阵元素。

矩阵元素的序号就是相应元素在内存中的排列顺序。

Matlab中的向量和矩阵操作方法

Matlab中的向量和矩阵操作方法

Matlab中的向量和矩阵操作方法Matlab是一种非常强大的数值计算和科学计算软件,广泛应用于工程、科学和金融等领域。

在Matlab中,向量和矩阵是最常用的数据结构之一,使用它们可以进行各种数值运算和数据分析。

本文将介绍Matlab中的向量和矩阵操作方法,包括创建、索引、运算等方面的内容。

1. 向量的创建和索引向量是一维的数组,可以包含任意数量的元素。

在Matlab中,我们可以通过以下方法创建向量:- 手动输入:可以使用[ ]来手动输入向量的元素。

例如,向量a = [1, 2, 3]表示一个包含3个元素的向量,分别为1、2和3。

- 使用冒号运算符:可以使用冒号运算符(:)创建一个连续的向量。

例如,向量b = 1:5表示一个包含1到5这5个连续元素的向量。

- 使用linspace函数:linspace函数可以创建一个指定起始值、结束值和元素数量的等差数列向量。

例如,向量c = linspace(1, 10, 10)表示一个从1到10的等差为1的数列向量,包含10个元素。

对于已经创建的向量,我们可以使用索引来访问和修改其中的元素。

Matlab中的索引从1开始,使用圆括号()进行索引操作。

2. 向量的运算在Matlab中,向量的运算包括数学运算和逻辑运算两种类型。

- 数学运算:可以对向量进行加、减、乘、除等数学运算。

例如,向量a = [1, 2, 3]与向量b = [4, 5, 6]相加,可以得到向量c = a + b,结果为向量c = [5, 7, 9]。

此外,还可以对向量进行数学函数的运算,如求和、平均值、最大值、最小值等。

- 逻辑运算:可以对向量进行逻辑运算,如与、或、非运算等。

在Matlab中,逻辑运算的结果为逻辑向量,其中每个元素的值为true或false。

例如,向量a = [1, 2, 3]与标量值2进行大于比较,可以得到逻辑向量b = (a > 2),结果为逻辑向量b = [false, false, true]。

Matlab操作矩阵的相关方法

Matlab操作矩阵的相关方法

Matlab操作矩阵的相关⽅法Matlab操作矩阵的相关⽅法下⾯这篇⽂章主要是对吴恩达⽼师机器学习中matlab操作的⼀个整理和归纳⼀、基本操作1.⽣成矩阵(ones、zeros)A = [1 2;3 4;5 6] #⽣成3⾏4列的矩阵B = [1 2 3] #B就是⼀个⾏向量C = [1;2;3] #定义c为⼀个列向量D = 1:0.1:2 #定义开始值为1,步长为0.1,结束值为2的⼀个⾏向量E = 1:6 #定义开始值为1,步长默认为1,结束值为6的⾏向量ones(2,3) #矩阵中所有元素都为1 定义⼀个2⾏3列的矩阵zeros(2,3) #矩阵中所有的元素都为0 定义⼀个2⾏3列的矩阵2.⽣成随机矩阵(rand、randn)rand(1,3) #⽣成1⾏3列的随机矩阵randn(2,3) #⽣成⾼斯随机矩阵,⾼斯随机矩阵即为标准差或⽅差为13.⽣成单位矩阵(eye(n))eye(n) #⽣成n⾏n列的单位矩阵4.帮助命令(help)help 变量名 #可查看函数的API详解⼆、移动数据1.操作.txt⽂件(load)1.1 加载.txt⽂件并且拆分⽂件的⾏和列的值data = load('⽂件路径') #加载⽂件获取多列的数据(获取多⾏的数据和多列类似,只需要修改第⼀个参数即可)data(:,1) #拿到所有⾏第⼀列的数据data(:,1:2) #拿到所有⾏第⼀列和第⼆列的数据data(:,1:3) #拿到所有⾏第⼀列、第⼆列和第三列的数据data(:,[1,3]) #拿到所有⾏第⼀列和第三列的数据将矩阵所有的数据扁平化为⼀列data(:)将矩阵所有的数据扁平化为⼀⾏data(:)'1.2 将数据保存为.txt⽂件v = data(:,1) #拿到第⼀列的数据save test.txt v -ascii #将数据保存到test.txt⽂件中2.矩阵的操作2.1 获得矩阵的⾏数和列数(size())size(A) #返回⼀个1⾏2列的矩阵分别是矩阵的⾏数和列数size(A,1) #返回矩阵的⾏数size(A,2) #返回矩阵的列数2.2 拿到矩阵的最⼤维度(length())length(A) #获得矩阵的⾏数和列数中维度较⼤的⼀个2.3 通过矩阵索引获取某⼀个值A(m,n) #索引到矩阵m⾏n列的位置2.4 修改矩阵的某⼀⾏或者某⼀列A(:,2) = [10;11;12] #修改矩阵第⼆列的数据2.5 在矩阵中添加⼀⾏新的数据A = [A,[10;11;12]] #向矩阵中添加⼀⾏新的数据C=[A B]2.6 矩阵的结合横向结合:A = [1 2;3 4;5 6]B = [11 12;13 14;15 16]C = [A B]纵向结合:C= [A;B]三、计算数据1.A.*B(矩阵之间的乘积)A .*B # A中对应位置元素和B中对应位置元素的乘积2.A.^2 (矩阵⾃⾝的平⽅)A.^2 #矩阵A的平⽅(A矩阵中的每个元素都平⽅)3.1./A(矩阵中每个元素的倒数)1./A 矩阵A中每个元素分别求倒数4.log(A) (对矩阵中每个元素求对数) ,exp(A)(对A中的每个元素以e的底数)5.abs(A)(对矩阵中的每个元素求绝对值)6.-A(对矩阵中的每个元素求相反数)7.A+1(对矩阵中每个对应的元素+1)8.A’(A的转置)9.⼀些有⽤的函数求矩阵中最⼤的⼀个值:max(max(A))或者max(A(:)) ⾸先扁平化A成为⼀个列向量,然后求最⼤值max是默认求每列的最⼤值:max(A) #求矩阵A的最⼤值(如果A是矩阵,会拿到每⼀列的最⼤值)max(A,[],1) #拿到矩阵A中每⼀列的最⼤值max(A,[],2) #拿到矩阵A中每⼀⾏的最⼤值[val, ind] = max(a) #返回矩阵A中的最⼤值和索引A<3 (对应元素的⽐较如果⼩于3返回1,如果⼤于3返回0)find(A<3) #找到A中所有⼩于3的元素,并且返回他们的索引A=magic(3) #任意⾏、列、对⾓的元素相加的和等于相同的值[r,c] = find(A>=7) #拿到所有⼤于等于7的元素的所在⾏和列sum(A) #获得矩阵中所有元素的和sum(A,1) #获得矩阵中每⼀列相加的和sum(A,2) #获得矩阵中每⼀⾏相加的和sum(sum(A)) #获得所有元素的值prod(A) #获得矩阵中所有元素的乘积floor(A) #对矩阵中所有元素向下取整ceil(A) #对矩阵中所有元素向上取整10.逆矩阵pinv(A) #求A得逆矩阵pinv(A)*A #就会拿到单位矩阵四、数据绘制1.绘制正弦函数t = [0:0.01:0.98];y1 = sin(2*pi*4*t);plot(t,y1);2.绘制余弦函数t = [0:0.01:0.98];y2 = cos(2*pi*4*t);plot(t,y2);3.同时绘制正弦函数和余弦函数t = [0:0.01:0.98];y1 = sin(2*pi*4*t);y2 = cos(2*pi*4*t);plot(t,y1);hold on; #hold on 的作⽤是在旧的图像上绘制新的图像plot(t,y2,'r')xlabel('times'); #添加横轴的labelylabel('values'); #添加纵轴的labellegend('sin','cos') #将图例添加到右上⾓title('my plot') #给图像⼀个titleclose; #关闭图像figure(1);plot(t,y1);figure(2);plot(t,y2); #给不同的图像命名4.将图像分为⼀个1*2的格⼦subplot(1,2,1) #前两个参数的意思是分为1*2的格⼦,后⾯⼀个参数的意思是当前使⽤第⼀个格⼦5.改变轴的刻度axis([0.5 1 -1 1]) #(xmin xmax ymin ymax)6.清除⼀副图像(clf)7.可视化⼀个矩阵A = magic(5)imagesc(A);imagesc(A), colorbar, colormap gray; #⼀个灰度分布图。

MATLAB的矩阵运算

MATLAB的矩阵运算

MATLAB的矩阵运算阅读⽬录 MATLAB是基于矩阵和数组计算的,可以直接对矩阵和数组进⾏整体的操作,MATLAB有三种矩阵运算类型:矩阵的代数运算、矩阵的关系运算和矩阵的逻辑运算。

其中,矩阵的代数运算应⽤最⼴泛。

本⽂主要讲述矩阵的基本操作,涉及矩阵的创建、矩阵的代数运算、关系运算和逻辑运算等基本知识。

矩阵的创建直接输⼊法创建矩阵% 1. 直接输⼊法创建矩阵>> A = [1,2,3; 4,5,6; 7,8,9]A =1 2 34 5 67 8 9函数法创建矩阵简单矩阵% 2. 函数法创建矩阵>> zeros(3)% ⽣成3x3的全零矩阵ans =0 0 00 0 00 0 0>> zeros(3,2)% ⽣成3x2的全零矩阵ans =0 00 00 0>> eye(3)% ⽣成单位矩阵ans =1 0 00 1 00 0 1>> ones(3)% ⽣成全1矩阵ans =1 1 11 1 11 1 1>> magic(3)% ⽣成3x3的魔⽅阵ans =8 1 63 5 74 9 2>> diag(1:3)% 对⾓矩阵ans =1 0 00 2 00 0 3>> diag(1:5,1)% 对⾓线向上移1位矩阵ans =0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 5 0 0 0 0 0 0 >> diag(1:5,-1)% 对⾓线向下移1位矩阵ans =0 0 0 0 0 01 0 0 0 0 0 02 0 0 0 0 0 03 0 0 0 0 0 04 0 0 0 0 0 05 0 >> triu(ones(3,3))% 上三⾓矩阵ans =1 1 10 1 10 0 1>> tril(ones(3,3))% 下三⾓矩阵ans =1 0 01 1 01 1 1随机矩阵>> rand(3)% ⽣成随机矩阵ans =0.2898 0.8637 0.05620.4357 0.8921 0.14580.3234 0.0167 0.7216>> rand('state',0); % 设定种⼦数,产⽣特定种⼦数下相同的随机数>> rand(3)ans =0.9501 0.4860 0.45650.2311 0.8913 0.01850.6068 0.7621 0.8214>> a = 1; b = 100;>> x = a + (b-a)* rand(3)% 产⽣区间(1,100)内的随机数x =38.2127 20.7575 91.113389.9610 31.0064 53.004043.4711 54.2917 31.3762>> a = 1; b = 100;>> a + fix(b * rand(1,50))% 产⽣50个[1,100]内的随机正整数ans =列 1 ⾄ 154 72 77 6 63 27 32 53 41 90 58 57 40 70 57列 16 ⾄ 3035 60 28 5 84 11 73 45 100 57 47 42 22 24 32列 31 ⾄ 4587 26 97 31 38 35 71 62 76 80 22 90 90 94 28列 46 ⾄ 5048 26 37 53 39相似函数扩展>> randn(3)% ⽣成均值为0,⽅差为1的正太分布随机数矩阵ans =-0.4326 0.2877 1.1892-1.6656 -1.1465 -0.03760.1253 1.1909 0.3273>> randperm(10)% ⽣成1-10之间随机分布10个正整数ans =4 9 10 25 8 1 3 7 6% 多项式x^3 - 7x + 6 的伴随矩阵>> u = [1,0,-7,6];>> A = compan(u)% ⽣成伴随矩阵A =0 7 -61 0 00 1 0>> eig(A) % 此处eig()函数⽤于求特征值% 利⽤伴随矩阵求得⽅程的根ans =-3.00002.00001.0000矩阵的运算矩阵的代数运算矩阵的算术运算>> A = [1,1;2,2];>> B = [1,1;2,2];>> AA =1 12 2>> BB =1 12 2>> A + Bans =2 24 4>> B-Aans =0 00 0>> A * Bans =3 36 6>> A^2ans =3 36 6>> A^3ans =9 918 18矩阵的运算函数>> C = magic(3)C =8 1 63 5 74 9 2>> size(C)ans =3 3>> length(C)ans =3>> sum(C)ans =15 15 15>> max(C)ans =8 9 7>> C'ans =8 3 41 5 96 7 2>> inv(C)ans =0.1472 -0.1444 0.0639 -0.0611 0.0222 0.1056 -0.0194 0.1889 -0.1028矩阵的元素群运算元素群运算,是指矩阵中的所有元素按单个元素进⾏运算,也即是对应位置进⾏运算。

matlab中矩阵的表示与简单操作

matlab中矩阵的表示与简单操作

matlab中矩阵的表⽰与简单操作原⽂地址为:⼀、的表⽰在中创建矩阵有以下规则:a、矩阵元素必须在”[ ]”内;b、矩阵的同⾏元素之间⽤空格(或”,”)隔开;c、矩阵的⾏与⾏之间⽤”;”(或回车符)隔开;d、矩阵的元素可以是数值、变量、表达式或函数;e、矩阵的尺⼨不必预先定义。

⼆,矩阵的创建:1、直接输⼊法最的建⽴矩阵的⽅法是从键盘直接输⼊矩阵的元素,输⼊的⽅法按照上⾯的规则。

建⽴向量的时候可以利⽤冒号表达式,冒号表达式可以产⽣⼀个⾏向量,⼀般格式是: e1:e2:e3,其中e1为初始值,e2为步长,e3为终⽌值。

还可以⽤linspace函数产⽣⾏向量,其调⽤格式为:linspace(a,b,n) ,其中a和b是⽣成向量的第⼀个和最后⼀个元素,n是元素总数。

2、利⽤MATLAB函数创建矩阵基本矩阵函数如下:(1) ones()函数:产⽣全为1的矩阵,ones(n):产⽣n*n维的全1矩阵,ones(m,n):产⽣m*n维的全1矩阵;(2) zeros()函数:产⽣全为0的矩阵;(3) rand()函数:产⽣在(0,1)区间均匀分布的随机阵;(4) eye()函数:产⽣单位阵;(5) randn()函数:产⽣均值为0,⽅差为1的标准正态分布随机矩阵。

3、利⽤⽂件建⽴矩阵当矩阵尺⼨较⼤或为经常使⽤的数据矩阵,则可以将此矩阵保存为⽂件,在需要时直接将⽂件利⽤load命令调⼊⼯作环境中使⽤即可。

同时可以利⽤命令reshape对调⼊的矩阵进⾏重排。

reshape(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成m*n的⼆维矩阵。

⼆、矩阵的简单1.获取矩阵元素可以通过下标(⾏列索引)引⽤矩阵的元素,如 Matrix(m,n)。

也可以采⽤矩阵元素的序号来引⽤矩阵元素。

矩阵元素的序号就是相应元素在内存中的排列顺序。

在MATLAB中,矩阵元素按列存储。

序号(Index)与下标(Subscript )是⼀⼀对应的,以m*n矩阵A为例,矩阵元素A(i,j)的序号为(j-1)*m+i。

如何在Matlab中进行矩阵操作和计算

如何在Matlab中进行矩阵操作和计算

如何在Matlab中进行矩阵操作和计算在Matlab中进行矩阵操作和计算Matlab是一种用于数值计算和可视化的高级程序语言,广泛应用于科学计算、工程设计、统计分析等领域。

其中,矩阵操作和计算是Matlab的核心功能之一。

在本文中,我们将探讨如何利用Matlab进行矩阵操作和计算的一些基本技巧和高级功能。

一、创建矩阵在Matlab中创建矩阵非常简单。

我们可以使用特定的语法来定义一个矩阵,并赋予其初值。

例如,我们可以使用方括号将矩阵的元素排列成行或列的形式,用逗号或空格分隔开每个元素。

```MatlabA = [1, 2, 3; 4, 5, 6; 7, 8, 9]; % 创建一个3x3的矩阵B = [10 11 12; 13 14 15; 16 17 18]; % 创建一个3x3的矩阵```除此之外,我们还可以使用内置函数来创建特殊类型的矩阵,如单位矩阵、零矩阵、对角矩阵等。

```MatlabC = eye(3); % 创建一个3x3的单位矩阵D = zeros(2, 4); % 创建一个2x4的零矩阵E = diag([1 2 3]); % 创建一个对角矩阵,对角线元素分别为1、2、3```二、矩阵运算Matlab提供了丰富的矩阵运算函数,方便我们进行各种矩阵操作。

例如,我们可以使用加法、减法、乘法、除法等运算符对矩阵进行基本的运算。

```MatlabF = A + B; % 矩阵相加G = A - B; % 矩阵相减H = A * B; % 矩阵相乘I = A / B; % 矩阵相除```此外,Matlab还提供了求转置、求逆、求行列式等常用的矩阵运算函数,可以通过调用这些函数来完成相应的操作。

```MatlabJ = transpose(A); % 求矩阵A的转置K = inv(A); % 求矩阵A的逆矩阵L = det(A); % 求矩阵A的行列式```三、矩阵索引与切片在Matlab中,我们可以使用索引和切片操作来访问矩阵的特定元素或子矩阵。

Matlab矩阵的操作

Matlab矩阵的操作

>>F = 5*ones(3,3) F=
555 555 555
>>N = fix(10*rand(1,10)) N=
4 9 4 4 8 52 6 8 0
此外,常用的函数还有reshape(A,m,n),它在 矩阵总元素保持不变的前提下,将矩阵A重新 排成m×n的二维矩阵,其元素是以列的方式从 A中获得, A必须包含m×n个元素。
.
>>A = 16 3 5 10 96 4 15
2 13 11 8 7 12 14 1
>>reshape(A,2,8)
ans =
16 9 3 6 2 7 13 12
5 4 10 15 11 14 8 1
5. 建立大矩阵
大矩阵可由方括号中的小矩阵建立起来。 例如:
>>A=[1 2 3 ; 4 5 6 ; 7 8 9]; >>C=[A, eye(size(A)); ones(size(A)), A] C= 1 2 3 1 0 0
diag(X)
若 X 是矩阵,则 diag(X) 为 X 的主对角线向量 若 X 是向量,diag(X) 产生以 X 为主对角线的对角矩阵
tril(A)
提取一个矩阵的下三角部分
triu(A)
提取一个矩阵的上三角部分
rand(m,n) 产生 0~1 间均匀分布的随机矩阵 m=n 时简写为 rand(n)
(2) 装入 该文本文件: load mymatrix.dat 或者: load mymatrix.txt
(3) 创建一个变量名为mymatrix的矩阵
将以文本或二进制格式存储的数据读入 MATLAB 的另一种 方式是用 Import Wizard. File→Import Data

matlab 矩阵运算程序

matlab 矩阵运算程序

matlab 矩阵运算程序MATLAB是一种强大的数学软件,主要用于数值计算、算法开发、数据可视化和数据分析等。

在MATLAB中,矩阵运算是非常常见的操作。

以下是一个简单的MATLAB矩阵运算程序示例:```matlab创建两个矩阵A和BA = [1, 2, 3;4, 5, 6;7, 8, 9];B = [9, 8, 7;6, 5, 4;3, 2, 1];矩阵加法C = A + B;disp('矩阵A和矩阵B的和:');disp(C);矩阵减法D = A - B;disp('矩阵A和矩阵B的差:'); disp(D);矩阵乘法E = A * B;disp('矩阵A和矩阵B的乘积:'); disp(E);矩阵转置T = transpose(A);disp('矩阵A的转置:');disp(T);求矩阵的行列式det_A = det(A);disp('矩阵A的行列式:');disp(det_A);求矩阵的逆矩阵inv_A = inv(A);disp('矩阵A的逆矩阵:');disp(inv_A);求矩阵的秩rank_A = rank(A);disp('矩阵A的秩:');disp(rank_A);求矩阵的特征值eig_A = eig(A);disp('矩阵A的特征值:');disp(eig_A);```以上程序演示了MATLAB中的一些基本矩阵运算,如加法、减法、乘法、转置、求行列式、求逆矩阵、求秩和求特征值等。

您可以根据实际需求修改矩阵A和B的值,然后运行该程序以观察结果。

需要注意的是,这里的矩阵运算都是在MATLAB环境下进行的。

如果要编写比MATLAB更快的矩阵运算程序,可以尝试使用如C、C++等编程语言,并链接到高性能的数学库,如Intel的Math Kernel Library(MKL)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

matlab矩阵的表示和简单操作一、矩阵的表示在MATLAB中创建矩阵有以下规则:a、矩阵元素必须在”[ ]”内;b、矩阵的同行元素之间用空格(或”,”)隔开;c、矩阵的行与行之间用”。

”(或回车符)隔开;d、矩阵的元素可以是数值、变量、表达式或函数;e、矩阵的尺寸不必预先定义。

二,矩阵的创建:1、直接输入法最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则。

建立向量的时候可以利用冒号表达式,冒号表达式可以产生一个行向量,一般格式是:e1:e2:e3,其中e1为初始值,e2为步长,e3为终止值。

还可以用linspace函数产生行向量,其调用格式为:linspace(a,b,n) ,其中a和b是生成向量的第一个和最后一个元素,n是元素总数。

2、利用MATLAB函数创建矩阵基本矩阵函数如下:(1) ones()函数:产生全为1的矩阵,ones(n):产生n*n维的全1矩阵,ones(m,n):产生m*n维的全1矩阵;(2) zeros()函数:产生全为0的矩阵;(3) rand()函数:产生在(0,1)区间均匀分布的随机阵;(4) eye()函数:产生单位阵;(5) randn()函数:产生均值为0,方差为1的标准正态分布随机矩阵。

3、利用文件建立矩阵当矩阵尺寸较大或为经常使用的数据矩阵,则可以将此矩阵保存为文件,在需要时直接将文件利用load命令调入工作环境中使用即可。

同时可以利用命令reshape对调入的矩阵进行重排。

reshape(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成m*n的二维矩阵。

二、矩阵的简单操作1.获取矩阵元素可以通过下标(行列索引)引用矩阵的元素,如Matrix(m,n)。

也可以采用矩阵元素的序号来引用矩阵元素。

矩阵元素的序号就是相应元素在内存中的排列顺序。

在MATLAB中,矩阵元素按列存储。

序号(Index)与下标(Subscript )是一一对应的,以m*n矩阵A为例,矩阵元素A(i,j)的序号为(j-1)*m+i。

其相互转换关系也可利用sub2ind和ind2sub函数求得。

2.矩阵拆分利用冒号表达式获得子矩阵:(1) A(:,j)表示取A矩阵的第j列全部元素;A(i,:)表示A矩阵第i行的全部元素;A(i,j)表示取A矩阵第i行、第j列的元素。

(2) A(i:i+m,:)表示取A矩阵第i~i+m行的全部元素;A(:,k:k+m)表示取A矩阵第k~k+m 列的全部元素,A(i:i+m,k:k+m)表示取A矩阵第i~i+m行内,并在第k~k+m列中的所有元素。

此外,还可利用一般向量和end运算符来表示矩阵下标,从而获得子矩阵。

end表示某一维的末尾元素下标。

利用空矩阵删除矩阵的元素:在MATLAB中,定义[]为空矩阵。

给变量X赋空矩阵的语句为X=[]。

注意,X=[]与clear X不同,clear是将X从工作空间中删除,而空矩阵则存在于工作空间中,只是维数为0。

3、特殊矩阵(1) 魔方矩阵魔方矩阵有一个有趣的性质,其每行、每列及两条对角线上的元素和都相等。

对于n阶魔方阵,其元素由1,2,3,…,n2共n2个整数组成。

MATLAB提供了求魔方矩阵的函数magic(n),其功能是生成一个n阶魔方阵。

(2) 范得蒙矩阵范得蒙(Vandermonde)矩阵最后一列全为1,倒数第二列为一个指定的向量,其他各列是其后列与倒数第二列的点乘积。

可以用一个指定向量生成一个范得蒙矩阵。

在MATLAB中,函数vander(V)生成以向量V为基础向量的范得蒙矩阵。

(3) 希尔伯特矩阵在MATLAB中,生成希尔伯特矩阵的函数是hilb(n)。

使用一般方法求逆会因为原始数据的微小扰动而产生不可靠的计算结果。

MATLAB中,有一个专门求希尔伯特矩阵的逆的函数invhilb(n),其功能是求n阶的希尔伯特矩阵的逆矩阵。

(4) 托普利兹矩阵托普利兹(Toeplitz)矩阵除第一行第一列外,其他每个元素都与左上角的元素相同。

生成托普利兹矩阵的函数是toeplitz(x,y),它生成一个以x为第一列,y为第一行的托普利兹矩阵。

这里x, y均为向量,两者不必等长。

toeplitz(x)用向量x生成一个对称的托普利兹矩阵。

(5) 伴随矩阵MATLAB生成伴随矩阵的函数是compan(p),其中p是一个多项式的系数向量,高次幂系数排在前,低次幂排在后。

(6) 帕斯卡矩阵我们知道,二次项(x+y)n展开后的系数随n的增大组成一个三角形表,称为杨辉三角形。

由杨辉三角形表组成的矩阵称为帕斯卡(Pascal)矩阵。

函数pascal(n)生成一个n阶帕斯卡矩阵。

三、矩阵的运算1、算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)、’(转置)。

运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。

(1) 矩阵加减运算假定有两个矩阵A和B,则可以由A+B和A-B实现矩阵的加减运算。

运算规则是:若A和B矩阵的维数相同,则可以执行矩阵的加减运算,A和B矩阵的相应元素相加减。

如果A与B的维数不相同,则MATLAB将给出错误信息,提示用户两个矩阵的维数不匹配。

(2) 矩阵乘法假定有两个矩阵A和B,若A为m*n矩阵,B为n*p矩阵,则C=A*B为m*p 矩阵。

(3) 矩阵除法在MATLAB中,有两种矩阵除法运算:\和/,分别表示左除和右除。

如果A矩阵是非奇异方阵,则A\B和B/A运算可以实现。

A\B等效于A的逆左乘B矩阵,也就是inv(A)*B,而B/A等效于A矩阵的逆右乘B矩阵,也就是B*inv(A)。

对于含有标量的运算,两种除法运算的结果相同。

对于矩阵来说,左除和右除表示两种不同的除数矩阵和被除数矩阵的关系,一般A\B≠B/A。

(4) 矩阵的乘方一个矩阵的乘方运算可以表示成A^x,要求A为方阵,x为标量。

(5) 矩阵的转置对实数矩阵进行行列互换,对复数矩阵,共轭转置,特殊的,操作符.’共轭不转置(见点运算);(6) 点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。

点运算符有.*、./、.\和.^。

两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。

2、关系运算MATLAB提供了6种关系运算符:<(小于)、<=(小于或等于)、>(大于)、>=(大于或等于)、==(等于)、~=(不等于)。

关系运算符的运算法则为:(1) 当两个比较量是标量时,直接比较两数的大小。

若关系成立,关系表达式结果为1,否则为0;(2) 当参与比较的量是两个维数相同的矩阵时,比较是对两矩阵相同位置的元素按标量关系运算规则逐个进行,并给出元素比较结果。

最终的关系运算的结果是一个维数与原矩阵相同的矩阵,它的元素由0或1组成;(3) 当参与比较的一个是标量,而另一个是矩阵时,则把标量与矩阵的每一个元素按标量关系运算规则逐个比较,并给出元素比较结果。

最终的关系运算的结果是一个维数与原矩阵相同的矩阵,它的元素由0或1组成。

3、逻辑运算MATLAB提供了3种逻辑运算符:&(与)、|(或)和~(非)。

逻辑运算的运算法则为:(1) 在逻辑运算中,确认非零元素为真,用1表示,零元素为假,用0表示;(2) 设参与逻辑运算的是两个标量a和b,那么,a&ba,b全为非零时,运算结果为1,否则为0。

a|ba,b中只要有一个非零,运算结果为1。

~a 当a是零时,运算结果为1;当a非零时,运算结果为0。

(3) 若参与逻辑运算的是两个同维矩阵,那么运算将对矩阵相同位置上的元素按标量规则逐个进行。

最终运算结果是一个与原矩阵同维的矩阵,其元素由1或0组成;(4) 若参与逻辑运算的一个是标量,一个是矩阵,那么运算将在标量与矩阵中的每个元素之间按标量规则逐个进行。

最终运算结果是一个与矩阵同维的矩阵,其元素由1或0组成;(5) 逻辑非是单目运算符,也服从矩阵运算规则;(6) 在算术、关系、逻辑运算中,算术运算优先级最高,逻辑运算优先级最低。

四、矩阵分析1、对角阵(1) 对角阵只有对角线上有非0元素的矩阵称为对角矩阵,对角线上的元素相等的对角矩阵称为数量矩阵,对角线上的元素都为1的对角矩阵称为单位矩阵。

(1) 提取矩阵的对角线元素设A为m*n矩阵,diag(A)函数用于提取矩阵A主对角线元素,产生一个具有min(m,n)个元素的列向量。

diag(A)函数还有一种形式diag(A,k),其功能是提取第k条对角线的元素。

(2) 构造对角矩阵设V为具有m个元素的向量,diag(V)将产生一个m*m对角矩阵,其主对角线元素即为向量V的元素。

diag(V)函数也有另一种形式diag(V,k),其功能是产生一个n*n(n=m+k)对角阵,其第m条对角线的元素即为向量V的元素。

2、三角阵三角阵又进一步分为上三角阵和下三角阵,所谓上三角阵,即矩阵的对角线以下的元素全为0的一种矩阵,而下三角阵则是对角线以上的元素全为0的一种矩阵。

(1) 上三角矩阵求矩阵A的上三角阵的MATLAB函数是triu(A)。

triu(A)函数也有另一种形式triu(A,k),其功能是求矩阵A的第k条对角线以上的元素。

(2) 下三角矩阵在MATLAB中,提取矩阵A的下三角矩阵的函数是tril(A)和tril(A,k),其用法与提取上三角矩阵的函数triu(A)和triu(A,k)完全相同。

3、矩阵的转置与旋转(1) 矩阵的转置转置运算符是单撇号(’)。

(2) 矩阵的旋转利用函数rot90(A,k)将矩阵A旋转90o的k倍,当k为1时可省略。

4、矩阵的翻转对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,…,依次类推。

矩阵A实施左右翻转的函数是fliplr(A),对矩阵A实施上下翻转的函数是flipud(A)。

5、矩阵的逆与伪逆(1) 矩阵的逆对于一个方阵A,如果存在一个与其同阶的方阵B,使得:AB=BA=I (I为单位矩阵) 则称B为A的逆矩阵,当然,A也是B的逆矩阵。

求方阵A的逆矩阵可调用函数inv(A)。

(2) 矩阵的伪逆如果矩阵A不是一个方阵,或者A是一个非满秩的方阵时,矩阵A没有逆矩阵,但可以找到一个与A的转置矩阵A’同型的矩阵B,使得:ABA=A,BAB=B 此时称矩阵B为矩阵A的伪逆,也称为广义逆矩阵。

在MATLAB中,求一个矩阵伪逆的函数是pinv(A)。

6、方阵的行列式把一个方阵看作一个行列式,并对其按行列式的规则求值,这个值就称为矩阵所对应的行列式的值。

在MATLAB中,求方阵A所对应的行列式的值的函数是det(A)。

7、矩阵的秩与迹(1) 矩阵的秩矩阵线性无关的行数与列数称为矩阵的秩。

相关文档
最新文档