8位移位寄存器的电路设计与版图实现要点
移位寄存器74hc595控制8位数码管
一不用单片机串口电路原理图:C程序:#include<reg51.h>#define uint unsigned int#define uchar unsigned charsbit QS=P2^0; // 串行数据输入端sbit shuchu=P2^1; // 存储寄存器脉冲输入sbit yiwei=P2^2; // 移位寄存器脉冲输入sbit Q1=P2^3; //38译码器输入选择sbit Q2=P2^4;sbit Q3=P2^5;uchar shuma[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; void delay(uint z){uint x,y;for(x=z;x>0;x--)for(y=120;y>0;y--);}void wei(uchar z) //数码管位选择{Q1=z&0x01;Q2=(z>>1)&0x01;Q3=(z>>2)&0x01;}void display(){uchar i,j,temp;for(i=0;i<8;i++){wei(i);temp=shuma[i];for(j=0;j<8;j++){QS=temp&0x80;yiwei=0;yiwei=1;temp=temp<<1;}shuchu=0;shuchu=1;delay(2);for(j=0;j<8;j++) //消影{QS=1;yiwei=0;yiwei=1;}}}void main(){while(1){display();}}二用单片机串口(P3^0和P3^1)电路原理图:C程序:#include<REG51.H>#define uint unsigned int#define uchar unsigned char//sbit QS=P3^0; // 串行数据输入端sbit shuchu=P3^2; // 存储寄存器脉冲输入//sbit yiwei=P3^1; // 移位寄存器脉冲输入sbit Q1=P3^3; //38译码器输入选择sbit Q2=P3^4;sbit Q3=P3^5;uchar shuma[]={0x03,0x9f,0x25,0x0d,0x99,0x49,0x41,0x1f,0x01,0x09};/*由于串口发送是由低向高发送,所以得把数码从高低位调换如‘0’码为0xco 11000000换为00000011 0x03*/void delay(uint z){uint x,y;for(x=z;x>0;x--)for(y=120;y>0;y--);}void wei(uchar z) //数码管位选择{Q1=z&0x01;Q2=(z>>1)&0x01;Q3=(z>>2)&0x01;}void display(){uchar i;for(i=0;i<8;i++){wei(i); //选择数码管位SBUF=shuma[i]; //向串口缓冲寄存器中存入数据while(!TI); //等待发送完成TI=0; //清楚发送完成标志shuchu=0; //输出shuchu=1;delay(2);SBUF=0xff; //消影while(!TI);TI=0;}}void main(){/*单片机上电后默认为串口方式0,所以不需要设置串口模式*/ // EA=1; //开总中断// ES=1; //开串口中断// IE=0x90;/*SM0=0; //选择串行工作模式0SM1=0;*/// TCON=0x00;// TI=0;while(1){display();}}。
8位移位寄存器的电路设计与版图实现要点
8位移位寄存器的电路设计与版图实现要点8位移位寄存器的电路设计与版图实现摘要电⼦设计⾃动化,缩写为EDA,主要是以计算机为主要⼯具,⽽Tanner EDA则是⼀种在计算机windows平台上完成集成电路设计的⼀种软件,基本包括S-Edit,T-Spice,W-Edit,L-Edit与LVS等⼦软件,其S-Edit以及L-Edit为常⽤软件,前者主要实现电路设计,后者主要针对的是已知电路的版图绘制,⽽T-Spice主要可实现电路图及版图的仿真,可以⽤Tanner EDA实现电路的设计布局以及版图实现等⼀系列完整过程。
本⽂⽤Tanner EDA⼯具主要设计的是8位移位寄存器,移位寄存器主要是⽤来实现数据的并⾏和串⾏之间的转换以及对数据进⾏运算或专业处理的⼯具,主要结构构成是触发器,触发器是具有储存功能的,可以⽤来储存多进制代码,⼀般N 位寄存器就是由N个触发器构成,移位寄存器⼯作原理主要是数据在其脉冲的作⽤下实现左移或者右移的效果,输⼊输出的⽅式表现为串⾏及并⾏⾃由组合,本设计就是在Tanner EDA的软件平台上进⾏对8位移位寄存器的电路设计仿真,再根据电路图在专门的L-Edit 平台上完成此电路的版图实现,直⾄完成的结果和预期结果保持⼀致。
关键词:Tanner EDA;L-Edit;移位寄存器,S-Edit8 bits shift register circuit design and layoutAbstractElectronic design automation,referred to as EDA,it is based on computers as the main tool,and Tanner EDA is a kind of software that complete the integrated circuit design on Windows platforms.Its Sub-Softwares include S-Edit,T-Spice,W-Edit,L-Edit and LVS and so on.S-Edit and L-Edit are commonly used software,S-Edit is primarily designed to achieve circuit,the latter is aimed primarily known circuit layout drawing,T-Spice can achieve schematic and layout simulation.We can achieve layout of the circuit design and a series of complete process layout used Tanner EDA tools.In this paper, Tanner EDA tools are mainly designed an 8-bit shift register.The shift register is mainly used for data conversion between parallel and serial, and the data processing tool operation or professional,its main structure is the trigger composition,flip-flop is a storage function,it can be used to store more hexadecimal code,In general N-bits register is composed of N trigger.Working principle of the shift register data under the action of the pulse, mainly the effect of the shift to the left or right,input and output of the way of serial and parallel free combination.This design is in Tanner on the EDA software platform to 8 bits shift register circuit design and simulation,then according to the circuit diagram on special L - Edit platform to complete the circuit layout implementation,until the finish is consistent with the results and expected results.Keywords:Tanner EDA;L-Edit;Shift register,S-Edit⽬录1 前⾔ (1)1.1 课题的背景和⽬的 (1)1.2课题的设计内容 (1)2 设计软件简介 (2)2.1EDA技术的介绍 (2)2.2T ANNER EDA T OOLS的简述 (2)2.3T ANNER软件的组成及发展 (3)2.3.1 Tanner的设计流程 (4)2.3.2 Tanner软件的发展 (5)2.3.3 L-Edit软件的介绍 (6)2.48位移位寄存器的⼯作原理和设计要求 (9)2.4.1 ⼯作原理 (9)2.4.2 电路结构与设计 (11)3 8位移位寄存器的电路设计与版图实现过程 (13)3.1各个模块的设计与仿真 (13)3.1.1 带复位端D触发器的设计与版图实现 (13)3.1.2 与或⾮门的设计与版图实现 (16)3.28位移位寄存器的电路设计与版图实现 (18)3.2.1 8位移位寄存器的电路结构 (18)3.2.2 8位移位寄存器的版图实现 (19)3.2.3 LVS对⽐ (21)4 结束语 (21)参考⽂献 (22)巢湖学院2013届本科毕业论⽂(设计)1 前⾔1.1 课题的背景和⽬的随着科技的进步,近⼏个世纪寄存器技术不断成熟,在数字电路中,寄存器已经是⼀个经常被提出的概念,它主要指的是⽤来存放⼆进制数据或者代码的电路。
实验七 8位移位寄存器的设计
实验七 8位移位寄存器的设计一、实验目的熟悉QuartusⅡ仿真软件的基本操作,并用VHDL语言设计一个8位移位寄存器二、实验内容1.用VHDL语言设计由边沿触发式D触发器构成的8位移位寄存器,并进行仿真与分析;三、实验原理1.(1)8位移位寄存器逻辑电路的原理:可以实现串行输出、并行输入,串行输出的功能。
是能暂时存放二进制码的电路,被广泛的应用于各类数字系统和数字计算机中。
寄存器的特点是存数方便。
abcdefgh为8个并行输入端,qa~qh为并行输出端,srsi为右移串行输入端,slsi为左移串行输入端,s1,s0为模式控制端,clrn为异步清零端,clk为时钟脉冲输入端(2)通过实验实现逻辑的原理:输入信号输出信号clk clrn S1 S0 sl sr abcdefgh Q_abcdefgh↑1 1 1 0 0 0000111100001111↑ 1 1 0 1 0 0000111100011111 ↑ 1 1 0 1 0 0001111100111111 ↑ 1 1 0 0 0 0011111101111110 ↑ 1 1 0 0 0 011111111111100 ↑ 1 0 0 0 0 111111011111100 ↑ 1 0 1 0 1 111111011111110 ↑ 1 0 1 0 1 111111111111111 ↑ 1 0 1 0 0 1111111101111111 ↑ 1 0 1 0 0 0111111100111111↑0 0 0 0 0 00111111 0000000四、实验方法与步骤实验方法:采用基于FPGA进行数字逻辑电路设计的方法。
采用的软件工具是QuartusII软件仿真平台,采用的硬件平台是Altera EPF10K20TI144_4的FPGA试验箱。
实验步骤:1、编写源代码。
打开QuartusⅡ软件平台,点击File中得New建立一个文件。
编写的文件名与实体名一致,点击File/Save as以“.vhd”为扩展名存盘文件。
8位移位寄存器的设计
8位移位寄存器的设计1.设计原理:8位移位寄存器由8个D触发器组成,每个触发器都有一个数据输入端和一个时钟输入端。
在时钟上升沿到达时,将数据输入端的值传递到输出端,同时由上一个触发器的输出端传递给下一个触发器的输入端。
这样,在每个时钟周期内,数据会从寄存器的一端移动到寄存器的另一端。
2.功能:-数据存储:将输入的8位数据存储在寄存器中。
-数据移位:可以将寄存器中的数据向左或向右移动一位。
-数据传输:可以将寄存器中的数据传递给其他元件或模块。
3.设计步骤:设计一个8位移位寄存器的步骤如下:1)确定需要的数据输入和输出端口数量和类型。
2)选择合适的D触发器,每个触发器都有一个数据输入端D和一个控制输入端CLK。
3)将8个D触发器按照顺序连接起来,每个触发器的输出端连接到下一个触发器的输入端,形成一个移位寄存器。
4)定义时钟信号的激活边沿(上升沿或下降沿)。
5)设计时钟信号的生成电路,以便控制数据的移位操作。
6)连接数据输入端口和时钟信号的生成电路到移位寄存器的各个触发器。
7)连接数据输出端口到移位寄存器最后一个触发器的输出端。
4.应用:-数据缓存:将来自外部设备的数据存储在寄存器中,然后按需传递给其他模块。
-数据传输:通过移位寄存器将数据从一个模块传递到另一个模块,以实现数据通信。
-时序操作:通过移位寄存器来生成时序信号,控制其他模块的状态和行为。
-数据处理:通过移位寄存器将数据进行移位、旋转、倒序等操作,并输出结果。
-逻辑运算:通过移位寄存器将数据进行逻辑与、逻辑或、逻辑异或等操作。
总结:8位移位寄存器是一种常见且实用的数字逻辑元件,用于存储和移动8位二进制数据。
通过8个D触发器的组合,可以实现数据的存储、移位和传输等功能。
在数字电子系统中,8位移位寄存器被广泛应用于数据缓存、数据传输、时序操作、数据处理和逻辑运算等场景。
设计和理解8位移位寄存器对于数字电子系统的开发和优化是非常重要的。
移位寄存器的设计及实现
移位寄存器的设计及实现移位寄存器(Shift Register)是一种常用的数字逻辑电路器件,它能够将数据按照输入和输出的时序进行移位操作。
通过移位寄存器,我们可以实现数据的串行传输、并行-串行或者串行-并行转换、数据延迟等功能。
本文将对移位寄存器的设计与实现进行介绍。
一、移位寄存器的设计1.串行输入、串行输出的移位寄存器这种移位寄存器称为串行移位寄存器,它包括n个触发器,每个触发器提供一个数据位的存储空间。
数据通过一个输入端串行输入,然后通过触发器依次移位,最后从输出端串行输出。
2.并行输入、并行输出的移位寄存器这种移位寄存器称为并行移位寄存器,它包括n个触发器,每个触发器提供一个数据位的存储空间。
数据通过n个输入端并行输入到各个触发器,然后通过控制信号进行同步移位。
最后从n个输出端并行输出。
3.并行输入、串行输出的移位寄存器这种移位寄存器称为并行-串行移位寄存器,它先从n个输入端并行输入数据,然后通过控制信号进行同步移位,并将移位结果通过一个输出端串行输出。
4.串行输入、并行输出的移位寄存器这种移位寄存器称为串行-并行移位寄存器,它先从一个输入端串行输入数据,然后通过触发器进行移位,最后将移位结果从n个输出端并行输出。
1.触发器选择由于是8位移位寄存器,需要选择8个触发器。
常用的触发器有D触发器、JK触发器等,可以根据实际需求选择合适的触发器。
2.输入输出端口设计设计一个输入端口用于串行输入数据。
由于是串行输入,需要一个时钟信号和一个使能信号进行同步移位操作。
同时,设计一个输出端口用于串行输出数据。
3.控制信号电路设计根据串行输入、串行输出的要求,需要设计一个时钟信号和一个使能信号的电路。
使能信号在移位过程中保持逻辑高电平,只有当8位数据全部移位完成时才将使能信号置为逻辑低电平。
二、移位寄存器的实现1.设计一个8位移位寄存器电路,并连接8个D触发器。
2.将串行输入信号与D触发器的数据端相连,时钟信号与D触发器的时钟端相连,使能信号与D触发器的使能端相连。
实验七8位移位寄存器的设计
实验七8位移位寄存器的设计引言:移位寄存器是一种常见的数字电路,可以在电子系统中进行数据的移位操作。
在本实验中,我们将设计一个8位移位寄存器,通过串行输入和串行输出实现数据的向左和向右移位。
实验中我们将使用逻辑门和触发器来构建移位寄存器。
设计目标:设计一个8位的移位寄存器,能够通过串行输入和串行输出来实现数据的向左和向右移位,并能够在任意时刻改变移位的方向。
设计步骤:步骤一:根据设计目标,首先需要确定使用何种类型的触发器来实现移位寄存器。
由于我们需要实现向左和向右移位,可以选择D触发器来实现。
步骤二:根据所选择的触发器类型,我们需要对每一个位进行设计。
由于需要实现8位的移位寄存器,我们需要使用8个D触发器来实现。
步骤三:根据移位寄存器的逻辑功能,我们需要使用两个串行输入引脚和两个串行输出引脚。
其中一个串行输入引脚用于向左移位,另一个用于向右移位;一个串行输出引脚用于向左移位输出,另一个用于向右移位输出。
步骤四:将每个D触发器的输出与下一个D触发器的输入相连,以实现数据的串行输入。
步骤五:将第一个D触发器的输入与移位方向引脚相连,以确定移位方向。
步骤六:将最后一个D触发器的输出与移位输出引脚相连,以实现数据的串行输出。
步骤七:对每个D触发器的时钟输入引脚进行控制,以实现移位操作的时序。
结果分析:通过上述步骤所设计的8位移位寄存器,我们可以实现数据的向左和向右移位操作,并可以通过串行输入和串行输出进行控制和观测。
移位寄存器在很多应用中都有广泛的应用,例如串行通信、数据压缩、图像处理等。
总结:通过本次实验,我们了解了移位寄存器的基本原理和设计方法。
通过串行输入和串行输出实现数据的移位,可以有效地利用数字电路来实现数据处理任务。
移位寄存器作为一种重要的数字电路,为我们提供了一种灵活和便捷的数据存储和处理方式。
在今后的学习和实际应用中,我们可以进一步深入了解移位寄存器的其他应用和扩展。
74HC164 8 位串入并出移位寄存器说明书
74HC1648位串入并出移位寄存器产品说明书说明书发行履历:第 1 页共11 页74HC164是高速CMOS电路,管脚与低功耗肖特基TTL(LSTTL)系列兼容。
74HC164是8位的串入并出、边沿触发的移位寄存器,串入数据由DSA、DSB输入,在每个时钟CP的上升沿数据向右移一位,数据由DSA和DSB相与而成,且在上升沿到来之前已满足了建立时间。
低电平有效的复位信号将直接把寄存器清零而输出为低。
其主要特点如下:●较宽的工作电压:2~6V●相与的串行输入,直接的清零信号●输出能驱动10个LSTTL负载●封装型式:DIP14 / SOP142、功能框图及引脚说明2.4、功能说明h:时钟上升沿前建立起来的高电平电压L:低电平l:时钟上升沿前建立起来的低电平电压q:对应于时钟上升沿时,前面一个寄存器的状态↑:时钟上升沿3、电特性3.1、极限参数除非另有规定,T amb=25℃第 3 页共11 页3.3、电气特性除非另有规定,T amb=25℃第4 页共11 页第 5 页共11 页CCV CC=6.0V 35 85 - MHzV M=50%; V I=GND~VCC图1.时钟(CP)到输出端(Qn)的传输延时、时钟脉宽、输出传输时间和最大时钟频率V M=50%; V I=GND~VCC图2.主复位(MR)脉宽,主复位到输出端(Qn)的传输延时、主复位结束到时钟(CP)的响应时间第 6 页共11 页V M=50%; V I=GND~VCC图3. Dn输入前的数据建立时间和保持时间图4.测试开关时间的负载电路注:RT:终端电阻须与信号发生器的输出阻抗匹配CL:负载电容须包括夹具有探针电容第7 页共11 页第8 页共11 页4. 1、DIP14外形图与封装尺寸第9 页共11 页第10 页共11 页5.1、产品中有毒有害物质或元素的名称及含量第11 页共11 页。
设计8位双向移位寄存器电路
设计8位双向移位寄存器电路双向移位寄存器是一种能够在输入数据上进行向左或向右移位的电路。
它能够在输入端接收一串数据,并将这些数据连续地向左或向右移位,同时将当前移位的结果输出。
我们可以设计一个8位双向移位寄存器电路,以满足这个需求。
下面是如何设计这个电路的详细步骤:1.确定电路的基本结构:首先,我们需要确定电路的基本功能模块,包括输入输出模块、移位控制模块和移位寄存器模块。
2.输入输出模块:该模块用于接收输入数据并驱动输出数据。
我们需要提供一个8位输入端和一个8位输出端。
输入端可以是一个按钮或开关,用于输入要移位的数据。
输出端可以是一组LED灯,用于显示当前移位的结果。
3.移位控制模块:该模块用于控制移位方向和移位次数。
我们可以使用一个开关来选择移位方向(向左或向右)。
此外,我们需要一个计数器来控制移位次数。
当计数器达到8时,移位操作完成,将重新开始。
4.移位寄存器模块:该模块用于存储输入数据并进行移位操作。
我们可以使用8个D触发器来实现移位寄存器,其中每个D触发器都能够存储一个位的数据。
我们需要将每个D触发器的输出与其相邻的D触发器的输入连接起来,以实现数据的移位。
5.连接各个模块:将输入输出模块、移位控制模块和移位寄存器模块连接在一起,形成一个完整的电路。
确保每个模块的输入输出正确连接,并且信号能够正确传递。
6.进行测试:使用合适的输入数据测试电路。
先选择移位方向,然后输入要移位的数据,观察输出结果是否符合预期。
7.优化电路:根据测试结果来优化电路的性能和稳定性。
可能需要对电路布局进行调整,优化时序逻辑,以确保电路能够在正确的时钟频率下正常工作。
双向移位寄存器电路的设计过程需要考虑许多细节,包括输入输出接口的选择、移位控制逻辑的实现、移位寄存器的构建以及电路的布局和时序。
尽管这里只提供了一个简要的设计步骤,但是通过深入研究每个步骤,我们可以开始设计和实现一个功能完善且可靠的8位双向移位寄存器电路。
8位双向移位寄存器电路设计
目录摘要 (1)1 多功能双向移位寄存器 (2)1.1 基本工作原理 (2)1.2 基本实现方案 (2)2 电路图设计 (4)2.1 电路结构 (4)2.2 真值表 (4)3 Verilog描述8位双向移位寄存器 (6)4 程序仿真 (8)5 总结 (10)参考文献 (11)摘要移位寄存器是基本的同步时序电路,基本的移位寄存器可以实现数据的串行/并行或并行/串行的转换、数值运算以及其他数据处理功能。
在本设计中,使用硬件描述语言Verilog,在EDA工具QuartussII中,设计8位双向移位寄存器硬件电路,根据设计语言进行功能时序仿真,验证设计的正确性与可行性。
关键字:Verilog QuartusII 移位寄存器8位双向移位寄存器电路设计1 多功能双向移位寄存器1.1 基本工作原理移位寄存器是基本的同步时序电路,基本的移位寄存器可以实现数据的串行/并行或并行/串行的转换、数值运算以及其他数据处理功能。
在本设计中定义移位寄存器中的数据从低位触发器移向高位为右移,移向低位为左移。
为了扩展逻辑功能和增加使用的灵活性,某些双向移位寄存器集成电路产品又附加了并行输入、并行输出等功能。
如图1所示是上述几种工作模式的简化示意图。
并行输入并行输出右移串行输入(D IR 左移串行输出(D OL 右移串行输出(D OR ) D IL )0123图1 多功能移位寄存器工作模式简图1.2 基本实现方案图2所示是实现数据保持、右移、左移、并行置入和并行输出的一种电路方案。
图中的D 触发器m FF 是N 为移位寄存器中的第m 位触发器,在其数据输入端插入了一个4选1数据选择器m MUX ,用2位编码输入10S S 、控制m MUX ,来选择触发器输入信号m D 的来源。
当100S S ==时,选择该触发器本身输出的m Q ,次态为1m n nm mQ D Q +==,使触发器保持状态不变;当100,1S S ==时,触发器1m FF -的输出1m Q -被选中,故CP 脉冲上升沿到来时,m FF 存入1m FF -此前的逻辑值,即1m 1n n m Q Q +-=,而1m +1n nm Q Q +=,从而实现右移功能;类似地,当101,0S S ==时,m MUX 选择1m Q +,实现左移功能;而当101S S ==时,则选中并行输入数据m DI ,其次态1n m m Q DI +=,从而完成并行数据的置入功能。
移位相加8位硬件乘法器电路计
电子技术课程设计----移位相加8位硬件乘法器电路计学院: 华科学院专业: 通信工程班级:通信052201H姓名: 张茹学号:200522080122指导教师:柴婷婷2007年12月30日一,设计任务与要求--------------------(3)1,内容2,要求二,总体框图---------------------------(3)1,电路的总体框图2,框图的说明3,设计思路4,方案设计三,选择器件与功能模块-----------------(5)1,选择器件各功能模块及功能说明四,功能模块----------------------------(8)1,ADDER8B的模块2,ANDARITH的模块3,ARICTL的模块4,REG16B的模块5,SREG8B的模块五,总体设计电路图----------------------(14)1,总体原理图2,仿真波形图3,管脚分配图4,硬件验证情况六,心得体会--------------------------------------(18)移位相加8位硬件乘法器一.设计任务与要求1.内容: 由8位加法器构成的以时序逻辑方式设计的8位乘法器乘法通过逐向移位加原理来实现,从被乘数的最低位开始,若为1,则乘数左移与上一次和相加;若为0,左移后以全零相加,直至被乘数的最高位。
2.要求: (1) 重点掌握VHDL设计电路模块(2)在掌握8位加法器设计的基础上,进一步掌握8×8位乘法器的设计;(3)进一步学习开发系统,掌握MAX+PLUS II的设计流程。
二.总体框图(电路的总体框图)1,说明:此电路由五部分组成2,它们分别是控制器,锁存器,寄存器,乘法器,加法器。
1控制器是一个乘法器的控制模块,用来接受实验系统上的连续脉冲。
2锁存器起锁存的作用,它可以锁存8位乘数。
3移位寄存器起移位的作用,便于被乘数可以逐位移出。
4乘法器功能类似一个特殊的与非门。
电子设计自动化EDA技术实验五报告模板-8位循环移位寄存器
南京工程学院自动化学院实验报告课程名称电子设计自动化EDA技术实验项目名称8位循环移位寄存器实验学生班级实验学生姓名同组学生姓名实验时间实验地点实验成绩评定指导教师签字年月日8位循环移位寄存器的管脚如图:其中D 表示输入的初始值,Sta 为开始移位信号,DOUT 表示当前数值;LD 表示预设计数值,LD 为“1”,初始计数值打入器件;LR 表示移位方向,LR 为‘0’,循环右移位,LR 为‘1’,循环左移位;CP 为移位脉冲。
四、实验方案设计、实验方法 1. 实验方案8位循环移位寄存器的描述有多种方法,设计过程中可以采用图形编程,首先设计D 触发器,而后通过D 触发器的互联实现8位循环移位寄存器;也可通过VHDL 实现,采用计数脉冲CP 作为敏感量,CP 的每个上升沿,输出量Q 的每一位赋给左边一位或右边一位。
同时循环左移时,最高位赋给最低位,循环右移时,最低位赋给最高位,语句可采用case …when 、with …select 、if …then 以及加减运算等多种结构实现,详细方案与方法略。
本实验中根据真值表,通过VHDL 语言的if-then 结构实现8位循环移位寄存器。
2. 实验方法D0 D1 D2 D3 D4 D5 D6 D7 CP LD LRDOUT0 DOUT1 DOUT2 DOUT3 DOUT4 DOUT5 DOUT6 DOUT7ARCHITECTURE sample OF cyreg ISBEGINP1:PROCESS(CP,LD)BEGINif LD='0' thenDOUT<=D;elsif CP'EVENT AND CP='0' thenif LR='1' thenDOUT<=DOUT(6 DOWNTO 0)&DOUT(7);elsif LR='0' thenDOUT<=DOUT(0)&DOUT(7 DOWNTO 1);end if;end if;END PROCESS P1;END sample;2. 器件及管脚逻分配图管脚分配情况如图,所选器件为EPM7032AELCC44-43. 仿真波形8位循环移位寄存器的仿真波形如下图,从波形可以得出,输入输出满足前文真值表,设计电路功能达到设计要求4. 时序分析图上述时间分析可以得到,输出信号存在3ns的时间延迟,它主要与器件速。
8位移位寄存器的设计
8位移位寄存器的设计数字电路与逻辑设计实验报告班级信息安全2班姓名张亮学号20110806228一、实验目的熟悉QuartusⅡ仿真软件的基本操作,并用VHDL语言设计8位移位寄存器。
并且掌握组合逻辑电路的功能测试和时序仿真;学会运用逻辑图设计电路。
二、实验内容用VHDL语言设计由边沿触发式D触发器构成的8位串入并出移位寄存器,并进行仿真与分析;(查找相应资料)三、实验原理? 逻辑电路的原理在数字电路中,用来存放二进制数据或代码的电路称为寄存器。
寄存器是由具有存储功能的触发器组合起来构成的。
一个触发器可以存储一位二进制代码,存放N位二进制代码的寄存器,需用n个触发器来构成。
按功能可分为:基本寄存器和移位寄存器。
移位寄存器中的数据可以在移位脉冲作用下一次逐位右移或左移,数据既可以并行输入、并行输出,也可以串行输入、串行输出,还可以并行输入、串行输出,串行输入、并行输出,十分灵活,用途也很广。
目前常用的集成移位寄存器种类很多,如74164、74165、74166、74595均为八位单向移位寄存器,74195为四位单向移存器,74194为四位双向移存器,74198为八位双向移存器。
逻辑图如图所示:逻辑功能表? 通过实验实现逻辑的原理在CMOS移位寄存器中,有的品种只具有串行或并行中的一种输入方式,但也有些品种同时兼有串行和并行两种输入方式。
串行输入的数据加到第一个寄存单元的D端,在时钟脉冲的作用下输入,数据传送速度较慢;并行输入的数据一般由寄存单元的R、S端送入,传送速度较快。
移位数字电路与逻辑设计实验报告寄存器的移位方向有右移和左移之分。
右移是指数据由左边最低位输入,依次由右边的最高位输出;左移时,右边的第一位为最低位,最左边的则为最高位,数据由低位的右边输入,由高位的左边输出。
四、实验方法与步骤实验方法:采用基于FPGA进行数字逻辑电路设计的方法。
采用的软件工具是QuartusII 软件仿真平台。
8位串入并出移位寄存器
8 位串入、并出移位寄存器1. 概述74HC164、74HCT164 是高速硅门 CMOS 器件,与低功耗肖特基型 TTL (LSTTL) 器件的引脚兼容。
74HC164、74HCT164 是 8 位边沿触发式移位寄存器,串行输入数据,然后并行输出。
数据通过两个输入端(DSA 或 DSB)之一串行输入;任一输入端可以用作高电平使能端,控制另一输入端的数据输入。
两个输入端或者连接在一起,或者把不用的输入端接高电平,一定不要悬空。
时钟 (CP) 每次由低变高时,数据右移一位,输入到 Q0, Q0 是两个数据输入端(DSA 和 DSB)的逻辑与,它将上升时钟沿之前保持一个建立时间的长度。
主复位 (MR) 输入端上的一个低电平将使其它所有输入端都无效,同时非同步地清除寄存器,强制所有的输出为低电平。
2. 特性•门控串行数据输入•异步中央复位•符合JEDEC 标准no. 7A•静电放电(ESD) 保护:·HBM EIA/JESD22-A114-B 超过2000 V·MM EIA/JESD22-A115-A 超过200 V 。
•多种封装形式•额定从-40 °C 至+85 °C 和-40 °C 至+125 °C 。
3. 功能图图 1. 逻辑符号图 2. IEC 逻辑符号图 3. 逻辑图图 4. 功能图4. 引脚信息图 5. DIP14、SO14、SSOP14 和 TSSOP14 封装的引脚配置引脚说明符号引脚说明DSA 1数据输入DSB 1数据输入Q0~Q3 3~6输出GND7 地(0 V)CP 8时钟输入(低电平到高电平边沿触发)/M/R 9中央复位输入(低电平有效)Q4~Q710~13输出VCC14正电源罗。
八位寄存器课程设计报告
课程设计报告苏泽恒一、设计题目《八位移位寄存器电路设计》二、移位寄存器功能描述、电路端口描述功能:实现在1hz时钟电路下的八位数据的循环左右移动电路端口:8个led灯端口开发板分频后1hz时钟电路端clk 一个开关key 一个复位按钮rst 三、所设计电路(模块)程序或电路图模块1:module clk1hz(clkout,clkin,rst2);output clkout;input clkin;input rst2;reg clkout;reg[25:0] cnt;always @(posedge clkin or negedge rst2)if(rst2==1'b0)cnt<=25'd0;else if (cnt==25'd2*******) begincnt<=25'd0;clkout=~clkout;endelsecnt<=cnt+1'b1;endmodule模块2:module shift(dout,din,clk,rst,flag);output[7:0] dout;input din;input clk,rst;reg [7:0] dout;always @(posedge clk or negedge rst)if (rst == 1'b0)dout <=8'b0000_0001;else if (flag==1'b0)begindout<=dout<<1;dout[0]<=dout[7];endelse if (flag==1'b1) begindout<= dout>>1;dout[7]<=dout[0];endend模块三:module waterled(clk,rst,led,key);input clk;input rst;input key;output [7:0] led;shift U2(.dout(led),.din(sclk),.clk(clkin),.rst(rst2),.flag(key));clk1hz U1(.clkout(sclk),.clkin(clk),.rst2(rst));endmodule四、所设计电路(模块)仿真波形开发板演示。
寄存器电路设计
实验五寄存器电路设计1.画出74ls74构成的4位单向移位寄存器并说明其工作原理。
74ls74是由四个D触发器串联而成的四位单向移位寄存器。
移位寄存器使其中所储存的二进制,在一位脉冲的作用下左右移动;一位触发器可以储存1位二进制代码,存放n位二进制就需要n个触发器构成。
2.8位移位寄存器设计原理图。
实验五寄存器电路设计一、实验目的l、掌握寄存器的工作原理、测试和分析其工作状态2、掌握集成双向移位寄存器和并行数据锁存器的功能及使用方法3、8位移位寄存器电路设计二、实验内容及步骤1、并行输入/并行输出寄存器功能测试表5.12、移位寄存器功能测试(1)用74LS74构成的4位单向移位寄存器表5.2(2) 74LSl94表5.3S1S0CP Dsr Dsl I3I2I1I0Q3Q2Q1Q0 0X X X X X X X X X00001X X0X X X X X X0000111X X d3d2d1d0d3d2d1d01011X X X X X11111010X X X X X0000110X1X X X X1111110X0X X X X0000100X X X X X X X00003、8D锁存器功能测试表5.4E D7D6D5D4D3D2D1D0Q7Q6Q5Q4Q3Q2Q1Q0 001011011000000000 011011011010110110 00011101100111011 01100010011000100 1X X X X X X X X X00000000注: “个”表示单脉冲上升沿4、8位移位寄存器电路设计(如不够可自行加纸)自制表格:Cr S1 S0 CP Dsr Dsl I3 I2 I1 I0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q00 X X X X X X X X X 0 0 0 0 0 0 0 01 X X 0 X X X X X X 0 0 0 0 0 0 0 0 1 1 1 ↑X X 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 ↑0 X X X X X 0 0 0 0 0 0 0 0 1 0 1 ↑ 1 X X X X X 1 1 1 1 1 1 1 1 1 1 0 ↑0 X X X X X 0 0 0 0 0 0 0 0 1 1 0 ↑ 1 X X X X X 1 1 1 1 1 1 1 1 1 0 0 X X X X X X X 0 0 0 0 0 0 0 0实验仿真图:实验原理:实验主要用到用两片74LS194芯片构成8位移步寄存器。
LSTTL型8位移位寄存器(串入并出)
地,然后再接 4.5V 测量。
所有典型值均在 Vcc=5.0V, TA=25℃下测量得出。
交流(开关)参数:Vcc=5.0V, TA=25℃
符号 参数名称 从(输入)到(输出) 测试条件
fmax 最大时钟频率
tPHL 传输延迟时间 清除
tPLH
传输延迟时间 时钟 CLK
tPHL 传输延迟时间
任一 Q
BDTIC 半导体事业部 /Semiconductor
典型清除、移位和清除时序
54LS164/74LS164 LSTTL 型 8 位移位寄存器(串入并出)
推荐工作条件
符号
Vcc VIH VIL IOH IOL fCK tW tsu th TA
参数名称
电源电压 输入高电平电压 输入低电平电压 输出高电平电流 输出低电平电流
特点:
54LS164/74LS164 LSTTL 型 8 位移位寄存器(串入并出)
外引线排列图
• 门控(赋能/禁止)串行输入,并行输出; • 全为缓冲的时钟和串行输入;
• 异步清除。
典型参数: f 工作频率=36MHz Pd=80mW
逻辑图
功能表
输入
输出
清除 时钟 CLK
串行输入
A
B
QA
QB
QC
QD
QA0…QH0=在稳定态输入条件建立前 QA…QH 的相应电平 QAn…QHn=在最近的时钟输入条件(↑)建立前 QA…QH 的相应电平,表示移位一位
说明:
LS164 是 8 位移位寄存器,当其中一个(或二个)选通串行输入端的低电平禁止
进入新数据,并把第一个触发器在下一个时钟脉冲来后复位到低电平时,门控串行输入
VOH 输出高电平电压
实验四八位双向移位寄存器的设计
实验四八位双向移位寄存器的设计实验目的:本实验的目的是设计一个八位双向移位寄存器,该寄存器能够实现数据在寄存器中向左或向右进行移位,并能在移位过程中保持数据的完整性。
实验原理:双向移位寄存器是一种特殊的寄存器,能够将数据从一个位置移动到另一个位置,并且可以选择向左或向右移位。
其主要原理是通过一个移位控制信号来判断是向左移位还是向右移位,并通过移位操作来实现数据的移动。
在设计八位双向移位寄存器时,需要使用八个触发器来存储数据,并采用串级连接的方式将它们连接起来,以实现数据的移位。
同时,还需要一个移位控制信号,用来控制数据的移位方向。
当移位控制信号为1时,表示向右移位;当移位控制信号为0时,表示向左移位。
移位寄存器的设计主要包括以下几个方面的工作:1.数据输入:通过八个输入端口将数据输入到触发器中,每个触发器存储一位数据。
数据可以是由其他部件产生的信号,也可以是手动输入的信号。
2.数据输出:通过八个输出端口从触发器中输出数据。
输出的数据可以被其他部件使用,也可以通过显示设备或者其他方式进行显示。
3.移位方向控制:需要有一个移位控制信号来控制数据的移位方向。
移位控制信号可以由其他部件产生,也可以是手动输入的信号。
4.移位操作:通过移位操作来实现数据的移动。
根据移位控制信号的不同,决定向左还是向右移动,并将数据从一个触发器移动到另一个触发器中。
这需要使用触发器的时钟信号来驱动移位操作。
实验步骤:1.将八个触发器按照串级方式进行连接,形成一个八位双向移位寄存器的结构。
确保触发器按照顺序连接,并连接到移位操作控制信号。
2.设置八个输入端口和八个输出端口,用于输入和输出数据。
将数据输入到触发器中,并从触发器中输出数据。
3.设置一个移位控制信号端口,用于控制数据的移位方向。
该信号可以是手动输入的信号,也可以由其他部件产生。
4.设置一个时钟信号端口,用于驱动移位操作。
根据移位控制信号的不同,决定向左还是向右移动,并将数据从一个触发器移动到另一个触发器中。
8位串入并出移位寄存器电路的设计
8位串入并出移位寄存器电路的设计姓名:林蔼龄学号:1060601007班级:物理系BTEC电子信息工程A班8位串入并出移位寄存器电路的设计• 一、实验内容用VHDL语言实现8位吊入并出移位寄存器电路的设计。
二、程序建立文本编辑新窗口,在文件编辑窗口中输入如下程序:LIBRARY IEEE; USE IEEE. Std_logic_1164. all; ENTITY text ISPORT (a, b, clr, clock: IN BIT;q : BUFFER BIT_VECTOR(O TO 7)); END text;ARCHITECTURE one OF text IS BEGINPROCESS (a, b, clr, clock)BEGINIF clr = ' O' THENq <= "00000000";ELSEIF clock, EVENT AND clock = T'THENFOR i IN q' RANGE LOOPIF i = 0 THEN q (i) <= (a AND b);ELSEQ (i) <= Q(i-1);END IF;END LOOP;END IF;END IF;END PROCESS:END one;保存本文本。
三、仿真结果建立仿真波形文件,进行时序防震,得到的仿真结果如下图1所示:图1下面的是2016年经典励志语录,需要的朋友可以欣赏,不需要的朋友下载后可以编辑删除〜〜谢谢〜〜1、 有来路,没退路;留退路,是绝路。
2、 为目标,晚卧夜半,梦别星辰,脚踏实地,凌云舍我其谁!3、做一题会一 题,一题决定命运。
4、 静下来,铸我实力;拼上去,亮我风采。
爭 ip4 • V<w BU frXF^ --------Iliaal ・*E Btfwitt VtvrVef M !« >|y n ^Ntbitr ST ・ in <h ・rvU 口刃 皿口・,SFl. 诃•口尸"彳 2 KA M.JU I ----- 1 用 ®8SOSS©£«5X 询焕_ jm.__rrn5、拼一载春秋,搏一生无悔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2
1.根据8位移位寄存器的工作原理分析其电路结构,初步完成电路设计。
关键词:Tanner EDA;L-Edit;移位寄存器,S-Edit
8 bits shift register circuit design and layout
Abstract
Electronic design automation,referred to as EDA,it is based on computers as the main tool,and Tanner EDA is a kind of software that complete the integrated circuit design on Windows platforms.Its Sub-Softwares include S-Edit,T-Spice,W-Edit,L-Edit and LVS and so on.S-Edit and L-Edit are commonly used software,S-Edit is primarily designed to achieve circuit,the latter is aimed primarily known circuit layout drawing,T-Spice can achieve schematic and layout simulation.We can achieve layout of the circuit design and a series of complete process layout used Tanner EDA tools.In this paper, Tanner EDA tools are mainly designed an 8-bit shift register.The shift register is mainly used for data conversion between parallel and serial, and the data processing tool operation or professional,its main structure is the trigger composition,flip-flop is a storage function,it can be used to store more hexadecimal code,In general N-bits register is composed of N trigger.Working principle of the shift register data under the action of the pulse, mainly the effect of the shift to the left or right,input and output of the way of serial and parallel free combination.This design is in Tanner on the EDA software platform to 8 bits shift register circuit design and simulation,then according to the circuit diagram on special L - Edit platform to complete the circuit layout implementation,until the finish is consistent with the results and expected results.
Keywords:Tanner EDA;L-Edit;Shift register,S-Edit
1.1
随着科技的进步,近几个世纪寄存器技术不断成熟,在数字电路中,寄存器已经是一个经常被提出的概念,它主要指的是用来存放二进制数据或者代码的电路。由于工作原理以及功能的不同,寄存器又被人们划分成为基本寄存器和移位寄存器。前者最主要的辨识方式就是它只能采用并行的方式来进行送入数据的过程,而我们常说的移位寄存器则主要作用则是集中在让其所储存的N位制代码在它产生的移动脉冲的作用下产生依次位移上面。移位寄存器一般都是用二进制的形式来保存数据。掌握基本的电路设计知识是电科专业学生最应该具备的基础,利用所学Tanner EDA软件技术知识解决各种电路设计以及版图设计更是将所学和实践融会贯通[1]。
8位移位寄存器的电路设计与版图实现
摘要
电子设计自动化,缩写为EDA,主要是以计算机为主要工具,而Tanner EDA则是一种在计算机windows平台上完成集成电路设计的一种软件,基本包括S-Edit,T-Spice,W-Edit,L-Edit与LVS等子软件,其S-Edit以及L-Edit为常用软件,前者主要实现电路设计,后者主要针对的是已知电路的版图绘制,而T-Spice主要可实现电路图及版图的仿真,可以用Tanner EDA实现电路的设计布局以及版图实现等一系列完整过程。本文用Tanner EDA工具主要设计的是8位移位寄存器,移位寄存器主要是用来实现数据的并行和串行之间的转换以及对数据进行运算或专业处理的工具,主要结构构成是触发器,触发器是具有储存功能的,可以用来储存多进制代码,一般N位寄存器就是由N个触发器构成,移位寄存器工作原理主要是数据在其脉冲的作用下实现左移或者右移的效果,输入输出的方式表现为串行及并行自由组合,本设计就是在Tanner EDA的软件平台上进行对8位移位寄存器的电路设计仿真,再根据电路图在专门的L-Edit平台上完成此电路的版图实现,直至完成的结果和预期结果保持一致。