粗多糖的提取与纯化之脱色
多糖的分离纯化及性质表征

(3)超高压
超高压提取 也称超高冷等静压提取,是指在常温下用100~1000 MPa的流 体静压力作用于提取溶剂和原料的混合液上,并在预定压力 下保持一段时间,使原料细胞内外压力达到平衡后迅速卸压 ,由于细胞内外渗透压力忽然增大,其结构发生变化使得原 料内的有效成分能够穿过细胞的各种膜而转移到细胞外的提 取液中,达到提取多糖有效成分的目的。
(2) 酸提法
为了提高多糖的提取率,在水提醇沉法的基础上发展了酸提 取法。 如某些含葡萄糖醛酸等酸性基团的多糖在较低pH值下 难以溶解,可用乙酸或盐酸使提取液成酸性,再加乙醇使多 糖沉淀析出。 由于H+的存在抑制了酸性杂质的溶出,稀酸提取法提取得到 的多糖产品纯度相对较高,但在酸性条件下可能引起多糖中 糖苷键的断裂,因此,只在一些特定的多糖提取中占有优势 。且酸会对容器造成腐蚀,除弱酸外,一般不宜采用。
5. 整个过程保持凝胶上方有水
原料 前处理 提取 滤渣 过滤或离心
滤液
醇沉 沉淀 脱蛋白 脱色 透析 柱层析
多糖
四、多糖的纯度鉴定
多糖纯度鉴定方法 超速离心法、电泳法、比旋光度法及凝胶色谱法。
比旋光度测定法
不同的多糖具有不同的比旋度,同时在不同的乙醇中 有不同的溶解度。在一定浓度的乙醇中,分子量大的 较分子量小的溶解度小。因此,不同浓度的醇中得到 的多糖沉淀的比旋度相同,则证明该多糖为均一组分。
(2)超声波辅助提取法
超声波提取是利用超声波的机械效应、空化效应及热效应。 机械效应可增大介质的运动速度及穿透力,能有效的破碎生 物细胞和组织,从而使提取的有效成分溶解于溶剂之中; 空化效应使整个生物体破裂,整个破裂过程在瞬间完成,有 利于有效成分的溶出; 热效应增大了有效成分的溶解速度,这种热效应是瞬间的, 可使被提取成分的生物活性尽量保持不变。
超声提取粗多糖的工艺流程

超声提取粗多糖的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!超声提取粗多糖的工艺流程主要包括原料选择、超声波处理、提取、絮凝、离心、干燥和纯化等步骤。
多糖的提取和纯化

多糖的提取和纯化目前,真菌多糖的提取可从子实体和采用深层培养发酵液的菌丝中分离获得,但以从子实体中提取多糖为主。
首先是将子实体粉碎,加入甲醇或乙醇乙醚1:1混合液,水浴加热搅拌1一3小时除去表面脂肪。
其次是用残渣提取多糖,常用的方法有不同温度下的水提法、稀酸提法、冷热稀碱提法。
水提法采用的较多,适合于提取水溶性多糖。
稀酸提取法适用于提取酸溶性多糖、时间宜短,温度不超过50℃,以防止糖昔键断裂。
稀碱法适合于提取碱溶性糖。
然后除去小分子杂质,常采用透析法,将多糖提取液置于半透膜透析袋中,逆向流水透析1一3天。
第四步是沉淀多糖。
大部分多糖在有机溶剂中的溶解度极小,所以可用有机溶剂来沉淀。
常用4一5倍低级醇、丙酮,一般在pH=7.0左右沉淀多糖,制得粗多糖。
最后是除去蛋白质。
除去多糖中的蛋白质常用的方法是三氯醋酸法。
得到的溶液基本上是没有蛋白质与小分子杂质的多糖混合物或单一多糖。
多糖的纯化是将多糖混合物分离为单一的多糖。
纯化方法很多,主要纯化方法有:(l)分步沉淀法根据不同多糖在不同浓度的低级醇或酮中具有不同溶解度的性质,逐次按比例由小而大加入这些醇或酮分步沉淀。
此法适用于分离各种溶解度相差较大的多糖。
(2)盐析法根据不同多糖在不同浓度盐中具有不同溶解度而分离。
纯度鉴定和分子量测定多糖纯度标准不能用通常化合物纯度标准来衡量,因为我们所说的多糖纯品实质上是一定分子量范围内的均一组成。
因此,测得的分子量一般为平均分子量。
过去常用粘度法、蒸气压渗透计法、沉降法、超速离心法、光散射法等测定高分子化合物分子量的方法测定真菌多糖的分子量,但由于这些方法测定起来比较麻烦,且误差较大,现多数已不采用。
目前实验室常用的方法为凝胶过滤法和高压液相色谱法,对于分子量小于1百万的多糖用高压液相法为最好。
1.2.1发酵、提取取香菇465菌株斜面菌种接人摇瓶培养基中振荡培养,逐级扩大培养至10O0L,25℃下通气培养72h,压滤,得香菇深层培养菌丝体。
海带硫酸化多糖的提取及纯化

海带硫酸化多糖的提取及纯化
海带硫酸化多糖的提取及纯化
对海带硫酸化多糖的水提法与酶解法进行比较,发现酶提法效果较好,粗提得率较水提法提高了85.9%,纯化后得率提高了43.6%.纯化过程中,通过正交实验得出CTAB沉淀LPS的最佳最佳优化条件为1%粗糖液:5%CTAB(V/V)为3:2,沉淀时间6 h,离心时间12 min.经单因素实验确定了树脂D315的脱色条件为:1%多糖液与树脂的体积质量比为为100:1(V/W),脱色时间6 h,pH值5.0,温度40℃.
作者:程斌宋加金赵云峰CHENG Bin SONG Jia-jin ZHAO Yun-feng 作者单位:程斌,赵云峰,CHENG Bin,ZHAO Yun-feng(曲阜师范大学生命科学学院,山东,曲阜,273165)
宋加金,SONG Jia-jin(曲阜师范大学科研处,山东,曲阜,273165)
刊名:聊城大学学报(自然科学版)英文刊名:JOURNAL OF LIAOCHENG UNIVERSITY 年,卷(期):2009 22(2) 分类号:Q946.3 关键词:海带硫酸多糖提取纯化。
多糖的提取和纯化

多糖的提取和纯化Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT多糖的提取和纯化→粉碎→脱脂→粗提(2-3次)→吸滤或离心→沉淀→洗涤→干燥首先除去表面脂肪。
原料经粉碎后加入甲醇、乙醚、乙醇、丙酮或1:1的乙醇乙醚混合液,水浴加热搅拌或回流1-3小时,脱脂后过滤得到的残渣一般用水作溶剂(也有用氢氧化钾碱性水液、氯化钠水液、1%醋酸和1%苯酚或-1M氢氧化钠作为提取溶剂)提取多糖。
温度控制在90-100℃,搅拌4-6小时,反复提取2-3次。
得到的多糖提取液大多较粘稠,可进行吸滤。
也可用离心法将不溶性杂质除去,将滤液或上清液混合(得到的多糖若为碱性则需要中和)。
然后浓缩,再加入2-5倍低级醇(甲醇或乙醇)沉淀多糖;也可加入费林氏溶液或硫酸铵或溴化十六烷基三甲基铵等,与多糖物质结合生成不溶性络合物或盐类沉淀。
然后依次用乙醇、丙酮和乙醚洗涤。
将洗干后疏松的多糖迅速转入装有五氧化二磷和氢氧化钠的真空干燥器中减压干燥(若沉淀的多糖为胶状或具粘着性时,可直接冷冻干燥)。
干燥后可得粉末状的粗多糖。
微波辅助提取法:其原理为利用不同极性的介质对微波能的不同吸收程度,使基体物质中的某些区域和萃取体系中的某些组分被选择性加热,从而使萃取物质从基体或体系中分离出来,进入到介电常数小,微波吸收能力较差的萃取剂中[14]。
由于微波能极大加速细胞壁的破裂,因而应用于中草药中有效成分的提取能极大加快提取速度,增加提取产率。
而且由于其选择性好,提取后基体能保持良好的性状,提取液也较一般的提取方法澄清[15]。
聂金源等在柴胡多糖和黄酮化合物的提取[18]中对微波辅助提取法、超声辅助法和索氏提取法进行比较,发现微波辅助提取法所需时间最短(10min),多糖的提取率最高(%)。
超声辅助法:其原理是利用超声波的空化作用加速植物有效成分的浸出提取,另外超声波的次级效应,如机械振动、乳化、扩散、击碎、化学效应等也能加速欲提取成分的扩散释放并充分与溶剂混合,利于提取[16]。
桑黄粗多糖分离纯化的工艺

精品整理
桑黄粗多糖分离纯化的工艺
多糖,又称多聚糖,是一类由相同或不同的单糖及糖醛酸通过糖苷键连接缩合而成的重要生物大分子。
由相同的单糖组成的多糖称为均多糖,如淀粉、纤维素等;由不同的单糖组成的多糖称为杂多糖,如阿拉伯胶等。
目前已发现的天然多糖有数百种,广泛存在于动物、植物、菌物和微生物中。
桑黄粗多糖脱蛋白和除色素是目前分离纯化多糖的重点和难点之一。
桑黄粗多糖脱蛋白常用的是Sevage法、醇析法、酶法、三氟二氯乙烷法以及三氯乙酸法(TCA)等,桑黄粗多糖除色素常用纤维素、等层析柱的方式。
目前,为得到高纯度桑黄多糖,主要的分离技术有分级醇沉(初步分离)、超滤法、大孔树脂吸附纯化凝胶柱层析、离子交换层析、凝胶过滤、高速逆流色谱法及各种色谱法,但色谱价格昂贵,制备量少,目前限于实验室,不能大规模工业生产。
真菌多糖将会成为生物界的新研究领域,可能带来医学、工业和农业上的迅速发展和应用。
桑黄多糖生物活性好,没有细胞毒性,已成为新药发展的方向之一。
桑黄多糖的生物活性通常是其结构(化学结构和空间立体结构)决定的,是目前桑黄多糖研究的焦点和难点,学者普遍认为桑黄多糖的高级结构对其活性的影响比一级结构大,这和提取方法、分离纯化方法密切相关,而不同的提取、分离纯化方法对桑黄多糖的结构和生物活性的影响等相关问题还在进一步的研究中。
多糖的提取分离纯化及分析鉴定方法研究

多糖的提取分离纯化及分析鉴定方法研究多糖是由多个单糖分子通过糖苷键连接而成的高分子化合物。
多糖具有广泛的应用价值,包括食品、医药、化妆品和生物材料等领域。
因此,对多糖的提取、分离纯化以及分析鉴定方法的研究具有重要意义。
一、多糖的提取方法1.物理法物理法主要包括热水提取法、酸碱提取法和微波提取法等。
热水提取法是最常用的提取方法之一,通过加热使细胞壁破烂,有利于多糖的溶出。
酸碱提取法则是利用酸碱反应将多糖从细胞壁中释放出来。
微波提取法则是利用微波辐射对样品进行加热,加速多糖的溶解和释放。
2.化学法化学法主要包括酶解法、酶解分离法和酸碱水解法等。
酶解法是利用特定的酶对样品进行处理,将多糖分解为单糖,然后进行分离和纯化。
酸碱水解法则是通过酸碱反应将多糖水解为低聚糖和单糖。
3.生物法生物法是利用微生物或植物产生的酶对多糖进行酶解和分离。
生物法具有选择性强、工艺简单等优点,在多糖提取中得到了广泛的应用。
二、多糖的分离纯化方法多糖的分离纯化方法主要包括离子交换色谱法、凝胶渗透色谱法和亲和色谱法等。
1.离子交换色谱法离子交换色谱法是利用离子交换树脂对多糖进行分离的方法。
通过控制溶液pH值和离子强度等条件,使不同电荷的多糖在树脂上发生吸附反应,实现多糖的分离纯化。
2.凝胶渗透色谱法凝胶渗透色谱法是根据多糖分子量的大小来进行分离的方法。
多糖分子量越大,越容易在凝胶渗透色谱柱的孔隙中滞留,分离得到纯度较高的多糖。
3.亲和色谱法亲和色谱法是利用多糖与一些特定配体之间的相互作用进行分离的方法。
例如,可以利用亲和色谱柱上的特定配体与多糖的特定结构之间的结合作用,实现多糖的分离和纯化。
三、多糖的分析鉴定方法多糖的分析鉴定方法主要包括红外光谱法、紫外光谱法、核磁共振波谱法、高效液相色谱法和气相色谱法等。
1.红外光谱法红外光谱法能够通过检测样品吸收、散射或透射特定波长的红外光来分析多糖的结构和功能。
2.紫外光谱法紫外光谱法是利用多糖分子在紫外可见光区域的吸收特性进行分析。
多糖的分离和纯化

一、多糖的分离和纯化多糖是极性极大的大分子化合物,提取时一般先将原料脱脂、脱色,然后用水、盐或稀碱水在不同温度下提取。
提取物浓缩后加沉淀剂(乙醇、丙酮等)离心沉淀,沉淀部分可反复多次离心沉淀,以除去部分水溶性色素等杂质。
1.除蛋白用水或稀碱提取的多糖常含有蛋白质,常用的除蛋白质的方法有Sevag 法、三氟三氯乙烷法、三氯乙酸法等。
前两种多用于微生物多糖,后者多用于植物多糖。
Sevag 法是经典的除蛋白质方法,复杂、费时,且样品损失较大。
冯建林等比较了Sevag 法、三氟三氯乙烷法、三氯乙酸法、硫酸铵法及木瓜蛋白酶复合酶法除蛋白的效果,从蛋白残留量和多糖的得率两方面评价.认为三氯乙酸法最好,但三氯乙酸仍不能完全除去蛋白,建议三氯乙酸法和Sevag 法结合使用。
2.脱色多糖中常含有一些色素(游离色素或结合色素),根据其不同性质采取不同的去除方法。
常用的脱色方法有离子交换法、氧化法、金属络合物法、吸附法(纤维素、硅藻土、高岭土、活性炭等)。
D EA E一纤维素是目前最常用的脱色方法,通过离子交换柱不仅达到脱色目的,而且可以进行多糖的分离。
H2 O2:是一种氧化脱色剂,浓度不宜过高,宜在低温下进行,否则引起多糖的降解。
对于同时含有游离蛋白质和色素的多糖,可通过生成金属络合物的方法同时除去蛋白和色素,即加入费林试剂生成不溶性络合物,经分离后用阴离子交换树脂分解络合物。
吸附脱色法也常用,如通过活性炭、高岭土、硅藻土柱达到脱色的目的。
3.多糖的分级采用一般方法提取的多糖,通常是多糖的混合物,即是多分散性的,其不均一性表现在化学组成、聚合度、分子形状等的不同。
分级可以达到纯化的目的,可按分子大小和形状分级(如分级沉淀、超滤、分子筛、层析等),也可按分子所带基团的性质分级(如按电荷性质分级的电泳、离子交换层析等)。
(1)分级沉淀利用分子大小和溶解度不同进行分离,常用的有两种方法,即有机溶剂沉淀法和季铵盐或硫酸铵法。
多糖提取与纯化技术应用进展

作者简介:朱晓霞(1982-),女(汉),硕士研究生,从事天然生物大分子研究。
糖类物质是地球上数量最多的一类有机化合物,是生命物质的组成成分之一。
糖类物质广泛地存在于生物界,特别是植物界。
糖类物质按干重计占植物的83%~90%,占细菌的10%~30%,动物的小于2%。
大量药理及临床研究证实:多糖有调节免疫、抗癌、抗肥胖、控制血糖、降胆固醇、降血脂等生理功能,可广泛应用于医药、保健品及功能食品,作为绿色生物医药产品具有广阔的市场前景。
目前多糖产品开发相当热门,也卓有成效。
多糖的生理功能与其纯度和化学结构有着重要的关系,多糖的提取纯化是其研究的基础。
因此科学高效地从动植物及微生物中提取、纯化其中的多糖成分是目前的核心问题。
本文对多糖制备常用提取与纯化方法,特别是一些新技术的应用进展进行了综述。
1多糖的提取纯化1.1常规方法提取1.1.1原料预处理提取前,必须破坏或抑制共存的水解酶,可采用丙酮、乙醚、乙醇等低极性溶剂,以破坏水解酶并分离脂溶性杂质。
1.1.2浸提一般采用不同温度的水或稀碱溶液提取。
浸提参数中,温度是影响多糖提取的主要因素,另外浸提固液比、浸提时间均影响提取率,可根据需要选取最佳工艺参数。
1.1.3过滤或离心分离提取液有的可以直接过滤,有的因提取液较黏稠不易过滤,往往用离心法除去不溶物。
1.1.4有机溶剂沉淀提取所得的滤液或上清液浓缩,加2~5倍量的有机溶剂,得粗多糖沉淀。
常用有机溶剂为甲醇、乙醇、异丙醇及丙酮。
现有很多植物多糖的提取研究都是采取的常规水提法:大麦[1]中活性多糖提取、大枣[2]多糖提取、老头草[3]中多糖的含量测定、乌龙茶[4]多糖提取等。
朱晓霞,罗学刚(西南科技大学材料科学与工程学院,四川绵阳621010)多糖提取与纯化技术应用进展摘要:多糖由于它们独特的功能和低毒性,在保健食品和药品发展方面具有广阔的应用前景。
提取和纯化是制备多糖的关键。
目前用的提取方法有:常规水提法、超声波、微波辅助提取、超临界流体萃取;分离纯化技术有:色谱、膜分离。
多糖的分离纯化及分析

多糖的分离纯化及分析一、多糖的提取方法(一)溶剂提取法1、水提法水提醇沉法是提取多糖最常用的一种方法.多糖是极性大分子化合物,提取时应选择水、醇等极性强的溶剂.用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最终体积分数达到70%左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置5h,多糖的质量分数和得率均较高.2、酸碱提法有些多糖适合用稀酸提取,并且能得到更高的提取率。
有些多糖在碱液中有更高的提取率,尤其是提取含有糖醛酸的多糖及酸性多糖。
与酸提类似,碱提中碱的浓度也应得到有效控制,因为有些多糖在碱性较强时会水解。
3、超临界流体萃取法超临界流体萃取技术是近年来发展起来的一种新的提取分离技术.(二)生物酶提取法酶技术是近年来广泛应用到有效成份提取中的一项生物技术,在多糖的提取过程中,使用酶可降低提取条件,在比较温和的条件中分解植物组织,加速多糖的释放或提取。
此外,使用酶还可分解提取液中淀粉、果胶、蛋白质等的产物,常用的酶有蛋白酶,纤维素酶,果胶酶等。
(三)超声提取法超声波是一种高频率的机械波,其主要原理是利用超声波产生的“空化作用”对细胞膜的破坏,有利用植物有效成分的释放,而且超声波能形成强大的冲击波或高速射流,有效地减小、消除与水相之间的阻滞层,加大了传质效率,有助于溶质的扩散。
超声波提取与传统的提取方法相比,有提取效率高、时间短、耗能低等优点。
(四)微波提取微波是频率介于300MHz和300GHz之间的非电离电磁波,微波提取的原理是微射线辐射于溶剂并透过细胞壁到达细胞内部,由于溶剂及细胞液吸收微波能细胞内部温度升高,压力增大,当压力超过细胞壁的承受能力时,细胞壁破裂,位于细胞内部的有效成份从细胞中释放出来,传递转移到溶剂周围被溶剂溶解。
二、多糖的分离纯化(一)多糖的分离采用一般方法提取的多糖通常是多糖的混合物,分级的方法可达到纯化的目的.可按溶解性不同进行分级、按分子大小和形状分级(如分级沉淀、超滤、分子筛、层析等),也可按分子所带基团的性质分级.1、按溶解性不同分离(1)分步沉淀法分步沉淀法是根据不同多糖在不同浓度低级醇、酮中具有不同溶解度的性质,从小到大按比例加入甲醇或乙醇或丙酮进行分步沉淀.(2)盐析法盐析法是根据不同多糖在不同盐浓度中溶解度不同而将其分离的一种方法。
粘细菌胞外多糖提取纯化及其生物活性检测

粘细菌胞外多糖提取纯化及其生物活性检测摘要随着这几年来糖化学的迅速发展,微生物胞外多糖的理论和应用也受到了人们的重视。
胞外多糖的提取纯化和组分分析的实验技术都已成熟,为本实验提供了理论基础和实验指导。
本文通过观察粘细菌在CAS固体培养基平板上的菌落黏性圈,从79株粘细菌中筛选到6株胞外多糖产量高的菌株,并对其中4株粘细菌产生的胞外多糖进行了提取纯化。
粘细菌经液体发酵培养后,将发酵液进行乙醇沉淀得到粗多糖的提取物。
粗多糖经氯仿、三氯乙酸脱蛋白,过氧化氢脱色,得到白色粉状纯化物。
纯化的粘细菌胞外多糖采用0.5mol/L盐酸水解后,经高效液相色谱分析,可确定菌株92033、93147、94016的胞外多糖中均含有葡萄糖、甘露糖,其他成分需进一步验证。
4株粘细菌的胞外多糖纯化物的水溶液,经絮凝活性检测实验表明,均具有絮凝活性,其中菌株92033对4g/L的高岭土悬浊液的絮凝率达到92.84%,显示出良好的应用前景。
装关键词:糖化学胞外多糖粘细菌絮凝活性订线ABSTRACTAs the rapid development of sugar chemical over the past few years, the theory and application of the microbial exopolysaccharides were important for the people. The extraction, purification and component analysis experimental technique of the exopolysaccharide had been mature, which provided a theoretical basis and experimental guidance. In this article, Myxobacteria which produced many polysaccharide were screened from the CAS solid medium by observing the stickiness of colony. We had got six strains which could produced high exopolysaccharide from the 79 strains, and four strains had been extracted and purificated. After liquid culture fermentation, we could obtained the crude polysaccharide extracts by alcohol precipitation methd from the fermentation broth. We obtained the white powder of the polysaccharide by the chloroform and trichloroacetic acid removing protein and hydrogen peroxide detreated. After purified Myxobacteria exopolysaccharides 0.5mol/L hydrochloride hydrolysis, we could determine that the strains of 92033,93147,94016 which containing glucose and mannose by high performance liquid chromatography analysis. Other components were proved by further validation. After the testing of the flocculating activity, the four myxobacteria aqueous solution of exopolysaccharide purification were all had flocculation activity. Strains of the 92033 had an effct on 4g/L kaolin suspension and the flocculation rate rich to 92.84% and it showed a good application prospect.Key words:sugar chemical exopolysaccharides Myxobacteria flocculation activity目录一前言 (1)1.1粘细菌简介 (1)1.2微生物胞外多糖概况 (1)1.3微生物胞外多糖的应用 (2)1.3.1胞外多糖的药用性 (2)1.3.2胞外多糖的絮凝性 (2)1.4国内外研究现状 (3)1.5本实验的研究内容与意义 (3)二本论 (4)2.1实验材料 (4)2.1.1菌种来源 (4)2.1.2实验所用培养基 (4)2.1.3主要仪器与试剂 (4)2.1.3.1仪器 (4)2.1.3.2试剂 (4)2.2实验方法 (5)2.2.1实验方案 (5)2.2.2粘细菌的发酵培养 (5)2.2.2.1菌种活化 (5)2.2.2.2产多糖菌株的筛选 (5)2.2.2.3产多糖菌株的种子液培养 (5)2.2.2.4种子液的发酵培养 (5)2.2.3粘细菌胞外多糖的粗提取 (6)2.2.4粘细菌胞外多糖的纯化 (6)2.2.4.1初步纯化 (6)2.2.4.2胞外多糖蛋白质的去除 (7)2.2.4.3胞外多糖脱色 (7)2.2.5胞外多糖的组分分析 (7)2.2.5.1胞外多糖的完全水解 (7)2.2.5.2胞外多糖的高效液相色谱分析 (7)2.2.6胞外多糖的生物活性检测 (7)2.3结果与讨论 (8)2.3.1高产胞外多糖的粘细菌菌株的筛选 (8)2.3.2胞外多糖的提取物 (9)2.3.3胞外多糖的组分分析 (9)2.3.4胞外多糖的活性检测 (12)三结论 (14)谢辞 (15)参考文献 (16)一前言1.1粘细菌简介粘细菌(Myxobacteria)是一类滑行运动,革兰氏染色阴性的单细胞细菌[1]。
粗多糖提取及纯化方法

粗多糖水提醇沉提取方法第一种方法:(1)玉米须原料用80%乙醇在78℃提取三次,去除色素、单糖和脂溶成分。
过滤,合并滤渣,使乙醇挥发干净,粉碎滤渣。
用100℃热水浸提干燥玉米须一小时,料液比1:15,提取三次。
合并提取液、过滤和浓缩,利用三倍体积80%乙醇醇沉。
(2)离心收集醇沉物(3000 ×g,10min),然后用水溶解,并利用Sevag 方法去除游离蛋白质。
(3)脱去蛋白质的溶液再次用80%乙醇醇沉。
收集沉淀,先后用无水乙醇和丙酮溶液冲洗三次。
最后冷冻干燥,获得玉米须粗多糖。
Hot water extraction of crude polysaccharidesAll the corn silk raw materials were immersed in 80% (v/v) ethanol at 78℃ for three times to remove colored materials, monosaccharide and liposoluble constituents. The organic solvent was volatilized and the pretreated corn silk was obtained to crush. Dried ground corn silk (100 g) was extracted with water at 100℃(1:15 (w/v), 1 h, 3 times). The ext raction solutions were combined, filtered and concentrated, precipitate d by the addition of anhydrous ethanol to a final concentration of 80% (v/v). Precipitates were collected by centrifugation (3000 × g, 10 min), then dissolved with water, and subjected to the Savage method (chlorofor m: butyl alcohol, 4:1) to remove free proteins. The deproteinized solutio n was re-precipitated in 80% (v/v) ethanol. The precipitates were collect ed and successively washed with anhydrous ethanol and acetone. After freezing dried, the hot water extraction corn silk polysaccharides (PS) we re obtained.第二种方法Preparation of ILPSThe preparation of crude ILPS was carried out according to thereported method with some modifications (Xu e t al., 2012). Briefly,the powder of I. latifolia Thunb was pre-extract ed two times with85% aqueous ethanol solution (v/v) in a ratio of 1:15 (materialto ethanol solution, g/mL) at 80◦C for 1 h each, and the super-natant (containing colored materials, oligosaccharides and s mallmolecule compounds) was removed. The resulting residues were extracted three times with distilled water in a ratio of materialto wa ter 1:20 (g/mL) at 90◦C for 3 h each, and the extracts werecentrifu ged at 5000 rpm for 15 min. The supernatants were com-bined and concentrated by a rotary evaporator to a proper volume.The resulti ng concentrate was mixed with three times volume ofabsolute ethan ol, stirred vigorously and kept overnight at 4◦C. Theprecipitates wer e then collected by centrifugation at 5000 rpm for15 min, dissolved in distilled water, dialyzed 透析against distilled waterand lyophiliz ed, affording the crude ILPS.纯化:The crude ILPS was purified by chromatography of DEAEcellu lose-52 according to the reported method (Qiao et al., 2009a;Ye, W ang, Zhou, Liu, & Zeng, 2008). Briefly, 150 mg of crude ILPS wa s dissolved in 7.5 mL deionized water, and the solution was filtere d through a 0.45 _m membrane filter. The resulting ILPS solution wasthen loaded onto a column (2.6 cm ×30 cm) of DEAE cellu lose-52,and the column was stepwise eluted with deionized water, 0. 1,0.3 and 0.5 M sodium chloride (NaCl) solution at a flow rate of1.0 mL/min. The eluate was collected automatically (10 mL/tube)and the carbohydrate in each tube was determined by the phenol-sulfuric acid method (Dubois, Gilles, Hamilton, Rebers, & Smith,1956). The resulting fractions were pooled, concentrated, dialyzed 透析against deionized water and lyophilized, respectively, affording four fracti ons, named ILPS-1, ILPS-2, ILPS-3 and ILPS-4.2.3。
08多糖的提取、分离纯化和结构分析

结构分析
一、前言
多糖和蛋白质、基因是生命科学的三大领域,是自 然界含量丰富的物质,也是与人类生活紧密相关的一类 生物高分子。大量研究表明,多糖具有其独特的生物活 性,是许多天然产物的主要活性成分,具有抗菌、抗病 毒、抗肿瘤、抗辐射、抗衰老等功效。多糖的提取、分 离和纯化是研究多糖结构和活性的基础,只有得到相对
多糖的结构分析
3、糖链中糖残基间的连接位置分析
(1)甲基化分析方法:确定糖链中糖基间的连接位置常用 方法。该法首先将多糖链全甲基化,使所有的游离羟基变为
甲氧基。目前最常用的甲基化方法是改良Hakomori法。
Hakomori法先将样品溶于无水二甲基亚砜中,然后与 甲基亚磺酰甲基钠SMSM反应,使得多糖上游离羟基离子化 ,多糖成为阴离子后,易于CH3I反应,该法通常需重复数次 。以α-(1-4)葡聚糖为例说明甲基化过程。
包括离子交换色谱柱和凝胶柱色谱。
特点:分离效率高、设备简单、操作方便、条件温和 、不易造成物质变性等优点。 应用:物质分离纯化、分析鉴定最重要的方法之一; 分离/有机化合物及生物大分子不可缺少的手段。
多糖的结构分析
多糖的结构:
多糖的结构是其生物活性的基础,多糖的结构分析 在多糖的研究中具有非常重要的地位,是糖化学的核心 所在。 与蛋白质、核酸大分子相比,糖链的结构也包括一
端基法、HPLC、黏度法、凝胶色谱法和超滤法等,其中目
前公认较好的方法是高效凝胶渗透色谱(HPGPC)。 高效凝胶渗透色谱又称高效尺寸排阻色谱( HPSEC) 、高效凝胶色谱,是一种高分子领域的高效分离分析技术, 是研究高分子的分子量及合成高分子分子量分布及与分子线 团尺寸相关的结构、反应、物性的最有效的手段之一。常用 的商品柱有Bondagel和TSK柱系。
多糖的分离纯化及分析

多糖的分离纯化及分析一、多糖的提取方法(一)溶剂提取法1、水提法水提醇沉法是提取多糖最常用的一种方法.多糖是极性大分子化合物,提取时应选择水、醇等极性强的溶剂.用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最终体积分数达到70%左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置5h,多糖的质量分数和得率均较高.2、酸碱提法有些多糖适合用稀酸提取,并且能得到更高的提取率。
有些多糖在碱液中有更高的提取率,尤其是提取含有糖醛酸的多糖及酸性多糖。
与酸提类似,碱提中碱的浓度也应得到有效控制,因为有些多糖在碱性较强时会水解。
3、超临界流体萃取法超临界流体萃取技术是近年来发展起来的一种新的提取分离技术.(二)生物酶提取法酶技术是近年来广泛应用到有效成份提取中的一项生物技术,在多糖的提取过程中,使用酶可降低提取条件,在比较温和的条件中分解植物组织,加速多糖的释放或提取。
此外,使用酶还可分解提取液中淀粉、果胶、蛋白质等的产物,常用的酶有蛋白酶,纤维素酶,果胶酶等。
(三)超声提取法超声波是一种高频率的机械波,其主要原理是利用超声波产生的“空化作用”对细胞膜的破坏,有利用植物有效成分的释放,而且超声波能形成强大的冲击波或高速射流,有效地减小、消除与水相之间的阻滞层,加大了传质效率,有助于溶质的扩散。
超声波提取与传统的提取方法相比,有提取效率高、时间短、耗能低等优点。
(四)微波提取微波是频率介于300MHz和300GHz之间的非电离电磁波,微波提取的原理是微射线辐射于溶剂并透过细胞壁到达细胞内部,由于溶剂及细胞液吸收微波能细胞内部温度升高,压力增大,当压力超过细胞壁的承受能力时,细胞壁破裂,位于细胞内部的有效成份从细胞中释放出来,传递转移到溶剂周围被溶剂溶解。
二、多糖的分离纯化(一)多糖的分离采用一般方法提取的多糖通常是多糖的混合物,分级的方法可达到纯化的目的.可按溶解性不同进行分级、按分子大小和形状分级(如分级沉淀、超滤、分子筛、层析等),也可按分子所带基团的性质分级.1、按溶解性不同分离(1)分步沉淀法分步沉淀法是根据不同多糖在不同浓度低级醇、酮中具有不同溶解度的性质,从小到大按比例加入甲醇或乙醇或丙酮进行分步沉淀.(2)盐析法盐析法是根据不同多糖在不同盐浓度中溶解度不同而将其分离的一种方法。
粗多糖提取实验报告(3篇)

第1篇一、实验目的1. 了解粗多糖的基本性质和提取方法。
2. 掌握水提醇沉法提取粗多糖的原理和操作流程。
3. 通过实验验证粗多糖提取效果,并对其含量进行测定。
二、实验原理粗多糖是一类高分子碳水化合物,广泛存在于植物、动物和微生物中。
水提醇沉法是一种常用的粗多糖提取方法,其原理是利用多糖在水中的溶解度较高,而在乙醇中的溶解度较低的特点,通过加水提取多糖,然后用乙醇沉淀多糖,从而实现多糖的分离纯化。
三、实验材料与试剂1. 实验材料:植物材料(如大麦、玉米等),乙醇,蒸馏水,硫酸铵,苯酚,浓硫酸等。
2. 实验试剂:95%乙醇,NaOH,FeCl3,浓盐酸,氯仿,乙酸乙酯等。
四、实验仪器1. 实验室常用仪器:电子天平,恒温加热器,水浴锅,旋转蒸发仪,离心机,移液器等。
2. 特殊仪器:分光光度计,真空干燥箱等。
五、实验步骤1. 植物材料预处理:将植物材料洗净、晾干,然后研磨成粉末。
2. 水提:将研磨好的植物粉末加入适量蒸馏水,加热煮沸,提取多糖。
3. 醇沉:将提取液冷却至室温,加入95%乙醇,使多糖沉淀。
4. 沉淀分离:将沉淀物用离心分离,弃去上清液。
5. 沉淀干燥:将沉淀物用无水乙醇洗涤,然后在真空干燥箱中干燥至恒重。
6. 粗多糖含量测定:采用苯酚-硫酸法测定粗多糖含量。
六、实验结果与分析1. 粗多糖提取率:根据实验数据计算粗多糖提取率,并与文献报道进行比较。
2. 粗多糖含量测定:根据苯酚-硫酸法测定粗多糖含量,并与理论值进行比较。
3. 结果分析:分析实验结果,探讨影响粗多糖提取率的因素,如提取时间、提取温度、乙醇浓度等。
七、实验讨论1. 粗多糖提取率的影响因素:实验结果表明,提取时间、提取温度、乙醇浓度等因素对粗多糖提取率有显著影响。
在实验条件下,最佳提取时间为2小时,提取温度为80℃,乙醇浓度为95%。
2. 粗多糖提取方法的优化:通过实验,对水提醇沉法进行了优化,提高了粗多糖提取率。
3. 粗多糖的应用前景:粗多糖具有多种生物活性,如抗炎、抗氧化、降血糖等,具有广泛的应用前景。
04第四讲 多糖的分离纯化方法

3.浓缩 浓缩操作应在尽量低的温度下进行, 浓缩操作应在尽量低的温度下进行 , 并尽量防 止提取物与氧气的接触。 止提取物与氧气的接触。 目的:防止多糖被氧化, 目的 : 防止多糖被氧化 , 保持多糖原有结构及 生物活性。 生物活性。 (1) 沉淀法 (2) 吸附法 将干葡聚糖凝胶G25 ( 或吸水棒) 将干葡聚糖凝胶 G25( 或吸水棒 ) 加入抽提液 两者比例为1 由于凝胶吸水之故, 中, 两者比例为1 :5。 由于凝胶吸水之故, 抽提液 的体积可缩小三倍左右,回收多糖约80% 的体积可缩小三倍左右,回收多糖约80%。 80
新透析袋如不作如上的特殊处理, 新透析袋如不作如上的特殊处理,则可用沸水煮五至十分 钟,再用蒸馏水洗净,即可使用。 再用蒸馏水洗净,即可使用。 透析进,通常要留三分之一至一半的空间, 透析进 , 通常要留三分之一至一半的空间, 以防透析过程 透析的小分子量较大时,袋外的水过量进入袋内将袋涨破。 中 , 透析的小分子量较大时,袋外的水过量进入袋内将袋涨破。 为了加快透析速度,除多次更换透析液外, 为了加快透析速度,除多次更换透析液外,还可使用磁子 搅拌。透析的容器要大一些,可以使用大烧杯、 搅拌 。 透析的容器要大一些, 可以使用大烧杯、 大量筒和塑料 小量体积溶液的透析, 桶 。 小量体积溶液的透析,可在袋内放一截两头烧园的玻璃棒 或两端封口的玻璃管,以使透析袋沉入液面以下。 或两端封口的玻璃管,以使透析袋沉入液面以下。
(4)透析法 商品透析袋制成管状,其扁平宽度为23mm-50mm不等。 23mm mm不等 商品透析袋制成管状,其扁平宽度为23mm-50mm不等。 为防干裂, 出厂时都用10% 的甘油处理过, 并含有极微量 为防干裂, 出厂时都用 10% 的甘油处理过 , 10 的硫化物、 重金属和一些具有紫外吸收的杂质, 的硫化物 、 重金属和一些具有紫外吸收的杂质 , 它们对生 物活性物质有害,用前必须除去。可先用50 乙醇煮沸1 50% 物活性物质有害,用前必须除去。可先用50%乙醇煮沸1小 时 , 再 依 次 用 50 % 乙 醇 、 0.01 mol/L 碳 酸 氢 钠 和 0.001 EDTA溶液洗涤 最后用蒸馏水冲洗即可使用。 溶液洗涤, mol/L EDTA 溶液洗涤 , 最后用蒸馏水冲洗即可使用 。 实验 证明,50%乙醇处理对除去具有紫外吸收的杂质特别有效。 证明 , 50 % 乙醇处理对除去具有紫外吸收的杂质特别有效 。 使用后的透析袋洗净后可存于4 蒸馏水中,若长时间不用, 使用后的透析袋洗净后可存于4℃蒸馏水中,若长时间不用, 可加少量NaN 以防长菌。 可加少量 NaN2 , 以防长菌 。 洗净凉干的透析袋弯折时易裂 口,用时必须仔细检查,不漏时方可重复使用。 用时必须仔细检查,不漏时方可重复使用。
多糖的分离纯化及性质表征

2.2多糖的提取方法
酶法
酶解反应较温和将组织分解,增加多糖的溶出,可较 大幅度提高产率。
常用于除去各种与多糖结合的结合蛋白质。
2.3多糖提取液浓缩
多糖提取液浓缩应尽量在低温下进行,并防止提取物 与氧气接触,防止多糖被氧化,保持原有结构及生物 活性。 吸附法
干葡聚糖凝胶加入提取液中,两者比例为1:5.由于凝 胶吸水,提取液的体积可缩小三倍左右,多糖回收率 达80%。
多糖的分离纯化及结构表征
员工培训 2012-7-31
1、多糖的基本概述 多糖,又称多聚糖,是由10个以上的单糖通过 苷键连接而成的链状聚合物。 (C6H10O5)n, n>10
1、多糖的基本概述
组成分类
同多糖:由一种单糖组成(淀粉、半纤维素、几丁质等) 杂多糖:由两种或两种以上单糖组成(透明质酸、硫 酸软骨素、硫酸皮肤素等)
多糖的结构表征
组成单糖种类与数目不相同,多糖的结构非常复杂多糖 结构复杂,其研究主要包括以下内容: 1.相对分子质量 2.单糖的种类与物质的量比 3.各糖环的构象( 呋喃型或吡喃型)与异头碳构型
4.糖残基间的连接方式
5.二级结构及空间构象
多糖的结构表征
1.多糖相对分子质量测定 常用的方法有凝胶色谱法、蒸汽压渗透计法、端基法、 粘度法、光散射法、渗透压法和超滤法等。 凝胶色谱法是比较常用的方法,用已知分子量样品作标 准,建立标准曲线,求得待测多糖的相对分子质量。 多糖相对分子质量只代表相似链长的平均而不是确切的 分子大小。往往用不同的方法会得到不同的相对分子质 量。
2多糖的提取分离
多糖存在形式: 细胞壁外-胞外多糖 细胞壁内-胞内多糖(大多数多糖) 细胞壁多糖 动植物的细胞大多由脂质包围,用机械粉碎后还必须 脱脂(沙氏提取器,乙醇回流)。 对于含有较多单糖和低聚糖的样品可用热的80%乙醇 处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007-10-19 22:19:55 成大中药化学实验室 常用的方法有:离子交换法、氧化法(如H2O2氧化脱色,使用时应注意浓度不宜过高,否则引起多糖 的降解)、金属络合物法、吸附法(纤维素、硅藻土、活性炭等)。DEAE-纤维素(在纤维素与葡聚糖分子 上结合有一定的离子基团,当结合阳离子基团时,可换出阴离子,则称为阴离子交换剂。如二乙氨乙基 (Dicthylaminoethyl,DEAE)纤维素。在纤维素上结合了DEAE,含有带正电荷的阳离子纤维素-O- C6H14N+H,它的反离子为阴离子(如Cl-等),可与带负电荷的多糖阴离子进行交换。当结合阴离子基团 时,可置换阳离子,称为阳离子交换剂,如羧甲基(Carboxymethy,CM)纤维素。纤维素分子上带有负电荷 的阴离子(纤维素-O-CH2-COO-),其反离子为阳离子(如Na+等),可与带正电荷多糖阳离子进行交换。 在适当的盐浓度下,溶液的pH值高于等电点时,多糖或蛋白质被阴离子交换剂所吸附;当溶液的pH值低于等 电点时,多糖或蛋白质被阳离子交换剂所吸附。由于各种多糖或蛋白质所带的电荷不同。它们与交换剂的结 合程度也不同,只要溶液pH值发生改变,就会直接影响到蛋白质与交换剂的吸附,从而可能把不同的多糖或 蛋白质逐个分离开来。交换剂对胶体离子(如多糖)和无机盐离子(如NaCl)都具有交换吸附的能力,当两 者同时存在于一个层析过程中,则产生竞争性的交换吸附。当Cl-的浓度大时,多糖不容易被吸附,吸附后 也易于被洗脱,当Cl-浓度小时,多糖易被吸附,吸附后也不容易被洗脱。因此,在离子交换层析中,一般 采用两种方法达到分离蛋白质的目的。一种是增加洗脱液的离子强度,一种是改变洗脱液的pH值。pH值增高 时,抑制蛋白质阳离子化,随之对阳离子交换剂的吸附力减弱。pH值降低时,抑制蛋白质阴离子化,随之降 低了蛋白质对阴离子交换剂的吸附。当使用阴离子交换剂时,增加盐离子,则降低pH值。当使用阳离子交换 剂时,增加盐离子浓度,则升高溶液pH值。 综上述,一般情况下,DEAE-纤维素用于分离酸性多糖,而CM纤维素用于分离碱性多糖)是目前最常用 的脱色方法,不仅能达到脱色的目的,而且可以分离多糖;对于同时含有游离蛋白质和色素的多糖,可通过 生成金属络合物的方法,同时除去蛋白和色素,方法是加入费林试剂(费林试剂是还原糖测定的主要试剂之 一,是一种铜盐的碱性溶液,由甲液与乙液二部分组成,原理是费林试剂中的二价铜(Cu2+),使具有还原 性的单糖氧化,二价铜被还原成一价铜(Cu+),再用重量法或容量法测定一价铜的量,通过系数换算成多糖 含量。配制方法:费林氏甲液——称取分析纯硫酸铜(CuSO4•5H2O)15g及四甲基蓝(次甲基蓝)0.05g, 用蒸馏水溶解,定容至1000mL;费林氏乙液——称取分析纯酒石酸钾钠50g,分析纯氢氧化钠54g及分析纯亚 铁氰化钾4g,用蒸馏水溶解,定容至1000mL)生成不溶性络合物,经分离后用阴离子交换树脂分解络合物。 季宇彬. 《中药多糖的化学与药理》. 北京: 人民卫生出版社. 2005.5