2020年芜湖市南陵县中考数学模拟试卷含答案

合集下载

2020年安徽省芜湖市中考数学一模试卷及答案解析

2020年安徽省芜湖市中考数学一模试卷及答案解析

第1页(共26页)2020年安徽省芜湖市中考数学一模试卷一.选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分) 1.(4分)﹣2的绝对值是( ) A .﹣2B .2C .−12D .122.(4分)下列运算正确的是( ) A .(﹣a 3)2=﹣a 6 B .2a 2+3a 2=6a 2C .2a 2•a 3=2a 6D .(−b 22a )3=−b68a33.(4分)如图所示的几何体的左视图为( )A .B .C .D .4.(4分)下列一元二次方程中,没有实数根的是( ) A .x 2﹣2x =0B .x 2+4x ﹣1=0C .2x 2﹣4x +3=0D .3x 2=5x ﹣25.(4分)一次抽奖活动特等奖的中奖率为150000,把150000用科学记数法表示为( )A .5×10﹣4B .5×10﹣5C .2×10﹣4D .2×10﹣56.(4分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线. 如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.(4分)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+12x+14x=346858.(4分)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.29.(4分)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx 与一次函数y2=ax+b的大致图象不可能是()A.B.第2页(共26页)。

〖精选4套试卷〗安徽省芜湖市2020年中考第一次模拟数学试题

〖精选4套试卷〗安徽省芜湖市2020年中考第一次模拟数学试题

2019-2020学年数学中考模拟试卷一、选择题1.下列判断错误的是( )A .两组对边分别相等的四边形是平行四边形B .四个内角都相等的四边形是矩形C .两条对角线垂直且平分的四边形是正方形D .四条边都相等的四边形是菱形2.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是( ) A .①②B .②③C .②④D .①④3.如图,在Rt △ABC 中,∠C =90°,∠CBA =30°,AE 平分∠CAB 交BC 于D ,BE ⊥AE 于E ,给出下列结论:①BD =2CD ;②AE =3DE ;③AB =AC+BE ;④整个图形(不计图中字母)不是轴对称图形.其中正确的结论有( )A.1个B.2个C.3个D.4个4.化简21644m m m+--的结果是( ) A .4m -B .4m +C .44m m +- D .44m m -+ 5.如图,在平行四边形ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论①∠DCF =12∠BCD ;②S △BEC =2S △CEF ;③∠DFE =3∠AEF ;④当∠AEF =54°时,则∠B =68°,中一定成立的是( )A.①③B.②③④C.①④D.①③④6.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( )A .1B .2C .3D .47.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x 人到甲队,列出的方程正确的是( )A .1(96)723x x -=-B .196723x x ⨯-=- C .1(96)723x x+=-D .196(72)3x x +=- 8.如图,点,D E 分别在ABC ∆的,AB AC 边上,下列条件:①AED B ∠=∠;②AE DEAB BC=;③,AD AEAC AB=其中能使ADE ∆与ACB ∆相似的是( )A .①②B .②C .①③D .②③9.如图,正方形ABCD 中,内部有4个全等的正方形,小正方形的顶点E 、F 、G 、H 分别在边AB 、BC 、CD 、AD 上,则tan ∠AEH=( )A.13B.25C.27D.1410.如图,△ABC 中,下面说法正确的个数是( )个. ①若O 是△ABC 的外心,∠A =50°,则∠BOC =100°; ②若O 是△ABC 的内心,∠A =50°,则∠BOC =115°; ③若BC =6,AB+AC =10,则△ABC 的面积的最大值是12; ④△ABC 的面积是12,周长是16,则其内切圆的半径是1.A .1B .2C .3D .411.定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:B (3,0)、C (﹣1,3)都是“整点”.抛物线y =ax 2﹣2ax+a+2(a <0)与x 轴交于点M ,N 两点,若该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,则a 的取值范围是( ) A .﹣1≤a<0B .﹣2≤a<﹣1C .﹣1≤a<12-D .﹣2≤a<012.下列方程中,属于一元二次方程的是( ) A .21130x x+-= B .ax 2+bx+c =0 C .x 2+5x =x 2﹣3 D .x 2﹣3x+2=0二、填空题13.当x=_____时,分式22x x -- 值为零.14.如图,在□ABCD 中,AE ⊥BD 于点E ,∠EAC =30°,AC =12,则AE 的长为_____.15.如图,数轴上有O 、A 、B 三点,点O 对应原点,点A 对应的数为﹣1,若OB =3OA ,则点B 对应的数为_____.16.因式分解:()()2a b b a ---=_______;17.如图,DE ∥BC ,DE :BC =3:4,那么AE :CE =_____.18.计算:(﹣2)2019×0.52018=_______. 三、解答题19.如图,在▱ABCD 中,E ,F 分别是边AB ,CD 的中点,求证:AF =CE .20.先化简,再求值:(26342x x x ---+)÷2x x -,其中x =20190+(﹣13)﹣1+3tan30° 21.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC 的平行线交DC 的延长线于点E . (1)求证:BD =BE ;(2)若BE =10,CE =6,连接OE ,求△ODE 的面积.22.某体育用品商店购进了足球和排球共20个,一共花了1360元,进价和售价如表:足球 排球 进价(元/个) 80 50 售价(元/个)9560(2)全部销售完后商店共获利润多少元?23.先化简再求值:22a a 2a 11a 2a 1a 1a --⎛⎫÷+- ⎪-+-⎝⎭,并从0,132四个数中,给a 选取一个恰当的数进行求值.24.河南省开封市铁塔始建于公元1049年(北宋皇祐元年),是国家重点保护文物之一,在900多年中,历经了数次地震、大风、水患而巍然屹立,素有“天下第一塔”之称.如图,小明在铁塔一侧的水平面上一个台阶的底部A处测得塔顶P的仰角为45°,走到台阶顶部B处,又测得塔顶P的仰角为38.7°,已知台阶的总高度BC为3米,总长度AC为10米,试求铁塔的高度.(结果精确到1米,参考数据:sin38.7°≈0.63,cos38.7°≈0.78,tan38.7°≈0.80)25.某市某中学组织部分学生去某地开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400(1)参加此次研学旅行活动的老师和学生各有多少人?(2)①既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,需租用几辆客车;②求租车费用的最小值.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C C C B A A C C A C B D13.﹣2.14.15.16.(a-b)(a-b+1)17.318.-2三、解答题19.见解析.【解析】【分析】方法一:先根据平行四边形的性质及中点的定义得出AE=FC,AE∥FC,再根据一组对边平行且相等的四边形是平行四边形证出四边形AECF是平行四边形,然后根据平行四边形的对边相等得出AF=CE;方法二:先利用“边角边”证明△ADF≌△CBE,再根据全等三角形的对应边相等得出AF=CE.【详解】证明:(证法一):∵四边形ABCD 为平行四边形, ∴AB ∥CD ,AB =CD , 又∵E 、F 是AB 、CD 的中点, ∴AE =12AB ,CF =12CD , ∴AE =CF ,AE ∥CF ,∴四边形AECF 是平行四边形, ∴AF =CE . (证法二):∵四边形ABCD 为平行四边形, ∴AB =CD ,AD =BC ,∠B =∠D , 又∵E 、F 是AB 、CD 的中点, ∴BE =12AB ,DF =12CD , ∴BE =DF ,∴△ADF ≌△CBE (SAS ), ∴AF =CE . 【点睛】本题考查了证明两条线段相等的方法,一般来说,可以证明这两条线段是一个平行四边形的一组对边,也可以证明这两条线段所在的三角形全等.注意根据题目的已知条件,选择合理的判断方法. 20.22x -+,-2. 【解析】 【分析】先将除法转化为乘法,再利用分配律进行计算,最后将x 的值化简,代入即可. 【详解】解:原式=()()632222x x x x x x ⎡⎤---⎢⎥+-+⎢⎥⎣⎦n, ()()()6322x x x x ---=+,()6362x x x x --+=+,22x =-+,∴当x =20190+11()3--1﹣3=﹣1时, 原式=212--+=﹣2. 【点睛】本题主要考查分式的化简求值、实数的混合运算、零指数幂、负整数指数幂、特殊角的三角函数值等知识的综合,解决此题的关键是先根据分式的运算性质,将其化简,再将未知数的代入求值. 21.(1)证明见解析(2)24【分析】(1)根据矩形的对角线相等可得AC=BD,对边平行可得AB∥CD,再求出四边形ABEC是平行四边形,根据平行四边形的对边相等可得AC=BE,从而得证;(2)如图,过点O作OF⊥CD于点F,根据平行四边形的性质得出AC=BE,求出OF和EF的长,从而求得三角形的面积即可.【详解】(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE;(2)解:过点O作OF⊥CD于点F,∵由(1)知:四边形ABEC为平行四边形,∴AC=BE,∴BE=BD=10,∵△BCD≌△BCE,∴CD=CE=6,∵四边形ABCD是矩形,∴DO=OB,∠BCD=90°,∵OF⊥CD,∴OF∥BC,∴CF=DF=12CD=3,∴EF=6+3=9,在Rt△BCE中,由勾股定理可得BC=8,∵OB=OD,∴OF为△BCD的中位线,∴OF=12BC=4.∴△ODE的面积为12DE•OF=12×12×4=24.【点睛】本题考查了勾股定理,全等三角形的性质和判定,矩形的性质,平行四边形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键,题目综合性比较强,难度偏大.22.(1)购进足球12个,购进排球8个;(2)若全部销售完,商店共获利260元.【解析】(1)根据题意设购进足球x 个,排球y 个,列出方程组,即可解答 (2)由题(1)可直接用足球排球的个数乘以各自的销售利润,即可解答 【详解】(1)设购进足球x 个,排球y 个,由题意得;2080501360x y x y +=⎧⎨+=⎩解得:128x y =⎧⎨=⎩答:购进足球12个,购进排球8个.(2)若全部销售完,商店共获利:12(95﹣80)+8(60﹣50)=180+80=260(元) 答:若全部销售完,商店共获利260元. 【点睛】此题考查一元一次方程的应用,利用方程组计算出足球排球的数量是解题关键23.12a -,2. 【解析】 【分析】根据分式的运算,将分式化简后,再选中能使分式有意义的a 的值代入求值即可. 【详解】原式=22(1)121(1)1a a a a a a ---+÷--═2(1)1(1)(2)a a a a a a --⨯--=12a -, ∵a≠0,1,2,当a 2=. 【点睛】本题主要考查分式的化简求值,解决此题的关键是先根据分式的运算性质,将其化简,再将未知数的代入求值,特别是要注意选取的a 的值要保证分式在整个运算过程中始终有意义. 24.铁塔约高55米. 【解析】 【分析】如图,过点B 作BE ⊥DP 于点E ,由题可知,∠EBP =38.7°,∠DAF =45°,BE =CD ,DP =AD ,设铁塔高度DP 为x 米,则BE =CD =x+10,解直角三角形即可得到结论. 【详解】如图,过点B 作BE ⊥DP 于点E ,由题可知,∠EBP =38.7°,∠DAF =45°,BE =CD ,DP =AD , 设铁塔高度DP 为x 米,则BE =CD =x+10, EP =DP ﹣DE =AD ﹣BC =x ﹣3, 在Rt △BEP 中∵EP =x ﹣3,BE =x+10,∴tan∠EBP=EPBE,x﹣3=(x+10)×tan38.7°,解得x=55,答:铁塔约高55米.【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,还考查的知识点有三角函数、直角三角形的性质以及勾股定理等,解题的关键是纷杂的实际问题中整理出直角三角形并解之.25.(1)老师有16名,学生有284名;(2)①需租8辆客车;②租车费用最低为2900元.【解析】【分析】(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;(2)①根据汽车总数不能超过30050427=(取整为8)辆,即可求出;②设租用x辆乙种客车,则甲种客车数为:(8-x)辆,由题意得出400x+300(8-x)≤3100,得出x取值范围,分析得出即可.【详解】解:(1)设老师有x名,学生有y名,依题意,列方程组为1712184x yx y=-⎧⎨=+⎩,解得:16284xy=⎧⎨=⎩,答:老师有16名,学生有284名;(2)①∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;要保证300名师生有车坐,汽车总数不能小于30050427=(取整为8)辆,∴需租8辆客车;②设租用x辆乙种客车,则甲种客车数为(8﹣x)辆,∵车总费用不超过3100元,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7(x为整数),∵乙种车辆租金高,∴租用乙种车辆最少,租车费用最低,∴租用甲种客车3辆,乙种客车5辆,租车费用最低为2900元.【点睛】本题主要考查了二元一次方程组的应用与一次不等式的综合应用,由题意得出租用x辆甲种客车与租车费用的不等式关系是解决问题的关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,BD ,CE 分别是△ABC 的高线和角平分线,且相交于点O .若AB =AC ,∠A =40°,则∠BOE 的度数是( )A.60°B.55°C.50°D.40°2.如图,抛物线y =a (x ﹣1)2+k (a >0)经过点(﹣1,0),顶点为M ,过点P (0,a+4)作x 轴的平行线1,l 与抛物线及其对称轴分别交于点A ,B ,H .以下结论:①当x =3.1时,y >0;②存在点P ,使AP =PH ;③(BP ﹣AP )是定值;④设点M 关于x 轴的对称点为M',当a =2时,点M′在l 下方,其中正确的是( )A .①③B .②③C .②④D .①④3.函数y=|x-3|·(x+1)的图象为( )A. B. C. D.4.如图,ABC ∆纸片中,点1A ,1B ,1C 分别是ABC ∆三边的中点,点2A ,2B ,2C 分别是111A B C ∆三边的中点,点3A ,3B ,3C 分别是222A B C ∆三边的中点,若小明向纸板上投掷飞镖(每次飞镖均落在纸板上且不落在各边上),则飞镖落在阴影部分的概率是( )A.2164B.1132C.2148D.7125.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( ) A.94B.95分C.95.5分D.96分6.如图,四边形ABCD 是正方形,直线l 1、l 2、l 3分别通过A 、B 、C 三点,且l 1∥l 2∥l 3,若l 1与l 2的距离为6,正方形ABCD 的面积等于100,l 2与l 3的距离为( )A .8B .10C .9D .77.设函数ky x=(0k ≠,0x >)的图象如图所示,若1z y =,则z 关于x 的函数图象可能为( )A .B .C .D .8.将抛物线C :y=x 2-2mx 向右平移5个单位后得到抛物线C′,若抛物线C 与C′关于直线x=-1对称,则m 的值为( ) A .7-B .7C .72D .72-9.如图,在菱形ABCD 中,AB =4,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 的长为半径画弧,两弧交于点M ,N ;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE ,则BE 的值为( )A.7B.27C.37D.4710.下列各式变形中,正确的是( ) A.()2x=x B .2(1)(1)1x x x ---=-C.x xx y x y=--++D .22131=x+-24x x ⎛⎫++ ⎪⎝⎭11.计算的结果为( )A.B.C. D.12.已知二次函数y =ax 2+bx+c ,其函数y 与自变量x 之间的部分对应值如表所示: x … ﹣1 2 3 … y…4…则可求得24b b ac+-(4a ﹣2b+c )的值是( )A.8B.﹣8C.4D.﹣4二、填空题13.如图,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,AB =4,点M 是直角边AC 上一动点,连接BM ,并将线段BM 绕点B 逆时针旋转60°得到线段BN ,连接CN .则在点M 运动过程中,线段CN 长度的最大值是_____,最小值是_____.14.如图,180280384∠=︒∠=︒∠=︒,,,则4∠=______.15.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x 个白球,然后从箱中随机取出一个白球的概率是,则x 的值为_____16.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________17.关于x 的一元一次不等式组2152x x m -⎧⎪⎨+≤⎪⎩>,中两个不等式的解集在同一数轴上的表示如图所示,则该不等式组解集是___________.18.若x 是3和6的比例中项,则x =_____. 三、解答题19.目前“校园手机”现象越来越受到社会关注,针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“中学生带手机的”的态度(态度分为:A .无所谓;B .基本赞成;C .赞成;D .反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名中学生家长;(2)求出图2中扇形C 所对的圆心角的度数,并将图1补充完整;(3)在此次调查活动中,初三(1)班有A 1、A 2两位家长对中学生带手机持反对态度,初三(2)班有B 1、B 2两位学生家长对中学生带手机也持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求出选出的2人来自不同班级的概率.20.如图,一次函数y =﹣x+b 交x 轴于点A ,交y 轴于点B (0,1),与反比例函数1(0)ky k x=<的图象交于点C ,C 点的横坐标是﹣2. (1)求反比例函数y 1的解析式; (2)设函数2m y (m 0)x =>的图象与1k y (k 0)x =<的图象关于y 轴对称,在2(0)my m x=>的图象上取一点D (D 点的横坐标大于1),过D 点作DE ⊥x 轴于点E ,若四边形OBDE 的面积为10,求D 点的坐标.21.如图,一次函数y =kx+3的图象分别交x 轴、y 轴于点B 、点C ,与反比例函数y xn=的图象在第四象限的相交于点P ,并且PA ⊥y 轴于点A ,已知A (0,﹣6),且S △CAP =18. (1)求上述一次函数与反比例函数的表达式;(2)设Q 是一次函数y =kx+3图象上的一点,且满足△OCQ 的面积是△BCO 面积的2倍,求出点Q 的坐标.22.在□ABCD中,经过A、B、C三点的⊙O与AD相切于点A,经过点C的切线与AD的延长线相交于点P,连接AC.(1)求证:AB=AC;(2)若AB=4,⊙O的半径为5,求PD的长.23.某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:组别月生活支出x(单位:元)频数(人数)频率第一组x<300 4 0.10第二组300≤x<350 2 0.05第三组350≤x<400 16 n第四组400≤x<450 m 0.30第五组450≤x<500 4 0.10第六组x≥500 2 0.05(1)在这次调查中共随机抽取了名学生,图表中的m=,n ;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.24.如图,一次函数y1=kx+b(k≠0)与反比例函数2myx(m≠0)的图象交于点A(﹣1,6),B (a,﹣2).(1)求一次函数与反比例函数的解析式;(2)根据函数图象,直接写出不等式mkx bx≥+的解集.25.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动,几秒种后△DPQ的面积为31cm2?【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B A B B B A D D B A A C13.2, 114.96︒15.16.15°17.x≤-1.18.32±三、解答题19.(1)200;(2)详见解析;(3)2 3【解析】【分析】(1)用D类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以C类所占的百分比得到扇形C所对的圆心角的度数,再用200乘以C类所占的百分比得到C类人数,然后补全图1;(3)画树状图展示所有12种等可能结果,再找出2人来自不同班级的结果数,然后根据概率公式求解.【详解】解:(1)120÷60%=200(人),所以调查的家长数为200人;(2)扇形C 所对的圆心角的度数=360°×(1﹣20%﹣15%﹣60%)=18°, C 类的家长数=200×(1﹣20%﹣15%﹣60%)=10(人), 补充图为:(3)设初三(1)班两名家长为A 1、A 2,初三(2)班两名家长为B 1,B 2, 画树状图为共有12种等可能结果,其中2人来自不同班级共有8种, 所以2人来自不同班级的概率=812=23. 【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.也考查了扇形统计图. 20.(1)16y x =-;(2)314,7⎛⎫ ⎪⎝⎭【解析】 【分析】(1)运用待定系数法解得即可;(2)根据(1)的结论,可设点D 坐标为(a ,6a ),则DE =6a,OE =a ,由四边形OBDE 的面积为10,根据梯形的面积公式即可求解. 【详解】(1)把B (0,1)代入y =﹣x+b 得:b =1, ∴y =﹣x+1, 当x =﹣2时,y =3, ∴点C 坐标为(﹣2,3), ∴反比例函数解析式为16y x=-; (2)∵函数1y 的图象与函数2y 的图象关于y 轴对称, 设点D 坐标为(a ,6a ),则DE =6a,OE =a , ∴S 四边形OBDE =OE (OB+DE )=12a (1+6a)=10,解得:a =14, ∴D 点坐标为(14,37). 【点睛】本题考查了用待定系数法求一次函数和反比例函数的解析式,函数图象上点的坐标特征,函数的图象和性质的应用,能求出两函数的解析式是解此题的关键,数形结合思想的应用. 21.(1)y=24x - ; y=9x 34-+;(2)Q 1(8,93-), Q 2(8,33-) 【解析】 【分析】(1)根据一次函数解析式可得到点C 的坐标为(0,3),已知S △CAP =18,可求得点A 、点P 的坐标,点P 在一次函数和反比例函数上,利用待定系数法即可求得函数解析式. (2)设点Q 的坐标(m ,94-m+3),根据一次函数解析式可知点B 坐标,结合等底三角形面积性质可得到关于m 的一元一次方程,解方程即可求得m 值,进而求得Q 点坐标. 【详解】(1)令一次函数y=kx+3中的x=0,则y=3, 即点C 的坐标为(0,3), ∴AC=3-(-6)=9. ∵S △CAP =12AC·AP=18 ∴AP=4,∵点A 的坐标为(0,-6), ∴点P 的坐标为(4,-6). ∵点P 在一次函数y=kx+3的图象上, ∴-6=4k+3,解得:k=94-∵点P 在反比例函数y xn=的图象上,∴-6=4n,解得:n=-24. ∴一次函数的表达式为y=94-x+3,反比例函数的表达式为24y x=- (2)令一次函数=y=94-x+3中的y=0 解得x=43即点B 的坐标为(43,0). 设点Q 的坐标为(m ,94-m+3) ∵△OCQ 的面积是△BCO 面积的2倍, ∴|m|=2×43,解得:m=±83,∴点Q的坐标为Q1(8,93-), Q2(8,33-)【点睛】此题考查了一次函数与反比例函数的交点,利用待定系数法求函数解析式,其中第二问掌握题目要求中两三角形是等底关系,满足△OCQ的面积是△BCO面积的2倍即可转化为高是2倍的关系即可解题.22.(1)见解析,(2)25 5【解析】【分析】(1)连接AO并延长交BC于点E,交⊙O于点F,由切线的性质可得∠FAP=90°,根据平行四边形的性质可得∠AEB=90°,由垂径定理点BE=CE,根据垂直平分线的性质即可得AB=AC;(2)连接FC,OC,设OE=x,则EF=5-x,根据AF为直径可得∠ACF=90°,利用勾股定理可得CF的长,利用勾股定理可证明OC2-OE2=CF2-EF2,即可求出x的值,进而可得EC、BC的长,由平行线性质可得∠PAC=∠ACB,由切线长定理可得PA=PC,即可证明∠PAC=∠PCA,由AB=AC可得∠ABC=∠ACB,利用等量代换可得∠ABC=∠PAC,即可证明△PAC∽△ABC,根据相似三角形的性质可求出AP的长,根据PD=AP-AD即可得答案. 【详解】(1)连接AO并延长交BC于点E,交⊙O于点F.∵AP是⊙O的切线,AF是⊙O的直径,∴AF⊥AP,∴∠FAP=90°.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠AEB=∠FAP=90°,∴AF⊥BC.∵AF是⊙O的直径,AF⊥BC,∴BE=CE.∵AF⊥BC,BE=CE,∴AB=AC.(2)连接FC,OC.设OE=x,则EF5x.∵AF是⊙O的直径,∴∠ACF=90°.∵AC=AB=4,AF=5∴在Rt△ACF中,∠ACF=90°,∴CF22AF AC-2.∵在Rt△OEC中,∠OEC=90°,∴CE2=OC2-OE2.∵在Rt△FEC中,∠FEC=90°,∴CE2=CF2-EF2.∴OC2-OE2=CF2-EF2.即2-x2=22x)2.解得x.∴EC5.∴BC=2EC.∵四边形ABCD是平行四边形,∴AD=BC=5.∵AD∥BC,∴∠PAC=∠ACB.∵PA,PC是⊙O的切线,∴PA=PC.∴∠PAC=∠PCA.∵AB=AC,∴∠ABC=∠ACB.∴∠PAC=∠ABC,∠PCA=∠ACB.∴△PAC∽△ABC,∴APAB=ACBC.∴AP=ACBC·AB=∴PD=AP-AD=5.【点睛】本题考查切线的性质、圆周角定理的推论、垂径定理、平行四边形的性质及相似三角形的判定与性质,直径所对的圆周角是直角;圆的切线垂直于过切点的半径;垂直于弦的直径平分弦,且平分弦所对的两条弧;有两个角对应相等的两个三角形相似;熟练掌握相关性质及定理是解题关键.23.(1)40、12、=0.40;(2)90;(3)13.【解析】【分析】(1)由第一组的频数及其频率可得总人数,再根据频率=频数÷总数可得m、n的值;(2)用总人数乘以样本中第一、二组频率之和即可得;(3)画树状图得出所有等可能结果,然后根据概率公式计算即可得解.【详解】(1)本次调查的学生总人数为4÷0.1=40人,m=40×0.3=12、n=16÷40=0.40,故答案为:40、12、=0.40;(2)600×(0.10+0.05)=600×0.15=90(人),答:估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数为90; (3)画树状图如下:由树状图知共有6种等可能结果,其中恰好抽到A ,B 两名女生的结果数为2, 所以恰好抽到A 、B 两名女生的概率21()63P A == ; 【点睛】本题考查频数分布直方图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.也考查了列表法与树状图法求概率. 24.(1)y 1=﹣2x+4,26y x=-;(2)x≥3或﹣1≤x<0. 【解析】 【分析】(1)把点A 坐标代入反比例函数求出k 的值,也就求出了反比例函数解析式,再把点B 的坐标代入反比例函数解析式求出a 的值,得到点B 的坐标,然后利用待定系数法即可求出一次函数解析式; (2)找出直线在一次函数图形的下方部分图象的自变量x 的取值即可. 【详解】解:(1)把点A (﹣1,6)代入反比例函数2my x=(m≠0)得: m =﹣1×6=﹣6, ∴26y x=-. 将B (a ,﹣2)代入26y x =-得:62a--=, 解得a =3, ∴B (3,﹣2),将A (﹣1,6),B (3,﹣2)代入一次函数y 1=kx+b 得:k b 63k b 2-+=⎧⎨+=-⎩,k 2b 4=-⎧∴⎨=⎩,∴y 1=﹣2x+4.(2)由函数图象可得:不等式mkx b x≥+的解集x≥3或﹣1≤x<0. 【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数解析式,此类题目的求解一般都是先把已知点的坐标代入反比例函数表达式求出反比例函数解析式,然后再求一次函数解析式. 25.运动1秒或5秒后△DPQ 的面积为31cm 2. 【解析】 【分析】设运动x 秒钟后△DPQ 的面积为31cm 2,则AP=xcm ,BP=(6-x )cm ,BQ=2xcm ,CQ=(12-2x )cm ,利用分割图形求面积法结合△DPQ 的面积为31cm 2,即可得出关于x 的一元二次方程,解之即可得出结论 【详解】解:设运动x秒钟后△DPQ的面积为31cm2,则AP=xcm,BP=(6-x)cm,BQ=2xcm,CQ=(12-2x)cm,S△DPQ=S矩形ABCD-S△ADP-S△CDQ-S△BPQ,=AB•BC-12AD•AP-12CD•CQ-12BP•BQ,=6×12-12×12x-12×6(12-2x)-12(6-x)•2x,=x2-6x+36=31,解得:x1=1,x2=5.答:运动1秒或5秒后△DPQ的面积为31cm2.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.不等式组2010x x -⎧⎨+>⎩…的解集在数轴上表示正确的是( )A .B .C .D .2.如图,边长分别为2和4的两个等边三角形,开始它们在左边重叠,大△ABC 固定不动,然后把小△A′B′C′自左向右平移,直至移到点B′到C 重合时停止,设小三角形移动的距离为x ,两个三角形的重合部分的面积为y ,则y 关于x 的函数图象是()A. B.C. D.3.已知二次函数y =ax 2+bx+c 的图象如图所示,在以下四个结论中,正确的是( )A.abc >0B.4a+2b+c <0C.a ﹣b+c >0D.a+b >04.某超市四月份赢利a 万元,计划五、六月份平均每月的增长率为x ,那么该超市第二季度共赢利( ) A .a (1+x )万元B .a (1+x )2万元C .a (1+x )+a (1+x )2万元D .a+a (1+x )+a (1+x )2万元5.如图,在平面直角坐标系中,点A 的坐标为()0,1,点B 是x 轴正半轴上一点,以AB 为边作等腰直角三角形ABC ,使BAC=90∠︒,点C 在第一象限。

芜湖市2020版数学中考模拟试卷(I)卷

芜湖市2020版数学中考模拟试卷(I)卷

芜湖市2020版数学中考模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)某县一天中午的温度是15℃,夜间九点下降了17℃,则这天夜间九点的温度是()A . ﹣2℃B . 8℃C . 12℃D . 18℃2. (2分)一个几何体的主视图、左视图、俯视图完全相同,它一定是()A . 长方体B . 圆柱C . 圆锥D . 球体3. (2分) (2017七下·德惠期末) 下列汽车标志中既是轴对称又是中心对称图形的是()A .B .C .D .4. (2分)下列说法中,正确的是()A . 为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B . 两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C . 抛掷一个正方体骰子,点数为奇数的概率是D . “打开电视,正在播放广告”是必然事件5. (2分)(2017·淳安模拟) 计算4.5×105﹣4.4×105 ,结果用科学记算法表示为()A . 0.1×105B . 0.1×104C . 1×104D . 1×1056. (2分) (2019七下·杭锦旗期中) 如图,将一副三角板如此摆放,使得BO和CD平行,则∠AOD的度数为()A . 10°B . 15°C . 20°D . 25°7. (2分)如图,在菱形ABCD中,DE⊥AB,cosA=, BE=2,则tan∠DBE的值()A .B . 2C .D .8. (2分) (2019九上·沭阳月考) 如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠ABC=70°,则∠BDC 的度数为()A . 50°B . 40°C . 30°D . 20°9. (2分)下列关于“代数式3x+2y”的意义叙述不正确的有()个.①x的3倍加上y的2倍的和;②小明跑步速度为x千米/小时,步行的速度为y千米/时,则小明跑步3小时后步行2小时,走了(3x+2y)千米;③某小商品以每个3元卖了x个,又以每个2元卖了y个,则共卖了(3x+2y)元.A . 3B . 2C . 1D . 010. (2分)下列调查中,须用普查的是()A . 了解某市学生的视力情况B . 了解某市中学生课外阅读的情况C . 了解某市百岁以上老人的健康情况D . 了解某市老年人参加晨练的情况11. (2分)下列等式一定成立的是()A . a2+a3=a5B . (a+b)2=a2+b2C . (﹣a+b)(﹣a﹣b)=﹣a2﹣b2D . (x﹣a)(x﹣b)=x2﹣(a+b)x+ab12. (2分)(2018·孝感) 如图,在中,,,,动点从点开始沿向点以以的速度移动,动点从点开始沿向点以的速度移动.若,两点分别从,两点同时出发,点到达点运动停止,则的面积随出发时间的函数关系图象大致是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2017九上·虎林期中) 如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为________.14. (1分)如图,已知正方形ABCD,顶点A(1,3)、B(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为________.15. (1分) (2019七下·廉江期末) 不等式的解集是________.16. (1分)(2018·井研模拟) 如果关于x的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是________(写出所有正确说法的序号).①方程是倍根方程;②若是倍根方程,则;③若点在反比例函数的图像上,则关于的方程是倍根方程;④若方程是倍根方程,且相异两点,都在抛物线上,则方程的一个根为.17. (1分) (2017七下·平谷期末) 《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为________18. (1分) (2020九上·三门期末) 如图,矩形ABCD绕点A旋转90°,得矩形,若三点在同一直线上,则的值为________三、解答题 (共8题;共90分)19. (5分) (2018八下·宁波期中) 请计算下列各题(1)(2)20. (5分)已知方程=1的解是a,求关于y的方程+ay=0的解.21. (5分)如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.22. (20分)(2017·惠山模拟) 某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:30秒跳绳次数的频数、频率分布表成绩段频数频率0≤x<2050.120≤x<4010a40≤x<60b0.1460≤x<80m c80≤x<10012n根据以上图表信息,解答下列问题:(1)表中的a=________,m=________;(2)请把频数分布直方图补充完整;(画图后请标注相应的数据)(3)若该校九年级共有600名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人?23. (10分)(2019·扬州模拟) 如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF(1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=________,菱形AEDF为正方形?请说明理由.24. (15分)(2017·乐陵模拟) 如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C 分别在坐标轴上,顶点B的坐标(4,2),过点D(0,3)和E(6,0)的直线分别于AB,BC交于点M,N.(1)求直线DE的解析式和点M的坐标;(2)若反比例函数y= (x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上.25. (15分)(2019·哈尔滨模拟) 如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.26. (15分)(2016·西城模拟) 在平面直角坐标系xOy中,抛物线C1:y1=ax2﹣4ax﹣4的顶点在x轴上,直线l:y2=﹣x+5与x轴交于点A.(1)求抛物线C1:y1=ax2﹣4ax﹣4的表达式及其顶点坐标;(2)点B是线段OA上的一个动点,且点B的坐标为(t,0).过点B作直线BD⊥x轴交直线l于点D,交抛物线C2:y3=ax2﹣4ax﹣4+t 于点E.设点D的纵坐标为m,设点E的纵坐标为n,求证:m≥n;(3)在第(2)问的条件下,若抛物线C2:y3=ax2﹣4ax﹣4+t 与线段BD有公共点,结合函数的图象,求t的取值范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共90分)19-1、19-2、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。

安徽省芜湖市2020届中考二模数学试题

安徽省芜湖市2020届中考二模数学试题

F
∵AB=BC,AC⊥BD,∴AE=CE,
∵∠F=45°,
∴△CFM 是等腰直角三角形,
∴CM= 2 ,∴AE=CE= 2 ,∴AC= 2 2 .
八、(本题满分 14 分) 23.如图 1,在△ABC 中,∠ACB=90°,AC=BC,D 为 AB 上一点,连接 CD,将
CD 绕点 C 顺时针旋转 90°至 CE,连接 AE. (1)求证:△BCD≌△ACE;
图1
(2)如图 2,连接 ED,若 CD= 2 2 ,AE=1,求 AB 的长;
图2
第 20 题
得分
评卷人 六、(本题满分 12 分)
21.小王在一次社会调查活动中负责了解他所居住的小区 450 户居民的生活用水情 况,他从中随机调查了若干户居民的月均用水量(单位:t),并绘制了样本的 频数分布表和频数分布直方图(如下图所示).
月均用水量
频数 百分比
(单位:t)
频数
2≤x<3 3≤x<4 4≤x<5 5≤x<6 6≤x<7 7≤x<8 8≤x<9
9.若一次函数 y=ax+b 与反比例函数 y=x的图象在第二象限内有两个交点,且其
中一个交点的横坐标为-1,则二次函数 y=ax2+bx-c 的图象可能是( )
A.
B.
C.
D.
10.如图,已知正方形 ABCD 的边长为 8,点 E 是正方形内部一点,

接 BE,CE,且∠ABE=∠BCE,点 P 是 AB 边上一动点,连接
∵∠CBA=75°,∴∠CBG=30°. 1
∴CG=2BC=30(cm). …………………………..6 分 ∴DM=CM-CD
=(CG+GJ+JM)-CD =30+30 2+25-35=(20+30 2)(cm). 即末端操作器节点 D 到地面直线 EL 的距离为(20+30 2)(cm).

芜湖市2020年九年级数学中考模拟试卷(I)卷

芜湖市2020年九年级数学中考模拟试卷(I)卷

芜湖市2020年九年级数学中考模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)的绝对值是().A .B .C .D .2. (2分)(2019·长春模拟) 2011年某市居民人均收入达到36 200元.将36 200这个数字用科学记数法表示为()A . 362×102B . 3.62×104C . 3.62×105D . 0.362×1053. (2分)(2019·广州模拟) 在下列四个图案中既是轴对称图形,又是中心对称图形的是()A .B .C . .D .4. (2分)下列计算不正确的一项是()A .B .C . 3x2y÷=D .5. (2分)(2017·香坊模拟) 把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A .B . 5C . 4D .6. (2分) (2020八上·息县期末) 甲打字员计划用若干小时完成文稿的电脑输入工作,两小时后,乙打字员协助此项工作,且乙打字员文稿电脑输入的速度是甲的1.5倍,结果提前6小时完成任务,则甲打字员原计划完成此项工作的时间是()A . 17小时B . 14小时C . 12小时D . 10小时7. (2分)(2018·海南) 如图1,分别沿长方形纸片 ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A . 24B . 25C . 26D . 278. (2分)(2017·梁子湖模拟) 如图,一次函数y=kx+b与反比例函数y= (x>0)的图象交于A(m,6),B(3,n)两点,与x轴交于点C,与y轴交于点D,下列结论:①一次函数解析式为y=﹣2x+8;②AD=BC;③kx+b ﹣<0的解集为0<x<1或x>3;④△AOB的面积是8,其中正确结论的个数是()A . 4个B . 3个C . 2个D . 1个二、填空题 (共6题;共6分)9. (1分)(2017·哈尔滨模拟) 计算的结果是________.10. (1分) (2018九上·龙岗期中) 生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为 ________只.11. (1分)(2019·长春模拟) 如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的大小为________度.12. (1分) (2019九上·镇江期末) 如图所示是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为经过点(1,0)且垂直于x轴的直线.给出四个结论:①abc>0;②当x>1时,y随x的增大面减小;③4a﹣2b+c>0;④3a+c>0.其中正确的结论是________(写出所有正确结论的序号)13. (1分) (2019八上·高邮期末) 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB 于E,若AC=2,AE=1,则BC=________.14. (1分)如图,是一个长方体的三视图(单位:cm),这个长方形的体积是________cm3 .三、解答题 (共10题;共94分)15. (5分)(2016·兰州) 如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)16. (10分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).17. (11分)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160*********摸到黑球的频率0.230.210.300.260.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________ ;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计算他两次都摸出白球的概率.18. (10分)(2017·枣阳模拟) 图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O,A两处观测P 处,仰角分别为α、β,且tanα= ,tan ,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?19. (7分)(2018·亭湖模拟) 某公司共25名员工,下表是他们月收入的资料.月收入/元45000180001000055004800340030002200人数111361111(1)该公司员工月收入的中位数是________元,众数是________元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.20. (10分)某商人发现行驶在道路上的汽车越来越多,估计相应的汽车配套用品会畅销,于是决定购进A、B两种汽车配套用品,经调查,A种汽车配套用品每套进价比B种贵25元,购进A种汽车配套用品6套和B种汽车配套用品4套共用900元.(1)求A、B两种汽车配套用品的进价各是多少元?(2)根据市场需求,商人决定购进 B种汽车配套用品的数量是购进 A种汽车配套用品的2倍还多4套,若A 种汽车配套用品的售价为140元,B种汽车配套用品的售价为105元,且这批汽车配套用品全部售出后,利润超过1620元,那么购进A种汽车配套用品的数量至少多少套?21. (15分)(2016·开江模拟) 如图,在△ABD中,AB=AD,AO平分∠BAD,过点D作AB的平行线交AO的延长线于点C,连接BC.(1)求证:四边形ABCD是菱形;(2)如果OA,OB(OA>OB)的长(单位:米)是一元二次方程x2﹣7x+12=0的两根,求AB的长以及菱形ABCD 的面积;(3)若动点M从A出发,沿AC以2m/S的速度匀速直线运动到点C,动点N从B出发,沿BD以1m/S的速度匀速直线运动到点D,当M运动到C点时运动停止.若M、N同时出发,问出发几秒钟后,△MON的面积为?22. (10分)(2017·邵东模拟) 如图,一位跳水运动员在进行某次10米跳台跳水训练时,测得身体(看成一点)在空中的运动路线是抛物线(图中标出的数据为已知条件).(1)运动员在空中运动的最大高度离水面为多少米?(2)如果运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.在这次试跳中,运动员在空中调整好入水姿势时,测得距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理由.23. (6分)(2019·合肥模拟) 观察下列等式:第1个等式:=3,第2个等式=6,第3个等式:=9,第4个等式:=12,按照以上规律,解决下列问题:(1)写出第5个等式:________.(2)写出你猜想的第n个等式.(用含n的等式表示),并证明.24. (10分) (2019八下·泰兴期中) 如图,在平面直角坐标系中,直线y= x+4分别交x轴,y轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作PH⊥OA,垂足为H,连接NP.设点P的运动时间为t 秒.①若△NPH的面积为1,求t的值;②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共94分)15-1、16-1、16-2、17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、。

2020年安徽省芜湖市中考数学二模试卷 (含答案解析)

2020年安徽省芜湖市中考数学二模试卷 (含答案解析)

2020年安徽省芜湖市中考数学二模试卷一、选择题(本大题共10小题,共40.0分)1.与−3的和为0的有理数是()A. −3B. 3C. −13D. 132.a3⋅a4的结果是()A. a4B. a7C. a6D. a123.如图所示的“h”型几何体的俯视图是()A.B.C.D.4.地球的半径约为6370000m,用科学记数法表示正确的是()A. 637×104mB. 63.7×105mC. 6.37×106mD. 6.37×107m5.如图所示,已知AD//BC,∠C=30°,∠ADB:∠BDC=1:2,那么∠ADB等于()A. 45°B. 30°C. 50°D. 36°6.如图,AB是半圆O的直径,E是弧BC的中点,OE交弦BC于点D,过点C作⊙O切线交OE的延长线于点F,已知BC=8,DE=2,则⊙O的半径为()A. 8B. 5C. 2.5D. 67.一组数据:10,15,10,17,18,20.对于这组数据,下列说法错误的是()A. 平均数是15B. 众数是10C. 中位数是17D. 方差是4438.2018年安徽生产总值突破3万亿大关,相比2016年增长24%,2016年到2018年生产总值的平均增长率为x,根据题意,下列方程正确的是()A. 1+2x=1.24B. 1.24(1−2x)=1C. (1+x)2=1.24D. 1.24(1−x)2=19.已知函数y=−(x−m)(x−n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=m+n的图象可能是()xA. B.C. D.10.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ的周长的最小值为()A. 6B. 8C. 10D. 1+4√2二、填空题(本大题共4小题,共20.0分)11.−64的立方根是______.12.分解因式:a3−2a2+a=______.13. 如图,已知锐角三角形ABC 内接于半径为2的⊙O ,OD ⊥BC 于点D ,∠BAC =60°,则OD =______.14. 已知点P(−1,5)在抛物线y =−x 2+bx +c 的对称轴上,且与该抛物线的顶点的距离是4,则该抛物线的函数表达式为________.三、解答题(本大题共9小题,共90.0分)15. 解二元一次方程组:{x +y =52x −y =416. 如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A(2,2),B(4,0),C(4,−4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 边长缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并写出C 2的坐标.17.观察下列等式:1×3+1=223×5+1=425×7+1=62…(1)请你按照上述三个等式的规律写出第④个、第⑤个等式;(2)请猜想,第n个等式(n为正整数)应表示为______ ;(3)证明你猜想的结论.18.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用不超过6300元,求A型芯片至少购买多少条?19.如图,一架梯子底端放在一处斜坡上,顶端靠在墙上,已知梯子与坡面的夹角α为75°,斜坡CD与地面的夹角β为30°,BC=1米,CD=2米,求梯子顶端到地面的距离.20.如图,BD垂直平分AC,∠BCD=∠ADF,AF⊥AC(1)求证:四边形ABDF是平行四边形(2)若AF=14、DF=13、AD=15,求AC的长21.家庭支出包含:日常支出、投资支出、意外支出和消费支出等.在学校组织的社会调查活动中,江涛同学负责了解他所居住的小区960户居民的家庭日常支出情况.他从中随机调查了40户居民5月份的家庭日常支出情况(日常支出取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.分组频数百分比600≤x<80025%800≤x<1000615%1000≤x<120045%1200≤x<1400922.5%1400≤x<16001600≤x<180025%合计40100%根据以上信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)如果把家庭日常支出不少于1000元但不足1600元的定为中等水平,请你估计该居民小区家庭日常支出属于中等水平的大约有多少户?22.某商场以每个60元的价格进了一批玩具,当售价为100元时,商场平均每天可售出40个.为了扩大销售,增加盈利,商场决定采取降价措施,经调查发现:在一定范围内,玩具的单价每降低1元,商场每天可多售出玩具2个.设每个玩具售价下降了x元,但售价不得低于玩具的进价,商场每天的销售利润为y元.(1)若降价3元后商场平均每天可售出___________个玩具;(2)求y与x的函数表达式,并直接写出自变量x的取值范围;(3)商场将每个玩具的售价定为多少元时,可使每天获得的利润最大?最大利润是多少元?BC,DE⊥CE,DE=CE,连接AE,点23.已知△ABC是等腰直角三角形,∠BAC=90°,CD=12M是AE的中点.(1)如图1,若点D在BC边上,连接CM,当AB=4时,求CM的长;(2)如图2,若点D在△ABC的内部,连接BD,点N是BD中点,连接MN,NE,求证:MN⊥AE;(3)如图3,将图2中的△CDE绕点C逆时针旋转,使∠BCD=30°,连接BD,点N是BD中点,的值并直接写出结果.连接MN,探索MNAC【答案与解析】1.答案:B解析:此题考查相反数的性质,和为0的两个有理数为相反数.解:与−3的和为0的有理数是−3的相反数为3.故选B.2.答案:B解析:本题主要考查了同底数幂的乘法,解题的关键是正确其运算法则:同底数幂相乘,底数不变,指数相加,即a m⋅a n=a m+n.解:a3⋅a4=a3+4=a7.故选B.3.答案:D解析:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,注意看得见的线用实线表示,看不见的线用虚线表示.根据俯视图是从上向下看得到的视图进行分析解答即可.解:从上面看可得到一个矩形,中间左边有一条实心线,右边有一条虚线.故选:D.4.答案:C解析:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于等于10时,n是正数;当原数的绝对值小于1时,n是负数.解:6370000m,用科学记数法表示正确的是6.37×106m,故选C.5.答案:C解析:解:∵AD//BC,∠C=30°,∴∠ADC+∠C=180°,则∠ADC=150°,∵∠ADB:∠BDC=1:2,∴∠ADB+2∠ADB=150°,解得:∠ADB=50°故选:C.直接利用平行线的性质得出∠ADC=150°,再利用∠ADB:∠BDC=1:2,求出答案.此题主要考查了平行线的性质,得出∠ADC的度数是解题关键.6.答案:B解析:解:设⊙O的半径为x,∵E点是BC⏜的中点,O点是圆心,BC=4,∴OD⊥BC,DC=12在Rt△ODC中,OD=x−2,∴OD2+DC2=OC2∴(x−2)2+42=x2∴x=5,即⊙O的半径为5;故选:B.BC=设⊙O的半径为x,由E点是BC⏜的中点,O点是圆心,根据垂径定理的推论得到OD⊥BC,DC=124,然后在Rt△ODC中,根据勾股定理可计算出x.本题考查了切线的性质,关键是根据垂径定理的推论:过圆心平分弧的直径垂直平分弦解答.7.答案:C解析:本题考查了方差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.根据方差、众数、平均数、中位数的概念分别对每一项进行分析,即可得出答案.解:A.这组数据的平均数是:10+15+10+17+18+206=15,正确;B.∵10出现了2次,出现的次数最多,∴众数是10,正确;C.把这些数从小到大排列为10,10,15,17,18,20,则中位数是15+172=16,故本选项错误;D.这组数据的方差是:16[2×(10−15)2+(15−15)2+(17−15)2+(18−15)2+(20−15)2]=443,正确;故选C.8.答案:C解析:设2016年到2018年生产总值的平均增长率为x,根据2016年及2018年该银行安排精准扶贫贷款总额,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.解:设2016年到2018年生产总值的平均增长率为x,根据题意得:(1+x)2=1.24.故选C.9.答案:C解析:此题主要考查二次函数、一次函数、反比例函数,根据二次函数的图象与解析式,分别确定m与n 的符号,再根据一次函数与反比例函数的性质确定函数图象所经过的象限,即可得出正确答案.解:观察二次函数的图象可知,m<−1,n=1,得m+n<0,则一次函数y=mx+n的图象经过第一,二,四象限,反比例函数y=m+n的图象在二,四象限,x故选C.10.答案:A解析:本题考查的是轴对称−最短路线问题,熟知轴对称的性质是解答此题的关键.连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,根据勾股定理求出DE,进而可得出结论.解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=√AD2+AE2=√42+32=5,∴△BEQ周长的最小值=DE+BE=5+1=6.故选A.11.答案:−4解析:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.根据立方根的定义求解即可.解:∵(−4)3=−64,∴−64的立方根是−4.故选−4.12.答案:a(a−1)2解析:解:a3−2a2+a=a(a2−2a+1)=a(a−1)2.故答案为:a(a−1)2.此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.答案:1解析:解:连接OB和OC,∵△ABC内接于半径为2的⊙O,∠BAC=60°,∴∠BOC=120°,OB=OC=2,∵OD⊥BC,OB=OC,∴∠BOD=∠COD=60°,∴∠OBD=30°,OB=1,∴OD=12故答案为:1.连接OB和OC,根据圆周角定理得出∠BOC的度数,再依据等腰三角形的性质得到∠BOD的度数,结合直角三角形的性质可得OD.本题考查了圆周角定理、等腰三角形三线合一、30°的直角三角形的性质等知识,解题时需要添加辅助线,从而运用圆周角定理.14.答案:y =−x 2−2x 或y =−x 2−2x +8解析:本题考查了二次函数的性质,掌握好基本概念是解题关键.把二次函数化为−(x −b 2)2+b2+4c 4,得出该抛物线的开口向下,根据已知条件得出该抛物线的顶点坐标为(−1,1)或(−1,9),然后得出b =−2,c =0或c =8,即可得出结果.解:y =−x 2+bx +c=−(x 2−bx +b 24)+b 24+c =−(x −b 2)2+b 2+4c 4∵a =−1<0,∴该抛物线的开口向下,∵P(−1,5)在抛物线y =−x 2+bx +c 的对称轴上,且与该抛物线的顶点的距离是4,5−4=1,5+4=9,∴该抛物线的顶点坐标为(−1,1)或(−1,9),∴b 2=−1, b 2+4c 4=1或b 2=−1, b 2+4c 4=9,解得,b =−2,c =0或c =8,∴该抛物线的表达式为:y =−x 2−2x 或y =−x 2−2x +8.故答案为y =−x 2−2x 或y =−x 2−2x +8.15.答案:解:{x +y =5 ①2x −y =4 ②, ①+②,得:3x =9,∴x =3,把x =3代入①,得:y =2,∴此方程组的解为{x =3y =2.解析:此题考查了二元一次方程组的解法.解题关键是掌握运用加减消元法解二元一次方程组.解题时,先由①+②消去y,求出x的解,再把x的值代入方程②,求出y的解,即可得出方程组的解.16.答案:解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,C2的坐标为(2,−2).解析:(1)把A、B、C的纵坐标不变,横坐标都减去6可得到A1、B1、C1的坐标,然后描点即可;(2)把A、B、C的横纵坐标分别乘以1可得到A2、B2、C2的坐标,然后描点即可.2本题考查了作图−位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接下来根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了平移变换.17.答案:(1)第④个等式为:7×9+1=82,第⑤个等式为:9×11+1=102;(2)(2n−1)(2n+1)+1=(2n)2;(3)证明:∵左边=(2n−1)(2n+1)+1=4n2+1−1=4n2,右边=(2n)2=4n2,∴(2n−1)(2n+1)+1=(2n)2.解析:解:(1)见答案;(2)第n个等式为:(2n−1)(2n+1)+1=(2n)2;故答案为:(2n−1)(2n+1)+1=(2n)2;(3)见答案.本题主要考查数字的变化规律,通过观察得出“左边为连续两个奇数的积与1的和,右边为这两个奇数中间的偶数的平方”是解题的关键.(1)根据数字的变化规律,可知左边为连续两个奇数的积与1的和,右边为这两个奇数中间的偶数的平方,可得出答案;(2)根据(1)的规律可写出答案;(3)把左边用整式的乘法计算出其结果,与右边相等,可证得结论.18.答案:解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x−9)元/条,根据题意得:3120x−9=4200x,解得:x=35,经检验,x=35是原方程的解,且符合题意,∴x−9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200−a)条B型芯片,根据题意得:26a+35(200−a)≤6300,解得:a≥7009,由题意可知a是整数,所以A型芯片至少购买78条.答:A型芯片至少购买78条.解析:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x−9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200−a)条B型芯片,根据总价=单价×数量,根据题意可得出关于a的一元一次不等式,解之即可得出结论.【详解】见答案.19.答案:解:作DE⊥AB于E,DF⊥BC于F,则四边形DEBF是矩形.在Rt△DCF中,DF=EB=CD⋅sin30°=1,,∴DE=BF=1+√3,在Rt△ADE中,∠ADE=75°−30°=45°,∴AE=DE=1+√3,∴AB=AE+EB=2+√3.解析:本题考查解直角三角形的应用−坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.作DE⊥AB于E,DF⊥BC于F.则四边形DEBF是矩形.解直角三角形求出BE、AE即可解决问题.20.答案:(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,{AB=BC AD=DC DB=DB,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB//FD,∵BD⊥AC,AF⊥AC,∴AF//BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,∴BD=AF=14,AB=DF=13,设BE=x,则DE=14−x,由勾股定理得:∴AB2−BE2=AD2−DE2,即132−x2=152−(14−x)2解得:x=5,即BE=5,∴AE=√AB2−BE2=√132−52=12,∴AC=2AE=24.解析:本题考查了平行四边形的判定与性质、全等三角形的判定与性质、勾股定理;本题有一定难度,特别是(2)中,运用勾股定理得出方程求出BE是解决问题的关键.(1)先证得△ADB≌△CDB求得∠BCD=∠BAD,从而得到∠ADF=∠BAD,所以AB//FD,因为BD⊥AC,AF⊥AC,所以AF//BD,即可证得结论.(2)由平行四边形的性质得出BD=AF=14,AB=DF=13,设BE=x,则DE=14−x,由勾股定理得出方程,解方程得出BE,再由勾股定理求出AE,即可得出AC的长.21.答案:解:(1)收入是1000≤x<1200一组的户数是:40×45%=18(户),1400≤x<1600一组的户数是40−(2+6+18+9+2)=3,×100%=7.5%.所占百分比为340分组频数百分比600≤x<80025%800≤x<1000615%1000≤x<12001845%1200≤x<1400922.5%1400≤x<160037.5%1600≤x<180025%合计40100%补全直方图如下:(2)估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有960×(45%+22.5%+ 7.5%)=720(户).解析:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.(1)总数乘以第三组频率可得其频数,根据各组频数之和等于总数求得第5组频数,由频率=频数÷总数求得对应频率;即可补全频数分布直方图;(2)利用总数960,乘以抽查的户数中中等收入所占的百分比即可.22.答案:解:(1)46;(2)y=(100−x−60)(40+2x)=−2x2+40x+1600(0≤x≤40);(3)y=−2x2+40x+1600=−2(x−10)2+1800,∵a=−2<0,∴当x=10时,y有最大值1800元,此时售价为:100−10=90(元).答:售价定为90元时,可使每天获得的利润最大1800元.解析:本题考查了利用二次函数解决实际问题能力,主要利用了利润=每个玩具的利润×销售量,求函数的最值时,应注意自变量的取值范围.(1)根据:降价后销量=降价前销量+增加的销量,列式计算即可;(2)根据:每天的总利润=每个玩具利润×降价后每天的销售数量,可列出y关于x的函数关系式;根据降价后价格不小于进价,确定x的范围;(3)将(2)中函数表达式配方成顶点式,结合x的范围可求出最大利润.解:(1)40+3×2=46,故答案为46;(2)见答案;(3)见答案.23.答案:解:(1)如图1中,连接AD.∵△ABC是等腰直角三角形,∴AB=AC=4,∠BAC=90°,∴∠B=∠ACD=45°,BC=√AB2+AC2=4√2,∵DC=1BC=2√2,2∵ED=EC,∠DEC=90°,∴DE=EC=2,∠DCE=∠EDC=45°,∴∠ACE=90°,在Rt△ACE中,AE=√AC2+CE2=√42+22=2√5,∵AM=ME,∴CM=12AE=√5.(2)如图2中,延长EN至F使NF=NE,连接AF、BF.在△DNE和△BNF中,{ND=NBNE=NF∠DNE=BNF,∴△DNE≌△BNF,∴BF=DE=EC,∠FBN=∠EDN,∵∠ACB=∠DCE=45°,∴∠ACE=90°−∠DCB,∴∠ABF=∠FBN−∠ABN=∠BDE−∠ABN=180°−∠DBC−∠DGB−∠ABN=180°−∠DBC−∠DCB−∠CDE−∠ABN=180°−(∠DBC+∠ABN)−∠DCB−45°=180°−45°−45°−∠DCB=90°−∠DCB=∠ACE,在△ABF和△ACE中,{AB=AC∠ABF=∠ACE BF=CE,∴△ABF≌△ACE.∴AF=AE,∠FAB=∠EAC,∴∠FAE=∠FAB+∠BAE=∠BAE+∠EAC=90°,∵N为FE中点,M为AE中点,∴AF//NM,∴MN⊥AE.(3)MNAC =√74,理由:如图3中,延长DM到G使得MG=MD,连接AG、BG,延长AG、EC交于点F.∵AM=EM,∠EMD=∠AMG,MD=MG,∴△AMG≌△EMD,∴AG=DE=EC,∠GAM=∠DEM,∴AG//DE,∴∠F=∠DEC=90°,∵∠FAC+∠ACF=90°,∠BCD+∠ACF=180°−45°−45°=90°,∠BCD=30°,∴∠CAF=30°,∠ACF=60°,∠BAG=∠BAC+∠CAF=120°,∴∠BAG=∠ACE=120°,在△ABG和△CAE中,{AB=AC∠BAG=∠ACE AG=EC,∴△ABG≌△CAE,∴BG=AE,∵BN=ND,DM=MG,∴BG=AE=2MN,∵∠FAC=∠BCD=30°,设BC=2a,则CD=a,DE=EC=√22a,AC=√2a,CF=√22a,AF=√62a,EF=√2a,∴AE=√AF2+EF2=√142a,∴MN=√144a,∴MNAC =√144a2a=√74.解析:本题考查全等三角形的判定和性质、等腰直角三角形的性质,三角形中位线,勾股定理等知识,解题的关键是添加辅助线,构造全等三角形,学会添加辅助线的方法,属于中考压轴题.(1)连接AD,利用等腰直角三角形的性质,求出CE,先证明△ACE是直角三角形,求出AE,根据CM=12AE,求出AE即可解决问题.(2)如图2中,延长EN至F使NF=NE,连接AF、BF,先证明△DNE≌△BNF,再证明△ABF≌△ACE,推出∠FAB=∠EAC,可得∠FAE=∠FAB+∠BAE=∠BAE+∠EAC=90°,由N为FE中点,M为AE中点,得出AF//NM,由此即可解决问题.(3)如图3中,延长DM到G使得MG=MD,连接AG、BG,延长AG、EC交于点F,先证明△AMG≌△EMD,得到AG=DE=EC,进而得到∠BAG=∠ACE=120°,再证△ABG≌△CAE,得到BG=AE,BG=AE=2MN,设BC=2a,在Rt△AEF中求出AE,根据中位线定理MN=12BG=12AE,由此即可解决问题.。

安徽省南陵县联考2020届数学中考模拟试卷

安徽省南陵县联考2020届数学中考模拟试卷
∵DE⊥BC, ∴∠E=90°=∠BOC, ∵∠OBC=∠EBD, ∴△BOC∽△BED,
∴ OC BC ,即 3 5 , DE BD DE 8
∴DE= 24 . 5
【点睛】 本题考查了菱形的判定与性质、平行四边形的判定、全等三角形的判定与性质、勾股定理、相似三角形 的判定和性质;熟练掌握菱形的判定与性质是解题的关键. 23.(1)详见解析;(2)详见解析 【解析】 【分析】 (1)利用网格即可得出符合∠ABC=∠ADC 的答案; (2)利用三角形面积求法得出答案. 【详解】
2
2
OB2 OC2 =
5,证出△BOC∽△BED,得出 OC BC ,即可得出结果. DE BD
【详解】
(1)证明:∵O 为△ABC 边 AC 的中点,AD∥BC,
∴OA=OC,∠OAD=∠OCB,∠AOD=∠COB,
在△OAD 和△OCB 中,
OAD OCB
OA OC

AOD COB
∴△OAD≌△OCB(ASA),
解得 x1=-10 x2=2,即 B(-10,0),A(2,0) ∴AD=10 ∵AC2=22+42=20 CD2=82+42=80 ∴AD2=AC2+CD2 ∴∠ACD=90°△ACD 是直角三角形 【点睛】 本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把 代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
C. x 1 5
D. x 1 5
12.将直线 y=2x﹣3 向右平移 2 个单位.再向上平移 2 个单位后,得到直线 y=kx+b,则下列关于直线
y=kx+b 的说法正确的是( )

2020年芜湖市中考数学第一次模拟试题(附答案)

2020年芜湖市中考数学第一次模拟试题(附答案)
2020 年芜湖市中考数学第一次模拟试题(附答案)
一、选择题
1.一个正多边形的内角和为 540°,则这个正多边形的每一个外角等于( )
A.108°
B.90°
C.72°
D.60°
2.如图,⊙O 的半径为 5,AB 为弦,点 C 为 AB 的中点,若∠ABC=30°,则弦 AB 的长
为( )
A. 1
B.5
平分线, CE AN . (1)求证:四边形 ADCE 为矩形;
(2)当 AD 与 BC 满足什么数量关系时,四边形 ADCE 是正方形?并给予证明
22.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为 30 km/h 的电动汽车,早上 7: 00 从宾馆出发,游玩后中午 12:00 回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为 20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午 10:00 小聪到达 宾馆.图②中的图象分别表示两人离宾馆的路程 s(km)与时间 t(h)的函数关系.试结合图中 信息回答: (1)小聪上午几点钟从飞瀑出发? (2)试求线段 AB,GH 的交点 B 的坐标,并说明它的实际意义; (3)如果小聪到达宾馆后,立即以 30 km/h 的速度按原路返回,那么返回途中他几点钟遇见 小慧?
本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的
真假关键是要熟悉课本中的性质定理.
5.D
解析:D 【解析】
【分析】
运用根的判别式和一元二次方程的定义,组成不等式组即可解答
【详解】
解:∵关于 x 的一元二次方程(k﹣1)x2+x+1=0 有两个实数根,
k 1≠0 ∴ =12 -4(k 1) 1 0 ,

【2020精品中考数学提分卷】安徽省芜湖市中考数学模拟试卷+答案

【2020精品中考数学提分卷】安徽省芜湖市中考数学模拟试卷+答案

2020年安徽省芜湖市南陵县中考数学模拟试卷一、选择题(本题共10小题,每小题4分,共40分)1.(4分)(2020•武汉)在实数﹣2,0,2,3中,最小的实数是()A.﹣2B.0C.2D.32.(4分)(2020•安徽)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.3.(4分)(2020•南陵县模拟)若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣3B.x>3C.x≥3D.x≤34.(4分)(2020•绵阳)福布斯2020年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()A.0.242×1010美元B.0.242×1011美元C.2.42×1010美元D.2.42×1011美元5.(4分)(2020•武汉)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2那么这些运动员跳高成绩的众数是()A.4B.1.75C.1.70D.1.656.(4分)(2020•武汉)下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+17.(4分)(2020•南陵县模拟)如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是的中点,弦CF交AB于点E.若⊙O的半径为2,则CF=()A.3B.2C.3D.8.(4分)(2020•济南)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cmB.13cmC.14cmD.16cm9.(4分)(2020•威海)如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A.B.C.D.10.(4分)(2020•绵阳)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.二、填空题(本题共4小题,每题5分,共20分)11.(5分)(2020•黄石)反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是.12.(5分)(2020•南陵县模拟)如图,直线a∥b,∠1=110°,∠2=65°,则∠3的度数为.13.(5分)(2020•南陵县模拟)分解因式:2x2y﹣12xy+18y=.14.(5分)(2020•长清区一模)如图,四边形ABCD是矩形纸片,AB=2,对折矩形纸片ABCD,使AD与BC重合,折痕为EF,展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③△BMG是等边三角形;④P为线段BM上一动点,H是BN 的中点,则PN+PH的最小值是.其中正确结论的序号是.三、(本题共3小题,每题8分,共16分)15.(8分)(2020•南陵县模拟)计算:﹣1﹣31﹣(3.14﹣π)0+2020.16.(8分)(2020•武汉)已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.17.(8分)(2020•孝感)我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.四、(本题共1小题,每题8分,共16分)18.(8分)(2020•南陵县模拟)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标.五、(本题共2小题,每题10分,功0分)19.(10分)(2020•南通)如图,海中有一灯塔P,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B 处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?20.(10分)(2020•孝感)2020年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.六、(本题12分)21.(12分)(2020•苏州)如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC 的面积.七、(本题12分)22.(12分)(2020•湖北)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?八、(本大题14分)23.(14分)(2020•南陵县模拟)设△ABC是锐角三角形,∠A,∠B所对的边长分别为a、b,其边上的高分别为m,n,∠ACB=θ.(1)用θ和b的关系式表示m;(2)若a>b,试比较a+m与b+n的大小;(3)如图,在△ABC中作一个面积最大的正方形,假设a>b,问正方形的一边在三角形的哪条边上的正方形面积最大?试写出求解过程.2020年安徽省芜湖市南陵县中考数学模拟试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.(4分)(2020•武汉)在实数﹣2,0,2,3中,最小的实数是()A.﹣2B.0C.2D.3【解答】解:﹣2<0<2<3,最小的实数是﹣2,故选:A.2.(4分)(2020•安徽)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.【解答】解:从几何体的上面看俯视图是,故选:D.3.(4分)(2020•南陵县模拟)若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣3B.x>3C.x≥3D.x≤3【解答】解:∵代数式在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选C.4.(4分)(2020•绵阳)福布斯2020年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()A.0.242×1010美元B.0.242×1011美元C.2.42×1010美元D.2.42×1011美元【解答】解:将242亿用科学记数法表示为:2.42×1010.故选:C.5.(4分)(2020•武汉)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2那么这些运动员跳高成绩的众数是()A.4B.1.75C.1.70D.1.65【解答】解:∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65;故选:D.6.(4分)(2020•武汉)下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+1【解答】解:A、(x3)2=x6,原式计算错误,故A选项错误;B、(2x)2=4x2,原式计算错误,故B选项错误;C、x3•x2=x5,原式计算正确,故C选项正确;D、(x+1)2=x2+2x+1,原式计算错误,故D选项错误;故选:C.7.(4分)(2020•南陵县模拟)如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC 切⊙O于点C,点B是的中点,弦CF交AB于点E.若⊙O的半径为2,则CF=()A.3B.2C.3D.【解答】解:连接OC,∵点B是的中点,AB为⊙O的直径,∴CE=EF,CF⊥AB,∴∠CEO=90°,∵DC切⊙O于C,∴∠OCD=90°,∵OB=BD=OC=2,∴∠D=30°,∴∠COE=60°,∴CE=OC×sin60°=2×=,∴CF=2CE=2,故选B.8.(4分)(2020•济南)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cmB.13cmC.14cmD.16cm【解答】解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.9.(4分)(2020•威海)如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A.B.C.D.【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵DE∥AC,∴∠EDF=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;∵∠ACB=60°,∠EDC=60°,∴△EDB是等边三角形.∴ED=DB=2﹣x,∵∠DEF=90°,∠F=30°,∴EF=ED=(2﹣x).∴y=ED•EF=(2﹣x)•(2﹣x),即y=(x﹣2)2,(x<2),故选A.10.(4分)(2020•绵阳)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.【解答】解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,∴,设CE=x,则ED=x,AE=3k﹣x,设CF=y,则DF=y,FB=3k﹣y,∴,∴,∴=,∴CE:CF=4:5.故选:B.解法二:解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,由折叠,得CE=DE,CF=DF∴△AED的周长为4k,△BDF的周长为5k,∴△AED与△BDF的相似比为4:5∴CE:CF=DE:DF=4:5.故选:B.二、填空题(本题共4小题,每题5分,共20分)11.(5分)(2020•黄石)反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是a.【解答】解:∵反比例函数y=的图象有一支位于第一象限,∴2a﹣1>0,解得:a>.故答案为:a.12.(5分)(2020•南陵县模拟)如图,直线a∥b,∠1=110°,∠2=65°,则∠3的度数为45°.【解答】解:在图中标上角的序号,如图所示.∵a∥b,∠2=65°,∴∠2=∠4=65°.∵∠1=∠3+∠4,∠1=110°,∴∠3=110°﹣65°=45°.故答案为:45°.13.(5分)(2020•南陵县模拟)分解因式:2x2y﹣12xy+18y=2y(x﹣3)2.【解答】解:原式=2y(x2﹣6x+9)=2y(x﹣3)2,故答案为:2y(x﹣3)2键.14.(5分)(2020•长清区一模)如图,四边形ABCD是矩形纸片,AB=2,对折矩形纸片ABCD,使AD与BC重合,折痕为EF,展平后再过点B折叠矩形纸片,使点A落在EF 上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③△BMG是等边三角形;④P为线段BM上一动点,H是BN 的中点,则PN+PH的最小值是.其中正确结论的序号是①③④.【解答】解:①如图1,连接AN,∵EF垂直平分AB,∴AN=BN,根据折叠的性质,可得AB=BN,∴AN=AB=BN.∴△ABN为等边三角形.∴∠ABN=60°,∠PBN=60°÷2=30°,即结论①正确;②∵∠ABN=60°,∠ABM=∠NBM,∴∠ABM=∠NBM=60°÷2=30°,∴AM=AB•tan30°=2×,即结论②不正确;③∵∠ABM=∠MBN=30°,∠BNM=∠BAM=90°,∴∠BMG=∠BNM﹣∠MBN=90°﹣30°=60°,∴∠MBG=∠ABG﹣∠ABM=90°﹣30°=60°,∴∠BGM=180°﹣60°﹣60°=60°,∴∠MBG=∠BMG=∠BGM=60°,∴△BMG为等边三角形,即结论③正确.④∵△BMG是等边三角形,点N是MG的中点,∴BN⊥MG,∴BN=BG•sin60°=,根据条件易知E点和H点关于BM对称,∴PH=PE,∴P与Q重合时,PN+PH的值最小,此时PN+PH=PN+PE=EN,∵EN==,∴PN+PH=,∴PN+PH的最小值是,即结论④正确;故答案为:①③④.三、(本题共3小题,每题8分,共16分)15.(8分)(2020•南陵县模拟)计算:﹣1﹣31﹣(3.14﹣π)0+2020.【解答】解:原式=5﹣1﹣31﹣1+2020=1987.16.(8分)(2020•武汉)已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.【解答】解:把点(1,﹣1)代入直线y=2x﹣b得,﹣1=2﹣b,解得,b=3.函数解析式为y=2x﹣3解2x﹣3≥0得x≥.17.(8分)(2020•孝感)我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.【解答】证明:∵在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.四、(本题共1小题,每题8分,共16分)18.(8分)(2020•南陵县模拟)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标.【解答】解:(1)如图所示:△A1BC1,即为所求;(2)如图所示:△A2B2C2,即为所求,C2点坐标为:(﹣6,4).五、(本题共2小题,每题10分,功0分)19.(10分)(2020•南通)如图,海中有一灯塔P,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B 处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?【解答】解:过P作PD⊥AB.AB=18×=12海里.∵∠PAB=30°,∠PBD=60°∴∠PAB=∠APB∴AB=BP=12海里.在直角△PBD中,PD=BP•sin∠PBD=12×=6海里.∵6>8∴海轮不改变方向继续前进没有触礁的危险.20.(10分)(2020•孝感)2020年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是30;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,小红小花 1 2 3 4 51 (2,1)(3,1)(4,1)(5,1)2 (1,2)(3,2)(4,2)(5,2)3 (1,3)(2,3)(4,3)(5,3)4 (1,4)(2,4)(3,4)(5,4)5 (1,5)(2,5)(3,5)(4,5)记小红和小花抽在相邻两道这个事件为A,∴.六、(本题12分)21.(12分)(2020•苏州)如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC 的面积.【解答】(1)证明:∵AD是△ABC的角平分线,∴∠BAD=∠DAC,∵∠E=∠BAD,∴∠E=∠DAC,∵BE∥AD,∴∠E=∠EDA,∴∠EDA=∠DAC,∴ED∥AC;(2)解:∵BE∥AD,∴∠EBD=∠ADC,∵∠E=∠DAC,∴△EBD∽△ADC,且相似比k=,∴=k2=4,即s1=4s2,∵﹣16S2+4=0,∴16﹣16S2+4=0,即=0,∴S2=,∵====3,∴S△ABC=.七、(本题12分)22.(12分)(2020•湖北)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.八、(本大题14分)23.(14分)(2020•南陵县模拟)设△ABC是锐角三角形,∠A,∠B所对的边长分别为a、b,其边上的高分别为m,n,∠ACB=θ.(1)用θ和b的关系式表示m;(2)若a>b,试比较a+m与b+n的大小;(3)如图,在△ABC中作一个面积最大的正方形,假设a>b,问正方形的一边在三角形的哪条边上的正方形面积最大?试写出求解过程.【解答】解:(1)∵∠B所对的边长分别为b,∠A边上的高分别为m,∴∠sinθ=,∴m=bsinθ;(2)同(1)的结论可得n=asinθ,则(a+m)﹣(b+n)=(a﹣b)(1﹣sinθ),∵a>b,sinθ<1,∴(a﹣b)(1﹣sinθ)>0,∴a+m>b+n;(3)∵HK∥BC,∴△AHK∽△ABC,∴,∵BC=a,AD=m,∴HK=,同理H′G′=,设△ABC的面积为S,∴HK==<==H′G′,∴正方形的边在AC上时面积最大.。

2020年安徽省芜湖市中考数学第一次模拟试卷(Word版含解析)

2020年安徽省芜湖市中考数学第一次模拟试卷(Word版含解析)

2020年中考数学一模试卷一、选择题.1.﹣2的绝对值是()A.﹣2B.2C.﹣D.2.下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.3.如图所示的几何体的左视图为()A.B.C.D.4.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣2 5.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5 6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=346858.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.29.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.10.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10二、填空题(共4小题,每小题5分,满分20分)11.因式分解:2x2﹣8=.12.函数y=中,自变量x的取值范围是.13.如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B,D两点,若AB=2,∠BAD=30°,则k=.14.如图,在Rt△ABC中,C为直角顶点,∠ABC=20°,O为斜边的中点,将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为.三、解答题(共2小题,每小题8分,满分16分)15.计算4sin45°+(π﹣2)0﹣+|﹣1|16.如图,在平面直角坐标系中,A(0,1),B(4,2),C(2,0).(1)将△ABC沿y轴翻折得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕着点(﹣1,﹣1)旋转180°得到△A2B2C2,画出△A2B2C2;(3)线段B2C2可以看成是线段B1C1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为.四、(共2小题,每小题8分,满分16分)17.如图,已知直线l1:y1=﹣2x﹣3,直线l2:y2=x+3,l1与l2相交于点P,l1,l2分别与y轴相交于点A,B.(1)求点P的坐标.(2)若y1>y2>0,求x的取值范围.(3)点D(m,0)为x轴上的一个动点,过点D作x轴的垂线分别交l1和l2于点E,F,当EF=3时,求m的值.18.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)五、(共2小题,每小题10分,满分20分)19.如图,AB是⊙O的直径,P、C是圆周上的点,=,弦PC交AB于点D.(1)求证:∠A=∠C;(2)若OD=DC,求∠A的度数.20.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.六、(本题满分12分)21.观察下列数据:第1列第2列第3列第4列…第n列第1行1234…n第2行2468…2n第3行36912…3n…………………第n行n2n3n4n…n2请回答:(1)第1行所有数字之和为(用含字母n的式子表示);(2)表格中所有数字之和为(用含字母n的式子表示);(3)根据以上的信息,计算13+23+33+ (1003)七、(本题满分12分)22.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系y B=﹣x+14,A型汽车的售价比B型汽车的售价高2万元/台.问A、B两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?八、(本题满分14分)23.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.参考答案一.选择题(共10小题)1.﹣2的绝对值是()A.﹣2B.2C.﹣D.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.解:|﹣2|=2.故选:B.2.下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.解:A、(﹣a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、,此选项正确;故选:D.3.如图所示的几何体的左视图为()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.解:从左边看是上大下小等宽的两个矩形,矩形的公共边是虚线,故选:D.4.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣2【分析】利用根的判别式△=b2﹣4ac分别进行判定即可.解:A、△=4>0,有两个不相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个不相等的实数根,故此选项不合题意;故选:C.5.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:=0.00002=2×10﹣5.故选:D.6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=34685【分析】设他第一天读x个字,根据题意列出方程解答即可.解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.8.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.2【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB的长.解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选:B.9.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.【分析】根据二次函数y=ax2+bx与一次函数y=ax+b(a≠0)可以求得它们的交点坐标,然后根据一次函数的性质和二次函数的性质,由函数图象可以判断a、b的正负情况,从而可以解答本题.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x 轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.10.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tan A==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tan A==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.方法二:作CM⊥AB于M,交BE于点D,则点D满足题意.通过三角形相似或三角函数证得BD=DM,从而得到CD+BD=CM=4.故选:B.二、填空题(共4小题,每小题5分,满分20分)11.因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.解:2x2﹣8=2(x+2)(x﹣2).12.函数y=中,自变量x的取值范围是x≥﹣1且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:x+1≥0且x﹣1≠0,解得:x≥﹣1且x≠1.故答案为:x≥﹣1且x≠1.13.如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B,D两点,若AB=2,∠BAD=30°,则k=6+2.【分析】连接OC,AC,过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG⊥x轴于点G,得O、A、C在第一象限的角平分线上,求得A点坐标,进而求得D 点坐标,便可求得结果.解:连接OC,AC,过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG ⊥x轴于点G,∵函数y=(k>3,x>0)的图象关于直线AC对称,∴O,A,C三点在同直线上,且∠COE=45°,∴OE=AE,不妨设OE=AE=a,则A(a,a),∵点A在在反比例函数y=(x>0)的图象上,∴a2=3,∴a=,∴AE=OE=,∵∠BAD=30°,∴∠OAF=∠CAD=∠BAD=15°,∵∠OAE=∠AOE=45°,∴∠EAF=30°,∴AF=,EF=AE tan30°=1,∵AB=AD=2,AE∥DG,∴EF=EG=1,DG=2AE=2,∴OG=OE+EG=+1,∴D(+1,2),故答案为:6+2.14.如图,在Rt△ABC中,C为直角顶点,∠ABC=20°,O为斜边的中点,将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为40°或100°或70°.【分析】如图1,连接AP,根据直角三角形的判定和性质得到∠APB=90°,当BC=BP时,得到∠BCP=∠BPC,推出AB垂直平分PC,求得∠ABP=∠ABC=25°,于是得到θ=2×20°=40°,当BC=PC时,如图2,连接CO并延长交PB于H,根据线段垂直平分线的性质得到CH垂直平分PB,求得∠CHB=90°,根据等腰三角形的性质得到θ=2×50°=100°,当PB=PC时,如图3,连接PO并延长交BC于G,连接OC,推出PG垂直平分BC,得到∠BGO=90°,根据三角形的内角和得到θ=∠BOG =70°.解:∵△BCP恰为轴对称图形,∴△BCP是等腰三角形,如图1,连接AP,∵O为斜边中点,OP=OA,∴BO=OP=OA,∴∠APB=90°,当BC=BP时,∴∠BCP=∠BPC,∴∠BCP+∠ACP=∠BPC+∠APC=90°,∴∠ACP=∠APC,∴AC=AP,∴AB垂直平分PC,∴∠ABP=∠ABC=20°,∴θ=2×20°=40°,当BC=PC时,如图2,连接CO并延长交PB于H,∵BC=CP,BO=PO,∴CH垂直平分PB,∴∠CHB=90°,∵OB=OC,∴∠BCH=∠ABC=20°,∴∠CBH=70°,∴∠OBH=50°,∴θ=2×50°=100°;当PB=PC时,如图3,连接PO并延长交BC于G,连接OC,∵∠ACB=90°,O为斜边中点,∴OB=OC,∴PG垂直平分BC,∴∠BGO=90°,∵∠ABC=20°,∴θ=∠BOG=70°,综上所述:当△BCP恰为轴对称图形时,θ的值为40°或100°或70°,故答案为:40°或100°或70°.三、解答题(共2小题,每小题8分,满分16分)15.计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.解:原式=4×+1﹣3+1=﹣+2.16.如图,在平面直角坐标系中,A(0,1),B(4,2),C(2,0).(1)将△ABC沿y轴翻折得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕着点(﹣1,﹣1)旋转180°得到△A2B2C2,画出△A2B2C2;(3)线段B2C2可以看成是线段B1C1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为(﹣2,﹣2)或(﹣6,0).【分析】(1)利用关于y轴对称的点坐标特征写出点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A1、B1、C1的对应点A2、B2、C2,从而得到△A2B2C2;(3)作B1B2和C1C2的垂直平分线,它们相交于点P,则点P为旋转中心,然后写出P 点坐标即可或作C1B2和B1C2的垂直平分线,它们的交点旋转中心.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)如图,线段B2C2可以看成是线段B1C1绕着点P逆时针旋转90°得到,此时P点的坐标为(﹣2,﹣2).线段B2C2可以看成是线段C1B1绕着点(﹣6,0)顺时针旋转90°得到,此时P点的坐标为(﹣6,0).故答案为(﹣2,﹣2)或(﹣6,0).四、(共2小题,每小题8分,满分16分)17.如图,已知直线l1:y1=﹣2x﹣3,直线l2:y2=x+3,l1与l2相交于点P,l1,l2分别与y轴相交于点A,B.(1)求点P的坐标.(2)若y1>y2>0,求x的取值范围.(3)点D(m,0)为x轴上的一个动点,过点D作x轴的垂线分别交l1和l2于点E,F,当EF=3时,求m的值.【分析】(1)联立两直线解析式得到关于x、y的方程组,解之即可得;(2)求得直线l2:y2=x+3与x轴的交点,然后根据图象即可求得;(3)根据题意表示出E、F的坐标,得到关于m的方程,解之可得答案.解:(1)根据题意,得:,解得:,∴点P的坐标为(﹣2,1).(2)在直线l2:y2=x+3中,令y=0,解得x=﹣3,由图象可知:若y1>y2>0,x的取值范围是﹣3<x<﹣2;(2)由题意可知E(m,﹣2m﹣3),F(m,m+3),∵EF=3,∴|﹣2m﹣3﹣m﹣3|=3,解得:m=﹣3或m=﹣1.18.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】作DE⊥AB于点E,作CF⊥DE于点F,由tan37°=≈0.75求得AE=40.2,由AB=57知BE=17.3,再根据四边形BCFE是矩形知CF=BE=17.由∠CDF=∠DCF =45°知DF=CF=17.4,从而得BC=EF=30﹣17=13.5.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.75.∴AE=40.2∵AB=57,∴BE=17.3∵四边形BCFE是矩形,∴CF=BE=17.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=17.4∴BC=EF=30﹣17=13.5答:教学楼BC高约13米.五、(共2小题,每小题10分,满分20分)19.如图,AB是⊙O的直径,P、C是圆周上的点,=,弦PC交AB于点D.(1)求证:∠A=∠C;(2)若OD=DC,求∠A的度数.【分析】(1)连接OP,构造全等三角形(△POA≌△POC),由该全等三角形的性质证得结论;(2)设∠A=∠C=x°,利用圆周角定理和三角形内角和定理列出方程,由方程思想解答.【解答】(1)证明:如图,连接OP.∵=,∴PA=PC.在△POA与△POC中,.∴△POA≌△POC(SSS).∴∠A=∠C;(2)设∠A=∠C=x°,则∠POB=2∠A=2x°.∵OD=DC,∴∠DOC=∠C=x°.在△POC中,x+3x+x=180°x=36.∴∠A=36°.20.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【分析】(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.解:(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为:20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2…女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:=.六、(本题满分12分)21.观察下列数据:第1列第2列第3列第4列…第n列第1行1234…n第2行2468…2n第3行36912…3n…………………第n行n2n3n4n…n2请回答:(1)第1行所有数字之和为(用含字母n的式子表示);(2)表格中所有数字之和为(用含字母n的式子表示);(3)根据以上的信息,计算13+23+33+ (1003)【分析】(1)直接利用前n个数和公式可得结论;(2)分别计算每一列的所有数字之和,再相加可得结论;(3)通过计算发现:前n个数的立方和等于前n个数的和的平方,根据(1)中的结论可解答.解:(1)1+2+3+…+n=;故答案为:;(2)第1列所有数字之和=1+2+3+…+n=,第2列所有数字之和=2+4+6+…+2n=2(1+2+3+…+n)=,…第n列所有数字之和=n(1+2+3+…+n)=,∴格中所有数字之和为:++…+===;故答案为:;(3)∵13=12,13+23=9=(1+2)2,13+23+33=36=(1+2+3)2,…∴13+23+33+ (1003)=(1+2+3+…+100)2,=50502,=25502500.七、(本题满分12分)22.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系y B=﹣x+14,A型汽车的售价比B型汽车的售价高2万元/台.问A、B两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?【分析】(1)根据购进两种型号的汽车数量相同列出分式方程即可求解;(2)根据销售利润等于每台汽车的利润乘以销售量列出二次函数关系即可求解.解:(1)设B型汽车的进货单价为x万元,根据题意,得=,解得x=8,经检验x=8是原分式方程的根.答A、B两种型号汽车的进货单价为:10万元、8万元.(2)设两种汽车的总利润为w万元,根据题意,得w=(x+2﹣10)[﹣(x+2)+18]+(x﹣8)(﹣x+14)=﹣2x2+48x﹣256=﹣2(x﹣12)2+32∵﹣2<0,当x=12时,w有最大值为32.答:A、B两种型号的汽车售价各为14万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是32万元八、(本题满分14分)23.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.。

安徽省芜湖市2019-2020学年中考数学模拟试题含解析

安徽省芜湖市2019-2020学年中考数学模拟试题含解析

安徽省芜湖市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是()A.3804.2×103B.380.42×104C.3.8042×106D.3.8042×1052.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.3.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个4.不等式3x<2(x+2)的解是()A.x>2 B.x<2 C.x>4 D.x<45.如图,在平面直角坐标系中,P是反比例函数kyx=的图像上一点,过点P做PQ x⊥轴于点Q,若OPQ△的面积为2,则k的值是( )A.-2 B.2 C.-4 D.4 6.下列运算正确的是()A4=2 B.327C182=9 D2 337.下列运算正确的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3•x=x48.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是()A.B.C.D.9.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10 B.9 C.8 D.710.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交B.相切C.相离D.不能确定11.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形12.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.函数123y xx=--中自变量x的取值范围是___________.14.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为.15.如图,在△ABC中,DM垂直平分AC,交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为_____度.16.已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下: ... -1 0 1 2 3 ......105212...则当5y <时,x 的取值范围是_________.17.如图,反比例函数y=32的图象上,点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角△ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP ,在点A 运动过程中,当BP 平分∠ABC 时,点A 的坐标为_____.18.分解因式:2288a a -+=_______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,在平行四边形ABCD 中,E 、F 分别在AD 、BC 边上,且AE=CF . 求证:(1)△ABE ≌△CDF ;(2)四边形BFDE 是平行四边形.20.(6分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-1;乙袋中有三个完全相同的小球,分别标有数字-1、0和1.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x ;再从乙袋中随机取出一个小球,记录下小球上的数字为y ,设点P 的坐标为(x ,y ). (1)请用表格或树状图列出点P 所有可能的坐标; (1)求点P 在一次函数y =x +1图象上的概率.21.(6分)已知,在平面直角坐标系xOy 中,抛物线L :y=x 2-4x+3与x 轴交于A ,B 两点(点A 在点B的左侧),顶点为C.(1)求点C和点A的坐标.(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.22.(8分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.23.(8分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)24.(10分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(-2,0)三点.(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.①求平移后图象顶点E的坐标;②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.25.(10分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.26.(12分)2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了25%.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.27.(12分)已知:如图所示,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0)(1)求抛物线的表达式;(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】∵3804.2千=3804200,∴3804200=3.8042×106;故选:C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.3.C【解析】【分析】分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.【详解】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.4.D【解析】【分析】不等式先展开再移项即可解答.【详解】解:不等式3x<2(x+2),展开得:3x<2x+4,移项得:3x-2x<4,解之得:x<4.故答案选D.【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤. 5.C 【解析】 【分析】根据反比例函数k 的几何意义,求出k 的值即可解决问题 【详解】解:∵过点P 作PQ ⊥x 轴于点Q ,△OPQ 的面积为2, ∴|2k|=2, ∵k <0, ∴k=-1. 故选:C . 【点睛】本题考查反比例函数k 的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型. 6.A 【解析】 【分析】根据二次根式的性质对A 进行判断;根据二次根式的加减法对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的乘法法则对D 进行判断. 【详解】A 、原式=2,所以A 选项正确;B 、原式B 选项错误;C 、原式=3,所以C 选项错误;D 、原式,所以D 选项错误. 故选A . 【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 7.D【解析】A. x 4+x 4=2x 4 ,故错误;B. (x 2)3=x 6 ,故错误;C. (x ﹣y )2=x 2﹣2xy+y 2 ,故错误; D. x 3•x=x 4,正确,故选D.8.D【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.9.D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.10.A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选A.考点:直线与圆的位置关系.11.D【解析】【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.12.B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≤2【解析】试题解析:根据题意得:20 {x30x-≥-≠解得:2x≤.14.5【解析】试题分析:根据图形可知圆锥的侧面展开图的弧长为2π×10÷2=10π(cm),因此圆锥的底面半径为10π÷2π=5(cm),因此圆锥的高为:=5(cm).考点:圆锥的计算15.1【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=CD,等边对等角可得∠DAC=∠C,三角形的一个外角等于与它不相邻的两个内角的和求出∠ADB=∠C+∠DAC,再次根据等边对等角可得可得∠ADB=∠BAD,然后利用三角形的内角和等于180°列式计算即可得解.【详解】∵DM垂直平分AC,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°−∠BAD−∠ADB=180°−56°−56°=1°.故答案为1.【点睛】本题考查了等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记各性质与定理是解题的关键. 16.0<x<4【解析】【分析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【详解】由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x 的取值范围为0<x<4.故答案为0<x<4.【点睛】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.17.(3,6)【解析】分析:连接OC ,过点A 作AE ⊥x 轴于E ,过点C 作CF ⊥x 轴于F ,则有△AOE ≌△OCF ,进而可得出AE=OF 、OE=CF ,根据角平分线的性质可得出2CP CF BC AP AE AB ===,设点A 的坐标为(a ,32a)(a >0),由2OE AE =可求出a 值,进而得到点A 的坐标. 详解:连接OC ,过点A 作AE ⊥x 轴于E ,过点C 作CF ⊥x 轴于F ,如图所示.∵△ABC 为等腰直角三角形,∴OA=OC ,OC ⊥AB ,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF .在△AOE 和△OCF 中,===AEO OFC AOE OCF OA OC ∠∠⎧⎪∠∠⎨⎪⎩,∴△AOE ≌△OCF (AAS ),∴AE=OF ,OE=CF .∵BP 平分∠ABC ,∴CP CF BC AP AE AB ===,∴2OE AE =. 设点A 的坐标为(a,a ),2a=,解得:(舍去),∴a, ∴点A),故答案为:()).点睛:本题考查了反比例函数图象上点的坐标特征、全等三角形的判定与性质、角平分线的性质以及等腰直角三角形性质的综合运用,构造全等三角形,利用全等三角形的对应边相等是解题的关键. 18.22(2)a -【解析】22a 8a 8-+=2(2a 4a 4-+)=()22a 2-.故答案为()22a 2-.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)见解析;【解析】【分析】(1)由四边形ABCD 是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C ,AB=CD ,又由AE=CF ,利用SAS ,即可判定△ABE ≌△CDF .(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.20.(1)见解析;(1).【解析】试题分析:(1)画出树状图(或列表),根据树状图(或表格)列出点P所有可能的坐标即可;(1)根据(1)的所有结果,计算出这些结果中点P在一次函数图像上的个数,即可求得点P在一次函数图像上的概率.试题解析:(1)画树状图:或列表如下:∴点P所有可能的坐标为(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).∵只有(1,1)与(-1,-1)这两个点在一次函数图像上,∴P(点P在一次函数图像上)=.考点:用(树状图或列表法)求概率.21.(1)C(2,-1),A(1,0);(2)①3,②0<t<12+2,1)或(2+2,1)或(-1,0)【解析】【分析】(1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;(2)①抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L双抛图形”与直线y=3恰好有两个交点时t的取值范围;③首先证明四边形ACQP 为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标.【详解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴抛物线的对称轴为x=2,将x=2代入抛物线的解析式得:y=-1,∴C(2,-1);(2)①将x=0代入抛物线的解析式得:y=3,∴抛物线与y轴交点坐标为(0,3),如图所示:作直线y=3,由图象可知:直线y=3与“L双抛图形”有3个交点,故答案为3;②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,故答案为0<t<1.③如图2所示:∵PQ∥AC且PQ=AC,∴四边形ACQP为平行四边形,又∵点C的纵坐标为-1,∴点P的纵坐标为1,将y=1代入抛物线的解析式得:x2-1x+3=1,解得:x=2+2或x=-2+2.∴点P的坐标为(2+2,1)或(-2+2,1),当点P(-1,0)时,也满足条件.综上所述,满足条件的点(2+2,1)或(-2+2,1)或(-1,0)【点睛】本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.22.(1)CD与圆O的位置关系是相切,理由详见解析;(2) AD=92.【解析】【分析】(1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;(2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【详解】(1)CD与圆O的位置关系是相切,理由是:连接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∵CD⊥AD,∴OC ⊥CD ,∵OC 为半径,∴CD 与圆O 的位置关系是相切;(2)连接BC ,∵AB 是⊙O 的直径,∴∠BCA=90°,∵圆O 的半径为3,∴AB=6,∵∠CAB=30°, ∴133332BC AB AC BC ====,, ∵∠BCA=∠CDA=90°,∠CAB=∠CAD ,∴△CAB ∽△DAC , ∴,AC AB AD AC= 3333= ∴92AD =. 【点睛】本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.232903 【解析】【分析】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF.【详解】过点A 作AG CD ⊥,垂足为G .则30CAG ∠=︒,在Rt ACG V 中,()1sin 3050252CG AC cm =︒=⨯=g , 由题意,得()GD 503020cm =-=,∴()252045CD CG GD cm =+=+=,连接FD 并延长与BA 的延长线交于点H . 由题意,得30H ∠=︒.在Rt CDH V 中,()290sin 30CD CH CD cm ===︒, ∴()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH V 中,()32903tan 30290EF EH cm =︒=⨯=g . 答:支角钢CD 的长为45cm ,EF 的长为2903cm .考点:三角函数的应用24.(1)y =﹣x 2+4;(2)①E (5,9);②1.【解析】【分析】(1)待定系数法即可解题,(2)①求出直线DA 的解析式,根据顶点E 在直线DA 上,设出E 的坐标,带入即可求解;②AB 扫过的面积是平行四边形ABGE,根据S 四边形ABGE =S 矩形IOKH ﹣S △AOB ﹣S △AEI ﹣S △EHG ﹣S △GBK ,求出点B (2,0),G (7,5),A (0,4),E (5,9),根据坐标几何含义即可解题.【详解】解:(1)∵A (0,4),B (2,0),C (﹣2,0)∴二次函数的图象的顶点为A (0,4),∴设二次函数表达式为y =ax 2+4,将B (2,0)代入,得4a+4=0,解得,a =﹣1,∴二次函数表达式y =﹣x 2+4;(2)①设直线DA:y=kx+b(k≠0),将A(0,4),D(﹣4,0)代入,得440bk b=⎧⎨-+=⎩,解得,14kb=⎧⎨=⎩,∴直线DA:y=x+4,由题意可知,平移后的抛物线的顶点E在直线DA上,∴设顶点E(m,m+4),∴平移后的抛物线表达式为y=﹣(x﹣m)2+m+4,又∵平移后的抛物线过点B(2,0),∴将其代入得,﹣(2﹣m)2+m+4=0,解得,m1=5,m2=0(不合题意,舍去),∴顶点E(5,9),②如图,连接AB,过点B作BL∥AD交平移后的抛物线于点G,连结EG,∴四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GK⊥x轴于点K,过点E作EI⊥y轴于点I,直线EI,GK交于点H.由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点G.∵B(2,0),∴点G(7,5),∴GK=5,OB=2,OK=7,∴BK=OK﹣OB=7﹣2=5,∵A(0,4),E(5,9),∴AI=9﹣4=5,EI=5,∴EH=7﹣5=2,HG=9﹣5=4,∴S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK=7×9﹣12×2×4﹣12×5×5﹣12×2×4﹣12×5×5=63﹣8﹣25 =1答:图象A ,B 两点间的部分扫过的面积为1.【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.25.树高为 5.5 米【解析】【分析】根据两角相等的两个三角形相似,可得 △DEF ∽△DCB ,利用相似三角形的对边成比例,可得DE EF DC CB=, 代入数据计算即得BC 的长,由 AB =AC+BC ,即可求出树高. 【详解】∵∠DEF =∠DCB =90°,∠D =∠D ,∴△DEF ∽△DCB∴ DE EF DC CB=, ∵DE =0.4m ,EF =0.2m ,CD =8m , ∴0.40.28CB=, ∴CB =4(m ),∴AB =AC+BC =1.5+4=5.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.26.原计划每天安装100个座位.【解析】【分析】根据题意先设原计划每天安装x 个座位,列出方程再求解.【详解】解:设原计划每天安装x 个座位,采用新技术后每天安装()125%x +个座位, 由题意得:()247647624764764125%x x---=+. 解得:100x =.经检验:100x =是原方程的解.答:原计划每天安装100个座位.【点睛】此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.27.(1)y=﹣x2+4x﹣3;(2)满足条件的P点坐标有3个,它们是(2,1)或(,﹣1)或(2,﹣1).【解析】【分析】(1)由于已知抛物线与x轴的交点坐标,则可利用交点式求出抛物线解析式;(2)根据二次函数图象上点的坐标特征,可设P(t,-t2+4t-3),根据三角形面积公式得到12•2•|-t2+4t-3|=1,然后去绝对值得到两个一元二次方程,再解方程求出t即可得到P点坐标. 【详解】解:(1)抛物线解析式为y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)设P(t,﹣t2+4t﹣3),因为S△PAB=1,AB=3﹣1=2,所以12•2•|﹣t2+4t﹣3|=1,当﹣t2+4t﹣3=1时,t1=t2=2,此时P点坐标为(2,1);当﹣t2+4t﹣3=﹣1时,t1,t2=2,此时P点坐标为(,﹣1)或(2,﹣1),所以满足条件的P点坐标有3个,它们是(2,1)或(,﹣1)或(2,﹣1).【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.。

2020年安徽省芜湖市中考数学二模试卷 (解析版)

2020年安徽省芜湖市中考数学二模试卷 (解析版)

2020年安徽省芜湖市中考数学二模试卷一、选择题(共10小题).1.与﹣2的和等于0的数是()A.B.0C.2D.2.(﹣a)2•a3=()A.﹣a5B.a5C.﹣a6D.a63.在我国古代数学名著《九章算术》中,将底面为矩形、一条侧棱垂直于底面的四棱锥称之为“阳马”(如图).“阳马”的俯视图是()A.B.C.D.4.“天问一号”是中国行星探测任务中的首次火星探测任务,引起广泛关注.已知火星赤道半径约为3395000米,是地球的53%,用科学记数法可将3395000表示为()A.3.395×103B.3.395×106C.33.95×105D.0.3395×107 5.已知:如图,AB∥CD∥EF,∠ABC=50°,∠CEF=150°,则∠BCE的值为()A.50°B.30°C.20°D.60°6.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4B.2C.8D.47.已知一组数据5,8,8,9,10,以下说法错误的是()A.平均数是8B.众数是8C.中位数是8D.方差是88.受疫情影响,某企业生产总值从元月份的300万元,连续两个月降至260万元,设平均降低率为x,则可列方程()A.300(1+x)2=260B.300(1﹣x2)=260C.300(1﹣2x)=260D.300(1﹣x)2=2609.若一次函数y=ax+b与反比例函数y=的图象在第二象限内有两个交点,且其中一个交点的横坐标为﹣1,则二次函数y=ax2+bx﹣c的图象可能是()A.B.C.D.10.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE长度的最小值为()A.8B.4C.8﹣4D.4﹣4二、填空题(本大题共4小题,每小题5分,满分20分)11.﹣27的立方根是.12.分解因式:a3+4a2+4a=.13.如图,△ABC内接于⊙O,BD⊥AC于点E,连接AD,OF⊥AD于点F,∠D=45°.若OF=1,则BE的长为.14.对于一个函数,如果它的自变量x与函数值y满足:当﹣1≤x≤1时,﹣1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=﹣x均是“闭函数”.已知y=ax2+bx+c(a ≠0)是“闭函数”,且抛物线经过点A(1,﹣1)和点B(﹣1,1),则a的取值范围是.三、(本大题共2小题,每小题8,满分1615.解方程组16.平面直角坐标系中,△ABC的顶点坐标分别为A(2,﹣2),B(3,﹣4),C(6,﹣3).(1)画出将△ABC向上平移6个单位后得到的△A1B1C1;(2)以点M(1,2)为位似中心,在网格中画出与△A1B1C1位似的图形△A2B2C2,且使得△A2B2C2与△A1B1C1的相似比为2:1.四、(本大题共2小题,每小题8分1617.观察以下等式:第1个等式:﹣+=1,第2个等式:﹣+=1,第3个等式:+=1,第4个等式:﹣+=1,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n(n为正整数)个等式:(用含n的等式表示),并证明.18.芜湖市某医院计划选购A,B两种防护服.已知A防护服每件价格是B防护服每件价格的2倍,用80000元单独购买A防护服比用80000元单独购买B防护服要少50件.如果该医院计划购买B防护服的件数比购买A防护服件数的2倍多8件,且用于购买A,B两种防护服的总经费不超过320000元,那么该医院最多可以购买多少件B防护服?五、(本大题共2小题,每小题10满分2019.如图,安徽江准集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座AE⊥直线L且AE=25cm,手臂AB=BC=60cm,末端操作器CD=35cm,AF∥直线L.当机器人运作时,∠BAF=45°,∠ABC=75°,∠BCD=60°,求末端操作器节点D到地面直线L的距离.(结果保留根号)20.如图,四边形ABCD的对角线AC⊥BD于点E,AB=BC,F为四边形ABCD外一点,且∠FCA=90°,∠CBF=∠DCB.(1)求证:四边形DBFC是平行四边形;(2)如果BC平分∠DBF,∠F=45°,BD=2,求AC的长.六、(本题满分1221.小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量(单位:t)频数百分比2≤x<324%3≤x<41224%4≤x<55≤x<61020%6≤x<712%7≤x<836%8≤x<924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.七、(本题满分1222.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元?(3)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.八、(本题满分1423.如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD 绕点C顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.参考答案一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内(本大题共10小题,每题4分,共40分)答题栏1.与﹣2的和等于0的数是()A.B.0C.2D.【分析】根据互为相反数的两个数的为0解答即可.解:因为互为相反数的两个数的为0,所以与﹣2的和等于0的数是2,故选:C.2.(﹣a)2•a3=()A.﹣a5B.a5C.﹣a6D.a6【分析】根据同底数幂相乘,底数不变,指数相加解答,即a m•a n=a m+n.解:(﹣a)2•a3=a2•a3=a2+3=a5.故选:B.3.在我国古代数学名著《九章算术》中,将底面为矩形、一条侧棱垂直于底面的四棱锥称之为“阳马”(如图).“阳马”的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.解:“阳马”的俯视图是一个矩形,还有一条看得见的棱,故选:A.4.“天问一号”是中国行星探测任务中的首次火星探测任务,引起广泛关注.已知火星赤道半径约为3395000米,是地球的53%,用科学记数法可将3395000表示为()A.3.395×103B.3.395×106C.33.95×105D.0.3395×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解:3395000=3.395×106.故选:B.5.已知:如图,AB∥CD∥EF,∠ABC=50°,∠CEF=150°,则∠BCE的值为()A.50°B.30°C.20°D.60°【分析】本题考查的是平行线的性质.由AB∥CD∥EF可得∠ABC=∠BCD,∠CEF+∠ECD=180°,即可求解.解:∵AB∥CD∥EF,∴∠ABC=∠BCD=50°,∠CEF+∠ECD=180°;∴∠ECD=180°﹣∠CEF=30°,∴∠BCE=∠BCD﹣∠ECD=20°.故选:C.6.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4B.2C.8D.4【分析】连接OC,利用切线的性质知OC⊥AB,由垂径定理得AB=2AC,因为tan∠OAB=,易得=,代入得结果.解:连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∴AB=2AC,∵OD=2,∴OC=2,∵tan∠OAB=,∴AC=4,∴AB=8,故选:C.7.已知一组数据5,8,8,9,10,以下说法错误的是()A.平均数是8B.众数是8C.中位数是8D.方差是8【分析】分别计算平均数,众数,中位数,方差后判断.解:由平均数的公式得平均数=(5+8+8+9+10)÷5=8,方差=[(5﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2.8,将5个数按从小到大的顺序排列为:5,8,8,9,10,第3个数为8,即中位数为8,5个数中8出现了两次,次数最多,即众数为8,故选:D.8.受疫情影响,某企业生产总值从元月份的300万元,连续两个月降至260万元,设平均降低率为x,则可列方程()A.300(1+x)2=260B.300(1﹣x2)=260C.300(1﹣2x)=260D.300(1﹣x)2=260【分析】根据该企业元月份及经过两个月降低后的生产总值,即可得出关于x的一元二次方程,此题得解.解:依题意,得:300(1﹣x)2=260.故选:D.9.若一次函数y=ax+b与反比例函数y=的图象在第二象限内有两个交点,且其中一个交点的横坐标为﹣1,则二次函数y=ax2+bx﹣c的图象可能是()A.B.C.D.【分析】依据直线y=ax+b与反比例函数y=的图象在第二象限内有一个交点的横坐标为﹣1,即可得a﹣b﹣c=0,a>0,进而得出结论.解:∵直线y=ax+b与反比例函数y=的图象在第二象限内有一个交点的横坐标为﹣1,∴c=﹣a+b,∴a﹣b﹣c=0,∵一次函数y=ax+b与反比例函数y=的图象在第二象限内有两个交点,∴a>0,∴二次函数y=ax2+bx﹣c的图象开口向上,当x=﹣1时,y=a﹣b﹣c=0,∴抛物线y=ax2+bx﹣c过(﹣1,0)点,故选:A.10.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE长度的最小值为()A.8B.4C.8﹣4D.4﹣4【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC 为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D 的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE =4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF==4,∴EF=4﹣4,∴PD+PE的长度最小值为4﹣4,故选:D.二、填空题(本大题共4小题,每小题5分,满分20分)11.﹣27的立方根是﹣3.【分析】根据立方根的定义求解即可.解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.12.分解因式:a3+4a2+4a=a(a+2)2.【分析】此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.解:a3+4a2+4a,=a(a2+4a+4),=a(a+2)2.13.如图,△ABC内接于⊙O,BD⊥AC于点E,连接AD,OF⊥AD于点F,∠D=45°.若OF=1,则BE的长为.【分析】连接DO并延长交⊙O于点N,连接AN,由中位线定理求出AN=2OF=2,证得∠ADN=∠BAE,则AN=BC,求出∠BCE=45°,则可求出答案.解:连接DO并延长交⊙O于点N,连接AN,则DN为⊙O的直径,∴∠NAD=90°,∵OF⊥AD,ON=OD,∴AF=DF,∴OF=,∵OF=1,∴AN=2,∵AC⊥BD,∴∠AEB=90°,∴∠BAE+∠ABE=90°,又∵∠AND+∠ADN=90°,∠AND=∠ABD,∴∠ADN=∠BAE,∴=,∴AN=BC=2,∵∠ADB=∠BCA=45°,∴∠EBC=45°,∴BE==.故答案为:.14.对于一个函数,如果它的自变量x与函数值y满足:当﹣1≤x≤1时,﹣1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=﹣x均是“闭函数”.已知y=ax2+bx+c(a ≠0)是“闭函数”,且抛物线经过点A(1,﹣1)和点B(﹣1,1),则a的取值范围是﹣≤a<0或0<a≤.【分析】把A、B的坐标代入函数解析式,即可求出a+c=0,b=﹣1,代入得出抛物线表达式为y=ax2﹣x﹣a(a≠0),得出对称轴为x=,再进行判断即可.解:∵抛物线y=ax2+bx+c(a≠0)经过点A(1,﹣1)和点B(﹣1,1),∴a+b+c=﹣1 ①a﹣b+c=1 ②①+②得:a+c=0 即a与c互为相反数,①﹣②得:b=﹣1;所以抛物线表达式为y=ax2﹣x﹣a(a≠0),∴对称轴为x=,当a<0时,抛物线开口向下,且x=<0,∵抛物线y=ax2﹣x﹣a(a≠0)经过点A(1,﹣1)和点B(﹣1,1),画图可知,当≤﹣1时符合题意,此时﹣≤a<0,当﹣1<<0时,图象不符合﹣1≤y≤1的要求,舍去同理,当a>0时,抛物线开口向上,且x=>0,画图可知,当≥1时符合题意,此时0<a≤,当0<<1时,图象不符合﹣1≤y≤1的要求,舍去,综上所述:a的取值范围是﹣≤a<0或0<a≤,故答案为:﹣≤a<0或0<a≤.三、(本大题共2小题,每小题8,满分1615.解方程组【分析】根据二元一次方程组的解法,先将式子①化简,再用加减消元法(或代入消元法)求解;解:,将①化简得:﹣x+8y=5 ③,②+③,得y=1,将y=1代入②,得x=3,∴;令解:将②代入①,可得3x﹣4=5,∴x=3,将x=3代入②,可得y=1,∴原方程组的解为;16.平面直角坐标系中,△ABC的顶点坐标分别为A(2,﹣2),B(3,﹣4),C(6,﹣3).(1)画出将△ABC向上平移6个单位后得到的△A1B1C1;(2)以点M(1,2)为位似中心,在网格中画出与△A1B1C1位似的图形△A2B2C2,且使得△A2B2C2与△A1B1C1的相似比为2:1.【分析】(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,然后描点即可;(2)延长MA1到A2使MA2=2MA1,延长MB1到B2使MB2=2MB1,延长MC1到C2使MC2=2MC1,从而得到△A2B2C2.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作.四、(本大题共2小题,每小题8分1617.观察以下等式:第1个等式:﹣+=1,第2个等式:﹣+=1,第3个等式:+=1,第4个等式:﹣+=1,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n(n为正整数)个等式:(用含n的等式表示),并证明.【分析】(1)根据提供的算式写出第5个算式即可;(2)根据规律写出通项公式然后证明即可.解:(1)第5个等式为:;(2)第n个等式为:;∴等式成立;18.芜湖市某医院计划选购A,B两种防护服.已知A防护服每件价格是B防护服每件价格的2倍,用80000元单独购买A防护服比用80000元单独购买B防护服要少50件.如果该医院计划购买B防护服的件数比购买A防护服件数的2倍多8件,且用于购买A,B两种防护服的总经费不超过320000元,那么该医院最多可以购买多少件B防护服?【分析】设B防护服的单价为x元/件,则A防护服的单价为2x元/件,根据数量=总价÷单价结合用80000元单独购买A防护服比用80000元单独购买B防护服要少50件,即可得出关于x的分式方程,解之经检验后即可得出A,B防护服的单价,设该医院购买m件A防护服,则购买(2m+8)件B防护服,根据总价=单价×数量结合总价不超过320000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,进而可得出(2m+8)的取值范围,取其中的最大值即可得出结论.解:设B防护服的单价为x元/件,则A防护服的单价为2x元/件,依题意,得:﹣=50,解得:x=800,经检验,x=800是原方程的解,且符合题意,∴2x=1600.设该医院购买m件A防护服,则购买(2m+8)件B防护服,依题意,得:1600m+800(2m+8)≤320000,解得:m≤98,∴2m+8≤204.答:最多可以购买204件B防护服.五、(本大题共2小题,每小题10满分2019.如图,安徽江准集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座AE⊥直线L且AE=25cm,手臂AB=BC=60cm,末端操作器CD=35cm,AF∥直线L.当机器人运作时,∠BAF=45°,∠ABC=75°,∠BCD=60°,求末端操作器节点D到地面直线L的距离.(结果保留根号)【分析】如图,作BH⊥AF于H,延长CD交AF于J,交EL于M,则四边形AEMJ 是矩形,四边形BFJG是矩形.解直角三角形求出DM即可.解:如图,作BH⊥AF于H,延长CD交AF于J,交EL于M,则四边形AEMJ是矩形,四边形BFJG是矩形.在Rt△ABF中,∵∠BAF=45°,AB=60cm,∴BH=GJ=30(cm),∵BG∥FJ,∴∠GBA=∠BAF=45°,∵∠CBA=75°,∴∠CBG=30°,∴CG=BC=30(cm),∴DM=CM﹣CD=CG+GJ+JM﹣CD=30+30+25﹣35=(20+30)(cm),20.如图,四边形ABCD的对角线AC⊥BD于点E,AB=BC,F为四边形ABCD外一点,且∠FCA=90°,∠CBF=∠DCB.(1)求证:四边形DBFC是平行四边形;(2)如果BC平分∠DBF,∠F=45°,BD=2,求AC的长.【分析】(1)由这一点就证出BD∥CF,CD∥BF,即可得出四边形DBFC是平行四边形;(2)由平行四边形的性质得出CF=BD=2,由等腰三角形的性质得出AE=CE,作CM ⊥BF于F,则CE=CM,证出△CFM是等腰直角三角形,由勾股定理得出CM=CF =,得出AE=CE=,即可得出AC的长.【解答】(1)证明:∵AC⊥BD,∠FCA=90°,∠CBF=∠DCB.∴BD∥CF,CD∥BF,∴四边形DBFC是平行四边形;(2)解:∵四边形DBFC是平行四边形,∴CF=BD=2,∵AB=BC,AC⊥BD,∴AE=CE,作CM⊥BF于F,∵BC平分∠DBF,∴CE=CM,∵∠F=45°,∴△CFM是等腰直角三角形,∴CM=CF=,∴AE=CE=,∴AC=2.六、(本题满分1221.小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量(单位:t)频数百分比2≤x<324%3≤x<41224%4≤x<51530%5≤x<61020%6≤x<7612%7≤x<836%8≤x<924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.【分析】(1)根据第一组的频数是2,百分比是4%即可求得总人数,然后根据百分比的意义求解;(2)利用总户数540乘以对应的百分比求解;(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示,利用树状图法表示出所有可能的结果,然后利用概率公式求解.解:(1)调查的总数是:2÷4%=50(户),则6≤x<7部分调查的户数是:50×12%=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×100%=30%.故答案为:15,30%,6;补全频数分布表和频数分布直方图,如图所示:(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示.画树状图:则抽取出的2个家庭来自不同范围的概率是:=.七、(本题满分1222.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元?(3)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.【分析】(1)因为每吨售价每下降10元时,月销售量就会增加7.5吨,可求出当每吨售价是240元时,此时的月销售量是多少吨.(2)设当售价定为每吨x元时,根据当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元,当每吨售价每下降10元时,月销售量就会增加7.5吨,且该经销店计划月利润为9000元而且尽可能地扩大销售量,以9000元做为等量关系可列出方程求解.(3)假设当月利润最大,x为210元.而根据题意x为160元时,月销售额w最大,即可得出答案.解:(1)当每吨售价是240元时,此时的月销售量为:45+×7.5=60;(2)设当售价定为每吨x元时,由题意,可列方程(x﹣100)(45+×7.5)=9000.化简得x2﹣420x+44000=0.解得x1=200,x2=220.当售价定为每吨200元时,销量更大,所以售价应定为每吨200元.(3)我认为,小静说的不对.∵设总利润为w,则w=(x﹣100)(45+×7.5)=﹣x2+315x﹣23250,∴当月利润最大时,x=﹣=210(元).理由:方法一:当月利润最大时,x为210元,而对于月销售额=来说,当x为160元时,月销售额W最大.∴当x为210元时,月销售额W不是最大.∴小静说的不对.方法二:当月利润最大时,x为210元,此时,月销售额为17325元;而当x为200元时,月销售额为18000元.∵17325元<18000元,∴当月利润最大时,月销售额W不是最大.∴小静说的不对.(说明:如果举出其它反例,说理正确,也相应给分)八、(本题满分1423.如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD 绕点C顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.【分析】(1)由旋转的性质得到EC=DC,∠ECD=90°=∠ACB,求得∠BCD=∠ACE,根据全等三角形的判定定理即可得到结论;(2)由(1)可知AE=BD=1,∠CAE=∠B=45°=∠CAB,求得∠EAD=90°,根据勾股定理即可得到结论;(3)如图,过C作CG⊥AB于G,求得AG=AB,根据直角三角形的性质得到CG=AB,即=,由(1)可得:BD=AE,根据相似三角形的性质即可得到结论.解:(1)由旋转可得EC=DC,∠ECD=90°=∠ACB,∴∠BCD=∠ACE,又∵AC=BC,∴△BCD≌△ACE(SAS);(2)由(1)可知AE=BD=1,∠CAE=∠B=45°=∠CAB,∴∠EAD=90°,∴,∴.∴;(3)如图,过C作CG⊥AB于G,则AG=AB,∵∠ACB=90°,AC=BC,∴CG=AB,即=,∵点F为AD的中点,∴FA=AD,∴FG=AG﹣AF=AB﹣AD=(AB﹣AD)=BD,由(1)可得:BD=AE,∴FG=AE,即=,∴=,又∵∠CGF=∠BAE=90°,∴△CGF∽△BAE,∴∠FCG=∠ABE,∵∠FCG+∠CFG=90°,∴∠ABE+∠CFG=90°,∴CF⊥BE.。

安徽省芜湖市2020年(春秋版)中考数学模拟试卷(I)卷

安徽省芜湖市2020年(春秋版)中考数学模拟试卷(I)卷

安徽省芜湖市2020年(春秋版)中考数学模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)下列图形中既是中心对称图形,又是轴对称图形的是()A .B .C .D .2. (2分) (2019九上·瑞安期末) 下列事件属于不确定事件的是A . 若a是实数,则B . 今年元旦那天温州的最高气温是C . 抛掷一枚骰子,掷得的数不是奇数就是偶数D . 在一个装有红球与白球的袋子中摸球,摸出黑球3. (2分) (2016九上·盐城开学考) 将方程x2+8x+9=0左边配方后,正确的是()A . (x+4)2=﹣9B . (x+4)2=25C . (x+4)2=7D . (x+4)2=﹣74. (2分)如图,在一水平面上摆放两个几何体,它的主视图是()A .B .C .D .5. (2分)已知△ABC,以点A为位似中心,作出△ADE,使△ADE是△ABC放大2倍的图形,这样的图形可以作出()个A . 1个B . 2个C . 4个D . 无数个6. (2分) (2019八下·邳州期中) 在做抛硬币试验时,甲、乙两个小组画出折线统计图后发现频率的稳定值分别是50.00%和50.02%,则下列说法错误是()A . 乙同学的试验结果是错误的B . 这两种试验结果都是正确的C . 增加试验次数可以减小稳定值的差异D . 同一个试验的稳定值不是唯一的7. (2分) (2018九上·阆中期中) 某城市2011年已有绿化面积100公顷,经过两年绿化,绿化面积逐年增加,到2013底增加到144公顷,设绿化面积平均每年的增长率为,则根据题意可列方程为()A .B .C .D .8. (2分)已知反比例函数,在每个象限内y随着x的增大而增大,点P(a-1, 2)在这个反比例函数上,a的值可以是()A . 0B . 1C . 2D . 39. (2分)在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于D,则∠BCD=()A . 30°B . 40°C . 60°D . 70°10. (2分)如图1,用一根吸管吸吮烧杯中的豆浆,图2是其截面图,纸杯的上底面a与下底面b平行,c 表示吸管,若∠1的度数为104°,则∠2的度数为()A . 104°B . 84°C . 76°D . 74°11. (2分)(2017·咸宁) 已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 没有实数根D . 无法判断12. (2分)(2017·陆良模拟) 如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为()A .B .C .D .13. (2分)如图,矩形ABCD的两条对角线相交于点O,∠AOB=120°,AD=2,则AC的长是()A . 2B . 4C . 2D . 414. (2分)(2018七上·涟源期中) 若“!”是一种运算符号,且,则计算正确的是()A . 2019B . 2018C .D .15. (2分) (2018九上·海安月考) 如图,抛物线()的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:① ;②方程的两个根是,;③ ;④当时,的取值范围是;⑤当时,随增大而增大.其中结论正确的个数是()A . 5个B . 4个C . 3个D . 2个16. (2分) (2017七上·鄞州月考) 计算机中常用的十六进制是逢16进l的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,十六进制的14对应的十进制的数为20,用十六进制进行表示C+F=1B.19-F=A,18÷4=6,则A×B= ()A . 72B . 6EC . 5FD . B0二、填空题 (共3题;共4分)17. (1分)生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们座上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有10只.请你帮助工作人员估计这片山林中雀鸟的数量约为________ 只.18. (1分)(2016·台州) 竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.19. (2分) (2017·东河模拟) 如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:① = ;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+ .其中正确的是________(把你认为正确结论的序号都填上).三、解答题 (共7题;共97分)20. (16分) (2017八下·佛冈期中) 如图,在平面直角坐标系中,四边形ABCD各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1),在同一方格纸中,(1)①将四边形ABCD向左平移4个单位长度,画出平移后的四边形,并写出各点的坐标;②将四边形ABCD绕原点O旋转180°,画出旋转后的图形四边形,并写出各点的坐标.21. (15分) (2015九上·黄陂期中) 某宾馆有50个房间可供游客居住,当每个房间每天的定价为180元时,房间会全部住满,当每个房间每天的定价增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间的定价增加x元(x为10的整数倍),此时入住的房间数为y间,宾馆每天的利润为w元.(1)直接写出y(间)与x(元)之间的函数关系;(2)如何定价才能使宾馆每天的利润w(元)最大?(3)若宾馆每天的利润为10800元,则每个房间每天的定价为多少元?22. (10分) (2019八下·赵县期末) 随着移动互联网的快速发展,基于互联网的共享单车应运而生,为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民,一周内使用共享单车的次数分别是:17、12、15、20、17、0、7、26、17、9(1)这组数据的中位数是________,众数是________。

2020-2021学年安徽省芜湖市中考数学模拟试题及答案解析

2020-2021学年安徽省芜湖市中考数学模拟试题及答案解析

最新安徽省芜湖市中考数学模拟试卷一、选择题(本题共10小题,每小题4分,共40分)1.在实数﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.32.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.3.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣3 B.x>3 C.x≥3 D.x≤34.福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()A.0.242×1010美元B.0.242×1011美元C.2.42×1010美元D.2.42×1011美元5.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2那么这些运动员跳高成绩的众数是()A.4 B.1.75 C.1.70 D.1.656.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+17.如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是的中点,弦CF交AB于点E.若⊙O的半径为2,则CF=()A.3 B.2C.3 D.8.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm9.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A. B.C.D.10.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.二、填空题(本题共4小题,每题5分,共20分)11.反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是.12.如图,直线a∥b,∠1=110°,∠2=65°,则∠3的度数为.13.分解因式:2x2y﹣12xy+18y= .14.如图,四边形ABCD是矩形纸片,AB=2,对折矩形纸片ABCD,使AD与BC重合,折痕为EF,展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③△BMG是等边三角形;④P为线段BM上一动点,H是BN 的中点,则PN+PH的最小值是.其中正确结论的序号是.三、(本题共3小题,每题8分,共16分)15.计算:﹣1﹣31﹣(3.14﹣π)0+2015.16.已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.17.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.四、(本题共1小题,每题8分,共16分)18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标.五、(本题共2小题,每题10分,功0分)19.如图,海中有一灯塔P,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?20.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.六、(本题12分)21.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC的面积.七、(本题12分)22.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?八、(本大题14分)23.设△ABC是锐角三角形,∠A,∠B所对的边长分别为a、b,其边上的高分别为m,n,∠ACB=θ.(1)用θ和b的关系式表示m;(2)若a>b,试比较a+m与b+n的大小;(3)如图,在△ABC中作一个面积最大的正方形,假设a>b,问正方形的一边在三角形的哪条边上的正方形面积最大?试写出求解过程.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.在实数﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.3【考点】实数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣2<0<2<3,最小的实数是﹣2,故选:A.2.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是从物体上面看所得到的图形.【解答】解:从几何体的上面看俯视图是,故选:D.3.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣3 B.x>3 C.x≥3 D.x≤3【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵代数式在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选C.4.福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()A.0.242×1010美元B.0.242×1011美元C.2.42×1010美元D.2.42×1011美元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将242亿用科学记数法表示为:2.42×1010.故选:C.5.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2那么这些运动员跳高成绩的众数是()A.4 B.1.75 C.1.70 D.1.65【考点】众数.【分析】根据众数的定义找出出现次数最多的数即可.【解答】解:∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65;故选:D.6.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+1【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】根据幂的乘方与积的乘方、同底数幂的乘法法则及完全平方公式,分别进行各选项的判断即可.【解答】解:A、(x3)2=x6,原式计算错误,故A选项错误;B、(2x)2=4x2,原式计算错误,故B选项错误;C、x3•x2=x5,原式计算正确,故C选项正确;D、(x+1)2=x2+2x+1,原式计算错误,故D选项错误;故选:C.7.如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是的中点,弦CF交AB于点E.若⊙O的半径为2,则CF=()A.3 B.2C.3 D.【考点】切线的性质.【分析】根据垂径定理求出CF=2CE,根据切线的性质求出∠OCD,求出∠COE的度数,解直角三角形求出CE即可.【解答】解:连接OC,∵点B是的中点,AB为⊙O的直径,∴CE=EF,CF⊥AB,∴∠CEO=90°,∵DC切⊙O于C,∴∠OCD=90°,∵OB=BD=OC=2,∴∠D=30°,∴∠COE=60°,∴CE=OC×sin60°=2×=,∴CF=2CE=2,故选B.8.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm【考点】一元二次方程的应用.【分析】设正方形铁皮的边长应是x厘米,则做成没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据长方体的体积计算公式列方程解答即可.【解答】解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.9.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A. B.C.D.【考点】动点问题的函数图象.【分析】根据平行线的性质可得∠EDF=∠B=60°,根据三角形内角和定理即可求得∠F=30°,然后证得△EDB是等边三角形,从而求得ED=DB=2﹣x,再根据直角三角形的性质求得EF,最后根据三角形的面积公式求得y与x函数关系式,根据函数关系式即可判定.【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵DE∥AC,∴∠EDF=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;∵∠ACB=60°,∠EDC=60°,∴△EDB是等边三角形.∴ED=DB=2﹣x,∵∠DEF=90°,∠F=30°,∴EF=ED=(2﹣x).∴y=ED•EF=(2﹣x)•(2﹣x),即y=(x﹣2)2,(x<2),故选A.10.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】借助翻折变换的性质得到DE=CE;设AB=3k,CE=x,则AE=3k﹣x;根据相似三角形的判定与性质即可解决问题.【解答】解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,∴,设CE=x,则ED=x,AE=3k﹣x,设CF=y,则DF=y,FB=3k﹣y,∴,∴,∴=,∴CE:CF=4:5.故选:B.解法二:解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,由折叠,得CE=DE,CF=DF∴△AED的周长为4k,△BDF的周长为5k,∴△AED与△BDF的相似比为4:5∴CE:CF=DE:DF=4:5.故选:B.二、填空题(本题共4小题,每题5分,共20分)11.反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是a.【考点】反比例函数的性质.【分析】根据反比例函数的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得2a﹣1>0,再解不等式即可.【解答】解:∵反比例函数y=的图象有一支位于第一象限,∴2a﹣1>0,解得:a>.故答案为:a.12.如图,直线a∥b,∠1=110°,∠2=65°,则∠3的度数为45°.【考点】平行线的性质.【分析】根据“两直线平行,内错角相等”得出∠2=∠4=65°,再结合三角形的外角知识即可得出结论.【解答】解:在图中标上角的序号,如图所示.∵a∥b,∠2=65°,∴∠2=∠4=65°.∵∠1=∠3+∠4,∠1=110°,∴∠3=110°﹣65°=45°.故答案为:45°.13.分解因式:2x2y﹣12xy+18y= 2y(x﹣3)2.【考点】因式分解-提公因式法.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=2y(x2﹣6x+9)=2y(x﹣3)2,故答案为:2y(x﹣3)2键.14.如图,四边形ABCD是矩形纸片,AB=2,对折矩形纸片ABCD,使AD与BC重合,折痕为EF,展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③△BMG是等边三角形;④P为线段BM上一动点,H是BN 的中点,则PN+PH的最小值是.其中正确结论的序号是①③④.【考点】四边形综合题.【分析】①首先根据EF垂直平分AB,可得AN=BN;然后根据折叠的性质,可得AB=BN,据此判断出△ABN为等边三角形,即可判断出∠ABN=60°;②首先根据∠ABN=60°,∠ABM=∠NBM,求出∠ABM=∠NBM=30°;然后在Rt△ABM 中,根据AB=2,求出AM的大小即可;③根据∠ABM=∠MBN=30°,∠BNM=∠BAM=90°,推得∠MBG=∠BMG=∠BGM=60°,即可推得△BMG是等边三角形;④首先根据△BMG是等边三角形,点N是MG的中点,判断出BN⊥MG,即可求出BN 的大小;然后根据E点和H点关于BM称可得PH=PE,因此P与Q重合时,PN+PH=PN+PE=EN,据此求出PN+PH的最小值是多少即可.【解答】解:①如图1,连接AN,∵EF垂直平分AB,∴AN=BN,根据折叠的性质,可得AB=BN,∴AN=AB=BN.∴△ABN为等边三角形.∴∠ABN=60°,∠PBN=60°÷2=30°,即结论①正确;②∵∠ABN=60°,∠ABM=∠NBM,∴∠ABM=∠NBM=60°÷2=30°,∴AM=AB•tan30°=2×,即结论②不正确;③∵∠ABM=∠MBN=30°,∠BNM=∠BAM=90°,∴∠BMG=∠BNM﹣∠MBN=90°﹣30°=60°,∴∠MBG=∠ABG﹣∠ABM=90°﹣30°=60°,∴∠BGM=180°﹣60°﹣60°=60°,∴∠MBG=∠BMG=∠BGM=60°,∴△BMG为等边三角形,即结论③正确.④∵△BMG是等边三角形,点N是MG的中点,∴BN⊥MG,∴BN=BG•sin60°=,根据条件易知E点和H点关于BM对称,∴PH=PE,∴P与Q重合时,PN+PH的值最小,此时PN+PH=PN+PE=EN,∵EN==,∴PN+PH=,∴PN+PH的最小值是,即结论④正确;故答案为:①③④.三、(本题共3小题,每题8分,共16分)15.计算:﹣1﹣31﹣(3.14﹣π)0+2015.【考点】实数的运算;零指数幂.【分析】原式利用算术平方根定义,零指数幂法则计算即可得到结果.【解答】解:原式=5﹣1﹣31﹣1+2015=1987.16.已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.【考点】一次函数与一元一次不等式.【分析】把点(1,﹣1)代入直线y=2x﹣b得到b的值,再解不等式.【解答】解:把点(1,﹣1)代入直线y=2x﹣b得,﹣1=2﹣b,解得,b=3.函数解析式为y=2x﹣3解2x﹣3≥0得x≥.17.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.【考点】全等三角形的判定与性质.【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD (SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【解答】证明:∵在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.四、(本题共1小题,每题8分,共16分)18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标.【考点】作图-位似变换;作图-旋转变换.【分析】(1)利用关于点对称的性质得出A1,C1,坐标进而得出答案;(2)利用关于原点位似图形的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A1BC1,即为所求;(2)如图所示:△A2B2C2,即为所求,C2点坐标为:(﹣6,4).五、(本题共2小题,每题10分,功0分)19.如图,海中有一灯塔P,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?【考点】解直角三角形的应用-方向角问题.【分析】易证△ABP是等腰三角形,过P作PD⊥AB,求得PD的长,与6海里比较大小即可.【解答】解:过P作PD⊥AB.AB=18×=12海里.∵∠PAB=30°,∠PBD=60°∴∠PAB=∠APB∴AB=BP=12海里.在直角△PBD中,PD=BP•sin∠PBD=12×=6海里.∵6>8∴海轮不改变方向继续前进没有触礁的危险.20.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是30 ;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【考点】列表法与树状图法;扇形统计图;利用频率估计概率.【分析】(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,小红小花 1 2 3 4 51 (2,1)(3,1)(4,1)(5,1)2 (1,2)(3,2)(4,2)(5,2)3 (1,3)(2,3)(4,3)(5,3)4 (1,4)(2,4)(3,4)(5,4)5 (1,5)(2,5)(3,5)(4,5)记小红和小花抽在相邻两道这个事件为A,∴.六、(本题12分)21.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC的面积.【考点】相似三角形的判定与性质;解一元二次方程-配方法;圆周角定理.【分析】(1)由AD是△ABC的角平分线,得到∠BAD=∠DAC,由于∠E=∠BAD,等量代换得到∠E=∠DAC,根据平行线的性质和判定即可得到结果;(2)由BE∥AD,得到∠EBD=∠ADC,由于∠E=∠DAC,得到△EBD∽△ADC,根据相似三角形的性质相似三角形面积的比等于相似比的平方即可得到结果.【解答】(1)证明:∵AD是△ABC的角平分线,∴∠BAD=∠DAC,∵∠E=∠BAD,∴∠E=∠DAC,∵BE∥AD,∴∠E=∠EDA,∴∠EDA=∠DAC,∴ED∥AC;(2)解:∵BE∥AD,∴∠EBD=∠ADC,∵∠E=∠DAC,∴△EBD∽△ADC,且相似比k=,∴=k2=4,即s1=4s2,∵﹣16S2+4=0,∴16﹣16S2+4=0,即=0,∴S2=,∵====3,∴S△ABC=.七、(本题12分)22.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【考点】二次函数的应用.【分析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.八、(本大题14分)23.设△ABC是锐角三角形,∠A,∠B所对的边长分别为a、b,其边上的高分别为m,n,∠ACB=θ.(1)用θ和b的关系式表示m;(2)若a>b,试比较a+m与b+n的大小;(3)如图,在△ABC中作一个面积最大的正方形,假设a>b,问正方形的一边在三角形的哪条边上的正方形面积最大?试写出求解过程.【考点】相似三角形的判定与性质;解直角三角形.【分析】(1)根据三角函数的定义即可得到结论;(2)根据(1)的结论得到n=asinθ,代入得到(a﹣b)(1﹣sinθ),根据不等式的性质即可得到结论;(3)根据相似三角形的性质得到HK=,同理H′G′=,设△ABC的面积我S,于是得到HK==<==H′G′,即可得到结论.【解答】解:(1)∵∠B所对的边长分别为b,∠A边上的高分别为m,∴∠sinθ=,∴m=bsinθ;(2)同(1)的结论可得n=asinθ,则(a+m)﹣(b+n)=(a﹣b)(1﹣sinθ),∵a>b,sinθ<1,∴(a﹣b)(1﹣sinθ)>0,∴a+m>b+n;(3)∵HK∥BC,∴△AHK∽△ABC,∴,∵BC=a,AD=m,∴HK=,同理H′G′=,设△ABC的面积为S,∴HK==<==H′G′,∴正方形的边在AC上时面积最大.2016年6月6日。

2020年安徽省芜湖市中考数学三模试卷 (含答案解析)

2020年安徽省芜湖市中考数学三模试卷 (含答案解析)

2020年安徽省芜湖市中考数学三模试卷一、选择题(本大题共10小题,共40.0分)1.|−3|的倒数是()A. −3B. −13C. 3 D. 132.下列运算正确的是( )A. −x3+3x2=x2B. 3a2b−3ba2=0C. −3(a+b)=−3a+3bD. 3y2−2y2=13.如图所示,该几何体的俯视图是()A.B.C.D.4.为了贯彻习近平总书记提出的“精准扶贫”战略构想,铜仁市2017年共扶贫261800人,将261800用科学记数法表示为()A. 2.618×105B. 26.18×104C. 0.2618×106D. 2.618×1065.下列二次根式中,无论x取什么值都有意义的是()A. √x2−3B. √−x−3C. √xD. √x2+16.下列关于抛物线y=−x2+2的说法正确的是()A. 抛物线开口向上B. 顶点坐标为(−1,2)C. 在对称轴的右侧,y随x的增大而增大D. 在对称轴的左侧,y随x的增大而增大7.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,则可列方程组为()A. {5x=5y+10,4x=4y+2yB. {5x−5y=10,4x+2y=4yC. {5x+10=5y,4x−4y=2D. {5x−5y=10,4x−2=4y8.如图,直线m是△ABC中BC边的垂直平分线,点P是直线m上的一动点.若AB=6,AC=4,BC=7,则△APC周长的最小值是()A. 10B. 11C. 11.5D. 139.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象为()A. B. C. D.10.如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以1cm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.因式分解:2m3−8m=________.12.如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是.13.一次函数y=kx+b的图象与反比例函数y=−2的图象交于点A(−1,m),B(n,−1)两点,则使xkx+b>−2的x的取值范围是______.x14.在一块直角三角板ABC中,∠C=90°,∠A=30°,BC=1,将另一个含30°角的△EDF的30°角的顶点D放在AB边上,E,F分别在AC,BC上,当点D在AB边上移动时,DE始终与AB垂直,若△CEF与△DEF相似,则AD=_________________.三、计算题(本大题共1小题,共8.0分))−1+(π−√5)0+√(−5)215.计算:|2−√5|−(−12四、解答题(本大题共8小题,共82.0分)16.某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案。

安徽省芜湖市2019-2020学年第四次中考模拟考试数学试卷含解析

安徽省芜湖市2019-2020学年第四次中考模拟考试数学试卷含解析

安徽省芜湖市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若分式11a-有意义,则a的取值范围是()A.a≠1B.a≠0C.a≠1且a≠0D.一切实数2.下面的几何体中,主(正)视图为三角形的是()A.B.C.D.3.下列运算正确的是()A.2a2+3a2=5a4B.(﹣12)﹣2=4C.(a+b)(﹣a﹣b)=a2﹣b2D.8ab÷4ab=2ab4.要使分式337xx-有意义,则x的取值范围是()A.x=73B.x>73C.x<73D.x≠735.如图,已知⊙O的半径为5,AB是⊙O的弦,AB=8,Q为AB中点,P是圆上的一点(不与A、B重合),连接PQ,则PQ的最小值为()A.1 B.2 C.3 D.86.一元二次方程(x+3)(x-7)=0的两个根是A.x1=3,x2=-7 B.x1=3,x2=7C.x1=-3,x2=7 D.x1=-3,x2=-77.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE= 1316,其中正确结论的个数是()A .1B .2C .3D .48.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m ﹣1;②1014043n n ++=;③1014043n n --=;④40m+10=43m+1,其中正确的是( ) A .①②B .②④C .②③D .③④9.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A .32︒B .58︒C .138︒D .148︒10.已知抛物线y=ax 2+bx+c 与反比例函数y= bx的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac 的图象可能是( )A .B .C .D .11.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x 个,那么可列方程为( ) A .30x=456x + B .30x=456x - C .306x -=45xD .306x +=45x12.如图,已知两个全等的直角三角形纸片的直角边分别为a 、b ()a b ≠,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )A.3个;B.4个;C.5个;D.6个.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程32x-=的解是__________.14.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA =OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是_________.(填序号)15.两个等腰直角三角板如图放置,点F为BC的中点,AG=1,BG=3,则CH的长为__________.16.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图①整幅七巧板是由正方形ABCD分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图②是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是cm(结果保留根号).17.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=_____.18.小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_____千米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,O 为直线AB 上一点,∠AOC=50°,OD 平分∠AOC ,∠DOE=90°.写出图中小于平角的角.求出∠BOD 的度数.小明发现OE 平分∠BOC ,请你通过计算说明道理.20.(6分)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y=kx+b 的图象与反比例函数my x= 的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0x xk b m+-p 的解集(请直接写出答案).21.(6分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题: 分 组频数 频率 第一组(0≤x <15) 3 0.15 第二组(15≤x <30)6a第三组(30≤x<45)7 0.35第四组(45≤x<60) b 0.20 (1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?22.(8分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.23.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若AB=4,tan∠ADB=12,求折叠后重叠部分的面积.24.(10分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确数字x 人数A 0≤x<8 10B 8≤x<16 15C 16≤x<24 25D 24≤x<32 mE 32≤x<40 n根据以上信息解决下列问题:(1)在统计表中,m=,n=,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E组学生王云参加鄂州市“汉字听写”比赛的概率.25.(10分)如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=42,求DF的长.26.(12分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.类别频数(人数)频率武术类0.25书画类20 0.20棋牌类15 b器乐类合计 a 1.00(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=_____,b=_____;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.27.(12分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED =∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC=8,cos∠BED=,求AD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】分析:根据分母不为零,可得答案详解:由题意,得10a-≠,解得 1.a≠故选A.点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.2.C【解析】【分析】【详解】解:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形.故选C.3.B【解析】【分析】根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答.【详解】A. 2a2+3a2=5a2,故本选项错误;B. (−12)-2=4,正确;C. (a+b)(−a−b)=−a2−2ab−b2,故本选项错误;D. 8ab÷4ab=2,故本选项错误.故答案选B.【点睛】本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.4.D【解析】【分析】本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.【详解】∵3x−7≠0,∴x≠73.故选D.【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.5.B【解析】 【分析】连接OP 、OA ,根据垂径定理求出AQ ,根据勾股定理求出OQ ,计算即可. 【详解】解:由题意得,当点P 为劣弧AB 的中点时,PQ 最小, 连接OP 、OA ,由垂径定理得,点Q 在OP 上,AQ=12AB=4, 在Rt △AOB 中,22OA AQ , ∴PQ=OP-OQ=2, 故选:B . 【点睛】本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键. 6.C 【解析】 【分析】根据因式分解法直接求解即可得. 【详解】∵(x+3)(x ﹣7)=0, ∴x+3=0或x ﹣7=0, ∴x 1=﹣3,x 2=7, 故选C . 【点睛】本题考查了解一元二次方程——因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键. 7.C 【解析】∵四边形ABCD 是正方形, ∴AD=BC ,∠DAB=∠ABC=90°, ∵BP=CQ , ∴AP=BQ ,在△DAP与△ABQ中,AD ABDAP ABQ AP BQ=⎧⎪∠=∠⎨⎪=⎩,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴AO OP OD OA=,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中FCQ EBPQ PCQ BP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,AD CDADC DCE DF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴43 PB PAEB DA==,∴BE=34,∴QE=134,∵△QOE∽△PAD,∴1345 QO OE QEPA AD PD===,∴QO=135,OE=3920,∴AO=5﹣QO=125,∴tan∠OAE=OEOA=1316,故④正确,故选C.点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.8.D【解析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选D.考点:由实际问题抽象出一元一次方程.9.D【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.【详解】如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠1=148°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.10.B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: ∵抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0. 11.A【解析】【分析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做30 个所用时间与乙做45 个所用时间相等即可列方程.【详解】设甲每小时做x 个,乙每小时做(x+6)个,根据甲做30 个所用时间与乙做45 个所用时间相等可得30 x =456 x.故选A.【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.12.B【解析】分析:直接利用轴对称图形的性质进而分析得出答案.详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个.故选B.点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x=1【解析】【分析】将方程两边平方后求解,注意检验.【详解】将方程两边平方得x-3=4,移项得:x=1,73-=2,原方程成立,x-=2的解是x=1.3故本题答案为:x=1.【点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.14.②③④【解析】试题解析:根据已知条件不能推出OA=OD,∴①错误;∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,AD AD DE DF==⎧⎨⎩, ∴Rt △AED ≌Rt △AFD (HL ),∴AE=AF ,∵AD 平分∠BAC ,∴AD ⊥EF ,∴②正确;∵∠BAC=90°,∠AED=∠AFD=90°,∴四边形AEDF 是矩形,∵AE=AF ,∴四边形AEDF 是正方形,∴③正确;∵AE=AF ,DE=DF ,∴AE 2+DF 2=AF 2+DE 2,∴④正确;∴②③④正确,15.83 【解析】 【分析】 依据∠B=∠C=45°,∠DFE=45°,即可得出∠BGF=∠CFH ,进而得到△BFG ∽△CHF ,依据相似三角形的性质,即可得到CH BF =CF BG ,即22=223,即可得到CH=83. 【详解】解:∵AG=1,BG=3,∴AB=4,∵△ABC 是等腰直角三角形,∴BC=42,∠B=∠C=45°,∵F 是BC 的中点,∴BF=CF=22,∵△DEF 是等腰直角三角形,∴∠DFE=45°,∴∠CFH=180°﹣∠BFG ﹣45°=135°﹣∠BFG ,又∵△BFG 中,∠BGF =180°﹣∠B ﹣∠BFG=135°﹣∠BFG ,∴∠BGF=∠CFH ,∴△BFG ∽△CHF ,∴CHBF =CF BG =3, ∴CH=83, 故答案为83. 【点睛】本题主要考查了相似三角形的判定与性质,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.16.【解析】【分析】仔细观察梯形从而发现其各边与原正方形各边之间的关系,则不难求得梯形的周长.【详解】解:观察图形得MH=GN=AD=12,HG=12AC , AD=DC=12,,.梯形MNGH 的周长.故答案为.【点睛】此题主要考查学生对等腰梯形的性质及正方形的性质的运用及观察分析图形的能力.17.3.【解析】试题解析:把(-1,0)代入2232y x x k =++-得:2-3+k-2=0,解得:k=3.故答案为3.18.1【解析】【分析】根据题意设小明的速度为akm/h ,小亮的速度为bkm/h ,求出a,b 的值,再代入方程即可解答.设小明的速度为akm/h,小亮的速度为bkm/h,23.5 2.5(3.52)(3.5 2.5)210bab a⎧=-⎪⎨⎪-+-=⎩,解得,12060ab=⎧⎨=⎩,当小明到达B地时,小亮距离A地的距离是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案为1.【点睛】此题考查一次函数的应用,解题关键在于列出方程组.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)答案见解析(2)155°(3)答案见解析【解析】【分析】(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【详解】(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点睛】本题考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.20.(1)y=﹣8x,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2试题分析:(1)将B 坐标代入反比例解析式中求出m 的值,即可确定出反比例解析式;将A 坐标代入反比例解析式求出n 的值,确定出A 的坐标,将A 与B 坐标代入一次函数解析式中求出k 与b 的值,即可确定出一次函数解析式;(2)对于直线AB ,令y=0求出x 的值,即可确定出C 坐标,三角形AOB 面积=三角形AOC 面积+三角形BOC 面积,求出即可;(3)由两函数交点A 与B 的横坐标,利用图象即可求出所求不等式的解集.试题解析:(1)∵B (2,﹣4)在y=m x 上, ∴m=﹣1.∴反比例函数的解析式为y=﹣8x . ∵点A (﹣4,n )在y=﹣8x上, ∴n=2.∴A (﹣4,2).∵y=kx+b 经过A (﹣4,2),B (2,﹣4), ∴4224k b k b -+=⎧⎨+=-⎩, 解之得12k b =-⎧⎨=-⎩. ∴一次函数的解析式为y=﹣x ﹣2.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=﹣2.∴点C (﹣2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=3. (3)不等式0m kx b x+-<的解集为:﹣4<x <0或x >2. 21.0.3 4【解析】【分析】(1)由统计图易得a 与b 的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.【详解】(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人); (3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:312=14. 【点睛】本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;()2用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k =+≠,把点()0,70,()400,30坐标分别代入得70b =,0.1k =-,∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.23.(1)见解析;(2)1【解析】【分析】(1)由矩形的性质可知∠A=∠C=90°,由翻折的性质可知∠A=∠F=90°,从而得到∠F=∠C ,依据AAS 证明△DCE ≌△BFE 即可;(2)由△DCE ≌△BFE 可知:EB=DE ,依据AB=4,tan ∠ADB=12,即可得到DC ,BC 的长,然后再Rt △EDC 中利用勾股定理列方程,可求得BE 的长,从而可求得重叠部分的面积.【详解】解:(1)∵四边形ABCD 是矩形,∴∠A=∠C=90°,AB=CD ,由折叠可得,∠F=∠A ,BF=AB ,∴BF=DC ,∠F=∠C=90°,又∵∠BEF=∠DEC ,∴△DCE ≌△BFE ;(2)∵AB=4,tan ∠ADB=,∴AD=8=BC ,CD=4,∵△DCE ≌△BFE ,∴BE=DE ,设BE=DE=x ,则CE=8﹣x ,在Rt △CDE 中,CE 2+CD 2=DE 2,∴(8﹣x )2+42=x 2,解得x=5,∴BE=5,∴S △BDE =12BE×CD=12×5×4=1. 【点睛】本题考查了折叠的性质、全等三角形的判定和性质以及勾股定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.24.(1)m=30,n=20,图详见解析;(2)90°;(3)7 27.【解析】分析:(1)、根据B的人数和百分比得出总人数,从而根据总人数分别求出m和n的值;(2)、根据C的人数和总人数的比值得出扇形的圆心角度数;(3)、首先根据题意画出树状图,然后根据概率的计算法则得出答案.详解:(1)∵总人数为15÷15%=100(人),∴D组人数m=100×30%=30,E组人数n=100×20%=20,补全条形图如下:(2)扇形统计图中“C组”所对应的圆心角的度数是360°×=90°,(3)记通过为A、淘汰为B、待定为C,画树状图如下:由树状图可知,共有27种等可能结果,其中获得两位评委老师的“通过”有7种情况,∴E组学生王云参加鄂州市“汉字听写”比赛的概率为7 27.点睛:本题主要考查的就是扇形统计图、条形统计图以及概率的计算法则,属于基础题型.解决这个问题,我们一定要明白样本容量=频数÷频率,根据这个公式即可进行求解.25.(1)证明见解析;(2)1.【解析】【分析】(1)先证明出△CEF≌△BED,得出CF=BD即可证明四边形CDBF是平行四边形;(2)作EM⊥DB于点M,根据平行四边形的性质求出BE,DF的值,再根据三角函数值求出EM的值,∠EDM=30°,由此可得出结论.【详解】解:(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED.∴CF=BD.∴四边形CDBF是平行四边形.(2)解:如图,作EM⊥DB于点M,∵四边形CDBF是平行四边形,BC=42∴1222BE BC==DF=2DE.在Rt△EMB中,EM=BE•sin∠ABC=2,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=4,∴DF=2DE=1.【点睛】本题考查了平行四边形的判定与全等三角形的判定与性质,解题的关键是熟练的掌握平行四边形的判定与全等三角形的判定与性质.26.(1)见解析; (2)① a=100,b=0.15; ②144°;③140人.【解析】【分析】(1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;(2)①用喜欢书画类的频数除以喜欢书画类的频率即可求得a值,用喜欢棋牌类的人数除以总人数即可求得b值.②求得器乐类的频率乘以360°即可.③用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数.【详解】(1)∵调查的人数较多,范围较大,∴应当采用随机抽样调查,∵到六年级每个班随机调查一定数量的同学相对比较全面,∴丙同学的说法最合理.(2)①∵喜欢书画类的有20人,频率为0.20,∴a=20÷0.20=100,b=15÷100=0.15;②∵喜欢器乐类的频率为:1﹣0.25﹣0.20﹣0.15=0.4,∴喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;③喜欢武术类的人数为:560×0.25=140人.【点睛】本题考查了用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.27.(1)AC与⊙O相切,证明参见解析;(2).【解析】试题分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线;(2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同样利用三角函数值,可求AD.试题解析:(1)AC与⊙O相切.∵弧BD是∠BED与∠BAD所对的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC与⊙O相切;(2)连接BD.∵AB是⊙O直径,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB•cos∠OAD=12×=.考点:1.切线的判定;2.解直角三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省芜湖市南陵县中考数学模拟试卷一、选择题(本题共10小题,每小题4分,共40分)1.在实数﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.32.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.3.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣3 B.x>3 C.x≥3 D.x≤34.福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()A.0.242×1010美元B.0.242×1011美元C.2.42×1010美元 D.2.42×1011美元5.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2那么这些运动员跳高成绩的众数是()A.4 B.1.75 C.1.70 D.1.656.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+17.如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是的中点,弦CF交AB于点E.若⊙O的半径为2,则CF=()A.3 B.2C.3D.8.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm9.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A. B.C.D.10.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C 与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.二、填空题(本题共4小题,每题5分,共20分)11.反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是.12.如图,直线a∥b,∠1=110°,∠2=65°,则∠3的度数为.13.分解因式:2x2y﹣12xy+18y=.14.如图,四边形ABCD是矩形纸片,AB=2,对折矩形纸片ABCD,使AD与BC重合,折痕为EF,展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③△BMG是等边三角形;④P为线段BM上一动点,H是BN 的中点,则PN+PH的最小值是.其中正确结论的序号是.三、(本题共3小题,每题8分,共16分)15.计算:﹣1﹣31﹣(3.14﹣π)0+2015.16.已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.17.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.四、(本题共1小题,每题8分,共16分)18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标.五、(本题共2小题,每题10分,功0分)19.如图,海中有一灯塔P,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?20.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.六、(本题12分)21.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC 的面积.七、(本题12分)22.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?八、(本大题14分)23.设△ABC是锐角三角形,∠A,∠B所对的边长分别为a、b,其边上的高分别为m,n,∠ACB=θ.(1)用θ和b的关系式表示m;(2)若a>b,试比较a+m与b+n的大小;(3)如图,在△ABC中作一个面积最大的正方形,假设a>b,问正方形的一边在三角形的哪条边上的正方形面积最大?试写出求解过程.安徽省芜湖市南陵县中考数学模拟试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.在实数﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.3【考点】实数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣2<0<2<3,最小的实数是﹣2,故选:A.2.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是从物体上面看所得到的图形.【解答】解:从几何体的上面看俯视图是,故选:D.3.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣3 B.x>3 C.x≥3 D.x≤3【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵代数式在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选C.4.福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()A.0.242×1010美元B.0.242×1011美元C.2.42×1010美元 D.2.42×1011美元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将242亿用科学记数法表示为:2.42×1010.故选:C.5.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2那么这些运动员跳高成绩的众数是()A.4 B.1.75 C.1.70 D.1.65【考点】众数.【分析】根据众数的定义找出出现次数最多的数即可.【解答】解:∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65;故选:D.6.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+1【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】根据幂的乘方与积的乘方、同底数幂的乘法法则及完全平方公式,分别进行各选项的判断即可.【解答】解:A、(x3)2=x6,原式计算错误,故A选项错误;B、(2x)2=4x2,原式计算错误,故B选项错误;C、x3•x2=x5,原式计算正确,故C选项正确;D、(x+1)2=x2+2x+1,原式计算错误,故D选项错误;故选:C.7.如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是的中点,弦CF交AB于点E.若⊙O的半径为2,则CF=()A.3 B.2C.3D.【考点】切线的性质.【分析】根据垂径定理求出CF=2CE,根据切线的性质求出∠OCD,求出∠COE的度数,解直角三角形求出CE即可.【解答】解:连接OC,∵点B是的中点,AB为⊙O的直径,∴CE=EF,CF⊥AB,∴∠CEO=90°,∵DC切⊙O于C,∴∠OCD=90°,∵OB=BD=OC=2,∴∠D=30°,∴∠COE=60°,∴CE=OC×sin60°=2×=,∴CF=2CE=2,故选B.8.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm【考点】一元二次方程的应用.【分析】设正方形铁皮的边长应是x厘米,则做成没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据长方体的体积计算公式列方程解答即可.【解答】解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.9.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A. B.C.D.【考点】动点问题的函数图象.【分析】根据平行线的性质可得∠EDF=∠B=60°,根据三角形内角和定理即可求得∠F=30°,然后证得△EDB是等边三角形,从而求得ED=DB=2﹣x,再根据直角三角形的性质求得EF,最后根据三角形的面积公式求得y与x函数关系式,根据函数关系式即可判定.【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵DE∥AC,∴∠EDF=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;∵∠ACB=60°,∠EDC=60°,∴△EDB是等边三角形.∴ED=DB=2﹣x,∵∠DEF=90°,∠F=30°,∴EF=ED=(2﹣x).∴y=ED•EF=(2﹣x)•(2﹣x),即y=(x﹣2)2,(x<2),故选A.10.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C 与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】借助翻折变换的性质得到DE=CE;设AB=3k,CE=x,则AE=3k﹣x;根据相似三角形的判定与性质即可解决问题.【解答】解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,∴,设CE=x,则ED=x,AE=3k﹣x,设CF=y,则DF=y,FB=3k﹣y,∴,∴,∴=,∴CE:CF=4:5.故选:B.解法二:解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,由折叠,得CE=DE,CF=DF∴△AED的周长为4k,△BDF的周长为5k,∴△AED与△BDF的相似比为4:5∴CE:CF=DE:DF=4:5.故选:B.二、填空题(本题共4小题,每题5分,共20分)11.反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是a.【考点】反比例函数的性质.【分析】根据反比例函数的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得2a﹣1>0,再解不等式即可.【解答】解:∵反比例函数y=的图象有一支位于第一象限,∴2a﹣1>0,解得:a>.故答案为:a.12.如图,直线a∥b,∠1=110°,∠2=65°,则∠3的度数为45°.【考点】平行线的性质.【分析】根据“两直线平行,内错角相等”得出∠2=∠4=65°,再结合三角形的外角知识即可得出结论.【解答】解:在图中标上角的序号,如图所示.∵a∥b,∠2=65°,∴∠2=∠4=65°.∵∠1=∠3+∠4,∠1=110°,∴∠3=110°﹣65°=45°.故答案为:45°.13.分解因式:2x2y﹣12xy+18y=2y(x﹣3)2.【考点】因式分解-提公因式法.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=2y(x2﹣6x+9)=2y(x﹣3)2,故答案为:2y(x﹣3)2键.14.如图,四边形ABCD是矩形纸片,AB=2,对折矩形纸片ABCD,使AD与BC重合,折痕为EF,展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③△BMG是等边三角形;④P为线段BM上一动点,H是BN 的中点,则PN+PH的最小值是.其中正确结论的序号是①③④.【考点】四边形综合题.【分析】①首先根据EF垂直平分AB,可得AN=BN;然后根据折叠的性质,可得AB=BN,据此判断出△ABN为等边三角形,即可判断出∠ABN=60°;②首先根据∠ABN=60°,∠ABM=∠NBM,求出∠ABM=∠NBM=30°;然后在Rt△ABM 中,根据AB=2,求出AM的大小即可;③根据∠ABM=∠MBN=30°,∠BNM=∠BAM=90°,推得∠MBG=∠BMG=∠BGM=60°,即可推得△BMG是等边三角形;④首先根据△BMG是等边三角形,点N是MG的中点,判断出BN⊥MG,即可求出BN 的大小;然后根据E点和H点关于BM称可得PH=PE,因此P与Q重合时,PN+PH=PN+PE=EN,据此求出PN+PH的最小值是多少即可.【解答】解:①如图1,连接AN,∵EF垂直平分AB,∴AN=BN,根据折叠的性质,可得AB=BN,∴AN=AB=BN.∴△ABN为等边三角形.∴∠ABN=60°,∠PBN=60°÷2=30°,即结论①正确;②∵∠ABN=60°,∠ABM=∠NBM,∴∠ABM=∠NBM=60°÷2=30°,∴AM=AB•tan30°=2×,即结论②不正确;③∵∠ABM=∠MBN=30°,∠BNM=∠BAM=90°,∴∠BMG=∠BNM﹣∠MBN=90°﹣30°=60°,∴∠MBG=∠ABG﹣∠ABM=90°﹣30°=60°,∴∠BGM=180°﹣60°﹣60°=60°,∴∠MBG=∠BMG=∠BGM=60°,∴△BMG为等边三角形,即结论③正确.④∵△BMG是等边三角形,点N是MG的中点,∴BN⊥MG,∴BN=BG•sin60°=,根据条件易知E点和H点关于BM对称,∴PH=PE,∴P与Q重合时,PN+PH的值最小,此时PN+PH=PN+PE=EN,∵EN==,∴PN+PH=,∴PN+PH的最小值是,即结论④正确;故答案为:①③④.三、(本题共3小题,每题8分,共16分)15.计算:﹣1﹣31﹣(3.14﹣π)0+2015.【考点】实数的运算;零指数幂.【分析】原式利用算术平方根定义,零指数幂法则计算即可得到结果.【解答】解:原式=5﹣1﹣31﹣1+2015=1987.16.已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.【考点】一次函数与一元一次不等式.【分析】把点(1,﹣1)代入直线y=2x﹣b得到b的值,再解不等式.【解答】解:把点(1,﹣1)代入直线y=2x﹣b得,﹣1=2﹣b,解得,b=3.函数解析式为y=2x﹣3解2x﹣3≥0得x≥.17.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.【考点】全等三角形的判定与性质.【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD (SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【解答】证明:∵在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.四、(本题共1小题,每题8分,共16分)18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标.【考点】作图-位似变换;作图-旋转变换.【分析】(1)利用关于点对称的性质得出A1,C1,坐标进而得出答案;(2)利用关于原点位似图形的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A1BC1,即为所求;(2)如图所示:△A2B2C2,即为所求,C2点坐标为:(﹣6,4).五、(本题共2小题,每题10分,功0分)19.如图,海中有一灯塔P,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?【考点】解直角三角形的应用-方向角问题.【分析】易证△ABP是等腰三角形,过P作PD⊥AB,求得PD的长,与6海里比较大小即可.【解答】解:过P作PD⊥AB.AB=18×=12海里.∵∠PAB=30°,∠PBD=60°∴∠PAB=∠APB∴AB=BP=12海里.在直角△PBD中,PD=BP•sin∠PBD=12×=6海里.∵6>8∴海轮不改变方向继续前进没有触礁的危险.20.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是30;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【考点】列表法与树状图法;扇形统计图;利用频率估计概率.【分析】(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,小红小花 1 2 3 4 51 (2,1)(3,1)(4,1)(5,1)2 (1,2)(3,2)(4,2)(5,2)3 (1,3)(2,3)(4,3)(5,3)4 (1,4)(2,4)(3,4)(5,4)5 (1,5)(2,5)(3,5)(4,5)记小红和小花抽在相邻两道这个事件为A,∴.六、(本题12分)21.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC 的面积.【考点】相似三角形的判定与性质;解一元二次方程-配方法;圆周角定理.【分析】(1)由AD是△ABC的角平分线,得到∠BAD=∠DAC,由于∠E=∠BAD,等量代换得到∠E=∠DAC,根据平行线的性质和判定即可得到结果;(2)由BE∥AD,得到∠EBD=∠ADC,由于∠E=∠DAC,得到△EBD∽△ADC,根据相似三角形的性质相似三角形面积的比等于相似比的平方即可得到结果.【解答】(1)证明:∵AD是△ABC的角平分线,∴∠BAD=∠DAC,∵∠E=∠BAD,∴∠E=∠DAC,∵BE∥AD,∴∠E=∠EDA,∴∠EDA=∠DAC,∴ED∥AC;(2)解:∵BE∥AD,∴∠EBD=∠ADC,∵∠E=∠DAC,∴△EBD∽△ADC,且相似比k=,∴=k2=4,即s1=4s2,∵﹣16S2+4=0,∴16﹣16S2+4=0,即=0,∴S2=,∵====3,∴S△ABC=.七、(本题12分)22.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【考点】二次函数的应用.【分析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,∴当x=60时,P=8000元,最大值即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,∴当x=58时,y=﹣20×58+1600=440,最小值即超市每天至少销售粽子440盒.八、(本大题14分)23.设△ABC是锐角三角形,∠A,∠B所对的边长分别为a、b,其边上的高分别为m,n,∠ACB=θ.(1)用θ和b的关系式表示m;(2)若a>b,试比较a+m与b+n的大小;(3)如图,在△ABC中作一个面积最大的正方形,假设a>b,问正方形的一边在三角形的哪条边上的正方形面积最大?试写出求解过程.【考点】相似三角形的判定与性质;解直角三角形.【分析】(1)根据三角函数的定义即可得到结论;(2)根据(1)的结论得到n=asinθ,代入得到(a﹣b)(1﹣sinθ),根据不等式的性质即可得到结论;(3)根据相似三角形的性质得到HK=,同理H′G′=,设△ABC的面积我S,于是得到HK==<==H′G′,即可得到结论.【解答】解:(1)∵∠B所对的边长分别为b,∠A边上的高分别为m,∴∠sinθ=,∴m=bsinθ;(2)同(1)的结论可得n=asinθ,则(a+m)﹣(b+n)=(a﹣b)(1﹣sinθ),∵a>b,sinθ<1,∴(a﹣b)(1﹣sinθ)>0,∴a+m>b+n;(3)∵HK∥BC,∴△AHK∽△ABC,∴,∵BC=a,AD=m,∴HK=,同理H′G′=,设△ABC的面积为S,∴HK==<==H′G′,∴正方形的边在AC上时面积最大.精品资料6月6日。

相关文档
最新文档