2013高中新课程数学(苏教版必修四)1.1.1 任意角(1)教案

合集下载

1.1.1任意角(教案)

1.1.1任意角(教案)

1.1 任意角和弧度制1.1.1 任意角【教学内容解析】本节课内容是《普通高中课程标准实验教科书数学》人教A版必修4第一章《三角函数》1.1《任意角和弧度制》中第1.1.1节《任意角》的第一课时,本节教学内容为任意角,主要学习任意角的推广、象限角、用几何和符号表示终边相同的角.本节内容为三角函数的第一节,终边相同的角的表示为后面证明恒等式、化简及利用诱导公式求三角函数的值奠定基础.由此确定本节课的教学重点为:教学重点:将0°~360°的角的概念推广到任意角.【学情分析】学生早在小学与初中学习过“角”,对角的概念有一定印象,但是过去接触过的角都在0°~360°,在对角的认识上已经形成一定的思维定势,所以在本小节要将角的概念推广可能会有一定的困难.用集合和符号来表示终边相同的角,涉及任意角、象限角、终边相同的角等新概念,对学生来说刚刚将角推广到任意角,然后就利用它来解决终边相同的角,是学习的主要难点.故确定本节课的教学难点为:教学难点:角的概念的推广,终边相同的角的表示.【教学目标设置】根据上述教学内容的地位和作用,结合课程标准与学情,确定了以下目标:1.结合生活中实例,认识角的概念推广的必要性;2.初步学会在平面直角坐标系中讨论任意角,并能熟练写出与已知角终边相同的角的集合.3.通过从特殊的三个角找关系,推广到一般的终边相同的角的集合的书写,体会类比的思想方法,同时利用直角坐标系作出角解决问题,渗透数形结合的数学思想.【教学策略分析】根据本节课的教学内容、学生情况和教学目标,教学中采用“教师设疑引导,学生自主探究”的教学方法.通过启发引导,激发学生的思维,鼓励学生发现、探究、合作、展示,使其在探究中对问题本质的思考逐步深入,思维水平不断提高.针对本节课的重点——将0°~360°的角的概念推广到任意角,教学中,通过“思考”提出拨手表指针问题,引导学生感受推广角的概念的必要性,使他们明白要正确表达“校准”手表的过程,需要同时说明分针的旋转量和旋转方向,教学时,让学生自己描述“校准”过程,让学生体会仅用0°~360°的角已经难以回答当前的问题,进而引出学习课题.同时还以体操转体运动为例,进一步说明引入新概念的必要性和实际意义.针对本节课的主要难点,教学中此处设置问题,让学生自己在直角坐标系中画30°,330°,-390°,(这一组角比教材上的那组角更容易找关系)通过观察这些角得出终边相同,然后提问这些角之间有怎样的数量关系?能不能用其中一个角表示这些角?让学生自己得出这一组角中任意两角之差是360°的整数倍,进一步类比得出所有与任意角α终边相同的角,连同α在内构成一个集合的表示.通过学生自己活动解决“探究”,经历由具体数值到一般值的抽象的过程,形成对“终边相同的角相差360°的整数倍”的直观感知.教学中同时多媒体,建立坐标系,画出任意角,并测出角的大小,旋转角的终边,观察角的变化规律,从而将数、形联系起来,使角的几何表示和集合表示相结合.对例题和习题的处理上,对教材上的例2改编为终边落在x轴上的角的集合,将终边落在y轴上的角的集合作为变式,变式设置了4个问题,让学生对终边落在各个坐标轴与象限角的表示有深刻认识,总结两种方法,为后面章节学习打下基础。

高一数苏教必修四讲义:第1章 1.1 1.1.1 任 意 角 Word含答案

高一数苏教必修四讲义:第1章 1.1 1.1.1 任 意 角 Word含答案

任意角、弧度1.1.1任意角预习课本P5~7,思考并完成下列问题1.在初中,角是怎样定义的?2.如果角按旋转的方向来进行分类,可分为哪三类?3.如果把角放入平面直角坐标系中,象限角和轴线角的规定是怎样的?4.如何表示终边相同的角?[新知初探]1.任意角(1)角的概念一个角可以看做平面内一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形.射线的端点称为角的顶点,射线旋转的开始位置和终止位置称为角的始边和终边.(2)角的分类正角:按逆时针方向旋转所形成的角;负角:按顺时针方向旋转所形成的角;零角:射线没有作任何旋转所形成的角.[点睛]对角的理解关键是抓住旋转二字(1)要明确旋转的方向;(2)要明确旋转量的大小;(3)要明确旋转的开始位置.2.象限角、轴线角以角的顶点为坐标原点,角的始边为x轴正半轴,建立平面直角坐标系.这样,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,称这个角为轴线角.[点睛](1)角的顶点要与坐标原点重合;(2)角的始边要与x轴的正半轴重合.3.终边相同的角一般地,与角α终边相同的角的集合为{β|β=k·360°+α,k∈Z}.[点睛]终边相同的角与相等的角是两个不同的概念,两角相等,终边一定相同,但是两角终边相同时,两角不一定相等,它们相差360°的整数倍.[小试身手]1.下列命题正确的是____________(填序号).①-30°是第一象限角;②750°是第四象限角;③终边相同的角一定相等;④-950°12′是第二象限的角.★答案★:④2.-1 120°角所在象限是____________.★答案★:第四象限3.与405°角终边相同的角的集合是____________.★答案★:{α|α=k·360°+45°,k∈Z}4.在-180°到360°范围内,与2 000°角终边相同的角为____________.★答案★:-160°,200°角的概念辨析[典例]有下列说法:①相差360°整数倍的两个角,其终边不一定相同;②{α|α是锐角}{β|0°≤β<90°};③第一象限角都是锐角;④小于180°的角是钝角、直角或锐角.其中正确说法的序号是________.[解析]①不正确.终边相同的两个角一定相差360°的整数倍,反之也成立;②∵α是锐角,即0°<α<90°,故{α|0°<α<90°}{β|0°≤β<90°},故②正确;③第一象限角不一定都是锐角,如380°是第一象限角,但它不是锐角,故③不正确;④0°角小于180°,但它既不是钝角,也不是直角或锐角,故④不正确.[★答案★]②有关角的概念辨析的解题策略(1)正确理解象限角及锐角、直角、钝角、平角、周角等概念.(2)可通过举出反例来进行判断.下列命题是真命题的序号是________.①三角形的内角必是一、二象限内的角;②第二象限角是钝角; ③不相等的角终边一定不同;④{α|α=k ·360°±90°,k ∈Z}={α|α=k ·180°+90°,k ∈Z}. 解析:①90°不是象限角;②如-240°是第二象限角,但不是钝角; ③如0°和360°不相等,但终边相同;④k ·360°±90°=2k ·180°±90°=2k ·180°+90°或(2k -1)·180°+90°,k ∈Z. ★答案★:④象限角及终边相同的角[典例] 在0°到360°的范围内,求出与下列各角终边相同的角,并判断是第几象限角. (1)-736°;(2)904°18′.[解] (1)-736°=-3×360°+344°,344°是第四象限角. ∴344°与-736°是终边相同的角,且-736°为第四象限角. (2)904°18′=2×360°+184°18′,184°18′是第三象限角. ∴184°18′与904°18′是终边相同的角,且904°18′为第三象限角.(1)把任意角化为α+k ·360°(k ∈Z 且0°≤α<360°)的形式,关键是确定k .可以用观察法(α的绝对值较小),也可用除法.要注意:正角除以360°,按通常的除法进行;负角除以360°,商是负数,其绝对值比被除数为其相反数时的商大1,使余数为正值.(2)要求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k 的值.[活学活用]写出-720°到720°之间与-1 068°终边相同的角的集合为______________. 解析:与-1 068°终边相同的角为-1 068°+k ·360°,要落在-720°到720°之间,则取k =1,2,3,4.★答案★:{-708°,-348°,12°,372°}已知角α所在象限,判断αn 或nα(n ∈Z)所在象限[解] ∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°,k ∈Z. ∴180°+2k ·360°<2α<360°+2k ·360°,k ∈Z.∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角. [一题多变]1.[变设问]若本例条件不变,求α2是第几象限角?解:45°+k 2 ·360°<α2<90°+k2·360°,k ∈Z.当k 为偶数时,不妨令k =2n ,n ∈Z , 则45°+n ·360°<α2<90°+n ·360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z , 则225°+n ·360°<α2<270°+n ·360°,此时,α2为第三象限角.∴α2为第一或第三象限角.2.[变设问]若本例条件不变,求α3是第几象限角?解:∵k ·120°+30°<α3<k ·120°+60°(k ∈Z),当k =3n (n ∈Z)时, n ·360°+30°<α3<n ·360°+60°;当k =3n +1(n ∈Z)时, n ·360°+150°<α3<n ·360°+180°;当k =3n +2(n ∈Z)时, n ·360°+270°<α3<n ·360°+300°.∴α3是第一或第二或第四象限的角. 3.[变条件]已知α是第二象限角,且8α与2α的终边相同,判断2α是第几象限角. 解:8α=2α+k ·360°(k ∈Z), 所以α=k ·60°(k ∈Z), 所以,2α=k ·120°(k ∈Z),当k 为偶数时, 2α的终边分别落在x 轴的正半轴和第二、第三象限. 当k 为奇数时,2α的终边分别落在x 轴的正半轴和第二、第三象限, 所以,2α为第二或第三象限角,或是终边落在x 轴正半轴上的角.已知角α终边所在象限,(1)确定nα终边所在的象限,直接转化为终边相同的角即可. (2)确定αn 终边所在象限常用的步骤如下:①求出αn 的范围;②对n 的取值分情况讨论:被n 整除;被n 除余1;被n 除余2;…;被n 除余n -1; ③下结论.层级一 学业水平达标1.在0°到360°范围内,与-950°角终边相同的角是________.解析:-950°=130°-3×360°,所以在0°~360°的范围内,与-950°角终边相同的角是130°.★答案★:130°2.在-390°,-885°,1 351°,2 016°这四个角中,其中第四象限角的个数为________. 解析:-390°=-360°-30°是第四象限角;-885°=-2×360°-165°是第三角限角;1 351°=3×360°+271°是第四象限角;2 016°=5×360°+216°是第三象限角.故有2个.★答案★:23.钟表经过2小时,时针转过的度数为________.解析:时针均按顺时针方向旋转,2小时时针转过16周,所以时针转过了-60°.★答案★:-60°4.已知角α,β的终边相同,那么α-β的终边在________. 解析:∵角α,β的终边相同, ∴α=k ·360°+β,k ∈Z.作差α-β=k ·360°+β-β=k ·360°,k ∈Z. ∴α-β的终边在x 轴的正半轴上. ★答案★:x 轴的正半轴上5. 设集合A ={α|α=90°·k +30°,k ∈Z},B ={α|0°≤α<360°},则A ∩B =________. 解析:由0°≤90°·k +30°<360°,k ∈Z , 得-13≤k <113,k ∈Z ,所以k =0,1,2,3,所以A ∩B ={30°,120°,210°,300°}. ★答案★:{30°,120°,210°,300°}6.若α=45°+k·180° (k∈Z),则α的终边在第________象限.解析:由题意知α=k·180°+45°,k∈Z,当k=2n+1,n∈Z时,α=2n·180°+180°+45°=n·360°+225°,在第三象限,当k=2n,n∈Z时,α=2n·180°+45°=n·360°+45°,在第一象限.∴α是第一或第三象限的角.★答案★:一或三7.已知α与β均为正角,且α+β=180°,若0°<α≤90°,则角β的终边位于_______________.解析:若0°<α<90°,则90°<β=180°-α<180°,即角β的终边在第二象限;若α=β=90°,则角β的终边位于y轴正半轴上.★答案★:第二象限或y轴正半轴上8.若角α满足180°<α<360°,角5α与角α有相同的始边,且又有相同的终边,那么角α=______________.解析:∵5α与α的始边和终边相同,∴这两角的差应是360°的整数倍.即5α-α=4α=k·360°,k∈Z.即α=k·90°.又180°<α<360°,∴180°<k·90°<360°.∴2<k<4.∴k=3,故α=270°.★答案★:270°9.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.解:(1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|k·180°+30°≤x≤k·180°+60°,k∈Z}.10.已知α=-1 910°,(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,指出它是第几象限的角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.解:(1)设α=β+k·360°(k∈Z),则β=-1 910°-k·360°(k∈Z).令-1 910°-k·360°≥0,解得k≤-1 910 360.所以k的最大整数解为k=-6,求出相应的β=250°,于是α=250°-6×360°,它是第三象限的角.(2)令θ=250°+k·360°(k∈Z),取k=-1,-2就得到符合-720°≤θ<0°的角:250°-360°=-110°,250°-720°=-470°.故θ=-110°或-470°.层级二应试能力达标1.在0°到360°范围内,与角-60°的终边在同一条直线上的角为___________.解析:与角-60°的终边在同一条直线上的角为-60°+k·180°,k∈Z,取k=1,2.★答案★:120°与300°2.射线OA绕端点O逆时针旋转120°到达OB位置,再顺时针旋转270°到达OC位置,则∠AOC=________.解析:根据任意角的定义可得∠AOC=120°+(-270°)=-150°.★答案★:-150°3.若α是第三象限角,则180°-α是第________象限角.解析:因为α是第三象限角,所以k·360°+180°<α<k·360°+270°,k∈Z.所以k·360°-90°<180°-α<k·360°,k∈Z.所以180°-α为第四象限角.★答案★:四4.与1 991°终边相同的最小正角是________,绝对值最小的角是________.解析:与1 991°终边相同的角为1 991°+k·360°,取k=-5,-6.★答案★:191°,-169°5.角α,β的终边关于y轴对称,若α=30°,则β=________________.★答案★:150°+k·360°,k∈Z6.已知角2α的终边落在x 轴上方,那么α是第________象限角. 解析:由题知k ·360°<2α<180°+k ·360°,k ∈Z , ∴k ·180°<α<90°+k ·180°,k ∈Z.当k 为偶数时,α是第一象限角;当k 为奇数时,α为第三象限角,∴α为第一或第三象限角.★答案★:一或三7.若θ是第一象限角,判断θ2所在的象限.解:∵θ是第一象限角, ∴k ·360°<θ<k ·360°+90°(k ∈Z). k ·180°<θ2<k ·180°+45°(k ∈Z).当k =2n ,n ∈Z 时,n ·360°<θ2<n ·360°+45°,∴θ2为第一象限角; 当k =2n +1,n ∈Z 时, n ·360°+180°<θ2<n ·360°+225°,∴θ2为第三象限角.综上,θ2为第一或第三象限角.8.已知角β的终边在直线3x -y =0上. (1)写出角β的集合S ;(2)写出S 中适合不等式-360°<β<720°的元素. 解:(1)如图,直线3x -y =0过原点,倾斜角为60°, 在0°~360°范围内,终边落在射线OA 上的角是60°, 终边落在射线OB 上的角是240°,所以以射线OA ,OB 为终边的角的集合为: S 1={β|β=60°+k ·360°,k ∈Z}, S 2={β|β=240°+k ·360°,k ∈Z}, 所以角β的集合S =S 1∪S 2={β|β=60°+k ·360°,k ∈Z}∪{β|β=60°+180°+k ·360°,k ∈Z} ={β|β=60°+2k ·180°,k ∈Z}∪{β|β=60°+(2k +1)·180°,k ∈Z} ={β|β=60°+k ·180°,k ∈Z}.(2)由于-360°<β<720°,即-360°<60°+k·180°<720°,k∈Z.解得-73<k<113,k∈Z,所以k=-2,-1,0,1,2,3.所以S中适合不等式-360°<β<720°的元素为:60°-2×180°=-300°;60°-1×180°=-120°;60°+0×180°=60°;60°+1×180°=240°;60°+2×180°=420°;60°+3×180°=600°.。

高中数学新苏教版精品教案《苏教版高中数学必修4 1.1.1 任意角》

高中数学新苏教版精品教案《苏教版高中数学必修4 1.1.1 任意角》

任意角教学目标:1、理解任意角的概念,学会在平面内建立适当的坐标系来讨论任意角;2、能在0°到360°范围内,找出一个与角终边相同的角,并判定其为第几象限角;3、能写出与任一角终边相同的角的集合.教学过程:一、情境问题问题1、初中时角的定义是什么?问题2、初中时你学过哪些角?问题3、你知道她旋转了多少度吗?这是什么样的一个角?二、数学建构1、角的概念一个角可以看做平面内一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形2、角的分类按逆时针方向旋转:正角按顺时针方向旋转:负角没有旋转:零角口答:如图,那么α=________,β=________3、象限角、轴线角〔1〕象限角:以角的顶点为坐标原点,角的始边为轴正半轴,建立平面直角坐标系这样,角的终边除端点外在第几象限,就说这个角是第几象限角〔2〕轴线角:终边在坐标轴上的角判断正误:①第一象限角是锐角;②锐角是第一象限角;③第二象限角大于第一象限角;④钝角是第二象限角;⑤小于90°的角是锐角;⑥第一象限角一定不是负角;⑦-45°是第一象限角;⑧180°是第二象限角4、终边相同的角思考1、在平面直角坐标系中,作出以下各角:60°,42021-300°.思考2、这些角有什么共同特点?思考3、你能写出与60°角终边相同的角的集合吗?一般地,与角α终边相同的角的集合为{β|β=·360°+α,∈Z}练习:1与30°角终边相同的角的集合可表示为________2将-1000°化成·360°+α0°≤α<360°,∈Z的形式是________,那么-1000°是第____象限角.三、数学应用例1、在到范围内,找出与以下各角终边相同的角,并分别判断它们是第几象限角:〔1〕〔2〕〔3〕思考:①终边落在轴正半轴上的角的集合为.②终边落在轴负半轴上的角的集合为.③终边落在轴上的角的集合为.④终边落在轴正半轴上的角的集合为.⑤终边落在轴负半轴上的角的集合为.⑥终边落在轴上的角的集合为.⑦终边落在坐标轴上的角的集合为.{α|α=·360°,∈Z}{α|α=·360°+180°,∈Z}{α|α=·180°,∈Z}{α|α=·360°+90°,∈Z}{α|α=·360°+270°,∈Z}{α|α=·180°+90°,∈Z}{α|α=·90°,∈Z}例2、与角的终边相同,判断是第几象限角.变式1、与角的终边相同,判断是第几象限角.变式2、是第三象限角,判断是第几象限角.思考:①终边落在第一象限的角的集合为.②终边落在第二象限的角的集合为.③终边落在第三象限的角的集合为.④终边落在第四象限的角的集合为.{α|·360°<α<·360°+90°,∈Z}{α|·360°+90°<α<·360°+180°,∈Z}{α|·360°+180°<α<·360°+270°,∈Z}{α|·360°+270°<α<·360°+360°,∈Z}四、回忆小结1、角的概念;2、角的分类;3、象限角、轴线角;4、终边相同的角.五、当堂检测:1、将1140°化成的形式是________,那么1140°是第___象限角.2、假设是第四象限角,试分别确定,,是第几象限角.六、作业必修4课本P10 习题T 1、7。

高中数学同课异构大赛《任意角的概念》:1.1.1任意角(教学设计)

高中数学同课异构大赛《任意角的概念》:1.1.1任意角(教学设计)

《1.1.1任意角》教学设计一、教材分析1.本节课主要内容是用角的始边和终边及旋转来定义任意角,它是对初中所学角的一个延伸,同时也是对高中函数知识的又一渗透。

所以本节课起到了一个知识拓展和承上启下的作用。

2.本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念,终边相同的角的表示法.3.通过具体问题,让学生从不同角度作答,理解终边相同的角的概念,并给以表示,从特殊到一般,归纳出终边相同的角的表示方法,达到突破难点之目的.二、学生分析在此之前,学生已掌握由共同射线所成的角,对角具有一定的认识。

从学生学过的知识点出发,结合生活中的数学,将任意角的范围扩展到大于360度,可以引发学生的的认知冲突,激发学生的求知欲望,为这节课的顺利进行提供了有利的条件。

角概念的推广,使得终边相同的角的出现“周而复始”的现象。

学生在理解终边相同的角的表示方法上存在着困难,这就要求学生在本节课上突破思维定势,实现知识的跨越。

三、教学目标、重点难点分析(一)教学目标分析1.通过对任意角的学习、提升学生对角概念的内涵的理解,培养学生数学抽象的数学核心素养。

2.借助角范围的形成与深入,在掌握知识的同时,形成和发展数学运用,提升学生数学运算和直观抽象的数学核心素养。

3.通过探究终边相同的角的表示,学会发现与归纳,从而培养学生逻辑推理的数学核心素养。

(二)教学重点难点分析1.重点:用运动变化的观点给出任意角的概念,理解正、负角的含义;掌握终边相同角的表示.2.难点:终边相同的角的表示方法。

四、教法学法分析1.教法分析:探索与发现新知识是教学的重点。

所以在教学中主要采用以问题驱动、层层铺垫,从特殊到一般启发学生获得新知识。

故本节课主要以开放式教学、启发式教学、引导教学法为主。

2.学法指导:建构主义学习理论认为,学习是学生积极主动的建构知识的过程,学习应该与学生熟悉的知识背景相联系。

在教学中,采用自主探索与合作交流的学习方式,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、思考、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。

1.1.1任意角(优秀经典公开课比赛教案)

1.1.1任意角(优秀经典公开课比赛教案)

1.1.1任意角
一、教学目标:
(1)要求学生掌握用“旋转”定义角的概念,理解任意角的概念;
(2)学会在平面内建立适当的坐标系来讨论角;
(3)并进而理解“正角”“负角”“象限角”“终边相同的角”的含义.
二、教学重难点
教学重点:理解“正角”“负角”“象限角”“终边相同的角”的含义.教学难点:“旋转”定义角; 终边相同的角的表示.
三、教学过程
四、课堂小结及课后作业:
五、教学反思:
这堂课从实际问题引入,引起学生的认知冲突。

说明角的概念扩展的必要性,然后通过学生的自主探索,得出了定义,为后面的探究打下了基础,体现了新课程理念,教学效果好,是一堂好课。

由于学生的计算机技术不高,导致教学时间过紧。

(新课程)高中数学 1.1.1 任意角教案(1) 苏教版必修4

(新课程)高中数学 1.1.1 任意角教案(1) 苏教版必修4

一、课题:任意角(1)二、教学目标:1.理解任意角的概念;2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写。

三、教学重、难点:1.判断已知角所在象限;2.终边相同的角的书写。

四、教学过程:(一)复习引入:1.初中所学角的概念。

2.实际生活中出现一系列关于角的问题。

(二)新课讲解:1.角的定义:一条射线绕着它的端点O ,从起始位置OA 旋转到终止位置OB ,形成一个角α,点O 是角的顶点,射线,OA OB 分别是角α的终边、始边。

说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α.2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角。

说明:零角的始边和终边重合。

3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

例如:30,390,330-都是第一象限角;300,60-是第四象限角。

(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限。

例如:90,180,270等等。

说明:角的始边“与x 轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”。

因为x 轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线。

4.终边相同的角的集合:由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30360k +⋅()k Z ∈的形式;反之,所有形如30360k +⋅()k Z ∈的角都与30角的终边相同。

从而得出一般规律:所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα==+⋅∈,即:任一与角α终边相同的角,都可以表示成角α与整数个周角的和。

说明:终边相同的角不一定相等,相等的角终边一定相同。

高中数学必修四:1.1.1《任意角》 PPT课件 图文

高中数学必修四:1.1.1《任意角》 PPT课件 图文

精讲领学
例题1 写出与下列各角终边相同的角的集合S,并把S中在 360~720范围的角写出来.
( 1 ) 6 0 ;( 2 ) 2 1 ;( 3 ) 3 6 3 1 4
解: ( 1 ) S {| k 3 6 0 6 0 , k Z }300,60,420
( 2 ) S {| k 3 6 0 2 1 , k Z }21,339,699
2、下列角中终边与330°相同的角是( ) A.30° B.-30° C.630° D.-630°
3、把-1485°转化为α+k·360° (0°≤α<360°, k∈Z)的形式是( ) A.45°-4×360° B.-45°-4×360° C.-45°-5×360° D.315°-5×360°
反馈固学
1.1.1 任意角
第一课时
(1)推广角的概念;理解并掌握正角、负角、零角的定义; (2)理解任意角以及象限角的概念; (3)掌握所有与角终边相同的角(包括角)的表示方法; (4)树立运动变化观点,深刻理解推广后的角的概念;
思考:那么工人在拧紧或拧松螺丝时,转动的角度 如何表示才比较合适?
逆时 针
4、下列结论中正确的是( ) A.小于90°的角是锐角 B.第二象限的角是钝角 C.相等的角终边一定相同 D.终边相同的角一定相等
5:任意两个角的数量大小可以相加、相减.
例如50°+80°=130°, 50°-80°=-30°, 你能解释一下这两个式子的几何意义吗?
130°是以50°角的终边为始边,逆时针旋转80°所成的角. -30°是以50°角的终边为始边,顺时针旋转80°所成的角.
注3:(1) 为任意角 (2) k Z这一条件必不可少;
(3) 终边相同的角不一定相等, 终边相等的角有无数多个,它们相差3600的整数倍.

高中数学必修四《任意角》优秀教学设计

高中数学必修四《任意角》优秀教学设计
⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同 的角有无限个,它们相差 360°的整数倍;
⑷ 角α + k·720 °与角α终边相同,但不能表示与角α终边相同的所有 角. 例 3.在 0°到 360°范围内,找出与下列各角终边相等的角,并判断它们 是第几象限角.
⑴-120°;⑵640 °;⑶-950°12'. 答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限 角;
教学教学内容备 Nhomakorabea过程

一、
自主 学习
阅读教材回答下列问题:
(1)按
放心旋转所成的角叫做正角;按
方向旋转所
成的角叫做负角;如果一条射线
,我们称它形成了一个零角。
(2)所有与角α 相同所有与角α 终边相同的角,连同α 在内,可构 成一个集合
k∈Z},即任一与角α 终边相同的角,都可以表示成角α 与整个周角 的和.
正角:按逆时针方向旋转形成的角 零负角角::射按线顺没时有针任方何向旋旋转转形形成成的的 角角 ④注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角.
⑤练习:请说出角α 、β、γ 各是多少度? 2.象限角的概念:
③锐角
④小于
解答(1)① 四、
课堂
检测






(2)分别写出:
①终边落在 轴负半轴上的角的集合; 角的集合;
②终边落在 轴上的
③终边落在第一、三象限角平分线上的角的集合;
④终边落在四象限角平分线上的角的集合.

必修四《1.1.1任意角》教学设计

必修四《1.1.1任意角》教学设计

必修四《1.1.1任意角》教学设计本节课主要采纳MPCK理论进行课堂教学模式设计.利用弗赖登塔尔的“再制造”理论进行设计教学,同学在中学已经学过静态定义的角,本节从运动的观点来定义角,从而进展和完善角的定义。

下面对必修四《1.1.1任意角》这一课进行详细的分析。

1.教学目标经受任意角概念的生成过程,理解角的概念推广的须要性;理解象限角和终边相同的角的概念,能写出与已知角终边相同的角的集合;通过天文现象、生活现象说明三角学时刻画与讨论现实生活中的周期现象;接着回顾中学角的定义和生活中汽车里程表和车轮的关系,同学产生认知冲突,认识到角度推广的须要性;通过通过关于三角学的数学史的融入教学,让同学体会角的概念源远流长,提高同学的学习爱好。

该节课渗透的数学思想,进一步培育同学用数学眼光看世界、用数学语言表达世界的数学素养。

2.教学重、难点重点:将0°~360°的角的概念推广到任意角。

难点:角的概念的推广;终边相同的角的表示。

教学过程一、情境引入〔老师PPT展示日月交替的小视频.〕自然现象中有许多循環往复、周而复始的现象,在数学中称为“周期现象”。

同学们,你们还见过哪些周期现象?能举例说明吗?你们还见过哪些周期现象?能举例说明吗?生:日夜交替、四季变换……设计意图:创设情境,让同学在直观感知的过程中,体会数学源于生活,高于生活。

二、概念引入师:中学我们已经学习了角的概念,是怎样定义的呢?学了哪些角?角的范围分别是多少?生:从一个点出发引出的两条射线构成的几何图形。

锐角、直角、钝角,平角,周角。

〔视频展示体操运动员、跳水运动员旋转的图片〕师:能不能从动态的、旋转的视角对角作出定义?刻画这些角的关键是什么?我们可以把角看成平面内一条射线围着端点从一个位置旋转到另一个位置所成的图形。

师:顺时针旋转得到的角和逆时针得到的角一样吗?师:有什么符号可以刻画这两个相反的量?哪个符号更符合“简约、有用又统一”?生:正负号师:那究竟顺时针为正还是逆时针为正?同学争论沟通,劝服对方。

苏教版高中数学必修4-1.1《任意角》参考教案

苏教版高中数学必修4-1.1《任意角》参考教案

课题:任意角的概念教学目标:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”、“负角”、“轴线角”、“象限角”、“终边相同的角”的含义.教学重点: 象限角的判定;化与0︒—360︒间的某角终边相同的角教学过程:一、问题情境1.回忆初中学过的一些角,如锐角、直角、钝角、平角、周角.2.举日常生活中的一些例子,其中哪些不能用上面的角表示?(如:跳水、体操、行驶中的自行车车轮,等)3.回忆初中是如何定义角的?,这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”不易推广. 二、建构数学1.任意角的概念:一个角可以看成平面内一条射线绕着它的端点从一个位置到另一个位置所形成的图形.射线的端点称为,射线旋转的开始位置和称为角的和终边.2.“正角”、“负角”——这是由旋转的方向所决定的.记法:角α或∠α可以简记成α说明:由于用“旋转”定义角之后,角的范围大大地扩大了.1︒角有正负之分如:,2︒角可以任意大实例:,3︒还有零角:一条射线,没有旋转.3.关于“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角.以角的顶点为坐标原点,角的始边为x轴正半轴,这样一来....,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限,也称为轴线角.)例如:30︒、390︒、-330︒是第一象限角;300︒、-60︒是第象限角;585︒、1180︒是第Ⅲ象限角;-2000︒是第Ⅱ象限角等4.关于终边相同的角1︒.观察:390︒,-330︒角,它们的终边都与30︒角的终边相同 2︒.终边相同的角都可以表示成一个0︒到360︒的角与∈k(k Z)个周角的和 3︒.所有与α终边相同的角连同α在内可以构成一个集合{}∈o S =β|β=α+k×360,k Z即:任何一个与角α终边相同的角,都与角α与相差周角的整数倍.三、数学应用:例1.在0︒——360︒的范围内,找出与下列各角终边相同的角,并分别判断它们是第几象限角:①650︒ ②-150︒ ③-990︒15'例2.试写出终边在x 轴上的角的集合.注意变式:例3. 试写出第三象限角的集合.例4.①如图,将终边落在阴影部分的角的集合表示出来。

高中数学1.1.1任意角讲义苏教版必修4

高中数学1.1.1任意角讲义苏教版必修4

1.1.1 任意角一、任意角的概念1.角的概念:一个角可以看做平面内一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形.2.角的分类:按旋转方向可将角分为如下三类:[提示]不一定,若角的终边未作旋转,则这个角是零角.若角的终边作了旋转,则这个角就不是零角.二、象限角与轴线角1.象限角:以角的顶点为坐标原点,角的始边为x轴正半轴建立平面直角坐标系.这样,角的终边(除端点外)在第几象限,就说这个角是第几象限角.2.轴线角:终边在坐标轴上的角.三、终边相同的角与角α终边相同的角的集合为{β|β=k·360°+α,k∈Z}.思考2:终边相同的角一定相等吗?其表示法唯一吗?[提示]终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角的表示方法不唯一.1.思考辨析(1)180°是第二象限角.( )(2)-30°是第四象限角.( )(3)第一象限内的角都小于第二象限内的角.( )[解析](1)×.180°是轴线角.(2)√.(3)×.如375°>120°,而375°和120°分别是第一、二象限内的角.[答案](1)×(2)√(3)×2.如图,则α=________,β=________.240°-120°[α是按逆时针方向旋转的,为240°,β是按顺时针方向旋转的,为-120°.]3.与-215°角终边相同的角的集合可表示为________.{β|β=k·360°-215°,k∈Z}[由终边相同角的表示可知与-215°角终边相同的角的集合是{β|β=k·360°-215°,k∈Z}.]4.将-885°化成k·360°+α(0°≤α<360°,k∈Z)的形式是________.(-3)×360°+195°[设-885°=k·360°+α,易得-885°=(-3)×360°+195°.]角的概念辨析【例1】(1)下列结论:①第一象限角是锐角;②锐角是第一象限角;③始边和终边重合的角是零角;④钝角是第二象限角;⑤小于90°的角是锐角;⑥第一象限角一定不是负角.其中正确的结论是________(填序号).(2)将35°角的终边按顺时针方向旋转60°所得的角度数为________,将35°角的终边按逆时针方向旋转一周后的角度数为________.思路点拨:(1)根据任意角、象限角的概念进行判断,正确区分第一象限角、锐角和小于90°的角.(2)由正负角的概念可得角的大小.(1)②④(2)-25°395°[(1)①400°角是第一象限角,但不是锐角,故①不正确;②锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,②正确;③不正确,因为360°角的始边和终边也重合;④钝角是大于90°且小于180°的角,终边落在第二象限,故是第二象限角,④正确;⑤0°角是小于90°的角,但不是锐角,故⑤不正确;⑥-300°角是第一象限角,但-300°角是负角,故⑥不正确.(2)由角的定义可知,将35°角的终边按顺时针方向旋转60°所得的角度数为35°-60°=-25°,将35°角的终边按逆时针方向旋转一周后的角度数为35°+360°=395°.]1.解决此类问题的关键在于正确理解象限角与锐角、直角、钝角、平角、周角等概念,严格辨析它们之间的联系与区别.2.判断结论正确与否时,若结论正确,需要严格的推理论证,若要说明结论错误,只需举出反例即可.1.时钟走了3小时20分,则时针所转过的角的度数为________,分针转过的角的度数为________.-100° -1 200° [时针每小时转30°,分针每小时转360°,由于旋转方向均为顺时针方向,故转过的角度均为负值,又3小时20分等于313小时,故时针转过的角度为-313×30°=-100°;分针转过的角度为-313×360°=-1 200°.]终边相同的角与象限角【例2】 已知α=-1 910°.(1)把α写成β+k ·360°(k ∈Z,0°≤β<360°)的形式,并指出它是第几象限的角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.思路点拨:(1)把α写成β+k ·360°(k ∈Z,0°≤β<360°)的形式后,判断β所在的象限即可.(2)将θ写成θ=β+k ·360°(k ∈Z,0°≤β<360°)的形式,用观察法验证k 的不同取值即可.[解] (1)法一:∵-1 910°=-6×360°+250°,∴-1 910°角与250°角终边相同,∴α=-6×360°+250°,它是第三象限的角.法二:设α=β+k ·360°(k ∈Z ),则β=-1 910°-k ·360°(k ∈Z ).令-1 910°-k ·360°≥0,解得k ≤-1 910360=-51136. k 的最大整数解为k =-6,相应的β=250°,于是α=250°-6×360°,它是第三象限的角.(2)由(1)知令θ=250°+k ·360°(k ∈Z ),取k =-1,-2就得到符合-720°≤θ<0°的角:250°-360°=-110°,250°-720°=-470°.故θ=-110°或-470°.1.把任意角化为k·360°+α(k∈Z且0°≤α<360°)的形式,关键是确定k,可以用观察法(α的绝对值较小),也可用除法.2.要求适合某种条件且与已知角终边相同的角时,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k的值.3.终边相同的角常用的三个结论:(1)终边相同的角之间相差360°的整数倍.(2)终边在同一直线上的角之间相差180°的整数倍.(3)终边在相互垂直的两直线上的角之间相差90°的整数倍.提醒:k∈Z,即k为整数这一条件不可少.2.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.[解](1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.区域角的表示[探究问题]1.第一象限内的角的集合能否用{α|0°<α<90°}表示?为什么?提示:不能,第一象限内的角未必是(0°,90°)的角,也可能是负角,也可能是大于360°的角,其表示为{α|k·360°<α<90°+k·360°,k∈Z}.2.终边落在x轴上的角如何表示?提示:{α|α=k·180°,k∈Z}.3.若角α,β满足β=α+k·180°,k∈Z,则角α,β的终边存在怎样的关系?提示:角α,β的终边落在同一条直线上.【例3】写出终边落在如图所示阴影部分的角的集合.思路点拨:法一:先写出与30°及105°终边相同角的集合,再写出其对称区域内角的集合,最后合并便可.法二:分别写出与30°及105°的终边在同一直线上的角的集合,合并求解便可.[解]法一:设终边落在阴影部分的角为α,角α的集合由两部分组成:①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z},∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.法二:与30°角终边在同一条直线上的角的集合为{α|α=k·180°+30°,k∈Z}.与180°-75°=105°角终边在同一条直线上的角的集合为{α|α=k·180°+105°,k∈Z},结合图形可知,阴影部分的角的集合为{α|k·180°+30°≤α<k·180°+105°,k∈Z}.解答此类题目应先在0°~360°上写出角的集合,再利用终边相同的角写出符合条件的所有角的集合,如果集合能化简的还要化成最简形式.提醒:求解这类问题要注意实线边界与虚线边界的差异.教师独具1.本节课的重点是象限角的判断、终边相同角及区域角的表示,难点是n α及αn所在象限的判定.2.本节课要重点掌握以下规律方法(1)求终边相同的角及区域角的表示.(2)象限角及n α、αn所在象限的判断. 3.本节课的易错点有以下几点(1)对于角的理解,要明确该角是按顺时针方向还是逆时针方向旋转形成的,按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角.(2)把任意角化为α+k ·360°(k ∈Z ,且0°≤α<360°)的形式,关键是确定k ,可以用观察法(α的绝对值较小),也可以用除法.(3)已知角的终边范围,求角的集合时,先写出边界对应的角,再写出0°~360°内符合条件的角的范围,最后都加上k ·360°,得到所求.1.-210°角的终边所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限B [-210°=(-1)×360°+150°,∵150°是第二象限角,∴-210°也是第二象限角.]2.已知-990°<α<-630°,且角α与120°角的终边相同,则α=________. -960° [∵角α与120°角的终边相同,∴α=k ·360°+120°,k ∈Z .又∵-990°<α<-630°,∴-990°<k ·360°+120°<-630°,k ∈Z ,即-1110°<k ·360°<-750°,k ∈Z ,∴k =-3.当k =-3时,α=(-3)×360°+120°=-960°.]3.如图,射线OA 先绕端点O 逆时针方向旋转60°到OB 处,再按顺时针方向旋转820°至OC 处,则β=________.-40° [∠AOC =60°+(-820°)=-760°,β=-(760°-720°)=-40°.]4.已知角β的终边在直线3x -y =0上.(1)写出角β的集合S ;(2)写出S 中适合不等式-360°≤β<720°的元素.[解] (1)如图,直线3x -y =0过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA 上的角是60°,终边落在射线OB 上的角是240°,所以以射线OA ,OB 为终边的角的集合为:S 1={β|β=k ·360°+60°,k ∈Z },S 2={β|β=k ·360°+240°,k ∈Z },所以,角β的集合S =S 1∪S 2={β|β=k ·360°+60°,k ∈Z }∪{β|β=60°+180°+k ·360°,k ∈Z }={β|β=2k ·180°+60°,k ∈Z }∪{β|β=(2k +1)·180°+60°,k ∈Z }={β|β=n ·180°+60°,n ∈Z }.(2)由于-360°≤β<720°,即-360°≤60°+n ·180°<720°,n ∈Z ,解得-73≤n <113,n ∈Z , 所以n =-2,-1,0,1,2,3.所以S 中适合不等式-360°≤β<720°的元素为:-2×180°+60°=-300°;-1×180°+60°=-120°;0×180°+60°=60°;1×180°+60°=240°;2×180°+60°=420°;3×180°+60°=600°.。

2013高中新课程数学(苏教版必修四)1.1.1任意角 课件

2013高中新课程数学(苏教版必修四)1.1.1任意角 课件

作业:
P6 习题 ቤተ መጻሕፍቲ ባይዱ 5
小结:
正角:射线按逆时针方向旋转形成的角
1.任意角的概念
负角:射线按顺时针方向旋转形成的角 零角:射线不作旋转形成的角 1)置角的顶点于原点
2.象限角
2)始边重合于X轴的正半轴 3)终边落在第几象限就是第几象限
3与终边相同的角组成的集 合: S { k 3600 , k z}
900 +Kx3600 y
• 终边落在坐标轴上的情形
x 1800 +Kx3600 o 或3600+KX3600 00 +Kx3600
2700 +Kx3600
练习:
1、写出下列关于角的集合 ( 1 )锐角 (2) 0 到90 的角 (3)第一象限角 (4)小于90 的角

思考:
若角、 满足下列条件, 求它们的关系式? ( 1 )终边关于x轴对称 (2)终边关于y轴对称 (3)终边互为反向延长线
2、k的两层含义:
(1)特殊性:对 k每赋一个值就有一个具 体角
(2)一般性:表示了所有 与终边相同的角
例1、在0 到360 范围内,找出与下列角终边 相同的角,并判定它们是第几象限角. ( 1 ) 120



(2) 640

(3) 950 12

例2
写出终边落在Y轴上的角的集合。
1.1.1 任 意 角
学习目标:
• 1 理解任意角的概念 • 2 知道象限角 • 3 会用集合表示终边相同的角
终边 B
顶 点
o
A
始边
角:一条射线绕着它的端点在平面内旋转形成的图形
生活中的例子

高中数学必修四《任意角》教学设计

高中数学必修四《任意角》教学设计

1.1.1 任意角(教学设计)内容:人教A版高中数学必修④第一章第一节第一课时.适合对象:高一学生【教材分析】三角函数是基本初等函数之一,也是中学数学的重要内容之一,它是研究度量几何的基础,又是研究自然界周期变化规律的最强有力的数学工具.因此,本节课作为高中三角函数的起始课,有着衔接初高中学习,承前启后的作用,也为今后学习任意角的三角函数奠定了基础.本节课主要介绍推广角的概念,引入正角、负角、零角的定义;介绍象限角的概念;终边相同的角的表示方法;帮助学生树立运动变化的观点,并由此深刻理解推广后角的概念.【教学目标分析】根据新课程标准和上述教材分析,本节课的教学目标设计如下:1.知识与技能目标:(1)使学生理解用“旋转”定义角;(2)理解“正角”、“负角”、“零角”、“象限角”、“终边相同的角”的含义;(3)掌握所有与角α终边相同的角(包括角α)的表示方法.2.过程与方法(1)通过问题情境,让学生自己完成角的概念的推广这一认知过程,培养学生观察、分析、运用所学知识解决问题的能力;(2)指导学生通过各种角表示法的训练,提高分析、抽象、概括的能力.3.情感态度价值观(1)通过对角的定义的推广过程的教学使学生感受到数学的应用性和知识的力量,增强学习数学的兴趣和信心,激发学生学习数学的热情;(2)重视知识的形成过程教学,让学生知其然并知其所以然,同时体会到创新的乐趣;(3)通过对角的集合表示的严密化,培养学生形成扎实严谨的科学作风.【教学重难点】1.教学重点:理解并掌握正角、负角、零角及象限角的定义,会表示终边相同的角的集合;2.教学难点:把终边相同的角用集合的符号语言表示出来.【教学问题诊断分析】学生在初中已学过0360范围内的角,这可能对角的概念的推广在认识上有一定的困难,因此,在教学中可结合生活中的具体例子,以学生熟悉的背景,引起学生的认知冲突,让学生体会角的概念有推广的必要.接着给出有关角的概念,在已有的认知条件下,学生是可以接受的.值得注意的是,终边相同的角的概念并不难理解,但用集合表示终边相同的角时,部分学生还是会有一些障碍,针对这一问题,在教学时应多举实例将特殊问题推广到一般情况,最好能让学生自己总结.【教学方法分析】新课程要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程.本节课可采用问题引领的方式让学生思考、自主探究及教师启发的教学方法.教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,并以多媒体辅助教学为手段,构建学生自主探究的平台,激发学生的求知欲,促使学生解决问题.【信息技术分析】多媒体教室及PowerPoint2003.【教学过程】导入新课师:今天这节课,我想和大家共同探讨一个话题:角(教师板书)师:对于角,我们并不陌生,初中就学过角的概念.问题1:初中我们是如何定义一个角的?所学的角的范围是什么?师生活动:教师提问,学生思考、回答.设计意图:回忆初中所学角的概念,为接下来角的推广作准备.新课讲解内容一:角的定义问题2:体操名词“程菲跳”是“踺子后手翻转体180度接前直转体空翻540度”的动作命名.这里的540度是一个什么样的角,能描述它吗?设计意图:用体操情境引发学生思考,激发学生探究新知的欲望,调动学生参与教学的积极性,由此引出用“旋转”来定义角.师生活动:师:540度角初中学过吗?怎么描述呢?生:初中没学过,我认为540度实际上就是旋转了一周半.师:那540度角能画出来吗?生:我目前画不出来.师:现在540度角还画不出来,说明初中角的概念不能满足我们进一步学习的需要,所以本节课的首要任务就是将角推广到任意角.(教师板书:1.1.1任意角,同时PPT给出角的定义)角的定义:平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的的图形.(接着用PPT演示角的形成过程并给出角的表示方法以及角的顶点、始边和终边的概念)内容二:正角、负角和零角师:好,我们接着看下一个问题.问题3:跳水运动员向内、向外转体两周半,这是多大角度?设计意图:使学生认识到角的推广不仅考虑要用旋转量,还应考虑旋转方向,为接下来正角、负角和零角的概念做好准备.师生活动:生:这是900度的角(教师追问:你是怎么想到的?学生继续作答)师:那向内旋转和向外旋转完全一样吗?生:不完全一样,空中旋转过程不一样(因为方向不同)师:也就是说,我们不仅需要从数量的角度将角推广,还需要根据旋转方向不同将角加以区分.在新的定义下,我们继续探讨与角有关的概念.(教师板书,同时PPT给出概念)1.正角、负角和零角我们规定,按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.如果一条射线没有作任何旋转,我们称它形成了一个零角.师:这样,我们就把角的概念推广到了任意角,包括正角、负角和零角.内容三:象限角师:前面我们讲了这么多,现在请大家动手画出120的角.设计意图:利用新概念重新认识角的问题,通过画120角发现位置可能不同,让学生感受没有统一标准时,角的表示不方便. 通过画图探究、交流,不难给出合理的规定,让学生感知把角放到平面直角坐标系中的好处.师生活动:教师让学生把所画的图形在黑板上展示,最好有位置不同的图形作对比.如果没有的话,教师自己画一个和学生所画位置不同的角.师:可以看出,由于选取始边的位置不同,可能同样大小的角画出来的位置不同,我们更好的管理任意角,我们要给任意角加以规定.为了后续学习的需要,我们常在平面直角坐标系中讨论角,那么怎么呢把角放到坐标系中比较合理?生:把角的顶点放在坐标原点,始边放在x 轴的正半轴.(教师纠正为x 轴非负半轴) 教师在总结分析角的始边和顶点规定的基础上,给出象限角的概念.(教师板书:象限角.同时PPT 上给出象限角的概念)2.象限角为了讨论问题的方便,我们使角的顶点与原点重合,角的始边与x 轴非负半轴重合.那么角的终边在第几象限,我们就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.内容四:终边相同的角师:学习了这些概念,我们再画几个角.问题4:在平面直角坐标系中作出32-,328,392-的角,观察这些角之间有什么内在联系?设计意图:从具体问题入手,了解终边相同的角的关系.师生活动:学生独立画图.教师巡视后,学生回答.生:这些角的终边相同.(教师追问:为什么?能解释一下吗?)师:与32-角终边相同的角有多少个?(学生回答:无数个)师:这些与32-角终边相同的角,包括32-的角在内,能用集合表示出来吗?教师给足时间让学生思考、作图,教师巡视后请学生(可找多个学生)在黑板上写出自己的答案,教师归纳总结,得出终边相同的角的集合.(教师板书,PPT 展示下面文字)3.终边相同的角一般地,我们有:所有与角α终边相同的角,连同角α在内,可构成一个集合{}=360,k k Z ββα+⋅∈即任一与角α终边相同的角,都可以表示成角α与整数 个周角的和.例题分析例 1 在0360(即0360α≤<)范围内,找出与95012'-角终边相同的角,并判定它是第几象限角.解:95012129483360''-=-⨯,所以在0360范围内,与95012'-角终边相同的角是12948',它是第二象限角.设计意图:通过例题,使学生进一步理解任意角的概念以及象限角和终边相同的角的概念. 师生活动:学生独立完成后回答,教师点评总结.学生练习1.下列说法正确的是( )参考答案:DA .第一象限的角小于第二象限的角B .若90180α≤≤,则α是第二象限的角C .小于90的角都是锐角D .有些角不是任何象限的角2.与460-角终边相同的角可以表示成( )参考答案:CA .460360,k k Z +⋅∈B .100360,k k Z +⋅∈C .260360,k k Z +⋅∈D .260360,k k Z -+⋅∈设计意图:通过练习,检验是否掌握的任意角的概念.师生活动:学生独立思考,教师巡视、个别辅导后请学生回答,教师再点评. 课堂小结通过本节课的学习,你有哪些收获?设计意图:让学生复习本节课的主要内容,完善学生的认知结构,体会数学思想方法. 师生活动:学生回答,教师补充.同时解决学生提出的疑惑布置作业必做题:课本第9页 习题1.1 A 组 1、2、3选做题:已知α是第一象限角,那么2α和2α是第几象限角? 板书设计。

高中数学 1.1.1 任意角教案 苏教版必修4

高中数学 1.1.1 任意角教案 苏教版必修4

【课堂新坐标】(教师用书)2013-2014学年高中数学 1.1.1 任意角教案苏教版必修41.1任意角、弧度1.1.1 任意角(教师用书独具)●三维目标1.知识与技能(1)推广角的概念,理解并掌握正角、负角、零角的定义;(2)理解象限角、坐标轴上的角的概念;(3)理解任意角的概念,掌握所有与α角终边相同的角(包括α角)的表示方法;(4)能表示特殊位置(或给定区域内)的角的集合;(5)能进行简单的角的集合之间的运算.2.过程与方法以前所学角的概念是从静止的观点阐述,现在是从运动的观点阐述,类比初中所学的角的概念,进行角的概念推广,引入正角、负角和零角的概念;由于角本身是一个平面图形,因此,在角的概念得到推广以后,将角放入平面直角坐标系;引出象限角、非象限角的概念,以及象限角的判定方法;通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3.情感、态度与价值观通过本节的学习,使同学们对角的概念有了一个新的认识;树立运动变化观点,学会运用运动变化的观点认识事物;揭示知识背景,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求.●重点难点1.重点:理解正角、负角和零角及象限角的定义,掌握终边相同角的表示法及判断.2.难点:把终边相同的角用集合和符号语言正确地表示出来.(教师用书独具)●教学建议1.任意角的概念:建议教师在教学过程中通过拨手表指针问题引导学生感受推广角的概念的必要性.教学时,可以先让学生自己描述“校准”手表的过程,然后引导学生体会仅用0°~360°之间的角已经无法解决当前的问题.2.象限角的概念:建议教师在教学过程中强调角与平面直角坐标系的关系,引导学生发现象限角所在的范围可以用不等式表示,并注意讲解“终边落在坐标轴上的角,它不属于任何一个象限”.3.终边相同的角的表示:建议教师在教学中应当让学生先通过自己的活动形成对“终边相同的角相差360°的整数倍”的直观感知,通过具体角寻找终边相同角的规律,归纳其一般表示形式.教学时,有条件的可以利用信息技术,利用动态的观点,旋转角的终边,观察角的变化规律,从而将数、形联系起来,使角的几何表示和集合表示相结合,从而达到对终边相同角的认知的统一.●教学流程创设问题情境,复习初中角的定义,引出任意角的概念.⇒引导学生结合任意角的定义,理解正角与负角的概念并加以区分,理解角的分类.⇒通过引导学生探究在直角坐标系中,按角的终边的位置不同定义不同的象限角,并理解终边相同的角的表示方法.⇒通过例1及其变式训练,使学生掌握角的概念及其应用.⇒通过例2及其变式训练,使学生掌握终边相同的角的表示方法及其注意事项.⇒通过例3及其互动探究使学生掌握象限角的表示及其应用.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识,并进行反馈矫正.课标解读1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.(重点) 3.掌握判断象限角及表示终边相同的角的方法.(难点)任意角的概念1.在初中时我们是如何定义角的?【提示】有公共端点的两条射线组成的图形叫做角.2.如果你的手表慢了10分钟,你是怎样校准的?【提示】校准方法很多,由于分针转一圈为360°,故10分钟分针需要转过60°,且要调快分针可顺时针转,故可让分针顺时针旋转60°.(1)一个角可以看做平面内一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形.射线的端点称为角的顶点,射线旋转的开始位置和终止位置称为角的始边和终边.(2)按逆时针方向旋转所形成的角叫做正角,按顺时针方向旋转所形成的角叫做负角.如果射线没有作任何旋转,那么也把它看成一个角,叫做零角.象限角及终边相同的角【问题导思】1.如果把一个角的顶点放在直角坐标系的原点,角的始边为x轴正半轴,那么角终边的位置在坐标系中有几种情况?【提示】在第一、二、三、四象限或与坐标轴重合.2.0°角与360°角的终边相同吗?【提示】相同.(1)象限角:以角的顶点为坐标原点,角的始边为x轴正半轴,建立平面直角坐标系.这样,角的终边(除端点外)在第几象限,就说这个角是第几象限角.(2)终边相同的角:一般地,与角α终边相同的角的集合为{β|β=k·360°+α,k∈Z}.角的概念及相关应用①终边相同的角一定相等;②第一象限角都是锐角;③锐角都是第一象限角;④小于90°的角都是锐角.(2)下列说法正确的是________.(填序号)①一条射线绕端点旋转,旋转的圈数越多,则这个角越大.②在坐标系中,将y轴的正半轴绕坐标原点顺时针旋转到x轴的正半轴形成的角为90°.③将钟表调快一个小时,则分针转了360°.④顺时针方向旋转形成的角一定小于逆时针方向旋转形成的角.【思路探究】根据各种角的含义进行判断.【自主解答】(1)对于①,-60°角和300°角是终边相同的角,但它们并不相等,∴应排除①.对于②,390°角是第一象限角,但它不是锐角,∴应排除②.对于④,-60°角是小于90°的角,但它不是锐角,∴应排除④.∵锐角的集合是{α|0°<α<90°},第一象限角的集合是{α|k·360°<α<k·360°+90°,k∈Z},∴锐角是第一象限角.∴③正确.(2)如果一条射线绕端点顺时针方向旋转,则它形成负角,旋转的圈数越多,则这个角越小,故①不正确.在坐标系中,将y轴的正半轴绕坐标原点旋转到x轴的正半轴时,是按顺时针方向旋转,故它形成的角为-90°,故②不正确.将钟表调快一个小时,也是按顺时针转动,故分针转了-360°,③不正确.顺时针方向旋转形成的角为负角,它一定小于逆时针方向旋转形成的正角,故④正确.【答案】(1)③(2)④解答概念辨析题,一是利用定义直接判断;二是利用反例排除错误答案,要说明一个命题不正确,只需举出一个反例即可.下列说法正确的是________.(填序号)①三角形的内角必是第一、二象限角;②第一象限角一定是正角;③第二象限角一定比第一象限角大;④与30°终边相同的角有无穷多个.【解析】90°可以是三角形的内角,但它既不是第一象限角,又不是第二象限角,故①错;-330°是第一象限角,但不是正角,故②错;120°是第二象限角,390°是第一象限角,但390°>120°,故③错;④正确.【答案】 ④终边相同的角在0°~360°范围内,请指出与下列角的终边相同的角,并说出此角是第几象限角.(1)430° (2)909° (3)-60° (4)-1 550°【思路探究】 将所给角α写成α=k ·360°+β(0°≤β<360°)的形式,则β即为所求.【自主解答】 (1)430°=1×360°+70°,所以在0°~360°范围内与430°终边相同的角为70°,此角为第一象限角.(2)909°=2×360°+189°,所以在0°~360°范围内与909°终边相同的角为189°,此角为第三象限角.(3)-60°=-1×360°+300°,所以在0°~360°范围内与-60°终边相同的角为300°,此角为第四象限角.(4)-1 550°=-5×360°+250°,所以在0°~360°范围内与-1 550°终边相同的角为250°,此角为第三象限角.将任意角写成α+k ·360°(k ∈Z ,且0°≤α<360°)的形式的关键是确定k .可用观察法(α绝对值较小时),也可用除以360°的方法.要注意:正角除以360°,按通常的除法进行,负角除以360°,商是负数,余数是正数.如图1-1-1,分别写出终边落在所示直线上的角的集合.图1-1-1【解】 由于终边落在直线上的角都是180°的整数倍加上相应的角(0°到180°范围内),因此相对应的角的集合为:(1)S ={α|α=90°+k ·180°,k ∈Z }; (2)S ={α|α=45°+k ·180°,k ∈Z }; (3)S ={α|α=135°+k ·180°,k ∈Z };(4)S ={α|α=45°+k ·180°,k ∈Z }∪{α|α=135°+k ·180°,k ∈Z }={α|α=45°+2k ·90°,k ∈Z }∪{α|α=45°+(2k +1)·90°,k ∈Z }={α|α=45°+k ·90°,k ∈Z }.象限角的表示及其应用 已知α为第一象限角,求2α,2,3所在的象限. 【思路探究】 用不等式表示α→求2α,α2,α3的范围→分类讨论→得出结论【自主解答】 ∵α为第一象限角,∴360°·k <α<360°·k +90°,k ∈Z , ∴360°·2k <2α<360°·2k +180°,k ∈Z ,∴2α是第一或者第二象限角,或是终边在y 轴正半轴上的角.∵180°·k<α2<180°·k +45°,k ∈Z ,当k 为奇数时,α2是第三象限角;当k 为偶数时,α2是第一象限角.∴α2为第一或第三象限角. 又∵120°·k <α3<120°·k +30°,k ∈Z ,当k =3n (k ∈Z )时,360°·n <α3<360°·n +30°,n ∈Z ,∴α3是第一象限角; 当k =3n +1(k ∈Z )时,360°·n +120°<α3<360°·n +150°,n ∈Z ,∴α3是第二象限角;当k =3n +2(k ∈Z )时,360°·n +240°<α3<360°·n +270°,n ∈Z ,∴α3是第三象限角.∴α3为第一、第二或第三象限角.1.用不等式表示象限角的集合是解决这类问题的基本方法. 2.α,α2,2α终边位置关系:α 第一象限 第二象限 第三象限 第四象限 α2第一、三 象限 第一、三 象限 第二、四 象限 第二、四 象限 2α第一、二象 限或y 轴 的正半轴第三、四象 限或y 轴 的负半轴第一、二象 限或y 轴 的正半轴第三、四象 限或y 轴 的负半轴把本例中条件改为“若α是第三象限角”,求角2α,α2所在的象限.【解】 由角α是第三象限角可知,k ·360°+180°<α<k ·360°+270°,k ∈Z , 于是,2k ·360°+360°<2α<2k ·360°+540°,k ∈Z , 即(2k +1)·360°<2α<(2k +1)·360°+180°,k ∈Z . 所以2α为第一、二象限角或终边在y 轴的正半轴上的角. 因为k ·180°+90°<α2<k ·180°+135°,k ∈Z ,当k 为奇数时,设k =2n +1,n ∈Z ,则n ·360°+270°<α2<n ·360°+315°,n∈Z ,此时α2为第四象限角;当k 为偶数时,设k =2n ,n ∈Z ,则n ·360°+90°<α2<n ·360°+135°,n ∈Z ,此时α2为第二象限角.因此α2为第二象限角或第四象限角.区间角表示错误图1-1-2用角度表示顶点在原点上,始边与x 轴的非负半轴重合,终边落在图1-1-2所示的阴影区域内的角的集合(含边界).【错解】 因为区域起始、终边边界分别对应的角为300°和45°,所以它表示的角的集合为{α|k ·360°+300°≤α≤k ·360°+45°,k ∈Z }.【错因分析】 因为45°≤300°,所以上式是错误的,由于没有弄清角的大小而造成了错误,出现了矛盾不等式.【防范措施】 表示区间角时,应先按逆时针方向,确定在(0°,360°)范围内区间的起始边界与终止边界所对应的角α,β(α<β),再在所得到的范围{x |α<x <β}两边加上k ·360°,即得区域角的集合{x |k ·360°+α<x <k ·360°+β,k ∈Z }.【正解】 由题意可知300°角与-60°角的终边相同,所以它表示的角的集合为{α|k ·360°-60°≤α≤k ·360°+45°,k ∈Z }.1.对角的概念的理解关键是抓住“旋转”二字: (1)要明确旋转的方向; (2)要明确旋转的大小;(3)要明确射线未作任何旋转时的位置.2.在运用终边相同的角时,需注意以下几点:(1)k是整数,这个条件不能漏掉;(2)α是任意角;(3)k·360°与α之间用“+”连结,如k·360°-30°应看成k·360°+(-30°)(k ∈Z);(4)终边相同的角不一定相等,但相等的角的终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.1.把一条射线绕着端点按顺时针方向旋转240°所形成的角是________.【解析】一条射线绕着端点按顺时针方向旋转所形成的角是负角,且旋转了240°,故填-240°.【答案】-240°2.在148°,475°,-960°,-1 601°,-185°这五个角中,属于第二象限角的个数是________.【解析】148°显然是第二象限角.而475°=360°+115°,-960°=-3×360°+120°,-185°=-360°+175°,都是第二象限角,而-1 601°=-5×360°+199°,不是第二象限角.【答案】 43.若角α=2 008°,则与角α具有相同终边的最小正角为________,最大负角为________.【解析】∵2 008°=5×360°+208°,∴与2 008°角终边相同的角的集合为{α|α=208°+k·360°,k∈Z},∴最小正角是208°,最大负角是-152°.【答案】208°-152°4.求0°~360°范围内与-30°终边相同的角.【解】与-30°角终边相同的角为k·360°-30°,k∈Z,取k=1,得1×360°-30°=330°,0°≤330°<360°,因此所求角为330°.一、填空题1.(2013·泰安高一检测)钟表经过4小时,时针转过的度数为________,分针转过的度数为________.【解析】 分针和时针均按顺时针方向旋转,其中分针连续转过4周,时针转过13周.【答案】 -120° -1 440° 2.543°是第________象限角.【解析】 543°=183°+360°,又183°是第三象限角,故543°也是第三象限角. 【答案】 三3.与405°终边相同的角的集合为________. 【解析】 405°-360°=45°,故与405°角终边相同的角可表示为k ·360°+45°,k ∈Z .【答案】 {α|α=k ·360°+45°,k ∈Z }4.(2013·南京高一检测)已知角α=-3 000°,则与α终边相同的最小正角是________.【解析】 与α终边相同的角的集合为{θ|θ=-3 000°+k ·360°,k ∈Z },与θ终边相同的最小正角是当k =9时,θ=-3 000°+9×360°=240°.所以与α终边相同的最小正角为240°.【答案】 240°5.若α是第二象限角,则180°-α是第________象限角.【解析】 因为α是第二象限角,所以k ·360°+90°<α<k ·360°+180°,k ∈Z ,所以k ·360°<180°-α<k ·360°+90°,k ∈Z ,所以180°-α是第一象限角.【答案】 一6.(2013·曲阜师大附中检测)在-720°~720°内与-1 050°角终边相同的角是________.【解析】 与-1 050°终边相同的角可表示为k ·360°-1 050°(k ∈Z ), k =1时,1×360°-1 050°=-690°, k =2时,2×360°-1 050°=-330°, k =3时,3×360°-1 050°=30°, k =4时,4×360°-1 050°=390°.【答案】 -690°或-330°或30°或390°7.在-360°~0°内与160°角终边相同的角是________.【解析】 与160°角终边相同的角α=k ·360°+160°,k ∈Z . ∵-360°≤α<0°,∴取k =-1,得α=-360°+160°=-200°.故在-360°~0°内与160°角终边相同的角是-200°. 【答案】 -200°8.若角α和角β的终边关于x 轴对称,则角α可以用角β表示为________. 【解析】 ∵角α和角β的终边关于x 轴对称,∴α+β=k ·360°(k ∈Z ).∴α=k ·360°-β(k ∈Z ).【答案】 k ·360°-β(k ∈Z ) 二、解答题9.写出终边在如图1-1-3所示阴影部分(包括边界)的角的集合.图1-1-3【解】 先写出边界角,再按逆时针顺序写出区域角,则 (1){α|30°+k ·360°≤α≤150°+k ·360°,k ∈Z }; (2){α|-210°+k ·360°≤α≤30°+k ·360°,k ∈Z }.10.写出与15°角终边相同的角的集合,并求该集合中满足不等式-1 080°≤β<720°的元素β.【解】 与15°角终边相同的角的集合为S ={β|β=15°+k ·360°,k ∈Z },其中,满足-1 080°≤β<720°的元素有:k =-3时,β=-1 065°;k =-2时,β=-705°;k =-1时,β=-345°;k =0时,β=15°;k =1时,β=375°,∴集合中满足条件的元素β有-1 065°,-705°,-345°,15°,375°.11.在角的集合{α|α=k ·90°+45°(k ∈Z )}中: (1)有几种终边不相同的角?(2)有几个大于-360°且小于360°的角? (3)写出其中是第二象限的角的一般表示法.【解】 (1)当k =4n,4n +1,4n +2,4n +3,n ∈Z 时,在给定的角的集合中终边不相同的角共有四种.(2)由-360°<k ·90°+45°<360°,得-92<k <72.又k ∈Z ,故k =-4,-3,-2,-1,0,1,2,3.∴在给定的角集合中大于-360°且小于360°的角共有8个. (3)其中是第二象限的角可表示成k ·360°+135°,k ∈Z .(教师用书独具)已知角α的终边在如图所示的阴影部分所表示的范围内,求角α的取值范围. 【思路探究】 先在-180°~180°范围内找出终边落在阴影内的角,然后写出角的集合(注意边界).【自主解答】 当角α的终边落在阴影的上半部分时, α∈{α|k ·360°+30°<α≤k ·360°+150°,k ∈Z }, 当角α的终边落在阴影的下半部分时,α∈{α|k ·360°-150°<α≤k ·360°-30°,k ∈Z }.由此可知满足题意的角α为{α|k ·180°+30°<α≤k ·180°+150°,k ∈Z }.1.角的终边为虚线,则不等式中应不带“=”号.2.本题实质上是求两个范围内角的并集,应注意化简为最简结果.如图所示,写出终边落在阴影部分(包括边界)的角的集合为________.【解析】与-30°角终边在一条直线上的角的集合为S1={α|α=-30°+k·180°,k∈Z}={α|α=150°+k·180°,k∈Z}.与45°+90°=135°角终边在同一直线上的角的集合为S2={β|β=135°+k·180°,k∈Z},从而图中阴影部分的角的取值集合为{α|135°+k·180°≤α≤150°+k·180°,k∈Z}.【答案】{α|135°+k·180°≤α≤150°+k·180°,k∈Z}。

2013高中新课程数学必修四教案任意角第01课时《任意角》(苏教版)

2013高中新课程数学必修四教案任意角第01课时《任意角》(苏教版)

问题1、初中,我们已经学习了︒0到︒360的角,它是怎样定义的?问题2、体操,跳水中,有“转体︒720”,“翻腾两周半”这样的动作名称,那︒720是怎样的一个角?1、正角、负角、零角的概念2、象限角、轴线角3、终边相同角的集合练习1、作出角︒390 ,︒30,︒-330,︒750,这些角之间有何关系?结论:一般地,与角α终边相同角的集合为{}Z ∈+︒⋅=k k ,360|αββ例题剖析例1、在︒0到︒360范围内,找出与下列各角终边相同的角,并分别判断它们是第几象限角:(1)︒650 (2)︒-150 (3)'15990︒-例2、已知α与︒240角的终边相同,判断2α是第几象限角。

思考:(1)终边落在x 轴正半轴上的角的集合如何表示?终边落在x 轴上的角的集合如何表示?(2)终边落在坐标轴上的角的集合如何表示?(3)若α是第三象限角,则2α是第几象限角?巩固练习1、下列命题中正确的是( )A 、第一象限角一定不是负角B 、小于︒90的角一定是锐角C 、钝角一定是第二象限角D 、第一象限角一定是锐角2、分别作出下列各角的终边,并指出它们是第几象限角:(1)︒330; (2)︒-200; (3)︒945; (4)︒-6503、在︒0到︒360范围内,找出与下列各角终边相同的角,并分别判断它们是第几象限角:(1)︒-55; (2)'8395︒; (3)︒15634、试求出与下列各角终边相同的最小正角和最大负角:(1)︒1140; (2)︒1680; (3)︒-1290; (4)︒-15105、若α是第四象限角,试分别确定α-,α+︒180,α-︒180是第几象限角。

课堂小结正角、负角、零角的概念,象限角的概念;终边相同的角的表示方法。

课后训练班级:高一( )班 姓名__________一、基础题1、以下四个命题中,是真命题的是( )A 、小于︒90的角是锐角B 、第二象限角是钝角C 、锐角是第一象限角D 、负角不可能是第一象限角2、设︒-=60α,则与角α终边相同的角可以表示为( )A 、)(36060Z ∈︒⋅+︒k kB 、)(360300Z ∈︒⋅+︒k kC 、)(36030Z ∈︒⋅+︒-k kD 、)(360120Z ∈︒⋅+︒k k3、若α是第三象限角,则α-是第 象限角,α-︒180是第 象限角。

高中数学:1.1.1《任意角》(苏教版必修四)

高中数学:1.1.1《任意角》(苏教版必修四)
整理课件
探索1:在坐标系中,我们把角的始边与X 轴的正半轴重合,给定一个角,这个角的 终边是 唯一确定的.
探索2:在坐标系中,把角的始边与X轴 的正半轴重合.如果给出任意一条射线 OB,那么以它为终边的角是否也是唯 一?如果不唯一,这些终边相同的角有 什么关系呢?
终边相同的角不一定相等, 但相等的角终边一定相同。
1.1.1 任意角
1.角的概念推广 2.象限角 3.终边相同的角
整理课件
1 观察:日常生活中经常见到0°到360°范
围以外的其他角
如:体操中“转体2周”即转体720°
“转体3周”即转体1080°
并且转体的方向也有顺时针与逆时针的不同.
再如:图中是两个齿轮的示意图 被动轮随着主动轮的旋转而旋转.
看来要想准确地描述这样大小方
整理课件
总结:在坐标系中
❖所有与角α终边相同的角,连同角 α在内,可构成一个集合 S={β|β=α+k·360°,k∈Z}
❖即任一与角α终边相同的角,都可 以表示成角α与整数个周角的和.
整理课件
例1 在0°~360°范围内,找出与-950°12’终边 相同的角,并判定它是第几象限的角.
解析:-950°12’=129°48’-3×360° 所以,在0°~360°范围内与-950°12’终边相同
s2={β|β=270°+k·360°, k∈Z}
于是,终边在y轴上的角的集合为s=s1∪s2
S={β|β=90°+n·180°, n∈Z}
整理课件
总结
❖ (1)在坐标系中,表示终边在某条直线上的角的 集合时,只要找出符合条件的一个特殊角α,然 后再加上k·180°,即K·180°+α, k∈Z,就 得所有符合条件的角.当然这个特殊角尽可能简 单,可以是0°~360°范围内的角,或者是绝 对值比较小的负角.

苏教版必修四“任意角”教学案例

苏教版必修四“任意角”教学案例

苏教版必修四“任意角”教学案例江苏省句容市第三中学 余东云一、内容和内容解析三角函数是基本初等函数,它是描述周期现象的重要数学模型。

角的概念的推广正是这一思想的体现之一,是初中相关知识的自然延续,为进一步研究角的和、差、倍、半关系提供了条件,也为今后学习向量、解析几何、复数等相关知识提供了有利的工具。

二、目标和目标解析1.结合实例体验角的概念推广的必要性;从运动的观点出发,进行角的概念推广,理解并掌握正角、负角、零角的定义。

2.能建立适当的坐标系来讨论任意角,理解象限角、轴线角的概念,并能用集合和数学符号表示。

3.能用集合和数学符号表示终边相同的角;能在0°~360°范围内找出终边相同的角,找到一个与已知角终边相同的角,并判断为第几象限的角。

4.在角的概念的推广的过程中,学会运用运动变化的观点认识事物;通过正角、负角、零角与正数、负数、零的类比,培养学生的类比思维能力;通过画图和判断角的象限及终边相同的角,培养学生数形结合的思想方法以及由特殊到一般的推理模式。

三、重难点和重难点解析1.本节课的重点是:任意角的概念,通过实例提出建立新概念的必要性。

2.本节课的教学难点是:把终边相同的角、象限角用集合和数学符号语言正确地表示出来。

四、教学手段分析借助信息技术工具(如:几何画板),制作课件。

五、教学过程设计(一)问题情境问题1:请同学回忆一下,在初中阶段我们是如何定义角这个平面图形的?【设计意图:回顾已有知识,为后面角的概念的推广做好对比和铺垫。

】师生活动:学生回答,教师可适当引导,结合教室看到的角加以阐释。

问题2:初中学习过哪些角?范围是什么?【设计意图:回顾已有知识,指出曾经研究角范围为0°~360°,引出超过360°的角。

】师生活动:问题简单,学生可以一起回答。

问题3:那现实生活中你听说过或者见过超过360°的角吗?【设计意图:结合具体的实例,让学生感受角的概念推广的必要性。

苏教版高中数学必修四任意角教案(2)(1)

苏教版高中数学必修四任意角教案(2)(1)

第 1 课时:§1.1.1 任意角【三维目标】:一、知识与技能1. 使学生理解任意角的概念,学会在平面内建立适当的坐标系来讨论任意角;2.能在00到0360范围内,找出一个与已知角终边相同的角,并判定其为第几象限角;3.能写出与任一已知角终边相同的角的集合二、过程与方法1.通过创设情境,类比初中所学的角的概念,从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;2.通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示;3.讲解例题,总结方法,巩固练习.三、情感、态度与价值观1. 通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分。

角的概念推广以后,知道角之间的关系.2.理解掌握终边相同角的表示方法,树立运动变化的观点,理解静是相对的,动是绝对的,学会运用运动变化的观点认识事物,并由此深刻理解推广后的角的概念.【教学重点、难点与关键】:重点:任意角的概念难点:把终边相同的角用集合和符号语言正确地表示出来;关键:理解终边相同的角的意义【学法与教学用具】:1.学法:在初中,我们知道最大的角是周角,最小的角是零角;通过回忆和类比初中所学角的概念,把角的概念进行了推广;角是一个平面图形,把角放入平面直角坐标系中以后,了解象限角的概念;通过角终边的旋转掌握终边相同角的表示方法;我们在学习这部分内容时,首先要弄清楚角的表示,以及正负角的表示,另外还有相同终边角的集合的表示等。

2. 教学用具:多媒体、实物投影仪、三角板、圆规.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题我们已经学习过一些角,如锐角、直角、钝角、平角、周角。

利用这些角,我们已能表示圆周上某些点P 。

但要表示圆周上周而复始地运动着的点,仅有这些角是不够的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 任意角(1)
一、课题:任意角(1)
二、教学目标:1.理解任意角的概念;
2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写。

三、教学重、难点:1.判断已知角所在象限;
2.终边相同的角的书写。

四、教学过程:
(一)复习引入:
1.初中所学角的概念。

2.实际生活中出现一系列关于角的问题。

(二)新课讲解:
1.角的定义:一条射线绕着它的端点O ,从起始位置OA 旋转到终止位置OB ,形成一个角α,点O 是角的顶点,射线,OA OB 分别是角α的终边、始边。

说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α.
2.角的分类:
正角:按逆时针方向旋转形成的角叫做正角;
负角:按顺时针方向旋转形成的角叫做负角;
零角:如果一条射线没有做任何旋转,我们称它为零角。

说明:零角的始边和终边重合。

3.象限角:
在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则
(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

例如:30,390,330- 都是第一象限角;300,60- 是第四象限角。

(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限。

例如:90,180,270 等等。

说明:角的始边“与x 轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”。

因为x 轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线。

4.终边相同的角的集合:由特殊角30 看出:所有与30 角终边相同的角,连同30 角自身在内,都可以写成30360
k +⋅ ()k Z ∈的形式;反之,所有形如30360k +⋅ ()k Z ∈的角都与30 角的终边相同。

从而得出一般规律:
所有与角α终边相同的角,连同角α在内,可构成一个集合
{}|360,S k k Z ββα==+⋅∈ ,
即:任一与角α终边相同的角,都可以表示成角α与整数个周角的和。

说明:终边相同的角不一定相等,相等的角终边一定相同。

5.例题分析:
例 1 在0 与360 范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?
(1)120- (2)640 (3)95012'-
解:(1)120240360-=- ,
所以,与120- 角终边相同的角是240 ,它是第三象限角;
(2)640280360=+ ,
所以,与640 角终边相同的角是280
角,它是第四象限角;
(3)95012129483360''-=-⨯ ,
所以,95012'- 角终边相同的角是12948'
角,它是第二象限角。

例2 若3601575,k k Z α=⋅-∈ ,试判断角α所在象限。

解:∵3601575(5)360225,k k α=⋅-=-⋅+ (5)k Z -∈
∴α与225
终边相同, 所以,α在第三象限。

例3 写出下列各边相同的角的集合S ,并把S 中适合不等式360720β-≤≤ 的元素β写出来: (1)60 ; (2)21- ; (3)36314'
. 解:(1){}
|60360,S k k Z ββ==+⋅∈ , S 中适合360720β-≤≤ 的元素是
601360300,
60036060,601360420.
-⨯=-+⨯=+⨯=
(2){}|21360,S k k Z ββ==-+⋅∈ ,
S 中适合360720β-≤≤
的元素是 21036021,
211360339,212260699-+⨯=--+⨯=-+⨯=
(3){}|36314360,S k k Z ββ'==+⋅∈
S 中适合360720β-≤≤ 的元素是
36314236035646,
363141360314,36314036036314.
''-⨯=-''-⨯=''+⨯=
四、课堂练习:
五、课堂小结:1.正角、负角、零角的定义;
2.象限角、非象限角的定义;
3.终边相同的角的集合的书写及意义。

六、作业:
补充:1.(1)写出与1840-
终边相同的角的集合M .
(2)若M α∈,且360,360α⎡⎤∈-⎣⎦ ,求α.。

相关文档
最新文档