23.1 图形的旋转(人教版九年级上)
人教版九年级数学上册23.1:图形的旋转(教案)
在今天的课堂中,我们探讨了图形的旋转,这是一个既有趣又富有挑战性的课题。我发现,学生们对旋转的概念接受度很高,他们能够很快地理解旋转的基本性质和三要素。在讲授过程中,我尽量用生动的例子和实际操作来解释抽象的几何概念,这样做的效果似乎不错,学生们能够积极参与并有所收获。
让我印象深刻的是,在实践活动环节,学生们分组讨论并操作旋转实验时,他们表现出了极大的兴趣和热情。通过亲自动手,他们不仅加深了对旋转原理的理解,还学会了如何将理论知识应用到解决实际问题中。尤其是在成果展示环节,每个小组都能够清晰地表达他们的思考过程和解决方案,这让我感到很欣慰。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指将一个图形绕着某个点进行转动,这个点称为旋转中心。旋转可以是顺时针或逆时针方向,转动的角度可以是任意度数。图形旋转是几何变换的一种,它在艺术、工程等多个领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将一个三角形绕着某个点旋转一定角度,以及这个过程在建筑设计中的应用。
-创设情境,让学生运用旋转知识解决实际问题,如设计图案、计算工程量等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,门的开合、风车的转动等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(3)运用旋转解决实际问题,如计算旋转后的图形的面积、周长等。
2.教学难点
(1)旋转中心的确定:帮助学生理解旋转中心对图形旋转效果的影响,掌握如何准确找出旋转中心。
人教版数学九年级上册课件14-第二十三章23.1图形的旋转
例2 (2020北京东城期末)如图23-1-2,将△ABC绕点C顺时针旋转得到△DEC,使点 A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列四个结论:①AC=AD; ②AB⊥EB;③BC=EC;④∠A=∠EBC.其中一定正确的是 ( )
2
+∠EBC不一定等于90°,故②不一定正确.综上所述,一定正确的是③④.故选C.
答案 C
温馨提醒 利用旋转的性质解决问题时,要准确确定旋转的对应线段、对应 角、旋转角等,然后利用旋转的性质求线段的长度、角的度数等.
知识点三 旋转作图
旋转作图 的依据 作图要素 作图步骤
(1)任意一对对应点与旋转中心所连线段的夹角等于旋转角; (2)对应点到旋转中心的距离相等
答案 (1)A (2)60° (3)等边 方法归纳 一个图形由一个位置旋转到另一个位置,如果有固定不动的点,那
么这个点就是旋转中心,对应点与旋转中心所连线段的夹角就是旋转角.
知识点二 旋转的性质
旋转的性质 重点解读
(1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等
经典例题全解
题型一 利用旋转的性质求线段长度或角度 例1 (2019天津滨海新区期中)如图23-1-5,点O是等边三角形ABC内的一点, ∠BOC=150°,将△BOC绕点C按顺时针方向旋转得到△ADC,连接OD,OA. (1)求∠ODC的度数; (2)若OB=2,OC=3,求AO的长.
图23-1-5
图23-1-3
九年级数学人教版上册23.1图形的旋转教学设计
2.鼓励学生尝试选做题和探究题,培养他们的创新意识和实践能力。
3.小组合作完成的作业,需注明成员姓名,体现团队合作精神。
4.作业完成后,学生应进行自我检查,确保解答过程和结果的正确性。
作业批改与反馈:
1.教师应及时批改作业,对学生的解答进行评价,指出错误和不足之处。
3.小组合作,促进交流
组织学生进行小组讨论和合作探究,让学生在交流中互相启发,共同解决问题。教师在此过程中,适时给予指导和评价,提高学生的团队协作能力。
4.知识拓展,提高创新能力
在教学过程中,结合教材内容,引入旋转在生活中的应用实例,如建筑设计、图案设计等。鼓励学生发挥想象,创新设计旋转图形,提高学生的创新意识和实践能力。
2.学会运用旋转进行图形变换,解决实际问题。
3.培养学生的空间想象能力和创新意识。
(二)教学难点
1.旋转变换中,学生对旋转中心、旋转方向和旋转角度的理解和运用。
2.在实际问题中,学生难以将旋转知识与其他几何知识相结合,形成综合解决问题的能力。
3.学生的空间想象能力有限,对旋转后的图形形状和位置关系把握不准确。
九年级数学人教版上册23.1图形的旋转教学设计
一、教学目标
(一)知识与技能
1.理解旋转的定义和基本性质,认识旋转图形与原图形之间的相互关系。
2.学会使用旋转进行图形变换,能够在平面直角坐标系中,对点、线、图形进行旋转变换。
3.能够运用旋转知识解决实际问题,如设计图案、计算旋转体的面积和体积等。
4.能够运用旋转性质进行图形的简化,提高解决问题的效率。
3.讲解旋转变换的规律,如旋转角度与旋转效果的关系,旋转中心与旋转图形的位置关系等。
人教版数学九年级上册第23章旋转23.1图形的旋转优秀教学案例
一、案例背景
本节课为人教版数学九年级上册第23章旋转23.1图形的旋转。旋转是几何中的基本变换之一,是学生在之前的学习过程中已经接触过的内容,但九年级的学习要求更深入、更系统地掌握旋转的性质和应用。通过本节课的学习,学生需要理解旋转的定义、掌握旋转的性质、了解旋转在实际生活中的应用。
(四)总结归纳
1.教师引导学生总结本节课所学内容,如旋转的定义、性质及应用等。
2.学生分享小组讨论的成果,让大家共同学习,提高理解程度。
3.教师对学生的总结进行点评,指出优点和不足,给予改进建议。
(五)作业小结
1.布置作业:设计一道有关旋转的实际问题,让学生运用所学知识解决。
2.要求学生在作业中运用旋转的性质,表述清晰、步骤简洁。
3.通过具体例子,讲解旋在实际生活中的应用,如设计图案、制作模型等。
4.强调旋转的性质,让学生理解旋转的本质,提高空间想象能力。
(三)学生小组讨论
1.布置讨论任务:以小组为单位,探讨图形旋转的性质,并举例说明。
2.引导学生运用合作交流的方式,共同探讨旋转的相关知识,提高合作意识和团队精神。
3.鼓励小组成员之间相互倾听、理解,培养良好的人际沟通能力,促进共同进步。
2.引导学生运用讨论、交流、总结等方式,共同探讨旋转的相关知识,提高合作意识和团队精神。
3.鼓励小组成员之间相互倾听、理解,培养良好的人际沟通能力,促进共同进步。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如“我在学习中遇到了哪些问题?是如何解决的?”等,培养学生自我评价和反思的能力。
3.小组合作:本节课采用小组合作的学习方式,让学生在合作中探讨旋转的性质。这种方式培养了学生的合作意识和团队精神,提高了学生的沟通能力和协作能力。同时,小组合作也使得课堂氛围更加活跃,激发了学生的学习兴趣。
九年级上册23.1图形的旋转(共19张PPT)
知识要点
AAA
EEE
FF BB
D
OOO
CCC
旋转的性质
1、对应点到旋转中心的距离相等.
2、对应点与旋转中心所连线段的夹角等于旋转角.
3、旋转前、后的图形全等.
例题讲解
△A′OB′是△AOB绕点O按逆时针方向旋转得
到的.已知∠AOB=20°, ∠ A′OB =24°,
AB=3,OA=5,则A′B′ =
一个具有这种关系的角。相等
由例1归纳:旋转不改变图形的形状 和大小 ,
但图形上的每个点同时都按相同的方式转动相 同的角度。旋转前后两个图形对应点到旋转中 心的距离 相等 ;对应点与旋转中心的连线所 成的角都等于旋转角;对应线段__相__等____, 对应角___相_等_______.
检测反馈
1、判断
A1
线 对应线段之间
C
B
两条对应线段的夹角都是旋转角
图中对应的线段:
___A_C_和__A_1_C_、__B__C_和__B_1_C_、__A__B_和__A_1.B1
面 旋转前后的 到什么结论?
A'
A
B'
C
B
O
C'
角:∠AOA'=∠BOB' =∠COC'
线: AO=A'O ,BO=B'O ,CO=C'O
一个图形经过旋转
①图形上的每一个点到旋转中心的距离相等. ( × )
②图形上可能存在不动点.
(√ )
③图形上任意两点的连线与其对应点的连线相等.
( √)
检测反馈
2、如图是正六边形,这个图案可以看做是由
__△_A__O__B_____“基本图案”通过旋转得到的.
人教版九年级数学上23.1.图形的旋转 (共24张PPT)
E
B D (3)如果M是AB的中点,那么经过上述旋 C
转后,点M转到了什么位置? 解:(1)旋转中心是A; (2)旋转了60度; (3)点M转到了AC的中点位置上.
练习2. 如图:P是等边ABC内的一点,把 ABP按不同的方向通过旋转得到BQC和 ACR, (1)指出旋转中心、旋转方向和旋转角度? (2) ACR是否可以直接通过把BQC旋转 得到?
A
R
P B
Q
C
议一议 如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得 到四边形DOEF. 在这个旋转过程中: (1)旋转中心是什么?
旋转中心是O
(2)经过旋转,点A、B分别移动到什么位置? 点D和点E的位置 (3)旋转角是什么? ∠AOD和∠BOE都是旋转角
(4)AO与DO的长有什么关系?BO与EO呢? AO=DO,BO=EO
(5)∠AOD与∠BOE有什么大小关系?
∠AOD=∠BOE
讨论: (1)图形上的点绕着旋 转中心转过的角度之间 有何关系? (2)你能发现图中线段 之间、角之间有什么关系? (3)ΔABC和ΔA’B’C’的 形状、大小有何变化?
1、图形中每一点都绕着旋转中心旋转了同样大小 的角度(任意一对对应点与旋转中心的连线所 成的角都是旋转角)。
(1)上面情景中的转动现 象,有什么共同的特征?
(2)钟表的指针、秋千在 转动过程中,其形状、大小、 位置是否发生变化呢?
在平面内,将一个图形沿着某个方向移动
一定的距离,这样的图形运动称为平移. 平移不改变图形的大小和形状。 在平面内,将一个图形绕着一个定点沿 某个方向转动一个角度,这样的图形运 动称为旋转 旋转不改变图形的大小和形状。
2.在等腰直角△ABC中,∠C=900, BC=2cm,如果以AC的中点O为旋 转中心,将这个三角形旋转1800, 点B落在点B′处,求BB′的长度.
23.1 图形的旋转 人教版九年级数学上册导学课件
感悟新知
(4) 按原图形的顺序连接这些对应点,所得到的图形就是 旋转后的图形 .
(5)写出结论,说明作出的图形即为所求作的图形 .
感悟新知
例3 如图23.1-3,△ ABC绕点O旋转,使点A旋转到点 D处,画出顺时针旋转后的三角形,并写出简要作法.
感悟新知
感悟新知
(1) 旋转中心是哪一点? 解:点 C 是在△ ACE 旋转过程中不动的点, 所以点 C 是旋转中心 .
两个三角形在旋转过程中不动的点是旋转中心.
感悟新知
(2)旋转角是多少度?
解:△ ACE 旋转后到达△ DCB 的位置, AC 绕点 C 旋转到 DC, AC 转过的角即∠ ACD 就是旋转角 . 因为△ ACD 是等边三角形, 所以∠ ACD=60°,即旋转角是 60° .
解题秘方:在旋转作图时,要紧扣以下三点 (1)对应点到旋转中心的距离相等; (2)旋转的角度相等; (3)旋转的方向相同 .
点所连线段的垂直平分线的交点 .
感悟新知
例2 如图 23.1 - 2,在正方形 ABCD 中,点 E 在 BC 上, ∠ FDE=45°,△ DEC 按顺时针方向旋转后到达 △ DGA 的位置 .
解题秘方:紧图中除正方形的四条边、直角外的相等 线段与相等角及能够完全重合的三角形 . 解:相等线段: DG=DE, GA=EC; 相等角:∠ G= ∠ DEC= ∠ ADE,∠ ADG= ∠ CDE, ∠ GDF= ∠ EDF,∠ AFD= ∠ CDF; 能够完全重合的三角形:△ DEC 与△ DGA.
感悟新知
特别提醒 ●图形的旋转是指图形上的每一个点都绕点O沿相
同的方向旋转相等的角度. ●确定旋转角的关键是找到旋转中心,旋转前后对
23.1 图形的旋转课件 2024-2025学年人教版数学九上
B.格点N
C.格点P
D.格点Q
知识讲解
知识点2 旋转的性质
1.对应点到旋转中心的距离相等;
2.两组对应点分别与旋转中心的连线所成的角相等;
3.旋转中心是唯一不动的点;
4.旋转不改变图形的形状和大小.
知识讲解
知识点2 旋转的性质
【例 3】如图,四边形ABCD是边长为4的正方形且DE=1,△ABF是
又∵DF=DF,DE=DM,∴△DEF≌△DMF,
∴EF=MF.
随堂练习
5. 如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,
且∠EDF=45°,将△DAE绕点D按逆时针方向旋转90°得到△DCM.
(2)当AE=1时,求EF的长.
(2)解:设EF=MF=x,∵AE=CM=1,AB=BC=3,
旋转作图
利用旋转设计图案
作图步骤
平面直角坐标系中的图形旋
转
飞行中的飞机的螺旋桨、高速运转中的电风扇等均属于旋转现
象.你还能举出类似现象吗?
知识讲解
知识点1 旋转的定义
在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样
的图形运动称为旋转.这个定点称为旋转中心.转动的角称为旋转角.如果
图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点.转动
∴DE=AD-AE=8-5=3.
随堂练习
3. 如图,四边形ABCD绕O点旋转后,顶点A的对应点为E,试确定B、
C、D对应的点的位置,以及旋转后的四边形.
随堂练习
解:(1)连接OA、OB、OC、OD、OE;
(2)分别以OB、OC、OD为一边作∠BOF,∠COG,
∠DOH,使∠BOF= ∠COG= ∠DOH= ∠AOE;
人教版数学九年级上册:23.1《图形的旋转》 PPT课件(共24页)
转动硬纸板,再描出这个挖掉的三角形洞
(△A′B′C′),移开硬纸板.
请大家运用刻度尺和量角器度量线段和有关角,并
探索旋转的性质.
O
A'
C'
B'
归纳总结
旋转的性质
对应点到旋转中心的距离相等. 对应点与旋转中心所连线段的夹角等于旋转角. 旋转前后的图形全等.
三、掌握新知
例 如图,E是正方形ABCD中CD边上任意一点,以点A为
中心,把△ADE顺时针旋转90°,画出旋转后的图形.
分析:关键是确定△ADE三个顶点的 A
D
对应点,即它们旋转后的位置.
E
B
C
解: 因为点A是旋转中心,所以它
A
D
的对应点是它本身.
在正方形ABCD中,
E
AD=AB,∠DAB=90°,所以旋
E' B
C
转后点D与点B重合.
设点E的对应点为点E′,因为旋转后的图形与旋转
(1)选择不同的旋转中心、不同的旋转角,看看旋转 效果; (2)改变三角形的形状,看看旋转效果.
五、运用新知
请以下列图形为基纳小结
第二十三章 旋 转
23.1 图形的旋转
第1课时 旋转的概念及性质
一、复习导入
问题 我们以前学过图形的平移、对称等变换,它们 有哪些特征? 生活中是否还有其他运动变化呢?回答是肯定的,下 面我们就来研究.
二、探索新知
探索1
归纳总结
把一个图形绕着某一定点O 转动一定角度的图 形变换叫做_旋__转_____.这个定点O 叫旋__转__中__心___,转
动的角叫做_旋__转__角_. 如果图形上的点P经过旋转变为点P′,那么点P
专题23.1图形的旋转-2024-2025学年九年级数学上册举一反三系列(人教版)[含答案]
专题23.1图形的旋转【十大题型】【人教版】【题型1判断生活中的旋转现象】【题型2由旋转的性质判断结论正误】【题型3由旋转的性质进行求解】【题型4由旋转的性质证明线段相等或角相等】【题型5画旋转图形】【题型6旋转对称图形】【题型7旋转求坐标】【题型8旋转中的规律性问题】【题型9由旋转的性质求最值】【题型10 图形的动态旋转】知识点1:旋转在平面内,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.我们把旋转中心、旋转角度、旋转方向称为旋转的三要素.【题型1判断生活中的旋转现象】【例1】(23-24九年级·广西来宾·期末)1.有下列现象:①高层公寓电梯的上升:②传送带的移动;③方向盘的转动;④风车的转动;⑤钟摆的运动;⑥荡秋千运动.其中属于旋转的有()A.2个B.3个C.4个D.5个【变式1-1】(2024·吉林长春·三模)2.以如图(1)(以O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换:①只要向右平移1个单位;②先以直线AB为对称轴进行翻折,再向右平移1个单位;③先绕着点O旋转180°,再向右平移一个单位;④绕着OB的中点旋转180°即可.其中能得到图(2)的是()A.①②③B.②③④C.①③④D.①②【变式1-2】(23-24九年级·广东广州·期末)3.“玉兔”在月球表面行走的动力主要来自太阳光能,要使接收太阳光能最多,就要使光线垂直照射在太阳光板上.现在太阳光如图照射,那么太阳光板绕支点A逆时针最小旋转()可以使得接收光能最多.A.46°B.44°C.36°D.54°【变式1-3】(23-24九年级·重庆江津·期中)4.如果齿轮A以逆时针方向旋转,齿轮E旋转的方向( )A.顺时针B.逆时针C.顺时针或逆时针D.不能确定知识点2:旋转的性质(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.理解以下几点:(1)图形中的每一个点都绕旋转中心旋转了同样大小的角度.(2)对应点到旋转中心的距离相等,对应线段相等,对应角相等.(3)图形的大小与形状都没有发生改变,只改变了图形的位置.【题型2 由旋转的性质判断结论正误】【例2】(23-24九年级·四川宜宾·期末)5.如图所示,O 是锐角三角形ABC 内一点,120AOB BOC COA Ð=Ð=Ð=o ,P 是ABC V 内不同于O 的另一点,A BO ¢¢△、A BP ¢¢V 分别由AOB V 、APB △旋转而得,旋转角都为60o ,则下列结论:①O BO ¢V 为等边三角形;②+=¢¢+¢A O O O AO BO ;③+=¢¢+¢A P P P PA PB ;④++³++PA PB PC AO BO CO .其中正确的有(提示:有一个角是60o 的等腰三角形是等边三角形)A .①②③B .②③④C .①②④D .①③④【变式2-1】(23-24九年级·福建厦门·期末)6.如图,Rt ABC △中,90ACB Ð=°,30ABC Ð=°,M 为直线BC 上的一个动点,将线段AM 绕点A 顺时针旋转60°得到线段AN ,连接CN ,则当CN 取得最小值时,下列结论正确的是( )A .直线CN AB ^B .直线CN 平分ABC .直线CN 与直线BC 重合D .直线CN 与直线AC 重合【变式2-2】(23-24九年级·北京大兴·期末)7.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列四个结论:①AC =AD ;②AB ⊥EB ;③BC =EC ;④∠A =∠EBC ;其中一定正确的是( )A .①②B .②③C .③④D .②③④【变式2-3】(23-24九年级·江苏南通·阶段练习)8.如图所示,在等边ABC V 中,点D 是边AC 上一点,连接BD ,将BCD △绕着点B 逆时针旋转60°,得到BAE V ,连接ED ,则下列结论中:①AE BC ∥;②60DEB Ð=°;③ADE BDC Ð=Ð;④AED ABD Ð=Ð,其中正确的结论的个数是( )A .1个B .2个C .3个D .4个【题型3 由旋转的性质进行求解】【例3】(23-24九年级·贵州六盘水·期末)9.如图,在正方形ABCD 中,将边BC 绕点B 逆时针旋转至点BC ¢,若90,2CC D C D ¢¢Ð=°=,则线段BC ¢的长度为( )A .4B .C .6D .【变式3-1】(23-24九年级·福建·期末)10.将直角边长为6cm 的等腰直角三角形ABC 绕点A 逆时针旋转15°后得到AB C ¢¢△,则图中阴影部分的面积是 2cm .【变式3-2】(23-24九年级·吉林长春·期末)11.如图,菱形纸片ABCD 的一内角为60°,边长为2,将它绕对角线的交点O 顺时针旋转90°后到A B C D ¢¢¢¢的位置,则旋转前后两菱形重叠部分多边形的周长为( )A .8B .)41C .)81D .)41【变式3-3】(23-24九年级·四川成都·期末)12.如图,等腰直角ABC V 中,AC BC =,将线段CA 绕点C 逆时针旋转a °(090a <<)得到线段CA ¢,作点A 关于线段CA ¢所在直线的对称点E ,连接AE 和BE ,分别交线段CA ¢所在直线于点M 和点F ,若1CF =,3FM =,则BF 的长为 .【题型4 由旋转的性质证明线段相等或角相等】【例4】(23-24九年级·河南周口·期末)13.【猜测探究】在ABC V 中,ACB a Ð=.点D 是直线AB 上的一个动点,线段CD 绕点C 逆时针旋转α,得到线段CE ,连接DE ,BE .(1)如图1,当CA CB =,点D 在AB 边上运动时,线段BD ,AB 和BE 之间的数量关系是______;(2)如图2,当CA CB =,点D 运动到AB 的延长线上时,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;【拓展应用】(3)如图3,将ABC V 绕点C 逆时针旋转60°得到DEC V ,DE 交AB 于点F ,连接CF .若4CF =,1BF =,3DF =,求线段DE 的长.【变式4-1】(23-24九年级·山东济南·期末)14.在等边三角形ABC 的内部有一点D ,连接BD ,CD ,以点B 为中心,把BD 逆时针旋转60°得到BD ¢,连接AD ¢,DD ¢.以点C 为中心,把CD 顺时针旋转60°得到CD ¢¢,连接AD ¢¢,DD ¢¢.(1)判断D BA ¢Ð和DBC Ð的大小关系,并说明理由;(2)求证:D A DC ¢=;(3)求证:四边形AD DD ¢¢¢是平行四边形.【变式4-2】(23-24九年级·安徽·期末)15.如图,在四边形ABCD 中,AC BD ,是对角线,ABC V 是等边三角形,将线段CD 绕点C 顺时针旋转60°得到线段CE ,连接AE DE ,.(1)求证:BCD ACE Ð=Ð;(2)若30610ADC AD BD Ð=°==,,,求DE 的长.【变式4-3】(23-24九年级·河南信阳·期末)16.在ABC V 中,CA CB =,ACB a Ð=,D 为ABC V 内一点,将CAD V 绕点C 按逆时针方向旋转角a 得到CBE △,点A D ,的对应点分别为点B E ,.(1)如图1,若A D E ,,三点在同一直线上,则CDE Ð=_________(用含a 的代数式表示);(2)如图2,若A D E ,,三点在同一直线上,90a =°,过点C 作CF AE ^于点F ,探究线段CF AE BE ,,之间的数量关系,并证明你的结论;(3)如图3,连接AE ,若60a =°,CA =2CD =,将DCE △绕点C 旋转一周,当60AEC Ð=°时,BE =____________.知识点2:旋转作图旋转有两条重要性质:任意一对对应点与旋转中心所连线段的夹角等于旋转角;对应点到旋转中心的距离相等,它就是利用旋转的性质作图的关键.步骤可分为:①连:即连接图形中每一个关键点与旋转中心;②转:即把直线按要求绕旋转中心转过一定角度(作旋转角)③截:即在角的另一边上截取关键点到旋转中心的距离,的到各点的对应点; ④接:即连接到所连接的各点.【题型5 画旋转图形】【例5】(23-24九年级·河南洛阳·期末)17.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出将ABC V 向下平移5个单位长度后的111A B C △;(2)画出ABC V 关于点B 成中心对称的22A BC V ;(3)画出ABC V 绕点B 逆时针旋转90o 的33A BC △;(4)在直线l 上找一点P ,使ABP V 的周长最小.(说明:在网格中画出图形,标上字母即可)【变式5-1】(23-24九年级·四川成都·期末)18.如图,在平面直角坐标系中xOy ,已知ABC V 三个顶点的坐标分别为()1,3A ,()1,1B -,()2,2C -.(1)画出ABC V 绕原点O 顺时针旋转90°得到的111A B C △;(2)在y 轴上取点P ,使ABP V 的面积是ABC V 面积的32倍,求点P 的坐标.【变式5-2】(23-24九年级·江苏泰州·期末)19.如图,在边长为1的正方形网格中,ABC V 的顶点都在格点上,将ABC V 绕点O 逆时针旋转一定角度后,点C 落在格点C ¢处.(1)旋转角为______ °;(2)在图中画出旋转后的A B C ¢¢¢V ,其中A ¢、B ¢分别是A 、B 的对应点;(3)点O 到直线BB ¢的距离是______ .【变式5-3】(23-24九年级·辽宁沈阳·期末)20.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,点3,4,()(0,1)A B ---.(1)平移线段AB 得到线段CD ,若点A 的对应点C 的坐标为(3,2)--,点B 的对应点为点D ,在网格中请画出线段CD ,并直接写出点D 的坐标为_______;(2)在(1)的条件下,在网格中请画出将线段CD 绕点D 按逆时针旋转90°后的线段DE ,点C 的对应点为点E ,并直接写出点E 的坐标为_______;(3)在(2)的条件下,线段AB 与线段DE 存在一种变换关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为_______.【题型6 旋转对称图形】【例6】(23-24九年级·上海松江·期末)21.在正三角形、正方形、正五边形和等腰梯形这四种图形中,是旋转对称图形的有( )A .1个B .2个C .3个D .4个【变式6-1】(2024·北京西城·模拟预测)22.如图,沿图中的右边缘所在的直线为轴将该图形向右翻折180°后,再将翻折后的正方形绕它的右下顶点按顺时针方向旋转90°,所得到的图形是( )A .B .C .D .【变式6-2】(2024·河北·模拟预测)23.规定:在平面内,如果一个图形绕一个定点旋转一定的角度()0180a a °<°…后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度a 称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O 旋转90°或180°后,能与自身重合,所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是 ;A .矩形;B .正五边形;C .菱形;D .正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有: (填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有 个;【变式6-3】(23-24九年级·全国·单元测试)24.下列四个图案是小明家在瓷砖厂选购的四种地砖图案,其中既可用旋转来分析整个图案的形成过程,又可用平移来分析整个图案的形成过程的是( )A .B .C .D .【题型7 旋转求坐标】【例7】(2024·天津东丽·二模)25.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形111OA B C ,那么点1B 的坐标是( )A .()1,1B .C .(D .【变式7-1】(23-24九年级·河北唐山·期中)26.如图,将线段AB 绕点O 顺时针旋转90°得到线段A B ¢¢,那么()1,4A -的对应点A ¢的坐标是 .【变式7-2】(23-24九年级·浙江金华·期末)27.如图,正比例函数的图象经过(),2A m -,()2,B n 两点,其中m ,n 为整数,且0,0m n <>.现将线段AB 绕点B 顺时针旋转90°得到线段BC ,则点C 的坐标为 .【变式7-3】(23-24九年级·河南南阳·期末)28.在平面直角坐标系中,A (0,3),B (4,0),把△AOB 绕点O 旋转,使点A ,B 分别落在点A ′,B ′处,若A ′B ′∥x 轴,点B ′在第一象限,则点A 的对应点A ′的坐标为( )A .(912,55-)B .(129,55-)C .(1612,55-)D .(1216,55-)【题型8 旋转中的规律性问题】【例8】(23-24九年级·河南平顶山·期末)29.如图,在平面直角坐标系中,把边长为1的正方形OABC 绕着原点O 顺时针旋转45°得到正方形111OA B C ,按照这样的方式,绕着原点O 连续旋转2024次,得到正方形202420242024OA B C 则点2024A 的坐标是( )A .(0,1)B .()0,1-C .(1,0)D .【变式8-1】(23-24九年级·浙江杭州·期末)30.将正方体骰子(相对面上的点数1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换,若骰子的初始位置为图1所示的状态,那么按上述规则连续完成4次变换后,骰子朝上一面的点数是( )A .6B .5C .3D .1【变式8-2】(23-24九年级·内蒙古鄂尔多斯·期末)31.风力发电是一种常见的绿色环保发电形式,它能够使大自然的资源得到更好地利用.如图1,风力发电机有三个底端重合、两两成120°角的叶片,以三个叶片的重合点为原点水平方向为x 轴建立平面直角坐标系(如图2所示),已知开始时其中一个叶片的外端点的坐标为()5,5A ,在一段时间内,叶片每秒绕原点O 顺时针转动90°,则第2024秒时,点A 的对应点2024A 的坐标为( )A .()5,5B .()5,5-C .()5,5--D .()5,5-【变式8-3】(23-24九年级·广东广州·期末)32.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 分别在y 轴正半轴、x 轴正半轴上,顶点C ,D 在第一象限,已知1OA OB ==,BC =将矩形ABCD 绕点O 逆时针旋转,每次旋转90°,则第2025次旋转结束时,点C 的坐标是( )A .()3,2B .(−2,3)C .()3,2--D .(−3,2)【题型9 由旋转的性质求最值】【例9】(23-24九年级·江苏南通·期末)33.如图,正方形ABCD 的边长为4,30BCM Ð=°,点E 是直线CM 上一个动点,连接BE ,线段BE 绕点B 顺时针旋转45°得到BF ,则线段DF 长度的最小值等于( )A .4-B .2-C .D .【变式9-1】(23-24九年级·江苏盐城·期末)34.如图,线段4AC =,点B 为平面上一动点,且90ABC Ð=°,将线段AB 的中点M 绕点A 逆时针旋转90°得到线段AN ,连接CN ,则线段CN 的最大值为 .【变式9-2】(2024·江苏扬州·一模)35.如图,直角ABC V 中,90ACB Ð=°,30A Ð=°,4BC =,点E 是边AC 上一点,将BE 绕点B 顺时针旋转60°到点F ,则CF 长的最小值是 .【变式9-3】(23-24九年级·江苏无锡·期末)36.已知在矩形ABCD 中,9AD =,12AB =,O 为矩形的中心,在等腰Rt V AEF 中,90EAF Ð=°,AE AF 6==.则EF 边上的高为 ;将AEF △绕点A 按顺时针方向旋转一周,连接CE ,取CE 中点M ,连接FM ,则FM 的最大值为 .【题型10 图形的动态旋转】【例10】(23-24九年级·安徽合肥·期末)37.将一个三角板如图所示摆放,直线MN 与直线GH 相交于点P ,45MPH Ð=°,现将三角板ABC 绕点A 以每秒3°的速度顺时针旋转,设时间为t 秒,且0150t ££,当t = 时,MN 与三角板的直角边平行.【变式10-1】(23-24九年级·四川成都·期末)38.新定义:已知射线OP 、OQ 为AOB Ð内部的两条射线,如果12POQ AOB Ð=Ð,那么把POQ Ð叫作AOB Ð的幸运角.已知40AOB Ð=°,射线OC 与射线OA 重合,并绕点O 以每秒5°的速度顺时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒3°的速度逆时针旋转,当射线OC 旋转一周时运动停止.在旋转过程中,射线OA ,OB ,OC ,OD 中由两条射线组成的角是另外两条射线组成的角的幸运角时,t = 秒.(本题所有角都指的是小于180°的角)【变式10-2】(23-24九年级·河南平顶山·期末)39.如图,点 D 是等边ABC V 边BC 上一点,且 20BAD Ð=°.将ABD △绕点A 顺时针旋转α(0a ¹)得到AB D ¢¢V ,其中点B ,D 的对应点分别为B D ¢¢,.当直线B D ¢¢经过ABC V 的顶点时,CDD ¢Ð的度数为 .【变式10-3】(23-24九年级·江苏无锡·阶段练习)40.如图,在平行四边形ABCD 中,5cm,2cm,120AB BC BCD ==Ð=°,点P 从A 点出发,沿射线AB 以1cm /s 的速度运动,连接CP ,将CP 绕点C 逆时针旋转60°,得到CQ ,连接BQ .当t = 时,BPQ V 是直角三角形.1.C【分析】根据旋转的定义进行判断即可.【详解】解:①高层公寓电梯的上升,是平移,故不符合要求:②传送带的移动,是平移,故不符合要求;③方向盘的转动,是旋转,故符合要求;④风车的转动,是旋转,故符合要求;⑤钟摆的运动,是旋转,故符合要求;⑥荡秋千运动,是旋转,故符合要求;故选:C.【点睛】本题考查了旋转的定义.解题的关键在于对知识的熟练掌握.2.B【分析】根据轴对称变换,平移变换,旋转变换的特征结合图形解答即可.【详解】解:由图可知,图(1)先以直线AB为对称轴进行翻折,再向右平移1个单位,即可得到图(2),故②符合题意;图(1)先绕着点O旋转180°,再向右平移一个单位,即可得到图(2),故③符合题意;图(1)绕着OB的中点旋转180°即可得到图(2),故④符合题意;图(1)只要向右平移1个单位不能得到图(2),故①不符合题意.故选:B.【点睛】本题考查了几何变换的类型,熟练掌握常见的几种几何变换-平移、翻折、旋转的特征是解题的关键.3.B【分析】根据垂直的定义和旋转方向,计算可得.【详解】解:由题意可得:若要太阳光板于太阳光垂直,则需要绕点A逆时针旋转90°-(180°-134°)=44°,故选:B.【点睛】本题考查了实际生活中的垂直的定义,旋转的定义,解题的关键是理解旋转分为顺时针和逆时针.4.B【分析】根据图示进行分析解答即可.【详解】齿轮A 以逆时针方向旋转,齿轮B 以顺时针方向旋转,齿轮C 以逆时针方向旋转,齿轮D 以顺时针方向旋转,齿轮E 以逆时针方向旋转,故选B .【点睛】此题考查旋转问题,关键是根据图示进行解答.5.A【分析】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质以及两点之间线段最短.由于A BO ¢¢△,A BP ¢¢V 分别由AOB V 、APB △旋转而得,旋转角都为60°,得到BO BO ¢=,BP BP ¢=,60OBO PBP ¢¢Ð=Ð=°,A O B AOB ¢¢Ð=Ð,O A OA ¢¢=,P A PA ¢¢=,则BOO ¢V 和BPP ¢V 都是等边三角形,得到60BOO BO O ¢¢Ð=Ð=°,OO OB ¢=,而120AOB BOC COA Ð=Ð=Ð=°,再进行判断即可.【详解】解:连PP ¢,如图,Q A BO ¢¢△,A BP ¢¢V 分别由AOB V 、APB △旋转而得,旋转角都为60°,BO BO ¢\=,BP BP ¢=,60OBO PBP ¢¢Ð=Ð=°,A O B AOB ¢¢Ð=Ð,O A OA ¢¢=,P A PA ¢¢=,BOO ¢\V 和BPP ¢V 都是等边三角形,所以①正确;,OO OB O B BP BP PP ¢¢¢¢\====,A O O O AO BO ¢¢¢\+=+,所以②正确;+=¢¢+¢A P P P PA PB ,所以③正确;60BOO BO O ¢¢\Ð=Ð=°,而120AOB BOC COA Ð=Ð=Ð=°,180A O O O OC ¢¢¢\Ð=Ð=°,\A ¢,O ¢,O ,C 在一条直线上,又CP PP P A CA CO OO O A ¢¢¢¢¢¢¢++>=++Q ,\++>++PA PB PC AO BO CO ,所以④错误.故选:A6.B【分析】延长AC 到E ,使得AE AB =,连接NE ,先求出60BAC Ð=°,2AB AC =,由旋转的性质可得AM AN =,60MAN Ð=°,则BAM EAN Ð=Ð,证明()SAS BAM EAN △≌△,得到30AEN ABM ==°∠∠,则点N 在直线EN 运动,故当CN EN ^时,CN 最小,设当CN EN^时,点N 与点H 重合,延长HC 交AB 于F ,证明ACF △是等边三角形,得到AF AC =,则2AB AF =,即直线CN 平分AB .【详解】解:如图所示,延长AC 到E ,使得AE AB =,连接NE ,∵Rt ABC △中,90ACB Ð=°,30ABC Ð=°,∴18060BAC ACB ABC =°--=°∠∠∠,2AB AC =,由旋转的性质可得AM AN =,60MAN Ð=°,∴BAC MAN Ð=Ð,∴BAM EAN Ð=Ð,∴()SAS BAM EAN △≌△,∴30AEN ABM ==°∠∠,∴点N 在直线EN 运动,∵垂线段最短,∴当CN EN ^时,CN 最小,设当CN EN ^时,点N 与点H 重合,延长HC 交AB 于F ,∴903060ACF HCE ==°-°=°∠∠,∴ACF △是等边三角形,∴AF AC =,∵2AB AC =,∴2AB AF =,∴此时直线CN 平分AB ,【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,三角形内角和定理,含30度角的直角三角形的性质,旋转的性质等等,确定N 的运动轨迹是解题的关键.7.C【分析】根据旋转的性质,得到对应边相等,旋转角相等,从而去判断命题的正确性.【详解】解:∵旋转,∴AC DC =,但是旋转角不一定是60°,∴ACD V 不一定是等边三角形,∴AC AD =不一定成立,即①不一定正确;∵旋转,∴BC EC =,故③正确;∵旋转,∴ACD BCE Ð=Ð,∵等腰三角形ACD 和等腰三角形BCE 的顶角相等,∴它们的底角也相等,即A EBC Ð=Ð,故④正确;∵90A ABC Ð+Ð=°不一定成立,∴90EBC ABC Ð+Ð=°不一定成立,∴AB EB ^不一定成立,即②不一定正确.故选:C .【点睛】本题考查旋转的性质,解题的关键是掌握图形旋转的性质.8.C【分析】由题意可得∠EAB =∠ACB =∠ABC =60°,BD =BE ,∠DBE =60°,可判断①②,根据三角形的外角等于不相邻的两个内角和可判断③④.【详解】解:∵△ABC 是等边三角形,∴AB =BC ,∠BAC =∠ABC =∠ACB =60°,∠AEB =∠BDC∵将△BCD 绕着点B 逆时针旋转60°,得到△BAE ,∴BE =BD ,∠DBE =60°,∠EAB =∠ACB =60°∴∠EAB =∠ABC =60°,△BED 是等边三角形∵△BED 是等边三角形∴∠DEB =60°故①②正确∵∠AEB =∠BDC ,∠AEB =∠AED +∠BED ,∠BDC =∠BAC +∠ABD∴∠AED =∠ABD故④正确∵∠BDC >60°,∠ADE <60°∴∠BDC≠∠ADE故③错误.故答案选:C .【点睛】本题考查了旋转的性质,等边三角形的判定和性质,证明△BED 是等边三角形是本题的关键.9.D【分析】过点B 作BE CC ¢^于E ,如图所示,由旋转性质得到BC BC ¢=,从而得到BCC ¢V 是等腰三角形,结合等腰三角形性质确定BE 是线段CC ¢的垂直平分线,再由正方形性质,利用三角形全等的判定得到()AAS CC D BEC ¢V V ≌,进而由全等性质得到2CE C D ¢==,在Rt CC D ¢△中,由勾股定理求解即可得到答案.【详解】解:过点B 作BE CC ¢^于E ,如图所示:Q 将边BC 绕点B 逆时针旋转至点BC ¢,BC BC ¢\=,由等腰三角形三线合一性质可得BE 是线段CC ¢的垂直平分线,则190,2BC E C E CE CC ¢¢¢Ð=°==,在正方形ABCD 中,BC CD =,90BCD BCE DCE Ð=°=Ð+Ð,CD BC ¢\=,Q 90CC D ¢Ð=°,90CDC DCE ¢\Ð+Ð=°,BCE CDC ¢\Ð=Ð,在CC D ¢△和BEC V 中,90BCE CDC BEC CC D BC CD ¢¢Ð=ÐìïÐ=Ð=°íï=î()AAS CC D BEC \¢V V ≌,\2CE C D ¢==,则24CC CE ¢==,在Rt CC D ¢△中,90,2CC D C D ¢¢Ð=°=,4CC ¢=,则由勾股定理可得CD ==,BC CD ¢\==,故选:D .【点睛】本题考查正方形中求线段长,涉及旋转性质、等腰三角形的判定与性质、垂直平分线的判定与性质、三角形全等的判定与性质、正方形的性质、勾股定理等知识,读懂题意,准确构造出辅助线,灵活运用相关几何性质求解是解决问题的关键.10.【分析】本题考查了旋转的性质,等腰三角形的性质.关键是通过旋转的性质判断阴影部分三角形的特点,计算三角形的面积.设AB 与B C ¢¢交于D 点,根据旋转角15CAC ¢Ð=°,等腰直角ABC V 的一锐角45CAB Ð=°,可求C AD ¢Ð,旋转前后对应边相等,对应角相等,6AC AC cm ==¢,90C C ¢Ð=Ð=°,根据勾股定理求得C D ¢,进而根据三角形的面积公式可求阴影部分面积.【详解】解:设AB 与B C ¢¢交于D 点,根据旋转性质得15CAC ¢Ð=°,而45CAB Ð=°,∴30C AD CAB CAC ¢¢Ð=Ð-Ð=°,又∵690AC AC cm C C ¢¢==Ð=Ð=°,,∴2AD C D ¢=,由勾股定理得,222AD C D AC ¢¢-=,即22246C D C D ¢¢-=,∴C D ¢=,∴阴影部分的面积2162=´´=.故答案为:11.C【分析】此题主要考查菱形的性质和直角三角形的性质.根据已知可得重叠部分是个八边形,从而求得其一边长即可得到其周长.【详解】解:2,60,AD A B DAB ==Ð=¢¢°Q 30,DAO B A O \Ð=Ð=¢°¢1,OD OB AO A O ==¢\=¢=1,AB AO B O ¢¢\=-=30,60DAC A B C Ð=°Ð¢=¢°Q 30,DAC AFB \¢Ð=Ð=°,AB B F FD A D \==¢=¢¢1,B F FD \=-¢根据旋转的性质可得阴影部分为各边长相等的八边形,\旋转前后两菱形里鲁部分多边形的周长是1).故选:C .12.【分析】过点C 作CH CA ¢^交BE 于点H ,连接AF ,根据题意得到,AF EF AC CE ==,易证CAF CEF Ð=Ð,由等腰三角形的性质推出CBE CEB Ð=Ð,推出CAF CBE Ð=Ð,证明()AAS AFC BHC V V ≌,得到,CF CH AF BH ==,进而证明CHF V 是等腰直角三角形,即可证明AMF V 是等腰直角三角形,推出利用勾股定理即可求出FH AF ====BF 的长.【详解】解:如图,过点C 作CH CA ¢^交BE 于点H ,连接AF ,Q 点E 与点A 关于线段CA ¢所在直线对称,\,AF EF AC CE ==,,CAE CEA FAE FEA \Ð=ÐÐ=Ð,\CAF CEF Ð=Ð,,BC AC AC CE ==Q ,CE BC \=,\CBE CEB Ð=Ð,\CAF CBE Ð=Ð,90ACF ACH BCH ACH Ð+Ð=Ð+Ð=°Q ,ACF BCH \Ð=Ð,\()AAS AFC BHC V V ≌,\,CF CH AF BH ==,\CHF V 是等腰直角三角形,45CFH CHF \Ð=Ð=°,180135BHC AFC CHF \Ð=Ð=°-Ð=°,45AFM \Ð=°\AMF V 是等腰直角三角形,MF AM\=Q 1CF =,3FM =,\FH AF ======\BF BH FH AF FH =+=+=故答案为:【点睛】本题考查了等腰直角三角形判定与性质,三角形全等的判定与性质,勾股定理,对称的性质,正确作出辅助线构造三角形全等时解题的关键.13.(1)AB BE DB =+,(2)不成立,见解析;(3)8【分析】本题考查旋转的性质、全等三角形的性质与判定、等边三角形的性质与判定,(1)由旋转的性质得,CD CE =,ACB DCE a Ð=Ð=,利用等量代换可得ACD BCE Ð=Ð,证得()ACD BCE SAS V V ≌,可得AD BE =,即可得证;(2)由旋转的性质得,ACB DCE a Ð=Ð=,CD CE =,利用等量代换可得ACD BCE Ð=Ð,证得()ACD BCE SAS V V ≌,可得AD BE =,即可证明;(3)在ED 上取一点P ,使EP FB =,由旋转的性质得CB CE =,B E Ð=Ð,证得()CFB CPE SAS V V ≌,可得CF CP =,FCB PCE Ð=Ð,从而可证FCP V 是等边三角形,可得CF FP =,即可求解.【详解】解:(1)由旋转的性质得,CD CE =,ACB DCE a Ð=Ð=,∵=ACD DCB a Ð+Ð,=DCB BCE a Ð+Ð,∴ACD BCE Ð=Ð,又∵CA CB =,∴()ACD BCE SAS V V ≌,∴AD BE =,∵AB AD DB =+,∴AB BE DB =+,故答案为:AB BE DB =+;(2)不成立,理由如下:由旋转的性质得,ACB DCE a Ð=Ð=,CD CE =,∴ACB BCD BCD DCE Ð+Ð=Ð+Ð,即ACD BCE Ð=Ð,又∵CA CB =,∴()ACD BCE SAS V V ≌,∴AD BE =,∵AD AB BD =+,∴=BE AB DB +;(3)在ED 上取一点P ,使EP FB =,由题意得,CB CE =,CBF CEP Ð=Ð,∴()CFB CPE SAS V V ≌,∴CF CP =,FCB PCE Ð=Ð,由题意得,60BCE Ð=°,∴60FCP FCB BCP PCE BCP BCE Ð=Ð+Ð=Ð+Ð=Ð=°,∴FCP V 是等边三角形,∴CF FP =,∴3418DE DF FP PE DF CF FB =++=++=++=,即线段DE 的长为8.14.(1)D BA DBC ¢Ð=Ð,理由见解析(2)证明见解析(3)证明见解析【分析】(1)根据旋转的性质得60DBD ¢Ð=°,BD BD ¢=,则可判断BDD ¢△为等边三角形,再利用ABC V 为等边三角形得到60ABC Ð=°,则可得到D BA DBC ¢Ð=Ð;(2)通过证明ABD CBD ¢≌V V 得到D A DC ¢=;(3)根据旋转的性质得60DCD ¢¢Ð=°,DC D C ¢¢=,则可判断DCD ¢¢△为等边三角形,于是得到DD DC ¢¢=,再与(2)的证明方法一样证明ACD BCD ¢¢≌V V 得到AD BD ¢¢=,于是AD DD ¢¢¢=,加上D A DC DD ¢¢¢==,从而可判断四边形AD DD ¢¢¢是平行四边形.【详解】(1)解:D BA DBC ¢Ð=Ð,理由如下:Q 以点B 为中心,把BD 逆时针旋转60°得到BD ¢,60DBD ¢\Ð=°,BD BD ¢=,BDD ¢\△为等边三角形,BD DD ¢\=,ABC QV 为等边三角形,60ABC \Ð=°,BA BC =,60DBD ABD D BA ¢¢Ð=Ð+Ð=°Q ,60ABC ABD DBC Ð=Ð+Ð=°,D BA DBC ¢\Ð=Ð;(2)证明:在ABD ¢△和CBD △中,BA BC D BA DBC BD BD =ìïÐ=¢¢=Ðíïî,()SAS ABD CBD ¢\≌V V ,D A DC ¢\=;(3)证明:Q 以点C 为中心,把CD 顺时针旋转60°得到CD ¢¢,60DCD ¢¢\Ð=°,DC D C ¢¢=,DCD ¢¢\△为等边三角形,DD DC ¢¢\=,ABC QV 为等边三角形,60ACB Ð=°∴,CA CB =,60DCD ACD D CA ¢¢¢¢Ð=Ð+Ð=°Q ,60ACB ACD DCB Ð=Ð+Ð=°,D CA DCB ¢¢\Ð=Ð,在ACD ¢¢△和BCD △中,CA CB D CA DCB D C DC =ìïÐ=Ðíï=¢¢¢î¢,()SAS ACD BCD ¢¢\≌V V ,AD BD ¢¢\=,由(1)可知:BD DD ¢=AD DD ¢¢¢\=,由(2)可知:D A DC ¢=,又DD DC ¢¢=Q ,D A DD ¢¢¢\=,\四边形AD DD ¢¢¢是平行四边形.【点睛】本题主要考查了旋转的性质,等边三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定等知识点,熟练掌握相关知识点是解题的关键.15.(1)见解析(2)8【分析】(1)根据旋转的性质得到60DCE CE CD Ð=°=,,利用等边三角形的性质得到60ACB AC BC Ð=°=,.则ACB DCE Ð=Ð,即可得到结论;(2)证明()SAS ACE BCD ≌△△.则AE BD =.证明CDE V 是等边三角形.进一步得到90ADE ADC CDE Ð=Ð+Ð=°.在Rt ADE V 中,由勾股定理即可得到DE 的长.【详解】(1)证明:由旋转的性质,知60DCE CE CD Ð=°=,.∵ABC V 是等边三角形,∴60ACB AC BC Ð=°=,.∴ACB DCE Ð=Ð.∴ACB ACD DCE ACD Ð+Ð=Ð+Ð,即BCD ACE Ð=Ð.(2)解:在ACE △和BCD △中,AC BC ACE BCD CE CD =ìïÐ=Ðíï=î,,,∴()SAS ACE BCD ≌△△.∴10AE BD ==.∵60DCE CD CE Ð=°=,,∴CDE V 是等边三角形.∴60CDE Ð=°.∵30ADC Ð=°,∴90ADE ADC CDE Ð=Ð+Ð=°.在Rt ADE V中,8DE ==【点睛】此题考查了旋转的性质、全等三角形的判定和性质、勾股定理、等边三角形的判定和性质等知识,熟练掌握旋转的性质、全等三角形的判定和性质是解题的关键.16.(1)1802a°-(2)2AE BE CF =+,理由见解析(3)2【分析】(1)根据旋转的性质及三角形的内角和定理即可解答;(2)根据旋转的性质及等腰直角三角形的性质即可解答;(3)根据旋转的性质及等边三角形的性质得到1DH EH ==,再利用勾股定理及全等三角形的性质即可解答.【详解】(1)解:如图1中,∵将CAD V 绕点C 按逆时针方向旋转角a 得到CBE △,∴ACD BCE △△≌,DCE a Ð=,∴CD CE =,∴1802CDE a °-Ð=.故答案为:1802a °-.(2)解:2AE BE CF =+.理由如下:如图2中,∵将CAD V 绕点C 按逆时针方向旋转角90°得到CBE △,∴ACD BCE △△≌,∴AD BE =,CD CE =,90DCE Ð=°,∴CDE V 是等腰直角三角形,∵CF DE ^,∴2DF EF CF ==,∵AE AD DF EF =++,∴2AE BE CF =+.(3)解:如图3中,过点C 作CH DE ^于点H .∵60a =°,∴ACB △,DCE △都是等边三角形,∴60CED Ð=°,∵60AEC Ð=°,∴60AEC CED Ð=Ð=°,∴A ,D ,E 共线,∵CH DE ^,2CD =,CD DE CE ==,∴1DH EH ==,∴CH ===∵CA =∴3AH ===,∴312AD AH DH =-=-=,∵ACD BCE △△≌,∴2BE AD ==.故答案为:2.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,勾股定理,全等三角形的判定与性质,直角三角形的性质,旋转的性质,掌握旋转的性质是解题的关键.17.(1)图见解析(2)图见解析(3)图见解析(4)图见解析【分析】本题主要考查了利用平移变换,旋转变化作图,熟练掌握作图技巧是解题的关键.(1)根据平移的方向和距离,即可得到ABC V 向下平移5个单位后的图形111A B C △;(2)根据旋转中心,旋转的方向以及角度,即可得到图像;(3)分别找出A C 、对应点,连接即可;(4)找出A 关于直线l 的对称点,连接A B ¢,交直线l 于点P ,此时PA PA ¢=,则PA PB A B ¢+=,使ABP V 的周长最小.【详解】(1)解:111A B C V 即为所求(2)解:222A B C V 即为所求。
图形的旋转课件
重点:分析研究旋转现象,探索旋转的性质。 难点:图形旋转的变换关系。
探索新知
在平面内,把一个平面图形绕着平面内一个定点沿某一方向转动一个角度, 就叫做图形的旋转.这个定点叫做旋转中心.转动的角叫做旋转角。
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ 手抄报:/shouchaobao/ 语文课件:/kejian/yuwen/ 英语课件:/kejian/yingyu/ 科学课件:/kejian/kexue/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
A
【分析】关键是确定△ADE三个顶点的对应点,即它们 D 旋转后的位置。
解:因为点A是旋转中心,所以它的对应点是它本身。
E 正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后D与B重合。
设点E的对应点F。
FB
∵△ADE≌△ABF C ∴∠ABF=∠ADE,BF=DE.
因此在CB的延长线上取点F,使BF=DE,
电风扇
摩天轮 视察这些图形,你发现了什么? 一个图形沿某个方向绕定点转动
时钟
学习素养
1.认识旋转,熟悉现实生活中的旋转现象。
2.理解图形旋转的基本性质。
PPT模板:/moban/
PPT素材:/sucai/
PPT背景:/beijing/
PPT图表:/tubiao/
重点难点 PPT下载:/xiazai/
资料下载:/ziliao/
个人简历:/jianli/
试卷下载:/shiti/
教案下载:/jiaoan/
手抄报:/shouchaobao/
23.1+图形的旋转+课件+2024-2025学年人教版数学九年级上册
例3 (1)如图,在正方形ABCD中,点E、F分别为边AB与BC上的点,且 ∠EDF=45°,AE、CF与EF有何关系,并说明理由
例3 (2)连接AC与DE、DF交于点M、N,则AM、CN与MN有何关系,并说 明理由
例2 将直角三角形ABC绕点C顺时针旋转,得到三角形A'B'C'. (2)如图,∠ACB=90°,BC=2,点B'落在AB中点上,求AA‘;
变式1 如图,将直角三角形ABC绕点B逆时针旋转,得到三角形 A'B'C'.BC=2,点C'落在AB中点上,求AA‘;
变式2 如图,将直角三角形ABC绕点A顺时针旋转,得到三角形 A'B'C'.BC=2,∠BAC=30°,点C'落在AB上,求BB‘;
②如图2,用左面的三角形经过怎样的旋转,可以得到右面的图形?
③找出图3中扳手拧螺母时的旋转中心和旋转角.
2. 把图中的五角星图案,绕着它的中心点O旋转,旋转角 至少为多少度时,旋转后的五角星能与自身重合?
例1 (1)将△ABC绕点A顺时针旋转60°,得到△A'B'C',连接 CC',BB',找出其中相等的边与角
23.1.1 旋转的,观察运动的过程。 以上这些现象有什么共同点呢?
①把一个平面图形绕着 平面内某一点O转
动一个角度 ,叫做图形的旋转.
②从课本中的思考实例可以看出:图形的旋转
三要素是 旋转中心, 旋转方向, 旋转角 .
O
①OA与OA′、OB与OB′、OC与OC′分别有何关
若AC=2,BC=4,AB=5,求四边形CBB'C' 的周长
例1 (2)将△ABC绕点A顺时针旋转60°,得到△A'B'C',连接 CC',BB',找出其中相等的边与角
人教版九年级数学上册第23章 旋转 旋转及其性质
点 B的对应点的坐标为 ___________
( ,3) .
1.本节课我们学习了哪些知识?
(旋转的概念;旋转的性质)
2.旋转的三要素是什么?
(旋转中心、旋转角、旋转方向)
同学们,我们又学习了一个新的变换,相信大家和之
(1)△A'B'C'可以看成由△ABC经过怎样的运动得到 的?
(2)△A'B'C'和△ABC的形状和大小有什么关系?
(旋转)
(形状相同,大小相等)
(3)请画出点A旋转到点A'所经过的路线.思考点A的运动路线,由此能得
到OA与OA'有什么关系?
(图略;相等)
(4)你还能发现哪些有同样关系的线段?
(OC=OC' OB=OB', AB=A'B', AC=A'C', BC=B'C')
因为四边形ABCD是正方形,
所以 ∠ = ∠ + ∠ = °, = , ∠ = ∠ = °,所
以∠FAB=∠EAD,∠FBA=90°=∠D,所以△ ≅△ ,所以 =
=
+ = 所以 =
+ = .
前的变换放在一起理解会有不同的收获.
教材习题:完成课本59页练习2,3题以及61页练习1,2,3题.
作业本作业:完成 对应练习.
实践性作业:试着用数学语言描述家中钟表时针的运动过程.
A.点A
B.点B
C.点C
D.点D
变式:如图,点E是正方形ABCD的边CD上一点,过点A作 ⊥ 交CB的延长线
人教版初中数学九年级上册23.1图形的旋转课件(共35张PPT)
为所求作.
例题讲解
(3)已知△OAB,画出△OAB绕点O逆时
针旋转100°后的图形。
C 图形的旋转作法
作法:
1. 连接OA。 2. 作∠AOC=100°, 在OC上截取OA′=OA 。
A′ B
3. 连接OB 。
4. 作∠BOD=100°,
B′
A
教材62页1、4题
新知讲解 知识3、旋转的图形
让我们一起来欣赏一下美丽的图案,体会 一下旋转的奥秘.你们猜猜旋转到底和什么有关呢?
β α
O
O
(1)旋转中心不变,改变旋转角(如图).
新知讲解
(2)旋转角不变,改变旋转中心.
O1
α
α O2
新知讲解
(3)美丽的图案是这样形成的.
例题讲解
B A
例2、按要求画出下列图形 (1)将A点绕O沿顺时针方向旋转60˚。
归 转动的角叫做__旋__转__角___.
纳 :
如果图形上的点 P 经过旋转变为点 P′,那么这两个 点叫做这个旋转的__对__应__点__.
P
O 120°
P′
新知讲解
O
0
45
B
A
点A绕_O_点,往_顺_时_针方向,转动了_4_5 度到点B.
新知讲解
B/
B
A
0
/
90
A
P
线段AB绕_P_点,往_逆_时_针方向,转动了_9_0 度到线段A’B’.
A
D
E
B
C
例题讲解
解:因为点A是旋转中心,所以它的对应
A
Байду номын сангаас
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B' B
结论:
旋转的基本性质
旋转前、后的图形全等.
对应点到旋转中心的距离相等. 每一对对应点与旋转中心所连线段的夹角等于旋转角. 图形的旋转是由旋转中心和旋转的角度共同决定.
例
题
如图,E是正方形ABCD中CD边上任意一点,以点A为中心,
把△ADE顺时针旋转90°,画出旋转后的图形.
P
O
120
点击播放动画展示
P′
探究: 请大家在硬纸板上,挖一个三角形洞,再挖一个 小洞O作为旋转中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形洞(△ABC),然后围绕O 转动硬纸板,再描出这个挖掉的三角形洞 (△A′B′C′),移开硬纸板. 请大家运用刻度尺和量角器度量线段和有关角, 并探索旋转的性质.
分析:关键是确定△ADE三个顶点的 对应点,即它们旋转后的位置.
A D E C
B
【解析】因为点A是旋转中心,所 以它的对应点是它本身. 在正方形ABCD中,
A
D E
AD=AB,∠DAB=90°,所以旋转后
点D与点B重合.
E'
B
C
设点E的对应点为点E′,因为旋转后的图形与旋 转前的图形全等,所以
∠ABE′=∠ADE=90°, BE′=DE .
第二十三章
23.1
旋转
图形的旋转
1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点
的概念及其应用它们解决一些实际问题. 2.通过复习平移、轴对称的有关概念及性质,从生活中的数 学开始,经历观察,产生概念,应用概念解决一些实际问 题定点O 转动一定角度的图 旋转 旋转中心 ,转 形变换叫做________ .这个定点O 叫_________ 旋转角. 动的角叫做______ 如果图形上的点P经过旋转变为点P′,那么点P 对应点 和P′叫做这个旋转的_________.
因此,在CB的延长线上取点E′,使BE′=DE,则 △ABE′为旋转后的图形.
跟踪训练
1.如图,它可以看作是由一个菱形绕某一点旋转一个 角度后,顺次按这个角度同向旋转而得到的, ①请你在图中用字母O标注出这一点; 60 ②每次旋转了_______ 度; 5 ③一共旋转了_______ 次.
O
2.香港特别行政区区旗中央的紫荆花图案由5个相同
的花瓣组成,它是由其中一瓣经过几次旋转得到的?
答案:4次
1.下列现象中属于旋转的有( C )个.
①地下水位逐年下降;②传送带的移动;
③方向盘的转动; ⑤钟摆的运动; A.2 B.3 ④水龙头的转动; ⑥荡秋千. C.4 D.5
2.举出一些生活中的旋转实例,并说明旋转的决定因素. 【解析】如图所示:
旋转的决定因素:
旋转中心和旋转角度和旋转方向.
3.时钟的时针在不停地转动,从上午6时到上午9时,时 针旋转的旋转角是多少度?从上午9时到上午10时呢? 答案: 90 30
4.如图,杠杆绕支点转动撬起重物,杠杆的旋转中心 在哪里?旋转角是哪个角?
答案:0 点
∠AOA′或∠BOB′
通过本课时的学习,需要我们掌握: 1.旋转及其旋转中心、旋转角的概念. 2.旋转的对应点及它们的应用.