高考物理动能与动能定理解题技巧及练习题
高考必刷题物理动能与动能定理题及解析
高考必刷题物理动能与动能定理题及解析一、高中物理精讲专题测试动能与动能定理1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥2.某小型设备工厂采用如图所示的传送带传送工件。
传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。
工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。
传送带长度为6m =L ,不计空气阻力。
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
一、高中物理精讲专题测试动能与动能定理
1.如图所示,固定的粗糙弧形轨道下端B点水平,上端A与B点的高度差为h1=0.3 m,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C点到B点的高度差为h2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m=1 kg的滑块(可看作质点)从轨道的A点由静止滑下,然后从B点抛出,恰好以平行于传送带的速度从C点落到传送带上,传送带逆时针传动,速度大小为v=0.5 m/s,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g=10 m/s2,试求:
;
由功能关系可得:
(另解:两个过程A球发生的位移分别为 、 , ,由匀变速规律推论 ,根据电场力做功公式有: )
(3)对A球由平衡条件得到: , ,
从A开始运动到发生第一次碰撞:
从第一次碰撞到发生第二次碰撞:
点睛:本题是电场相关知识与动量守恒定律的综合,虽然A球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.
所以
B到C根据动能定理有
高考物理动能与动能定理试题经典及解析
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N;(2)6m/s,6m;(3)见解析。
【解析】
【详解】
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,忽略空气阻力.求:
高考物理动能与动能定理试题经典及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,半径R=0.5 m的光滑圆弧轨道的左端A与圆心O等高,B为圆弧轨道的最低点,圆弧轨道的右端C与一倾角θ=37°的粗糙斜面相切。一质量m=1kg的小滑块从A点正上方h=1 m处的P点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10 m/s2。
【解析】
试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过B点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。
高考物理动能与动能定理试题(有答案和解析)
的小物块从轨道右侧 A 点以初速度
冲上轨道,通过圆形轨道,水平轨道
后压缩弹簧,并被弹簧以原速率弹回,取
,求:
(1)弹簧获得的最大弹性势能 ; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能 ; (3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离 轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m 或 0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从 A 到压缩弹簧至最短的过程中,由动
代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在 v-t 图像中图像包围的面积代表物体运 动做过的位移。
5.如图所示,一质量为 M、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧 相连,弹簧的另一端固定在墙上.平板上有一质量为 m 的小物块以速度 v0 向右运动,且在 本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为 μ,弹簧弹性势能 Ep 与弹簧形变量 x 的平方成正比,重力加速度为 g.求:
6J
(3)滑块从 A 点运动到 C 点过程,由动能定理得
解得 BC 间距离
mg
3r
mgs
1 2
mvc2
s 0.5m
小球与弹簧作用后返回 C 处动能不变,小滑块的动能最终消耗在与 BC 水平面相互作用的
过程中,设物块在 BC 上的运动路程为 s ,由动能定理有
mgs
1 2
mvc2
解得
s 0.7m 故最终小滑动距离 B 为 0.7 0.5m 0.2m处停下.
(1)物体与传送带间的动摩擦因数; (2) 0~8 s 内物体机械能的增加量; (3)物体与传送带摩擦产生的热量 Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,
高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)
(1)小车运动到 C 点时的速度大小;
(2)小车在 BD 段运动的时间;
(3)水平半圆轨道对小车的作用力大小;
(4)要使小车能通过水平半圆轨道,发动机开启的最短时间.
【答案】(1) 6m/s ;(2) 0.3s ;(3) 4 2N .;(4) 0.35s .
【解析】
【详解】
(1)由小车在 C 点受力得:
【答案】(1)8m/s (2)35J (3)5 次 【解析】 【详解】 (1)物块在 PO 过程中受到竖直向下的重力、垂直斜面向上的弹力、和沿斜面向上的摩擦 力,此过程应用动能定理得:
mgL sin mgL cos 1 mv2 2
解得物块第一次接触弹簧时物体的速度的大小为:
v 2gLsin cos 8 m/s
mvA2m
WT
mg
h sin
h
2.如图所示,粗糙水平地面与半径为 R=0.4m 的粗糙半圆轨道 BCD 相连接,且在同一竖直 平面内,O 是 BCD 的圆心,BOD 在同一竖直线上.质量为 m=1kg 的小物块在水平恒力 F=15N 的作用下,从 A 点由静止开始做匀加速直线运动,当小物块运动到 B 点时撤去 F, 小物块沿半圆轨道运动恰好能通过 D 点,已知 A、B 间的距离为 3m,小物块与地面间的动 摩擦因数为 0.5,重力加速度 g 取 10m/s2.求: (1)小物块运动到 B 点时对圆轨道 B 点的压力大小. (2)小物块离开 D 点后落到地面上的点与 D 点之间的距离
2mL QE
点睛:本题是电场相关知识与动量守恒定律的综合,虽然 A 球受电场力,但碰撞的内力远
大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么
A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
联立可得:v3= 。
(3)飞船方向调整前后,其速度合成矢量如图所示:
因此tan = ,离子喷出过程中,系统的动量守恒:M v=Nmv3,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N=
9.一质量为m=0.5kg的电动玩具车,从倾角为 =30°的长直轨道底端,由静止开始沿轨道向上运动,4s末功率达到最大值,之后保持该功率不变继续运动,运动的v-t图象如图所示,其中AB段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g=10m/s2.
(1)求在A处的正离子的速度大小v2;
(2)正离子经过区域I加速后,离开PQ的速度大小v3;
(3)在第(2)问中,假设航天器的总质量为M,正在以速度v沿MP方向运动,已知现在的运动方向与预定方向MN成 角,如图所示。为了使飞船回到预定的飞行方向MN,飞船启用推进器进行调整。如果沿垂直于飞船速度v的方向进行推进,且推进器工作时间极短,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N为多少?
【物理】物理动能与动能定理练习题含答案及解析
【物理】物理动能与动能定理练习题含答案及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。
高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析
高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。
已知它落到水面上时相对于O 点(D 点正下方)的水平距离10m OB =。
为了能让滑车抛到水面上的更远处,有人在轨道的下方紧贴D 点安装一水平传送带,传送带右端轮子的圆心与D 点的水平距离为8m ,轮子半径为0.4m (传送带的厚度不计),若传送带与玩具滑车之间的动摩擦因数为0.4,玩具滑车的质量为4kg ,不计空气阻力(把玩具滑车作质点处理),求 (1)玩具滑车到达D 点时对D 点的压力大小。
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N ;(2)6m/s ,6m ;(3)见解析。
【解析】 【详解】(1)玩具滑车到达D 点时,由牛顿第二定律:2DD v F mg m R-=解得2210=404=80N 10D D v F mg m R =++⨯;(2)若无传送带时,由平抛知识可知:D x v t =解得1s t =如果传送带保持不动,则当小车滑到最右端时,由动能定理:221122D mv mv mgL μ-=- 解得v =6m/s因为6m/s 2m/s v gR =>=,则小车从右端轮子最高点做平抛运动,则落水点距离传送带右端的水平距离:'6m x vt ==(3)①若传送带的速度v ≤6m/s ,则小车在传送带上运动时一直减速,则到达右端的速度为6m/s ,落水点距离传送带右端的水平距离为6m ; ②若小车在传送带上一直加速,则到达右端时的速度满足'221122D mv mv mgL μ-= 解得'241m/s v =若传送带的速度241m/s v ≥,则小车在传送带上运动时一直加速,则到达右端的速度为241m/s ,落水点距离传送带右端的水平距离为241m x vt ==;③若传送带的速度10m/s≥v ≥6m/s ,则小车在传送带上运动时先减速到v ,然后以速度v 匀速,则到达右端的速度为v ,落水点距离传送带右端的水平距离为vt=v m ;④若传送带的速度241m/s ≥v ≥10m/s ,则小车在传送带上运动时先加速到v ,然后以速度v 匀速,则到达右端的速度为v ,落水点距离传送带右端的水平距离为vt =v m 。
高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析
高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。
水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。
用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。
已知物块与桌面间的动摩擦因数μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶(1)物块通过P 点的速度大小;(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则22y v gh =o sin 60y v v=整理可得,物块通过P 点的速度8m/s v =(2)从P 到M 点的过程中,机械能守恒2211=(1cos60)+22o M mv mgR mv + 在最高点时根据牛顿第二定律2MN mv F mg R+= 整理得4.8N N F =根据牛顿第三定律可知,物块对轨道的压力大小为4.8N(3)从D 到P 物块做平抛运动,因此o cos 604m/s D v v ==从C 到D 的过程中,根据能量守恒定律212p D E mgx mv μ=+C 、D 两点间的距离2m x =2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。
开始时让连着A 的细线与水平杆的夹角α。
现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求:(1)当细线与水平杆的夹角为β(90αβ<<︒)时,A 的速度为多大? (2)从开始运动到A 获得最大速度的过程中,绳拉力对A 做了多少功?【答案】(1)22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)T sin h W mg h α⎛⎫=- ⎪⎝⎭ 【解析】 【详解】(2)A 、B 的系统机械能守恒P K E E ∆=∆减加2211sin sin 22A B h h mg mv mv αβ⎛⎫-=+ ⎪⎝⎭cos A B v v α=解得22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)当A 速度最大时,B 的速度为零,由机械能守恒定律得P K E E ∆=∆减加21sin 2Am h mg h mv α⎛⎫-= ⎪⎝⎭ 对A 列动能定理方程2T 12Am W mv =联立解得T sin h W mg h α⎛⎫=- ⎪⎝⎭3.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。
高考物理动量定理解题技巧和训练方法及练习题(含答案)及解析
高考物理动量定理解题技巧和训练方法及练习题(含答案)及解析一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t + (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值.(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s .分别应用动量定理和动能定理求出平均力F 1和F 2的值.(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x .分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的.(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为2mt kπ=所受合力对时间t 的平均值.【答案】(1)F 1=1.0N ,F 2=0.8N ;(2)当02v v x v t +==时,F 1=F 2;(3)2kA F π=. 【解析】 【详解】解:(1)物块在加速运动过程中,应用动量定理有:1t F t mv =g解得:1 1.0 2.0N 1.0N 2.0t mv F t ⨯=== 物块在加速运动过程中,应用动能定理有:2212t F x mv =g 解得:222 1.0 2.0N 0.8N 22 2.5t mv F x ⨯===⨯(2)物块在运动过程中,应用动量定理有:10Ft mv mv =- 解得:01()m v v F t-=物块在运动过程中,应用动能定理有:22201122F x mv mv =- 解得:2202()2m v v F x-=当12F F =时,由上两式得:02v v x v t +== (3)由图2可求得物块由0x =运动至x A =过程中,外力所做的功为:21122W kA A kA =-=-g设物块的初速度为0v ',由动能定理得:20102W mv '=-解得:0kv A m'= 设在t 时间内物块所受平均力的大小为F ,由动量定理得:00Ft mv -=-' 由题已知条件:2m t kπ= 解得:2kAF π=3.质量0.2kg 的球,从5.0m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g 取10m/s 2.求小球对钢板的作用力. 【答案】78N 【解析】 【详解】自由落体过程 v 12=2gh 1,得v 1=10m/s ; v 1=gt 1 得t 1=1s小球弹起后达到最大高度过程0− v 22=−2gh 2,得v 2=9m/s 0-v 2=-gt 2 得t 2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft ′-mg t ′=mv 2-(-mv 1) 其中t ′=t -t 1-t 2=0.05s 得F =78N由牛顿第三定律得F ′=-F ,所以小球对钢板的作用力大小为78N ,方向竖直向下;4.如图所示,长为1m 的长木板静止在粗糙的水平面上,板的右端固定一个竖直的挡板,长木板与挡板的总质量为M =lkg ,板的上表面光滑,一个质量为m= 0.5kg 的物块以大小为 t 0=4m/s 的初速度从长木板的左端滑上长木板,与挡板碰撞后最终从板的左端滑离,挡板对物 块的冲量大小为2. 5N • s ,已知板与水平面间的动摩擦因数为μ= 0.5,重力加速度为g=10m/s 2,不计物块与挡板碰撞的时间,不计物块的大小。
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试动能定理的综合应用1.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(210/g m s =)【答案】15N 【解析】 设撤去力前物块的位移为,撤去力时物块的速度为,物块受到的滑动摩擦力对撤去力后物块滑动过程应用动量定理得由运动学公式得对物块运动的全过程应用动能定理由以上各式得 代入数据解得思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.2.如图,I 、II 为极限运动中的两部分赛道,其中I 的AB 部分为竖直平面内半径为R 的14光滑圆弧赛道,最低点B 的切线水平; II 上CD 为倾角为30°的斜面,最低点C 处于B 点的正下方,B 、C 两点距离也等于R.质量为m 的极限运动员(可视为质点)从AB 上P 点处由静止开始滑下,恰好垂直CD 落到斜面上.求:(1) 极限运动员落到CD 上的位置与C 的距离; (2)极限运动员通过B 点时对圆弧轨道的压力; (3)P 点与B 点的高度差.【答案】(1)45R (2)75mg ,竖直向下(3)15R【解析】 【详解】(1)设极限运动员在B 点的速度为v 0,落在CD 上的位置与C 的距离为x ,速度大小为v ,在空中运动的时间为t ,则xcos300=v 0t R-xsin300=12gt 2 0tan 30v gt =解得x=0.8R(2)由(1)可得:025v gR =通过B 点时轨道对极限运动员的支持力大小为F N20N v F mg m R-=极限运动员对轨道的压力大小为F N ′,则F N ′=F N , 解得'75N F mg =,方向竖直向下; (3) P 点与B 点的高度差为h,则mgh=12mv 02 解得h=R/53.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1530 J ,g 取10 m/s 2.(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大?【答案】(1)144 N (2)12.5 m 【解析】试题分析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,斜面的倾角为α,则有 v B 2=2ax根据牛顿第二定律得 mgsinα﹣F f =ma 又 sinα=H x由以上三式联立解得 F f=144N(2)设运动员到达C点时的速度为v C,在由B到达C的过程中,由动能定理有mgh+W=12mv C2-12mv B2设运动员在C点所受的支持力为F N,由牛顿第二定律得 F N﹣mg=m2 C v R由运动员能承受的最大压力为其所受重力的6倍,即有 F N=6mg 联立解得 R=12.5m考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.4.在某电视台举办的冲关游戏中,AB是处于竖直平面内的光滑圆弧轨道,半径R=1.6m,BC是长度为L1=3m的水平传送带,CD是长度为L2=3.6m水平粗糙轨道,AB、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g取10m/s2.求:(1)参赛者运动到圆弧轨道B处对轨道的压力;(2)若参赛者恰好能运动至D点,求传送带运转速率及方向;(3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N,方向竖直向下(2)顺时针运转,v=6m/s(3)720J【解析】(1) 对参赛者:A到B过程,由动能定理mgR(1-cos60°)=12m2Bv解得v B=4m/s在B处,由牛顿第二定律N B-mg=m2 B v R解得N B=2mg=1 200N根据牛顿第三定律:参赛者对轨道的压力N′B=N B=1 200N,方向竖直向下.(2) C到D过程,由动能定理-μ2mgL2=0-1 2 m2Cv解得v C=6m/sB到C过程,由牛顿第二定律μ1mg=ma解得a=4m/s2(2分)参赛者加速至v C历时t=C Bv va-=0.5s位移x1=2B Cv v+t=2.5m<L1参赛者从B到C先匀加速后匀速,传送带顺时针运转,速率v=6m/s.(3) 0.5s内传送带位移x2=vt=3m参赛者与传送带的相对位移Δx=x2-x1=0.5m传送带由于传送参赛者多消耗的电能E=μ1mgΔx+12m2Cv-12m2Bv=720J.5.如图所示,一质量为m的滑块从高为h的光滑圆弧形槽的顶端A处无初速度地滑下,槽的底端B与水平传送带相接,传送带的运行速度恒为v0,两轮轴心间距为L,滑块滑到传送带上后做匀加速运动,滑到传送带右端C时,恰好加速到与传送带的速度相同,求:(1)滑块到达底端B时的速度大小v B;(2)滑块与传送带间的动摩擦因数μ;(3)此过程中,由于克服摩擦力做功而产生的热量Q.【答案】(12gh2)222v ghglμ-=(3)(222m v gh-【解析】试题分析:(1)滑块在由A到B的过程中,由动能定理得:212Bmgh mv-=,解得:2Bghν=(2)滑块在由B到C的过程中,由动能定理得:μmgL=12mv02−12mv B2,解得,222v ghgLμ-=;(3)产生的热量:Q=μmgL 相对,()2200(2)2B gh L g相对=νννμ--=(或200(2) gh L ν-), 解得,201(2)2Q m gh ν-=; 考点:动能定理【名师点睛】本题考查了求物体速度、动摩擦因数、产生的热量等问题,分析清楚运动过程,熟练应用动能定理即可正确解题.6.如图甲所示,静止在水平地面上一个质量为m =4kg 的物体,其在随位移均匀减小的水平推力作用下运动,推力F 随位移x 变化的图象如图乙所示.已知物体与地面之间的动摩擦因数为μ=0.5,g =10m/s 2.求:(1)运动过程中物体的最大加速度大小为多少; (2)距出发点多远时物体的速度达到最大; (3)物体最终停在何处?【答案】(1)20m/s 2(2)3.2m (3)10m 【解析】 【详解】(1)物体加速运动,由牛顿第二定律得:F -μmg =ma当推力F =100N 时,物体所受的合力最大,加速度最大,代入数据得:2max 20m/s Fa g mμ=-=, (2)由图象得出,推力F 随位移x 变化的数值关系为:F =100 – 25x ,速度最大时,物体加速度为零,则F=μmg=20N ,即x = 3.2m(3)F 与位移x 的关系图线围成的面积表示F 所做的功,即01200J 2F W Fx ==对全过程运用动能定理,W F −μmgx m =0代入数据得:x m =10m7.如图所示,倾角 θ=30°的斜面足够长,上有间距 d =0.9 m 的 P 、Q 两点,Q 点以上斜面光滑,Q 点以下粗糙。
高中物理动能与动能定理解题技巧及练习题(含答案)
根据牛顿第二定律得:
解得:
,方向向下
根据牛顿第三定律得,小球对轨道最高点的压力大小为 20N,方向向上.
【点睛】
本题考查了动能定理、动量守恒定律、牛顿第二定律的综合,涉及到平抛运动、圆周运
动,综合性较强,关键要理清过程,选择合适的规律进行求解.
7.如图所示,一长度 LAB=4.98m,倾角 θ=30°的光滑斜面 AB 和一固定粗糙水平台 BC 平 滑连接,水平台长度 LBC=0.4m,离地面高度 H=1.4m,在 C 处有一挡板,小物块与挡板 碰撞后原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内。在斜面顶 端 A 处静止释放质量为 m="2kg" 的小物块(可视为质点),忽略空气阻力,小物块与 BC 间的动摩擦因素 μ=0.1,g 取 10m/s2。问:
减速运动;根据动能定理有:
⑥
解得:
⑦
(3)设滑块在传送带上运动的时间为 t,则 t 时间内传送带的位移:s=v0t
由机械能守恒有:
⑧
⑨ 滑块相对传送带滑动的位移 相对滑动生成的热量
⑫
⑩ ⑪
4.如图所示,在娱乐节目中,一质量为 m=60 kg 的选手以 v0=7 m/s 的水平速度抓住竖直 绳下端的抓手开始摆动,当绳摆到与竖直方向夹角 θ=37°时,选手放开抓手,松手后的上 升过程中选手水平速度保持不变,运动到水平传送带左端 A 时速度刚好水平,并在传送带 上滑行,传送带以 v=2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为 L=6 m,传 送带两端点 A、B 间的距离 s=7 m,选手与传送带间的动摩擦因数为 μ=0.2,若把选手看 成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:
物理动能定理解题技巧
物理动能定理解题技巧
1. 嘿!你知道吗,在解物理动能定理的题时,遇到那种来回运动的情况,咱就得好好抓准初末状态呀!就像你丢一个球,它弹来弹去,不就是要搞清楚它最开始和最后静止时的状态嘛。
2. 哇哦!碰到有多个物体一起运动的题,可别慌!要像整理混乱的线头一样慢慢理清楚。
比如说几辆车在那跑,你就得搞明白每一辆的动能变化情况呀!
3. 嘿呀!当有摩擦力出现的时候,可得特别注意啦!这就好比前进路上的小阻碍,会消耗掉一部分动能呢。
就像人在泥泞的路上走会更费劲一样。
4. 哎呀呀!对于那种曲线运动的题,想象一下扔铁饼的场景,虽然它走的不是直线,但动能的原理是一样的呀,可不能被曲线给唬住了。
5. 哟呵!碰到那种动能和势能相互转化的题,就像是坐过山车一样,一会儿高一会儿低,但是能量是守恒的呀。
比如一个球在高处落下再弹起。
6. 嘿嘿!在解题时千万不能粗心大意呀,一个小细节没注意到可能就全盘皆输了,这不就像建房子少了一块砖可能就不稳了嘛。
7. 哇塞!对于一些复杂的情境,别着急,慢慢分析。
就像是解一团乱麻,耐心点总能找到头绪的,可别轻易就放弃啦。
8. 总之呢,解物理动能定理的题,要细心、耐心、有信心,掌握了这些小技巧,那些难题就都不在话下啦!。
高考物理动能与动能定理解题技巧(超强)及练习题(含答案)
高考物理动能与动能定理解题技巧(超强)及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.某小型设备工厂采用如图所示的传送带传送工件。
传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。
工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。
传送带长度为6m =L ,不计空气阻力。
(工件可视为质点,sin370.6︒=,cos370.8︒=,210m /s g =)求:(1)若工人某次只把一个工件轻放至A 点,则传送带将其由最低点A 传至B 点电动机需额外多输出多少电能?(2)若工人每隔1秒将一个工件轻放至A 点,在传送带长时间连续工作的过程中,电动机额外做功的平均功率是多少?【答案】(1)104J ;(2)104W 【解析】 【详解】 (1)对工件cos sin mg mg ma μθθ-=22v ax =1v at =12s t =得2m x =12x vt x ==带 2m x x x =-=相带由能量守恒定律p k E Q E E =+∆+∆电即21cos sin 2E mg x mgL mv μθθ=⋅++电相代入数据得104J E =电(2)由题意判断,每1s 放一个工件,传送带上共两个工件匀加速,每个工件先匀加速后匀速运动,与带共速后工件可与传送带相对静止一起匀速运动。
匀速运动的相邻的两个工件间距为2m x v t ∆=∆=L x n x -=∆得2n =所以,传送带上总有两个工件匀加速,两个工件匀速 则传送带所受摩擦力为2cos 2sin f mg mg μθθ=+电动机因传送工件额外做功功率为104W P fv ==2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)及解析
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图,固定在竖直平面内的倾斜轨道AB ,与水平光滑轨道BC 相连,竖直墙壁CD 高0.2H m =,紧靠墙壁在地面固定一个和CD 等高,底边长0.3L m =的斜面,一个质量0.1m kg =的小物块(视为质点)在轨道AB 上从距离B 点4l m =处由静止释放,从C 点水平抛出,已知小物块在AB 段与轨道间的动摩擦因数为0.5,达到B 点时无能量损失;AB段与水平面的夹角为37.(o 重力加速度210/g m s =,sin370.6=o ,cos370.8)o =(1)求小物块运动到B 点时的速度大小; (2)求小物块从C 点抛出到击中斜面的时间;(3)改变小物块从轨道上释放的初位置,求小物块击中斜面时动能的最小值. 【答案】(1) 4/m s (2)115s (3) 0.15J 【解析】 【分析】(1)对滑块从A 到B 过程,根据动能定理列式求解末速度;(2)从C 点画出后做平抛运动,根据分位移公式并结合几何关系列式分析即可; (3)动能最小时末速度最小,求解末速度表达式分析即可. 【详解】()1对滑块从A 到B 过程,根据动能定理,有:2B 1mglsin37μmgcos37mv 2-=o o ,解得:B v 4m /s =;()2设物体落在斜面上时水平位移为x ,竖直位移为y ,画出轨迹,如图所示:对平抛运动,根据分位移公式,有:0x v t =,21y gt 2=, 结合几何关系,有:H y H 2x L 3-==, 解得:1t s 15=; ()3对滑块从A 到B 过程,根据动能定理,有:2B 1mglsin37μmgcos37mv 2-=o o ,对平抛运动,根据分位移公式,有:0x v t =,21y gt 2=, 结合几何关系,有:H y H 2x L 3-==, 从A 到碰撞到斜面过程,根据动能定理有:21mglsin37μmgcos37l mgy mv 02-⋅+=-oo联立解得:22125y 9H 18H mv mg 21616y 16⎛⎫=+- ⎪⎝⎭,故当225y 9H 1616y =,即3y H 0.12m 5==时,动能k E 最小为:km E 0.15J =; 【点睛】本题是力学综合问题,关键是正确的受力分析,明确各个阶段的受力情况和运动性质,根据动能定理和平抛运动的规律列式分析,第三问较难,要结合数学不等式知识分析.3.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J4.质量为m =0.5kg 、可视为质点的小滑块,从光滑斜面上高h 0=0.6m 的A 点由静止开始自由滑下。
专题33 动能定理的理解和应用(解析版)
高考物理备考微专题精准突破专题3.3 动能定理的理解和应用【专题诠释】1.应用动能定理解题应抓好“两状态,一过程”“两状态”即明确研究对象的始、末状态的速度或动能情况,“一过程”即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息.2.应用动能定理解题的基本思路(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)动能定理的表达式是标量式,不能在其中一个方向上应用动能定理.(3)动能定理本质上反映了动力学过程中的能量转化与守恒,普遍适用于一切运动过程.【高考领航】【2019·新课标全国Ⅲ卷】从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。
距地面高度h在3 m以内时,物体上升、下落过程中动能E k随h的变化2A.2 kg B.1.5 kg C.1 kg D.0.5 kg【答案】C【解析】对上升过程,由动能定理,-(F +mg)h =E k -E k 0 ,得E k =E k 0 - (F +mg )h ,即F+mg=12 N;下落过程,(mg -F )(6 -h) =E k ,即mg -F =k'= 8N,联立两公式,得到m=1 kg、F=2 N。
【2018·江苏卷】从地面竖直向上抛出一只小球,小球运动一段时间后落回地面。
忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图象是A.B.C.D.【答案】A【解析】本题考查动能的概念和E k–t 图象,意在考查考生的推理能力和分析能力。
小球做竖直上抛运动时,速度v=v –gt,根据动能E =1mv2 得E =1m (v-gt)2,故图象A正确。
k 2 k 2 0【2018·高考全国卷Ⅰ】如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R;bc 是半径为R 的四分之一圆弧,与ab 相切于b 点.一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动.重力加速度大小为g.小球从a 点开始运动到其轨迹最高点,机械能的增量为( )A.2mgR B.4mgRC.5mgR D.6mgR【思路点拨】解答本题应注意以下三点:(1)小球由a 到c 的过程,由动能定理求出小球在c 点的速度大小.(2)小球离开 c 点后水平方向和竖直方向的加速度大小均为 g .(3)小球轨迹最高点的竖直方向速度为零.【答案】C【解析】小球从 a 运动到 c ,根据动能定理,得F ·3R -mgR =1 2,又 F =mg ,故 v =2 gR ,mv 1 1 2 小球离开 c 点在竖直方向做竖直上抛运动,水平方向做初速度为零的匀加速直线运动,且水平方向与竖直方向的加速度大小相等,都为 g ,故小球从 c 点到最高点所用的时间 t =v 1=2R ,水平位移 x =1gt 2=2R ,根据功能关系,小球从 a 点到轨迹最高点机械能的增 gg 2量为力 F 做的功,即ΔE =F ·(2R +R +x )=5mgR .【方法技巧】(1)动能定理解决的是合力做功与动能变化量之间的关系,所以在分析时一定要对物体受到的各个力做的功都作分析.(2)动能定理往往应用于单个物体的运动过程,由于不涉及时间,比用运动学规律更加方便. (3)找到物体运动的初、末状态的动能和此过程中合力做的功,是应用动能定理解题的关键. 解决物理图象问题的基本步骤(1)观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义. (2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点、图线下方的面积所对应的物理意义,根据对应关系列式解答问题.B四类图象所围“面积”的含义【最新考向解码】【例 1】(2019·黑龙江齐齐哈尔五校联谊高三上学期期末联考)如图所示,固定在竖直平面内的 1圆弧轨道与4 水平轨道相切于最低点 B ,质量为 m 的小物块从圆弧轨道的顶端 A 由静止滑下,经过 B 点后沿水平轨道运动,并停在到 B 点距离等于圆弧轨道半径的 C 点。
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ;(2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离.【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处【解析】【分析】【详解】(1)在B 点时有v B =0cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。
高中物理新高考考点复习17 动能和动能定理
考点规范练17动能和动能定理一、单项选择题1.下列有关动能的说法正确的是()A.物体只有做匀速运动时,动能才不变B.物体的动能变化时,速度不一定变化C.物体做平抛运动时,水平速度不变,动能不变D.物体做自由落体运动时,物体的动能增加2.一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则下列碰撞前后小球速度变化量的大小Δv和碰撞过程中小球的动能变化量ΔE k正确的是()A.Δv=0B.Δv=12 m/sC.ΔE k=1.8 JD.ΔE k=10.8 J3.光滑斜面上有一个小球自高为h的A处由静止开始滚下,抵达光滑水平面上的B点时速度大小为v0。
光滑水平面上每隔相等的距离设置了一个与小球运动方向垂直的活动阻挡条,如图所示,小球越过n条活动阻挡条后停下来。
若让小球从h高处以初速度v0滚下,设小球每次越过活动阻挡条时损失的动能相等,则小球能越过的活动阻挡条的条数是()A.nB.2nC.3nD.4n4.(2021·湖北武汉月考)物块在水平面上以初速度v0直线滑行,前进x0后恰好停止运动,已知物块与水平面之间的动摩擦因数为μ,且μ的大小与物块滑行的距离x的关系为μ=kx(k为常数),重力加速度为g。
则() A.v0=√kgx02 B.v0=√2kgx02D.v0=2√kgx02C.v0=√kgx0225.(2021·广东深圳月考)如图所示,物块从固定斜面的最高点由静止滑下,冲上右侧光滑曲面,经过最低点连接处时无能量损失。
已知物块与斜面的动摩擦因数μ=0.25,斜面高度h=1.20 m,斜面倾角θ=37°,g取10 m/s2,sin 37°=0.6,物块在曲面上升的最大高度为()A.0.70 mB.0.80 mC.0.96 mD.1.20 m6.(2021·湖北学业水平选择性考试模拟演练)如图所示,两倾角均为θ的光滑斜面对接后固定在水平地面上,O点为斜面的最低点。
高考物理《动能和动能定理》真题练习含答案
高考物理《动能和动能定理》真题练习含答案1.[2024·江苏省淮安市学情调研]质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一水平放置的轻弹簧O 端相距s ,轻弹簧的另一端固定在竖直墙上,如图所示,已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,重力加速度为g ,则从开始碰撞到弹簧被压缩至最短的过程中,克服弹簧弹力所的功为( )A .12 m v 20 -μmg (s +x )B .12m v 20 -μmgx C .μmg (s +x )-12m v 20 D .-μmg (s +x ) 答案:A解析:从开始碰撞到弹簧被压缩至最短的过程中,由动能定理-μmg (s +x )-W =0-12m v 20 ,解得W =12 m v 20 -μmg (s +x ),A 正确.2.[2024·河南省部分学校摸底测试]如图所示,水平圆盘桌面上放有质量为0.1 kg 的小铁碗A (可视为质点),一小孩使圆盘桌面在水平面内由静止开始绕过圆盘中心O 的轴转动,并逐渐增大圆盘转动的角速度,直至小铁碗从圆盘的边缘飞出,飞出后经过0.2 s 落地,落地点与飞出点在地面投影点的距离为80 cm.若不计空气阻力,该过程中,摩擦力对小铁碗所做的功为( )A.0.2 J B .0.4 JC .0.8 JD .1.6 J答案:C解析:小铁碗飞出后做平抛运动,由平抛运动规律可得v =x t,解得v =4 m/s ,小铁碗由静止到飞出的过程中,由动能定理有W =12m v 2,故摩擦力对小铁碗所做的功W =0.8 J ,C 正确.3.(多选)如图所示,在倾角为θ的斜面上,质量为m 的物块受到沿斜面向上的恒力F 的作用,沿斜面以速度v 匀速上升了高度h .已知物块与斜面间的动摩擦因数为μ、重力加速度为g .关于上述过程,下列说法正确的是( )A .合力对物块做功为0B .合力对物块做功为12m v 2 C .摩擦力对物块做功为-μmg cos θh sin θD .恒力F 与摩擦力对物块做功之和为mgh答案:ACD解析:物体做匀速直线运动,处于平衡状态,合外力为零,则合外力做功为零,故A正确,B 错误;物体所受的摩擦力大小为f =μmg cos θ,物体的位移x =h sin θ,摩擦力对物块做功为W f =-fx =-μmg cos θh sin θ,C 正确;物体所受各力的合力做功为零,则W G +W F +W f =0,所以W F +W f =-W G =-(-mgh )=mgh ,D 正确.4.(多选)质量为2 kg 的物体,放在动摩擦因数μ=0.1的水平面上,在水平拉力的作用下由静止开始运动,水平拉力做的功W 和物体发生的位移x 之间的关系如图所示,重力加速度g 取10 m/s 2,则此物体( )A .在位移x =9 m 时的速度是33 m/sB .在位移x =9 m 时的速度是3 m/sC .在OA 段运动的加速度是2.5 m/s 2D .在OA 段运动的加速度是1.5 m/s 2答案:BD解析:运动x =9 m 的过程由动能定理W -μmgx =12m v 2,得v =3 m/s ,A 错误,B 正确;前3 m 过程中,水平拉力F 1=W 1x 1 =153N =5 N ,根据牛顿第二定律,F 1-μmg =ma 得a =1.5 m/s 2,C 错误,D 正确.5.[2024·张家口市期末考试]如图所示,倾角为θ=37°的足够长光滑斜面AB 与长L BC =2 m 的粗糙水平面BC 用一小段光滑圆弧(长度不计)平滑连接,半径R =1.5 m 的光滑圆弧轨道CD 与水平面相切于C 点,OD 与水平方向的夹角也为θ=37°.质量为m 的小滑块从斜面上距B 点L 0=2 m 的位置由静止开始下滑,恰好运动到C 点.已知重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.(1)求小滑块与粗糙水平面BC 间的动摩擦因数μ;(2)改变小滑块从斜面上开始释放的位置,小滑块能够通过D 点,求小滑块的释放位置与B 点的最小距离.答案:(1)0.6 (2)6.75 m解析:(1)滑块恰好运动到C 点,由动能定理得mgL 0sin 37°-μmgL BC =0-0解得μ=0.6(2)滑块能够通过D 点,在D 点的最小速度,由mg sin θ=m v 2D R解得v D =3 m/s设滑块在斜面上运动的距离为L ,由动能定理得mgL sin θ-μmgL BC -mgR (1+sin θ)=12m v 2D -0 解得L =6.75 m。
高考物理动能定理的综合应用(一)解题方法和技巧及练习题含解析
高考物理动能定理的综合应用(一)解题方法和技巧及练习题含解析一、高中物理精讲专题测试动能定理的综合应用1.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。
赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。
比赛用车采用最新材料制成,质量为9kg 。
已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。
求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大;(2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大;(3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。
(只在赛道直线段给自行车施加动力)。
【答案】(1)700N;(2)2;(3)521J 【解析】 【分析】 【详解】(1)运动员和自行车整体的向心力F n =2(m)M v R+解得F n =700N(2)自行车所受支持力为()cos45NM m g F +=︒解得F N 2N根据牛顿第三定律可知F 压=F N 2N(3)从出发点到进入内侧赛道运用动能定理可得W F -W f 克+mgh =212mv W F =2FL h =1cos 452d o =1.9m W f 克=521J2.如图所示,人骑摩托车做腾跃特技表演,以1.0m/s 的初速度沿曲面冲上高0.8m 、顶部水平的高台,若摩托车冲上高台的过程中始终以额定功率1.8kW 行驶,经过1.2s 到达平台顶部,然后离开平台,落至地面时,恰能无碰撞地沿圆弧切线从A 点切入光滑竖直圆弧轨道,并沿轨道下滑.A 、B 为圆弧两端点,其连线水平.已知圆弧半径为R =1.0m ,人和车的总质量为180kg ,特技表演的全过程中不计一切阻力(计算中取g =10m/s2,sin53°=0.8,cos53°=0.6).求:(1)人和车到达顶部平台的速度v ;(2)从平台飞出到A 点,人和车运动的水平距离x ; (3)圆弧对应圆心角θ;(4)人和车运动到圆弧轨道最低点O 时对轨道的压力. 【答案】(1)3m/s (2)1.2m (3)106°(4)7.74×103N 【解析】 【分析】 【详解】(1)由动能定理可知:221011Pt mgH mv 22mv -=- v =3m/s (2)由2221H gt ,s vt 2==可得:2H s v 1.2m g== (3)摩托车落至A 点时,其竖直方向的分速度y 2v gt 4m /s ==设摩托车落地时速度方向与水平方向的夹角为α,则4tan 3y v vα==,即α=53°所以θ=2α=106°(4)在摩托车由最高点飞出落至O 点的过程中,由机械能守恒定律可得:2211mg[H R(1cos )]mv mv 22α'+-=-在O 点:2v N mg m R-= 所以N =7740N由牛顿第三定律可知,人和车在最低点O 时对轨道的压力为7740N3.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1530 J ,g 取10 m/s 2.(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大?【答案】(1)144 N (2)12.5 m 【解析】试题分析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,斜面的倾角为α,则有 v B 2=2ax根据牛顿第二定律得 mgsinα﹣F f =ma 又 sinα=H x由以上三式联立解得 F f =144N(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理有 mgh+W=12mv C 2-12mv B 2 设运动员在C 点所受的支持力为F N ,由牛顿第二定律得 F N ﹣mg=m 2Cv R由运动员能承受的最大压力为其所受重力的6倍,即有 F N =6mg 联立解得 R=12.5m 考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.4.如图所示,位于竖直平面内的轨道BCDE ,由一半径为R=2m 的14光滑圆弧轨道BC 和光滑斜直轨道DE 分别与粗糙水平面相切连接而成.现从B 点正上方H=1.2m 的A 点由静止释放一质量m=1kg 的物块,物块刚好从B 点进入14圆弧轨道.已知CD 的距离L=4m ,物块与水平面的动摩擦因数μ=0.25,重力加速度g 取10m/s 2,不计空气阻力.求:(1)物块第一次滑到C 点时的速度; (2)物块第一次滑上斜直轨道DE 的最大高度; (3)物块最终停在距离D 点多远的位置. 【答案】(1) 8m/s (2) 2.2m (3) 0.8m 【解析】 【分析】根据动能定理可求物块第一次滑到C 点时的速度;物块由A 到斜直轨道最高点的过程,由动能定理求出物块第一次滑上斜直轨道DE 的最大高度;物块将在轨道BCDE 上做往返运动,直至停下,设物块在水平轨道CD 上通过的总路程为S ,根据动能定理求出. 【详解】解:(1)根据动能定理可得21()2mg H R mv += 解得8/v m s =(2)物块由A 到斜直轨道最高点的过程,由动能定理有:()0mg H R mgL mgh μ+--=解得: 2.2h m =(3)物块将在轨道BCDE 上做往返运动,直至停下,设物块在水平轨道CD 上通过的总路程为S ,则:()0mg H R mgS μ+-= 解得:12.8S m =因: 30.8S L m =+,故物块最终将停在距离D 点0.8m 处的位置.5.如图所示,在水平路段AB 上有一质量为2kg 的玩具汽车,正以10m/s 的速度向右匀速运动,玩具汽车前方的水平路段AB 、BC 所受阻力不同,玩具汽车通过整个ABC 路段的v-t 图象如图所示(在t =15s 处水平虚线与曲线相切),运动过程中玩具汽车电机的输出功率保持20W 不变,假设玩具汽车在两个路段上受到的阻力分别有恒定的大小.(解题时将玩具汽车看成质点)(1)求汽车在AB路段上运动时所受的阻力f1;(2)求汽车刚好开过B点时的加速度a(3)求BC路段的长度.【答案】(1)f1=5N (2) a=1.5 m/s2 (3)x=58m【解析】【分析】根据“汽车电机的输出功率保持20W不变”可知,本题考查机车的启动问题,根据图象知汽车在AB段匀速直线运动,牵引力等于阻力,而牵引力大小可由瞬时功率表达式求出;由图知,汽车到达B位置将做减速运动,瞬时牵引力大小不变,但阻力大小未知,考虑在t=15s处水平虚线与曲线相切,则汽车又瞬间做匀速直线运动,牵引力的大小与BC 段阻力再次相等,有瞬时功率表达式求得此时的牵引力数值即为阻力数值,由牛顿第二定律可得汽车刚好到达B点时的加速度;BC段汽车做变加速运动,但功率保持不变,需由动能定理求得位移大小.【详解】(1)汽车在AB路段时,有F1=f1P=F1v1联立解得:f1=5N(2)t=15 s时汽车处于平衡态,有F2=f2P=F2v2联立解得:f2=2Nt=5s时汽车开始加速运动,有F1-f2=ma解得a=1.5m/s2(3)对于汽车在BC段运动,由动能定理得:解得:x=58m【点睛】抓住汽车保持功率不变这一条件,利用瞬时功率表达式求解牵引力,同时注意隐含条件汽车匀速运动时牵引力等于阻力;对于变力做功,汽车非匀变速运动的情况,只能从能量的角度求解.6.如图所示,一倾角θ=37°的斜面底端与一传送带左端相连于B点,传送带以v=6m/s的速度顺时针转动,有一小物块从斜面顶端点以υ0=4m/s的初速度沿斜面下滑,当物块滑到斜面的底端点时速度恰好为零,然后在传送带的带动下,从传送带右端的C点水平抛出,最后落到地面上的D点,已知斜面长度L1=8m,传送带长度L2=18m,物块与传送带之间的动摩擦因数μ2=0.3,(sin37°=0.6,cos37°=0.8,g=10m/s2).(1)求物块与斜而之间的动摩擦因数μl;(2)求物块在传送带上运动时间;(3)若物块在D点的速度方向与地面夹角为a=53°,求C点到地面的高度和C、D两点间的水平距离.【答案】(1)(2)4s;(3)4.8m.【解析】试题分析:(1)从A到B由动能定理即可求得摩擦因数(2)由牛顿第二定律求的在传送带上的加速度,判断出在传送带上的运动过程,由运动学公式即可求的时间;(3)物体做平抛运动,在竖直方向自由落体运动,解:(1)从A到B由动能定理可知代入数据解得(2)物块在传送带上由牛顿第二定律:μ2mg=maa=达到传送带速度所需时间为t=s加速前进位移为<18m滑块在传送带上再匀速运动匀速运动时间为故经历总时间为t总=t+t′=4s(3)设高度为h,则竖直方向获得速度为联立解得h=3.2m下落所需时间为水平位移为x CD=vt″=6×0.8s=4.8m答:(1)求物块与斜而之间的动摩擦因数μl为(2)求物块在传送带上运动时间为4s;(3)若物块在D点的速度方向与地面夹角为a=53°,C点到地面的高度为3.2m和C、D两点间的水平距离为4.8m.【点评】本题主要考查了动能定理、平抛运动的基本规律,运动学基本公式的应用,要注意传动带顺时针转动时,要分析物体的运动情况,再根据运动学基本公式求解.7.滑雪者为什么能在软绵绵的雪地中高速奔驰呢?其原因是白雪内有很多小孔,小孔内充满空气.当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板与雪地间形成一个暂时的“气垫”,从而大大减小雪地对滑雪板的摩擦.然而当滑雪板对雪地速度较小时,与雪地接触时间超过某一值就会陷下去,使得它们间的摩擦力增大.假设滑雪者的速度超过4 m/s 时,滑雪板与雪地间的动摩擦因数就会由μ1=0.25变为μ2=0.125.一滑雪者从倾角为θ=37°的坡顶A由静止开始自由下滑,滑至坡底B(B处为一光滑小圆弧)后又滑上一段水平雪地,最后停在C处,如图所示.不计空气阻力,坡长为l=26 m,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)滑雪者从静止开始到动摩擦因数发生变化经历的时间;(2)滑雪者到达B处的速度;(3)滑雪者在水平雪地上运动的最大距离.【答案】1s99.2m【解析】【分析】由牛顿第二定律分别求出动摩擦因数恒变化前后的加速度,再由运动学知识可求解速度、位移和时间.【详解】(1)由牛顿第二定律得滑雪者在斜坡的加速度:a1==4m/s2解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t==1s(2)由静止到动摩擦因素发生变化的位移:x1=a1t2=2m动摩擦因数变化后,由牛顿第二定律得加速度:a 2==5m/s 2由v B 2-v 2=2a 2(L-x 1)解得滑雪者到达B 处时的速度:v B =16m/s(3)设滑雪者速度由v B =16m/s 减速到v 1=4m/s 期间运动的位移为x 3,则由动能定理有:;解得x 3=96m速度由v 1=4m/s 减速到零期间运动的位移为x 4,则由动能定理有:;解得 x 4=3.2m所以滑雪者在水平雪地上运动的最大距离为x=x 3+x 4=96+ 3.2=99.2m8.如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R ,一个质量为m 的物体 (可以看做质点)从直轨道上的P 点由静止释放,结果它能在两轨道间做往返运动.已知P 点与圆弧的圆心O 等高,物体与轨道AB 间的动摩擦因数为μ,求:(1)物体做往返运动的整个过程中,在AB 轨道上通过的总路程; (2)最终当物体通过圆弧轨道最低点E 时,物体对轨道压力的大小和方向. 【答案】(1)RL μ=(2)(32cos )NN F F mg θ'==-,方向竖直向下 【解析】试题分析:(1)物体每完成一次往返运动,在AB 斜面上能上升的高度都减少一些,最终当它达B 点时,速度变为零,对物体从P 到B 全过程用动能定理,有cos cos 0mgR mgL θμθ-=得物体在AB 轨道上通过的总路程为RL μ=(2)最终物体以B 为最高点在圆弧轨道底部做往返运动,设物体从B 运动到E 时速度为v ,由动能定理 有21(1cos )2mgR mv θ-=在E 点,由牛顿第二定律有2N mv F mg R-=得物体受到的支持力(32cos )N F mg θ=-根据牛顿第三定律,物体对轨道的压力大小为(32cos )NN F F mg θ'==-,方向竖直向下.考点:考查了动能定理,牛顿运动定律,圆周运动等应用点评:在使用动能定理分析多过程问题时非常方便,关键是对物体受力做功情况以及过程的始末状态非常清楚9.如图所示,在E=103 V/m的竖直匀强电场中,有一光滑半圆形绝缘轨道QPN与一水平绝缘轨道MN在N点平滑相接,半圆形轨道平面与电场线平行,其半径R=40 cm,N为半圆形轨道最低点,P为QN圆弧的中点,一带负电q=10-4 C的小滑块质量m=10 g,与水平轨道间的动摩擦因数μ=0.15,位于N点右侧1.5 m的M处,g取10 m/s2,求:(1)小滑块从M点到Q点电场力做的功(2)要使小滑块恰能运动到半圆形轨道的最高点Q,则小滑块应以多大的初速度v0向左运动?(3)这样运动的小滑块通过P点时对轨道的压力是多大?【答案】(1) - 0.08J(2) 7 m/s(3)0.6 N【解析】【分析】【详解】(1)W=-qE·2R W= - 0.08J(2)设小滑块到达Q点时速度为v,由牛顿第二定律得mg+qE=m2 v R小滑块从开始运动至到达Q点过程中,由动能定理得-mg·2R-qE·2R-μ(mg+qE)x=12mv2-12mv联立方程组,解得:v0=7m/s.(3)设小滑块到达P点时速度为v′,则从开始运动至到达P点过程中,由动能定理得-(mg+qE)R-μ(qE+mg)x=12mv′2-12mv又在P点时,由牛顿第二定律得F N=m2 v R代入数据,解得:F N=0.6N由牛顿第三定律得,小滑块通过P点时对轨道的压力F N′=F N=0.6N.【点睛】(1)根据电场力做功的公式求出电场力所做的功;(2)根据小滑块在Q 点受的力求出在Q 点的速度,根据动能定理求出滑块的初速度; (3)根据动能定理求出滑块到达P 点的速度,由牛顿第二定律求出滑块对轨道的压力,由牛顿第三定律得,小滑块通过P 点时对轨道的压力.10.如图所示,半圆轨道的半径为R=10m ,AB 的距离为S=40m ,滑块质量m=1kg ,滑块在恒定外力F 的作用下从光滑水平轨道上的A 点由静止开始运动到B 点,然后撤去外力,又沿竖直面内的光滑半圆形轨道运动,且滑块通过最高点C 后又刚好落到原出发点A ;g=10m/s 2求:(1)滑块在C 点的速度大小v c (2) 在C 点时,轨道对滑块的作用力N C (3)恒定外力F 的大小【答案】(1)v c =20m/s (2)Nc=30N ,方向竖直向下(3)F="10N" 【解析】试题分析:(1) C 点飞出后正好做平抛运动,则212{2R gt x vt== 联立上述方程则v c =20m/s(2)根据向心力知识则2N v mg F m r+=FN=30N ,方向竖直向下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理动能与动能定理解题技巧及练习题一、高中物理精讲专题测试动能与动能定理1.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。
取重力加速度g =10m/s 2。
求: (1)小球在C 处受到的向心力大小; (2)在压缩弹簧过程中小球的最大动能E km ; (3)小球最终停止的位置。
【答案】(1)35N ;(2)6J ;(3)距离B 0.2m 或距离C 端0.3m 【解析】 【详解】(1)小球进入管口C 端时它与圆管上管壁有大小为 2.5F mg =的相互作用力 故小球受到的向心力为2.53.5 3.511035N F mg mg mg =+==⨯⨯=向(2)在C 点,由2=c v F r向代入数据得21 3.5J 2c mv = 在压缩弹簧过程中,速度最大时,合力为零,设此时滑块离D 端的距离为0x 则有0kx mg =解得00.1m mgx k== 设最大速度位置为零势能面,由机械能守恒定律有201()2c km p mg r x mv E E ++=+得201()3 3.50.56J 2km c p E mg r x mv E =++-=+-=(3)滑块从A 点运动到C 点过程,由动能定理得2132c mg r mgs mv μ⋅-=解得BC 间距离0.5m s =小球与弹簧作用后返回C 处动能不变,小滑块的动能最终消耗在与BC 水平面相互作用的过程中,设物块在BC 上的运动路程为s ',由动能定理有212c mgs mv μ-=-'解得0.7m s '=故最终小滑动距离B 为0.70.5m 0.2m -=处停下. 【点睛】经典力学问题一般先分析物理过程,然后对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.如图所示,斜面高为h ,水平面上D 、C 两点距离为L 。
可以看成质点的物块从斜面顶点A 处由静止释放,沿斜面AB 和水平面BC 运动,斜面和水平面衔接处用一长度可以忽略不计的光滑弯曲轨道连接,图中没有画出,不计经过衔接处B 点的速度大小变化,最终物块停在 水平面上C 点。
已知物块与斜面和水平面间的滑动摩擦系数均为μ。
请证明:斜面倾角θ稍微增加后,(不改变斜面粗糙程度)从同一位置A 点由静止释放物块,如图中虚线所示,物块仍然停在同一位置C 点。
【答案】见解析所示 【解析】 【详解】设斜面长为L ',倾角为θ,物块在水平面上滑动的距离为S .对物块,由动能定理得:cos 0mgh mg L mgS μθμ-⋅'-=即:cos 0sin hmgh mg mgS μθμθ-⋅-=0tan hmgh mgmgS μμθ--= 由几何关系可知:tan hL S θ=- 则有:()0mgh mg L S mgS μμ---=0mgh mgL μ-=解得:hL μ=故斜面倾角θ稍微增加后,(不改变斜面粗糙程度)从同一位置A 点由静止释放物块,如图中虚线所示,物块仍然停在同一位置C 点。
3.如图甲所示,长为4 m 的水平轨道AB 与半径为R =0.6 m 的竖直半圆弧轨道BC 在B 处相连接。
有一质量为1 kg 的滑块(大小不计),从A 处由静止开始受水平向右的力F 作用,F 随位移变化的关系如图乙所示。
滑块与水平轨道AB 间的动摩擦因数为μ=0.25,与半圆弧轨道BC 间的动摩擦因数未知,g 取10 m/s 2。
求: (1)滑块到达B 处时的速度大小;(2)若到达B 点时撤去F ,滑块沿半圆弧轨道内侧上滑,并恰好能到达最高点C ,滑块在半圆弧轨道上克服摩擦力所做的功。
【答案】(1)10 m/s 。
(2)5 J 。
【解析】 【详解】(1)对滑块从A 到B 的过程,由动能定理得:2113312B F x F x mgx mv μ--=, 即21202-101-0.251104J=12B v ⨯⨯⨯⨯⨯⨯⨯,得:210m/s B v =;(2)当滑块恰好能到达最高点C 时,2Cv mg m R=;对滑块从B 到C 的过程中,由动能定理得:2211222C B W mg R mv mv -⨯=-, 带入数值得:=-5J W ,即克服摩擦力做的功为5J ;4.如图所示,水平轨道的左端与固定的光滑竖直圆轨道相切于点,右端与一倾角为的光滑斜面轨道在点平滑连接(即物体经过点时速度的大小不变),斜面顶端固定一轻质弹簧,一质量为的滑块从圆弧轨道的顶端点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压缩至点,已知光滑圆轨道的半径,水平轨道长为,其动摩擦因数,光滑斜面轨道上长为,取,求(1)滑块第一次经过圆轨道上点时对轨道的压力大小; (2)整个过程中弹簧具有最大的弹性势能; (3)滑块在水平轨道上运动的总时间及滑块几次经过点. 【答案】(1)(2)(3) 3次【解析】本题考查机械能与曲线运动相结合的问题,需运用动能定理、牛顿运动定律、运动学公式、功能关系等知识。
(1)滑块从点到点,由动能定理可得:解得:滑块在点:解得:由牛顿第三定律可得:物块经点时对轨道的压力(2)滑块第一次到达点时,弹簧具有最大的弹性势能.滑块从点到点,由动能定理可得:解得:(3)将滑块在段的运动全程看作匀减速直线运动加速度则滑块在水平轨道上运动的总时间滑块最终停止上在水平轨道间,设滑块在段运动的总路程为,从滑块第一次经过点到最终停下来的全过程, 由动能定理可得:解得:结合段的长度可知,滑块经过点3次。
5.下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为L ,撞车后共同滑行的距离825l L =.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍.(1)设卡车与故障车相撞前的速度为v 1两车相撞后的速度变为v 2,求12v v(2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生. 【答案】(1)1254v v = (2)32L L '= 【解析】(1)由碰撞过程动量守恒12)Mv M m v +=( 则1254v v =① (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ 两车相撞前卡车动能变化22011122Mv Mv MgL μ-= ② 碰撞后两车共同向前滑动,动能变化221()0()2M m v M m gl μ+-=+ ③ 由②式22012v v gL μ-= 由③式222v gL μ=又因825l L =可得203v gL μ= 如果卡车滑到故障车前就停止,由2010'2Mv MgL μ-= ④ 故3'2L L =这意味着卡车司机在距故障车至少32L 处紧急刹车,事故就能够免于发生.6.如图所示,半径R = 0.1m 的竖直半圆形光滑轨道BC 与水平面AB 相切,AB 距离x = 1m .质量m = 0.1kg 的小滑块1放在半圆形轨道末端的B 点,另一质量也为m = 0.1kg 的小滑块2,从A 点以0210v =m/s 的初速度在水平面上滑行,两滑块相碰,碰撞时间极短,碰后两滑块粘在一起滑上半圆形轨道.已知滑块2与水平面之间的动摩擦因数μ= 0.2.取重力加速度210m/s g =.两滑块均可视为质点.求(1)碰后瞬间两滑块共同的速度大小v ; (2)两滑块在碰撞过程中损失的机械能E ∆; (3)在C 点轨道对两滑块的作用力F .【答案】(1)v =3m/s (2)ΔE = 0.9J (3)F =8N ,方向竖直向下 【解析】 【详解】(1)物块2由A 到B 应用动能定理:22101122mgx mv mv μ-=- 解得v 1=6m/s两滑块碰撞前后动量守恒,根据动量守恒有:12mv mv = 解得:3/v m s = 方向:水平向右 (2)两滑块在碰撞过程中损失的机械能22111222E mv mv ∆=-⨯ 解得:0.9J E ∆=(3)两滑块从B 到C 机械能守恒,根据机械能守恒定律有:221122222c mv mv mgR ⨯=⨯+ 两滑块在C 点时:2N 22Cv mg F m R+=解得:N 8N F =据牛顿第三定律可得:在C 点轨道对两滑块的作用力F =8N ,方向竖直向下7.如图所示,水平传送带长为L =4m ,以02m /s v =的速度逆时针转动。
一个质量为lkg 的物块从传送带左侧水平向右滑上传送带,一段时间后它滑离传送带。
已知二者之间的动摩擦因数0.2μ=,g =10m/s 2。
(1)要使物块能从传送带右侧滑离,则物块的初速度至少多大?(2)若物块的初速度为3m /s v '=,则物块在传送带上运动时因摩擦产生的热量为多少? 【答案】(1)4m/s v >;(2)12.5J 【解析】 【详解】(1)设物块初速度为v ,物块能从传送带右侧滑离,对其分析得:212k mgL E mv μ-=-0k E >解得:4m/s v >(2)物块在传送带上的运动是先向右减速运动,后向左加速运动。
物块向右减速运动时,有:1v t a '=21102mgx mv μ'-=-物块与传送带的相对滑动产生的热量:()1011Q mg v t x μ=+向左加速运动时,有:2v t a =22012mgx mv μ=物块与传送带的相对滑动产生的热量:()2022Q mg v t x μ=-1212.5J Q Q Q '=+=8.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)4214μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r = 从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得42μ-=9.质量为M 的小车固定在地面上,质量为m 的小物体(可视为质点)以v 0的水平速度从小车一端滑上小车,小物体从小车另一端滑离小车时速度减为02v ,已知物块与小车之间的动摩擦因数为μ.求:(1)此过程中小物块和小车之间因摩擦产生的热Q 以及小车的长度L .(2)若把同一小车放在光滑的水平地面上,让这个物体仍以水平速度v 0从小车一端滑上小车.a. 欲使小物体能滑离小车,小车的质量M 和小物体质量m 应满足什么关系?b. 当M =4m 时,小物块和小车的最终速度分别是多少?【答案】(1)2038Q mv =,2038v L g μ=(2)a. M >3m ;b. 025v ,0320v 【解析】 【详解】(1) 小车固定在地面时,物体与小车间的滑动摩擦力为f mg μ=,物块滑离的过程由动能定理220011()222v fL m mv -=- ① 解得:2038v L gμ=物块相对小车滑行的位移为L ,摩擦力做负功使得系统生热,Q fL = 可得:2038Q mv =(2)a.把小车放在光滑水平地面上时,小物体与小车间的滑动摩擦力仍为f . 设小物体相对小车滑行距离为L '时,跟小车相对静止(未能滑离小车)共同速度为v , 由动量守恒定律:mv 0=(M +m )v ②设这过程小车向前滑行距离为s . 对小车运用动能定理有:212fs Mv =③ 对小物体运用动能定理有:22011()22f L s mv mv '-+=- ④联立②③④可得220011()()22mv fL mv M m M m'=-++ ⑤物块相对滑离需满足L L '>且2038fL mv = 联立可得:3M m >,即小物体能滑离小车的质量条件为3M m >b.当M =4m 时满足3M m >,则物块最终从小车右端滑离,设物块和车的速度分别为1v 、2v .由动量守恒:012mv mv Mv =+由能量守恒定律:222012111()222fL mv mv Mv =-+ 联立各式解得:1025v v =,20320v v =10.如图甲所示,水平面上A 点处有一质量m =0.5kg 的小物块,从静止开始在水平向右恒力F 1作用下运动,通过B 点时立即撤去力F 1,物块恰好落到斜面P 点。