高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析

合集下载

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
一、高中物理精讲专题测试动能与动能定理
1.如图所示,固定的粗糙弧形轨道下端B点水平,上端A与B点的高度差为h1=0.3 m,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C点到B点的高度差为h2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m=1 kg的滑块(可看作质点)从轨道的A点由静止滑下,然后从B点抛出,恰好以平行于传送带的速度从C点落到传送带上,传送带逆时针传动,速度大小为v=0.5 m/s,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g=10 m/s2,试求:

由功能关系可得:
(另解:两个过程A球发生的位移分别为 、 , ,由匀变速规律推论 ,根据电场力做功公式有: )
(3)对A球由平衡条件得到: , ,
从A开始运动到发生第一次碰撞:
从第一次碰撞到发生第二次碰撞:
点睛:本题是电场相关知识与动量守恒定律的综合,虽然A球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.
所以
B到C根据动能定理有

高考物理动能与动能定理解题技巧分析及练习题(含答案)及解析

高考物理动能与动能定理解题技巧分析及练习题(含答案)及解析

高考物理动能与动能定理解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。

高中物理动能与动能定理解题技巧分析及练习题(含答案)及解析

高中物理动能与动能定理解题技巧分析及练习题(含答案)及解析

高中物理动能与动能定理解题技巧分析及练习题(含答案)及解析高中物理动能与动能定理解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小;(3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04m /5m /cos370.8A v v s s ===?小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-?= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-?+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--?=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N (3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==?=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--?=- 代入数据解得:L =10m2.如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量0.04kg m =,电量4310C q -=?的带负电小物块与弹簧接触但不栓接,弹簧的弹性势能为0.32J 。

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
(2)等离子体由下方进入区域I后,在洛伦兹力的作用下偏转,当粒子受到的电场力等于洛伦兹力时,形成稳定的匀强电场,设等离子体的电荷量为q´,则q´E=q´v1B1,即:E=B1v1;正离子束经过区域I加速后,离开PQ的速度大小为v3,根据动能定理可知:qU= mv32- mv22,其中电压U=Ed=B1v1d
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
联立可得:v3= 。
(3)飞船方向调整前后,其速度合成矢量如图所示:
因此tan = ,离子喷出过程中,系统的动量守恒:M v=Nmv3,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N=
9.一质量为m=0.5kg的电动玩具车,从倾角为 =30°的长直轨道底端,由静止开始沿轨道向上运动,4s末功率达到最大值,之后保持该功率不变继续运动,运动的v-t图象如图所示,其中AB段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g=10m/s2.
(1)求在A处的正离子的速度大小v2;
(2)正离子经过区域I加速后,离开PQ的速度大小v3;
(3)在第(2)问中,假设航天器的总质量为M,正在以速度v沿MP方向运动,已知现在的运动方向与预定方向MN成 角,如图所示。为了使飞船回到预定的飞行方向MN,飞船启用推进器进行调整。如果沿垂直于飞船速度v的方向进行推进,且推进器工作时间极短,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N为多少?

高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析

高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析

高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='-联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-3.如图所示,倾角为θ=45°的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B ,整个轨道处在竖直平面内.一质量为m 的小滑块从导轨上离地面高为h=3R 的D 处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,不计空气阻力.求:(1)滑块运动到圆环最高点C 时的速度的大小; (2)滑块运动到圆环最低点时对圆环轨道压力的大小; (3)滑块在斜面轨道BD 间运动的过程中克服摩擦力做的功. 【答案】(1Rg 2)6mg (3)12mgR 【解析】 【分析】 【详解】(1)小滑块从C 点飞出来做平抛运动,水平速度为v 0,竖直方向上:,水平方向上:,解得(2)小滑块在最低点时速度为v C 由机械能守恒定律得牛顿第二定律:由牛顿第三定律得:,方向竖直向下(3)从D 到最低点过程中,设DB 过程中克服摩擦力做功W 1,由动能定理h=3R【点睛】对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低点运用牛顿第二定律求解.4.如图所示,质量m =2kg 的小物块从倾角θ=37°的光滑斜面上的A 点由静止开始下滑,经过B 点后进入粗糙水平面,已知AB 长度为3m ,斜面末端B 处与粗糙水平面平滑连接.试求:(1)小物块滑到B 点时的速度大小.(2)若小物块从A 点开始运动到C 点停下,一共经历时间t =2.5s ,求BC 的距离. (3)上问中,小物块与水平面的动摩擦因数μ多大?(4)若在小物块上始终施加一个水平向左的恒力F ,小物块从A 点由静止出发,沿ABC 路径运动到C 点左侧3.1m 处的D 点停下.求F 的大小.(sin37°=0.6,cos37°=0.8 ) 【答案】(1)6m/s (2)1.5s (3)0.4μ=(4) 2.48N F = 【解析】 【详解】(1)根据机械能守恒得:21sin 372AB B mgs mv ︒=解得:6m/s B v ===;(2)物块在斜面上的加速度为:21sin 6m/s a g θ==在斜面上有:2112AB s a t =代入数据解得:11s t =物块在BC 段的运动时间为:21 1.5s t t t =-=BC 段的位移为:21(0) 4.5m 2BC B s v t =+=(3)在水平面上,有:220B v a t =﹣解得:2224m/s Bv a t -==-. 根据牛顿第二定律有:2mg ma μ=﹣代入数据解得:0.4μ=.(4)从A 到D 的过程,根据动能定理得:()sin cos 0AB BD AB BD mgs F s s mgs θθμ++-=代入数据解得:2.48N F = 【点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力.5.如图甲所示为某一玩具汽车的轨道,其部分轨道可抽象为图乙的模型.AB 和BD 为两段水平直轨道,竖直圆轨道与水平直轨道相切于B 点,D 点为水平直轨道与水平半圆轨道的切点.在某次游戏过程中,通过摇控装置使静止在A 点的小车以额定功率启动,当小车运动到B 点时关闭发动机并不再开启,测得小车运动到最高点C 时对轨道的压力大小5.6N N F =,小车通过水平半圆轨道时速率恒定.小车可视为质点,质量400g m =,额定功率20W P =,AB 长1m l =,BD 长0.75m s =,竖直圆轨道半径25cm R =,水平半圆轨道半径10cm r =.小车在两段水平直轨道所受的阻力大小均为4N f =,在竖直圆轨道和水平半圆轨道所受的阻力均忽略不计,重力加速度取210m/s g =.求:(1)小车运动到C 点时的速度大小; (2)小车在BD 段运动的时间; (3)水平半圆轨道对小车的作用力大小;(4)要使小车能通过水平半圆轨道,发动机开启的最短时间. 【答案】(16m/s ;(2)0.3s ;(3)42N .;(4)0.35s . 【解析】 【详解】(1)由小车在C 点受力得:2N c v F mg m R+=解得:6m/s C v =(2)从C 点到B 点,由动能定理得:2211222B C mgR mv mv =-解得:4m/s B v =小车在BD 段运动的加速度大小为:210m/s fa m== 由运动学公式:212B s v t at =-解得:0.3s t =(3)从B 点到D 点,由运动学公式:D B v v at =-,解得:1m/s D v =小车在水平半圆轨道所需的向心力大小:2Dn v F m r=,代入数据可得:4N n F =()222n F F mg =+水平半圆轨道对小车的作用力大小为:F =.(4)设小车恰能到C 点时的速度为1v ,对应发动机开启的时间为1t ,则:21v mg m R=211122Pt fl mgR mv --=解得10.325s t =.在此情况下从C 点到D 点,由动能定理得:211222D C mgR Fs mv mv -=- 解得22.5D v =-即小车无法到达D 点.设小车恰能到D 点时对应发动机开启的时间为2t ,则有:()20Pt f l s -+=,解得20.35s t =.6.如图所示,在倾角为θ=37°的斜面底端有一个固定挡板D ,处于自然长度的轻质弹簧一端固定在挡板上,另一端在O 点,已知斜面OD 部分光滑,PO 部分粗糙且长度L =8m 。

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在水平轨道右侧固定半径为R 的竖直圆槽形光滑轨道,水平轨道的PQ 段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在A点用一弹射装置可将静止的小滑块以v0水平速度弹射出去,沿水平直线轨道运动到B点后,进入半径R=0.3m 的光滑竖直圆形轨道,运行一周后自 B点向C点运动,C点右侧有一陷阱,C、D两点的竖直高度差h=0.2m,水平距离s=0.6m,水平轨道AB长为L1=1m,BC长为 L2 =2.6m,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥3.如图所示,半径为R 1=1.8 m 的14光滑圆弧与半径为R 2=0.3 m 的半圆光滑细管平滑连接并固定,光滑水平地面上紧靠管口有一长度为L =2.0 m 、质量为M =1.5 kg 的木板,木板上表面正好与管口底部相切,处在同一水平线上,木板的左方有一足够长的台阶,其高度正好与木板相同.现在让质量为m 2=2 kg 的物块静止于B 处,质量为m 1=1 kg 的物块从光滑圆弧顶部的A 处由静止释放,物块m 1下滑至B 处和m 2碰撞后不再分开,整体设为物块m (m =m 1+m 2).物块m 穿过半圆管底部C 处滑上木板使其从静止开始向左运动,当木板速度为2 m/s 时,木板与台阶碰撞立即被粘住(即速度变为零),若g =10 m/s 2,物块碰撞前后均可视为质点,圆管粗细不计.(1)求物块m 1和m 2碰撞过程中损失的机械能; (2)求物块m 滑到半圆管底部C 处时所受支持力大小;(3)若物块m 与木板及台阶表面间的动摩擦因数均为μ=0.25,求物块m 在台阶表面上滑行的最大距离.【答案】⑴12J ⑵190N ⑶0.8m 【解析】试题分析:(1)选由机械能守恒求出物块1m 下滑到B 点时的速度;1m 、2m 碰撞满足动量守恒,由221B 1122E m v mv =-共机求出碰撞过程中损失的机械能;(2)物块m 由B 到C 满足机械能守恒,在C 点由牛顿第二定律可求出物块m 滑到半圆管底部C 处时所受支持力大小;(3)根据动量守恒定律和动能定理列式即可求解. ⑴设物块1m 下滑到B 点时的速度为B v ,由机械能守恒可得:2111B 12m gR m v =解得:B 6/v m s =1m 、2m 碰撞满足动量守恒:1B 12()m v m m v =+共解得;2/v m s 共=则碰撞过程中损失的机械能为:221B 111222E m v mv J =-=共机 ⑵物块m 由B 到C 满足机械能守恒:222C 11222mv mg R mv 共+⨯= 解得:C 4/v m s =在C 处由牛顿第二运动定律可得:2CN 2v F mg m R -=解得:N 190F N =⑶设物块m 滑上木板后,当木板速度为22/v m s =时,物块速度为1v , 由动量守恒定律得:C 12mv mv Mv =+ 解得:13/v m s =设在此过程中物块运动的位移为1x ,木板运动的位移为2x ,由动能定理得: 对物块m :2211C 1122mgx mv mv μ-=- 解得:1 1.4x m = 对木板M :22212mgx Mv μ= 解得:20.4x m =此时木板静止,物块m 到木板左端的距离为:3211x L x x m =+-= 设物块m 在台阶上运动的最大距离为4x ,由动能定理得:23411()02mg x x mv μ-+=-解得:40.8x m =4.如图所示,在竖直平面内的光滑固定轨道由四分之一圆弧AB 和二分之一圆弧BC 组成,两者在最低点B 平滑连接.过BC 圆弧的圆心O 有厚度不计的水平挡板和竖直挡板各一块,挡板与圆弧轨道之间有宽度很小的缝隙.AB 弧的半径为2R ,BC 弧的半径为R .一直径略小于缝宽的小球在A 点正上方与A 相距23R处由静止开始自由下落,经A 点沿圆弧轨道运动.不考虑小球撞到挡板以后的反弹. (1)通过计算判断小球能否沿轨道运动到C 点.(2)若小球能到达C 点,求小球在B 、C 两点的动能之比;若小球不能到达C 点,请求出小球至少从距A 点多高处由静止开始自由下落才能够到达C 点.(3)使小球从A 点正上方不同高度处自由落下进入轨道,小球在水平挡板上的落点到O 点的距离x 会随小球开始下落时离A 点的高度h 而变化,请在图中画出x 2­h 图象.(写出计算过程)【答案】(1)13mg (2) 4∶1 (3)过程见解析【解析】 【详解】(1)若小球能沿轨道运动到C 点,小球在C 点所受轨道的正压力N 应满足N ≥0 设小球的质量为m ,在C 点的速度大小为v C ,由牛顿运动定律和向心加速度公式有N +mg =2C mv R小球由开始下落至运动到C 点过程中,机械能守恒,有22132C mgR mv = 由两式可知N =13mg 小球可以沿轨道运动到C 点.(2)小球在C 点的动能为E k C ,由机械能守恒得E k C =23mgR设小球在B 点的动能为E k B ,同理有E k B =83mgR得E k B ∶E k C =4∶1.(3)小球自由落下,经ABC 圆弧轨道到达C 点后做平抛运动。

高中物理动能与动能定理及其解题技巧及练习题(含答案)

高中物理动能与动能定理及其解题技巧及练习题(含答案)

高中物理动能与动能定理及其解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o 有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =3.如图所示,质量为m=1kg 的滑块,在水平力F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v 0=3m/s ,长为L=1.4m ,今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s 2.求(1)水平作用力F 的大小; (2)滑块开始下滑的高度h ;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s ,求滑块在传送带上滑行的整个过程中产生的热量Q . 【答案】(1) (2)0.1 m 或0.8 m (3)0.5 J【解析】 【分析】 【详解】解:(1)滑块受到水平推力F 、重力mg 和支持力F N 处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t,则t时间内传送带的位移:s=v0t由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩相对滑动生成的热量⑪⑫4.如图所示,光滑水平平台AB与竖直光滑半圆轨道AC平滑连接,C点切线水平,长为L=4m的粗糙水平传送带BD与平台无缝对接。

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析

高中物理动能与动能定理常有题型及答题技巧及练习题( 含答案 ) 及分析 (1)一、高中物理精讲专题测试动能与动能定理1.以下图,两物块A、 B 并排静置于高h=0.80m 的圆滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg的子弹 C 以v0=100m/s的水平速度从左面射入A,子弹射穿A 后接着射入 B 并留在 B 中,此时A、 B 都没有走开桌面.已知物块 A 的长度为0.27m, A 走开桌面后,落地址到桌边的水平距离s=2.0m.设子弹在物块A、 B 中穿行时遇到的阻力大小相等,g 取10m/s 2. (平抛过程中物块当作质点)求:(1)物块 A 和物块 B 走开桌面时速度的大小分别是多少;(2)子弹在物块 B 中打入的深度;(3)若使子弹在物块 B 中穿行时物块 B 未走开桌面,则物块 B 到桌边的最小初始距离.【答案】( 1) 5m/s ;10m/s ;( 2)L B 3.5 10 2 m (3)2.5 102m【分析】【剖析】【详解】试题剖析: (1)子弹射穿物块 A 后, A 以速度 v A沿桌面水平向右匀速运动,走开桌面后做平抛运动:h 1gt 2解得:t=0.40s 2A 走开桌边的速度v A s,解得: v A=5.0m/s t设子弹射入物块 B 后,子弹与 B 的共同速度为v B,子弹与两物块作用过程系统动量守恒:mv0 Mv A ( M m)v BB 走开桌边的速度v =10m/sB(2)设子弹走开 A 时的速度为v1,子弹与物块 A 作用过程系统动量守恒:mv0mv12Mv Av1=40m/s子弹在物块 B 中穿行的过程中,由能量守恒fL 1Mv21 mv21(M m)v2①B2A212B 子弹在物块 A 中穿行的过程中,由能量守恒fL A 1mv021mv121( M M )v A2②222由①② 解得 L B 3.5 10 2 m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:fs1(MM )v 2 0 ③1 2A子弹在物块 B 中穿行过程中,物块 B 在水平桌面上的位移为s 2,由动能定理fs 21Mv B21Mv A 2 ④22由②③④解得物块 B 到桌边的最小距离为: s min s 1 s 2 ,解得: s min2.5 10 2 m考点:平抛运动;动量守恒定律;能量守恒定律.2. 以下图,在娱乐节目中,一质量为 m =60 kg 的选手以 v 0= 7 m/s 的水平速度抓住竖直绳下端的抓手开始摇动,当绳摆到与竖直方向夹角 θ= 37°时,选手松开抓手,放手后的上升过程中选手水平速度保持不变,运动到水平传递带左端A 时速度恰巧水平,并在传递带上滑行,传递带以 v =2 m/s 匀速向右运动.已知绳索的悬挂点到抓手的距离为 L = 6 m ,传 送带两头点 A 、B 间的距离 s = 7 m ,选手与传递带间的动摩擦因数为μ= 0.2 ,若把选手看成质点,且不考虑空气阻力和绳的质量.(g = 10 m/s 2, sin 37 = 0°.6, cos 37 =°0.8)求:(1)选手松开抓手时的速度大小; (2)选手在传递带上从A 运动到B 的时间;(3)选手在传递带上战胜摩擦力做的功. 【答案】 (1)5 m/s (2)3 s (3)360 J【分析】试题剖析:( 1)设选手松开抓手时的速度为 v 1,则- mg (L - Lcos θ)= mv 12 - mv 0 2,v 1= 5m/s(2)设选手松开抓手时的水平速度为 v 2, v 2= v 1cos θ①选手在传递带上减速过程中a =- μg ② v = v 2+ at 1③④匀速运动的时间 t 2, s - x 1= vt 2⑤选手在传递带上的运动时间 t = t 1+ t 2⑥联立 ①②③④⑤⑥ 得: t = 3s(3)由动能定理得W f = mv 2- mv 22,解得: W f =- 360J故战胜摩擦力做功为360J .考点:动能定理的应用3.以下图,竖直平面内有一固定的圆滑轨道ABCD AB是足够长的水平轨道,B端,此中与半径为 R 的圆滑半圆轨道 BCD 光滑相切连结,半圆的直径BD 竖直, C 点与圆心 O 等高.现有一质量为 m 的小球 Q 静止在 B 点,另一质量为 2m 的小球 P 沿轨道 AB 向右匀速运动并与Q 发生对心碰撞,碰撞后瞬时小球 Q 对半圆轨道 B 点的压力大小为自己重力的 7 倍,碰撞后小球P 恰巧抵达 C 点.重力加快度为 g.(1)求碰撞前小球P 的速度大小;(2)求小球Q 走开半圆轨道后落回水平面上的地点与 B 点之间的距离;(3)若只调理圆滑半圆轨道 BCD半径大小,求小球 Q 走开半圆轨道 D 点后落回水平面上的地点与 B 点之间的距离最大时,所对应的轨道半径是多少?【答案】(1)(2)(3)【分析】【剖析】【详解】设小球 Q 在 B 处的支持力为;碰后小球 Q 的速度为,小球 P 的速度为;碰前小球 P 的速度为;小球 Q 抵达 D 点的速度为 .(1)由牛顿第三定律得小球Q 在 B 点碰后小球Q 在 B 点由牛顿第二定律得:碰后小球P 恰巧到 C 点,由动能定理得:P、Q 对心碰撞,由动量守恒得:联立解得 :(2)小球 Q 从 B 到 D 的过程中,由动能定理得:解得,所以小球Q 能够抵达 D 点由平抛运动规律有:联立解得(3)联立解得 :当时 x 有最大值所以【点睛】解决此题时要抓住弹簧的形变量相等时弹性势能相等这一隐含的条件,正确剖析能量是怎样转变,分段运用能量守恒定律列式是重点.4.以下图,斜面高为h,水平面上D、C 两点距离为L。

高考物理动能与动能定理解题技巧分析及练习题(含答案)

高考物理动能与动能定理解题技巧分析及练习题(含答案)

高考物理动能与动能定理解题技巧分析及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =2.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s =的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得: -μ1mgL =12mv 2-1220mv解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2 解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.3.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离.【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.4.如图所示,倾角为θ=45°的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B ,整个轨道处在竖直平面内.一质量为m 的小滑块从导轨上离地面高为h=3R 的D 处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,不计空气阻力.求:(1)滑块运动到圆环最高点C 时的速度的大小; (2)滑块运动到圆环最低点时对圆环轨道压力的大小; (3)滑块在斜面轨道BD 间运动的过程中克服摩擦力做的功. 【答案】(1)Rg (2)6mg (3)12mgR 【解析】 【分析】 【详解】(1)小滑块从C 点飞出来做平抛运动,水平速度为v 0,竖直方向上:,水平方向上:,解得(2)小滑块在最低点时速度为v C 由机械能守恒定律得牛顿第二定律:由牛顿第三定律得:,方向竖直向下(3)从D 到最低点过程中,设DB 过程中克服摩擦力做功W 1,由动能定理h=3R【点睛】对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低点运用牛顿第二定律求解.5.如图所示,质量m =2kg 的小物块从倾角θ=37°的光滑斜面上的A 点由静止开始下滑,经过B 点后进入粗糙水平面,已知AB 长度为3m ,斜面末端B 处与粗糙水平面平滑连接.试求:(1)小物块滑到B 点时的速度大小.(2)若小物块从A 点开始运动到C 点停下,一共经历时间t =2.5s ,求BC 的距离. (3)上问中,小物块与水平面的动摩擦因数μ多大?(4)若在小物块上始终施加一个水平向左的恒力F ,小物块从A 点由静止出发,沿ABC 路径运动到C 点左侧3.1m 处的D 点停下.求F 的大小.(sin37°=0.6,cos37°=0.8 ) 【答案】(1)6m/s (2)1.5s (3)0.4μ=(4) 2.48N F = 【解析】 【详解】(1)根据机械能守恒得:21sin 372AB B mgs mv ︒=解得:2sin3721030.6m/s 6m/s B AB v gs =︒=⨯⨯⨯=;(2)物块在斜面上的加速度为:21sin 6m/s a g θ==在斜面上有:2112AB s a t =代入数据解得:11s t =物块在BC 段的运动时间为:21 1.5s t t t =-=BC 段的位移为:21(0) 4.5m 2BC B s v t =+=(3)在水平面上,有:220B v a t =﹣解得:2224m/s Bv a t -==-. 根据牛顿第二定律有:2mg ma μ=﹣代入数据解得:0.4μ=.(4)从A 到D 的过程,根据动能定理得:()sin cos 0AB BD AB BD mgs F s s mgs θθμ++-=代入数据解得:2.48N F = 【点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力.6.如图所示,水平轨道的左端与固定的光滑竖直圆轨道相切于点,右端与一倾角为的光滑斜面轨道在点平滑连接(即物体经过点时速度的大小不变),斜面顶端固定一轻质弹簧,一质量为的滑块从圆弧轨道的顶端点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压缩至点,已知光滑圆轨道的半径,水平轨道长为,其动摩擦因数,光滑斜面轨道上长为,取,求(1)滑块第一次经过圆轨道上点时对轨道的压力大小;(2)整个过程中弹簧具有最大的弹性势能;(3)滑块在水平轨道上运动的总时间及滑块几次经过点.【答案】(1) (2) (3) 3次【解析】本题考查机械能与曲线运动相结合的问题,需运用动能定理、牛顿运动定律、运动学公式、功能关系等知识。

高中物理动能与动能定理解题技巧及练习题(含答案)

高中物理动能与动能定理解题技巧及练习题(含答案)
(2)根据动能定理得: 代入数据解得:
根据牛顿第二定律得:
解得:
,方向向下
根据牛顿第三定律得,小球对轨道最高点的压力大小为 20N,方向向上.
【点睛】
本题考查了动能定理、动量守恒定律、牛顿第二定律的综合,涉及到平抛运动、圆周运
动,综合性较强,关键要理清过程,选择合适的规律进行求解.
7.如图所示,一长度 LAB=4.98m,倾角 θ=30°的光滑斜面 AB 和一固定粗糙水平台 BC 平 滑连接,水平台长度 LBC=0.4m,离地面高度 H=1.4m,在 C 处有一挡板,小物块与挡板 碰撞后原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内。在斜面顶 端 A 处静止释放质量为 m="2kg" 的小物块(可视为质点),忽略空气阻力,小物块与 BC 间的动摩擦因素 μ=0.1,g 取 10m/s2。问:
减速运动;根据动能定理有:

解得:

(3)设滑块在传送带上运动的时间为 t,则 t 时间内传送带的位移:s=v0t
由机械能守恒有:

⑨ 滑块相对传送带滑动的位移 相对滑动生成的热量

⑩ ⑪
4.如图所示,在娱乐节目中,一质量为 m=60 kg 的选手以 v0=7 m/s 的水平速度抓住竖直 绳下端的抓手开始摆动,当绳摆到与竖直方向夹角 θ=37°时,选手放开抓手,松手后的上 升过程中选手水平速度保持不变,运动到水平传送带左端 A 时速度刚好水平,并在传送带 上滑行,传送带以 v=2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为 L=6 m,传 送带两端点 A、B 间的距离 s=7 m,选手与传送带间的动摩擦因数为 μ=0.2,若把选手看 成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:

高考物理动能与动能定理解题技巧讲解及练习题(含答案)及解析

高考物理动能与动能定理解题技巧讲解及练习题(含答案)及解析

高考物理动能与动能定理解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。

一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。

已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。

(1)求滑块第一次运动到B 点时对轨道的压力。

(2)求滑块在粗糙斜面上向上滑行的最大距离。

(3)通过计算判断滑块从斜面上返回后能否滑出A 点。

【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】(1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有()212B mg h R mv +=那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且()2N 270N B mg h R mv F mg mg R R+=+=+=故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。

(2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得cos37sin37cos370mg h R R L mgL μ+-︒-︒-︒=()所以1.2m L =(3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得()212cos370.542B mv mg h R mgL mg mgR μ'=+-︒=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。

【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

高中物理动能与动能定理解题技巧讲解及练习题含答案.doc

高中物理动能与动能定理解题技巧讲解及练习题含答案.doc

高中物理动能与动能定理解题技巧讲解及练习题( 含答案 )一、高中物理精讲专题测试动能与动能定理1.如图所示,质量为m=1kg 的滑块,在水平力 F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v0=3m/s ,长为 L=1.4m,今将水平力撤去,当滑块滑到传送带右端 C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s 2.求(1)水平作用力 F 的大小;(2)滑块开始下滑的高度h;(3)在第 (2)问中若滑块滑上传送带时速度大于3m/s ,求滑块在传送带上滑行的整个过程中产生的热量Q.【答案】 (1)(2)0.1 m 或 0.8 m (3)0.5 J【解析】【分析】【详解】解:( 1)滑块受到水平推力F、重力 mg 和支持力F N处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h 处下滑,到达斜面底端速度为v 下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t,则 t 时间内传送带的位移:s=v0t由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩相对滑动生成的热量??2.如图所示,小滑块(视为质点)的质量m= 1kg AB的倾角;固定在地面上的斜面=37 °、长 s=1m ,点 A 和斜面最低点B 之间铺了一层均质特殊材料,其与滑块间的动摩擦因数μ可在 0≤μ≤1.5之间调节。

点B与水平光滑地面平滑相连,地面上有一根自然状态下的轻弹簧一端固定在O 点另一端恰好在 B 点。

认为滑块通过点 B 前、后速度大小不变;最大静摩擦力等于滑动摩擦力。

高考物理高考物理动能与动能定理答题技巧及练习题(含答案)

高考物理高考物理动能与动能定理答题技巧及练习题(含答案)

高考物理高考物理动能与动能定理答题技巧及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =2.某小型设备工厂采用如图所示的传送带传送工件。

高考物理动能与动能定理解题技巧(超强)及练习题(含答案)

高考物理动能与动能定理解题技巧(超强)及练习题(含答案)

高考物理动能与动能定理解题技巧(超强)及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.某小型设备工厂采用如图所示的传送带传送工件。

传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。

工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。

传送带长度为6m =L ,不计空气阻力。

(工件可视为质点,sin370.6︒=,cos370.8︒=,210m /s g =)求:(1)若工人某次只把一个工件轻放至A 点,则传送带将其由最低点A 传至B 点电动机需额外多输出多少电能?(2)若工人每隔1秒将一个工件轻放至A 点,在传送带长时间连续工作的过程中,电动机额外做功的平均功率是多少?【答案】(1)104J ;(2)104W 【解析】 【详解】 (1)对工件cos sin mg mg ma μθθ-=22v ax =1v at =12s t =得2m x =12x vt x ==带 2m x x x =-=相带由能量守恒定律p k E Q E E =+∆+∆电即21cos sin 2E mg x mgL mv μθθ=⋅++电相代入数据得104J E =电(2)由题意判断,每1s 放一个工件,传送带上共两个工件匀加速,每个工件先匀加速后匀速运动,与带共速后工件可与传送带相对静止一起匀速运动。

匀速运动的相邻的两个工件间距为2m x v t ∆=∆=L x n x -=∆得2n =所以,传送带上总有两个工件匀加速,两个工件匀速 则传送带所受摩擦力为2cos 2sin f mg mg μθθ=+电动机因传送工件额外做功功率为104W P fv ==2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。

A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。

高一物理必修2动能和动能定理--知识讲解有答案

高一物理必修2动能和动能定理--知识讲解有答案

动能和动能定理要点二、动能、动能的改变要点诠释:1.动能:(1)概念:物体由于运动而具有的能叫动能.物体的动能等于物体的质量与物体速度的二次方的乘积的一半.(2)定义式:212k E mv =,v 是瞬时速度. (3)单位:焦(J ).(4)动能概念的理解.①动能是标量,且只有正值.②动能具有瞬时性,在某一时刻,物体具有一定的速度,也就具有一定的动能.③动能具有相对性,对不同的参考系,物体速度有不同的瞬时值,也就具有不同的动能,一般都以地面为参考系研究物体的运动.2.动能的变化:动能只有正值,没有负值,但动能的变化却有正有负.“变化”是指末状态的物理量减去初状态的物理量.动能的变化量为正值,表示物体的动能增加了,对应于合力对物体做正功;动能的变化量为负值,表示物体的动能减小了,对应于合力对物体做负功,或者说物体克服合力做功.要点三、动能定理要点诠释:(1)内容表述:外力对物体所做的总功等于物体功能的变化.(2)表达式:21k k W E E =-,W 是外力所做的总功,1k E 、2k E 分别为初、末状态的动能.若初、末速度分别为v 1、v 2,则12112k E mv =,22212k E mv =. (3)物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化.变化的大小由做功的多少来量度.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程.等号的意义是一种因果关系的数值上相等的符号,并不意味着“功就是动能增量”,也不是“功转变成动能”,而是“功引起物体动能的变化”.(4)动能定理的理解及应用要点.动能定理虽然可根据牛顿定律和运动学方程推出,但定理本身的意义及应用却具有广泛性和普遍性. ①动能定理既适用于恒力作用过程,也适用于变力作用过程.②动能定理既适用于物体做直线运动情况,也适用于物体做曲线运动情况.③动能定理的研究对象既可以是单个物体,也可以是几个物体所组成的一个系统.④动能定理的研究过程既可以是针对运动过程中的某个具体过程,也可以是针对运动的全过程. ⑤动能定理的计算式为标量式,v 为相对同一参考系的速度.⑥在21k k W E E =-中,W 为物体所受所有外力对物体所做功的代数和,正功取正值计算,负功取负值计算;21k k E E -为动能的增量,即为末状态的动能与初状态的动能之差,而与物体运动过程无关.要点四、应用动能定理解题的基本思路和应用技巧要点诠释:1.应用动能定理解题的基本思路(1)选取研究对象及运动过程;(2)分析研究对象的受力情况及各力对物体的做功情况:受哪些力?哪些力做了功?正功还是负功?然后写出各力做功的表达式并求其代数和;(3)明确研究对象所历经运动过程的初、末状态,并写出初、末状态的动能1K E 、2K E 的表达式;(4)列出动能定理的方程:21K K W E E =-合,且求解。

高考物理高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高考物理高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高考物理高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

高考物理动能与动能定理解题技巧分析及练习题(含答案)及解析

高考物理动能与动能定理解题技巧分析及练习题(含答案)及解析

高考物理动能与动能定理解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.某小型设备工厂采用如图所示的传送带传送工件。

传送带由电动机带动,以2m/sv=的速度顺时针匀速转动,倾角37θ=︒。

工人将工件轻放至传送带最低点A,由传送带传送至最高点B后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。

传送带长度为6m =L ,不计空气阻力。

(工件可视为质点,sin370.6︒=,cos370.8︒=,210m /s g =)求:(1)若工人某次只把一个工件轻放至A 点,则传送带将其由最低点A 传至B 点电动机需额外多输出多少电能?(2)若工人每隔1秒将一个工件轻放至A 点,在传送带长时间连续工作的过程中,电动机额外做功的平均功率是多少?【答案】(1)104J ;(2)104W 【解析】 【详解】 (1)对工件cos sin mg mg ma μθθ-=22v ax =1v at =12s t =得2m x =12x vt x ==带 2m x x x =-=相带由能量守恒定律p k E Q E E =+∆+∆电即21cos sin 2E mg x mgL mv μθθ=⋅++电相代入数据得104J E =电(2)由题意判断,每1s 放一个工件,传送带上共两个工件匀加速,每个工件先匀加速后匀速运动,与带共速后工件可与传送带相对静止一起匀速运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。

水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。

用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。

已知物块与桌面间的动摩擦因数μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶(1)物块通过P 点的速度大小;(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则22y v gh =o sin 60y v v=整理可得,物块通过P 点的速度8m/s v =(2)从P 到M 点的过程中,机械能守恒2211=(1cos60)+22o M mv mgR mv + 在最高点时根据牛顿第二定律2MN mv F mg R+= 整理得4.8N N F =根据牛顿第三定律可知,物块对轨道的压力大小为4.8N(3)从D 到P 物块做平抛运动,因此o cos 604m/s D v v ==从C 到D 的过程中,根据能量守恒定律212p D E mgx mv μ=+C 、D 两点间的距离2m x =2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。

A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。

开始时让连着A 的细线与水平杆的夹角α。

现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求:(1)当细线与水平杆的夹角为β(90αβ<<︒)时,A 的速度为多大? (2)从开始运动到A 获得最大速度的过程中,绳拉力对A 做了多少功?【答案】(1)22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)T sin h W mg h α⎛⎫=- ⎪⎝⎭ 【解析】 【详解】(2)A 、B 的系统机械能守恒P K E E ∆=∆减加2211sin sin 22A B h h mg mv mv αβ⎛⎫-=+ ⎪⎝⎭cos A B v v α=解得22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)当A 速度最大时,B 的速度为零,由机械能守恒定律得P K E E ∆=∆减加21sin 2Am h mg h mv α⎛⎫-= ⎪⎝⎭ 对A 列动能定理方程2T 12Am W mv =联立解得T sin h W mg h α⎛⎫=- ⎪⎝⎭3.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。

某弹珠游戏可简化成如图所示的竖直平面内OABCD 透明玻璃管道,管道的半径较小。

为研究方便建立平面直角坐标系,O 点为抛物口,下方接一满足方程y 59=x 2的光滑抛物线形状管道OA ;AB 、BC 是半径相同的光滑圆弧管道,CD 是动摩擦因数μ=0.8的粗糙直管道;各部分管道在连接处均相切。

A 、B 、C 、D 的横坐标分别为x A =1.20m 、x B =2.00m 、x C =2.65m 、x D =3.40m 。

已知,弹珠质量m =100g ,直径略小于管道内径。

E 为BC 管道的最高点,在D 处有一反弹膜能无能量损失的反弹弹珠,sin37°=0.6,sin53°=0.8,g =10m/s 2,求:(1)若要使弹珠不与管道OA 触碰,在O 点抛射速度ν0应该多大;(2)若要使弹珠第一次到达E 点时对轨道压力等于弹珠重力的3倍,在O 点抛射速度v 0应该多大;(3)游戏设置3次通过E 点获得最高分,若要获得最高分在O 点抛射速度ν0的范围。

【答案】(1)3m/s (2)2m/s (3)3m/s <ν0<6m/s 【解析】 【详解】 (1)由y 59=x 2得:A 点坐标(1.20m ,0.80m ) 由平抛运动规律得:x A =v 0t ,y A 212gt =代入数据,求得 t =0.4s ,v 0=3m/s ; (2)由速度关系,可得 θ=53° 求得AB 、BC 圆弧的半径 R =0.5m OE 过程由动能定理得: mgy A ﹣mgR (1﹣cos53°)2201122E mv mv =- 解得 v 0=2m/s ;(3)sinα 2.65 2.000.400.5--==0.5,α=30°CD 与水平面的夹角也为α=30°设3次通过E 点的速度最小值为v 1.由动能定理得 mgy A ﹣mgR (1﹣cos53°)﹣2μmgx CD cos30°=02112mv - 解得 v 1=23m/s设3次通过E 点的速度最大值为v 2.由动能定理得 mgy A ﹣mgR (1﹣cos53°)﹣4μmgx CD cos30°=02212mv - 解得 v 2=6m/s考虑2次经过E 点后不从O 点离开,有﹣2μmgx CD cos30°=02312mv -解得 v 3=26m/s 故 23m/s <ν0<26m/s4.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==5.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-6.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s 的速度运动,运动方向如图所示.一个质量为2kg 的物体(物体可以视为质点),从h=3.2m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,重力加速度g=10m/s 2,求:(1)物体第一次到达A 点时速度为多大?(2)要使物体不从传送带上滑落,传送带AB 间的距离至少多大? (3)物体随传送带向右运动,最后沿斜面上滑的最大高度为多少? 【答案】(1)8m/s (2)6.4m (3)1.8m 【解析】【分析】(1)本题中物体由光滑斜面下滑的过程,只有重力做功,根据机械能守恒求解物体到斜面末端的速度大小;(2)当物体滑到传送带最左端速度为零时,AB 间的距离L 最小,根据动能定理列式求解;(3)物体在到达A 点前速度与传送带相等,最后以6m/s 的速度冲上斜面时沿斜面上滑达到的高度最大,根据动能定理求解即可. 【详解】(1)物体由光滑斜面下滑的过程中,只有重力做功,机械能守恒,则得:212mgh mv =解得:8m/s v ==(2)当物体滑动到传送带最左端速度为零时,AB 间的距离L 最小,由动能能力得:2102mgL mv μ-=-解得:228m 6.4m 220.510v L g μ===⨯⨯ (3)因为滑上传送带的速度是8m/s 大于传送带的速度6m/s ,物体在到达A 点前速度与传送带相等,最后以6m/s v =带的速度冲上斜面,根据动能定理得:2102mgh mv '-=-带得:226m 1.8m 2210v h g '===⨯带【点睛】该题要认真分析物体的受力情况和运动情况,选择恰当的过程,运用机械能守恒和动能定理解题.7.如图所示,一长度LAB=4.98m ,倾角θ=30°的光滑斜面AB 和一固定粗糙水平台BC 平滑连接,水平台长度LBC=0.4m ,离地面高度H=1.4m ,在C 处有一挡板,小物块与挡板碰撞后原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内。

相关文档
最新文档