烯烃聚合
烯烃聚合机理
烯烃聚合机理烯烃聚合是一种重要的化学反应过程,用于合成各种塑料和聚合物。
烯烃是一类化合物,分子中含有双键结构,例如乙烯和丙烯就属于烯烃。
通过烯烃聚合反应,可以将这些烯烃分子连接在一起,形成长链聚合物。
现在我们来看一下烯烃聚合的机理。
自由基聚合烯烃聚合反应中最常见的机理是自由基聚合。
在这种机理下,反应需要一个引发剂来产生自由基,然后自由基会逐步将烯烃分子连接在一起。
首先,引发剂会将烯烃分子分解生成亚乙基自由基。
这些自由基会与其他烯烃分子发生加成反应,生成更稳定的二级自由基。
接着,这些二级自由基会继续参与反应,形成更长的聚合物链。
阿塞尔斯聚合除了自由基聚合,还有一种重要的烯烃聚合机理叫做阿塞尔斯聚合。
在这种机理下,反应需要一种催化剂来促进烯烃分子之间的加成反应。
通常是一种过渡金属催化剂,例如钛、锆等。
这些催化剂会将烯烃分子的双键打开,然后让它们之间形成共价键连接,从而形成聚合物链。
自由基聚合与阿塞尔斯聚合的比较自由基聚合和阿塞尔斯聚合在很多方面有所不同。
首先,在反应速率上,自由基聚合通常速度较快,反应条件相对宽松,适用于大规模工业生产。
而阿塞尔斯聚合则需要较为精细的催化剂控制,反应速率较慢。
其次,在聚合物结构上,自由基聚合生成的聚合物链较为分散,分子量分布广,而阿塞尔斯聚合生成的聚合物链较为均一,分子量分布窄。
最后,在聚合物性能上,两种机理生成的聚合物可能在性能上有所区别,需要根据具体应用来选择适合的聚合机理。
总的来说,烯烃聚合是一种重要的化学反应过程,通过不同的聚合机理可以合成出各种不同性质的聚合物。
研究和掌握烯烃聚合的机理对于塑料工业和材料科学有着重要意义,为我们生活中的许多产品提供了丰富多彩的选择。
1。
heck反应 烯烃聚合
heck反应烯烃聚合
摘要:
1.Heck反应简介
2.烯烃聚合原理
3.Heck反应在烯烃聚合中的应用
4.实例分析
5.总结与展望
正文:
【1】Heck反应简介
Heck反应,又称赫克反应,是一种有机化学中的偶联反应。
它是指在不活泼的芳香烃或烯烃的π电子体系上,通过卤代烃的亲核取代,生成新的π电子体系的反应。
Heck反应在有机合成领域具有广泛的应用,尤其在烯烃聚合方面具有重要意义。
【2】烯烃聚合原理
烯烃聚合是指通过加成反应将烯烃单体连接成长链聚合物的过程。
烯烃聚合物的结构、性能和应用广泛取决于聚合反应的条件、催化剂种类以及聚合物的分子参数等因素。
烯烃聚合的方法主要有溶液聚合、悬浮聚合、气相聚合等。
【3】Heck反应在烯烃聚合中的应用
Heck反应在烯烃聚合中的应用主要体现在两个方面:一是通过Heck反应合成具有特定功能的烯烃单体,如引入卤素、羟基等官能团;二是利用Heck
反应对烯烃聚合物进行改性,如引入取代基、接枝等。
这些应用为烯烃聚合物的性能优化和应用拓展提供了重要途径。
【4】实例分析
以下是一个典型的Heck反应在烯烃聚合中的应用实例:
步骤一:合成具有π电子体系的卤代烃化合物
步骤二:利用Heck反应将卤代烃与烯烃单体偶联,生成聚合物
步骤三:通过后处理,如分离、纯化等,得到目标烯烃聚合物
【5】总结与展望
Heck反应在烯烃聚合中的应用为制备具有特定性能和功能的烯烃聚合物提供了有效手段。
随着有机合成技术和烯烃聚合研究的不断发展,Heck反应在烯烃聚合领域的应用将越来越广泛,有望为我国高分子材料产业的发展作出更大贡献。
烯烃的聚合反应和共聚合反应
A 提高机械性能
通过优化共聚物组成和序列结构, 提高其机械性能,如强度、韧性和
耐磨性等。
B
C
D
实现功能化
在共聚反应中引入具有特定功能的单体或 官能团,赋予共聚物新的功能,如导电性、 磁性和生物相容性等。
增强耐候性
通过引入具有耐候性的单体或官能团,提 高共聚物的耐候性,如耐紫外线、耐氧化 和耐化学腐蚀等。
烯烃的聚合反应和共聚合反应
目录
• 烯烃聚合反应基本概念 • 烯烃均聚反应过程分析 • 烯烃共聚合反应过程分析 • 催化剂体系在烯烃聚合中应用 • 实验方法与技术手段 • 工业应用及市场前景展望
01 烯烃聚合反应基本概念
烯烃定义与性质
01
烯烃是一类不饱和烃,分子中含有碳碳双键。
02ห้องสมุดไป่ตู้
烯烃具有较高的反应活性,容易发生加成、氧化、聚合等反应。
共聚物分类
根据共聚物中单体单元的排列方式, 可分为无规共聚物、交替共聚物、嵌 段共聚物和接枝共聚物等。
共聚物组成与序列结构
共聚物组成
共聚物的组成受单体投料比、反应条 件和催化剂等因素影响,可通过调整 这些因素来控制共聚物的组成。
序列结构
共聚物中单体单元的序列结构对其性 能有重要影响,如嵌段共聚物中不同 单体单元的嵌段长度和分布等。
不同烯烃的物理性质(如沸点、熔点、密度等)和化学性质
03
(如反应速率、产物分布等)存在差异。
聚合反应原理简介
聚合反应是指由低分子量的单体通过化学键连接 成高分子量的聚合物的过程。
聚合反应通常包括链引发、链增长和链终止三个 步骤。
聚合反应速率受到温度、压力、催化剂等因素的 影响。
聚合反应类型及特点
化学反应中的烯烃聚合机理解析
化学反应中的烯烃聚合机理解析烯烃聚合作为一种重要的化学反应,在化学工业中具有广泛的应用。
理解烯烃聚合的机理对于提高聚合反应的效率、控制聚合产物的结构和性质具有重要意义。
本文将对烯烃聚合的机理进行详细解析。
一、烯烃聚合概述烯烃聚合是指通过烃类分子中的烯烃单体在聚合催化剂的作用下,通过共价键形成的结合反应,最终形成高聚物的过程。
烯烃聚合反应广泛应用于塑料、橡胶、涂料等化学工业领域。
二、烯烃聚合的机理解析在烯烃聚合反应中,催化剂起到了至关重要的作用。
催化剂通常由一个金属中心和配体组成。
催化剂的设计和选择对于聚合反应的效率和产物的性质具有极大的影响。
1. 催化剂的活化催化剂在活化前通常处于不活跃的形态。
一般是通过添加外加的配体或者气氛中的气体,如乙烯,将催化剂活化。
活化后的催化剂获得活性位点,能够参与到聚合反应中。
2. 单体的吸附和激活单体分子在催化剂的活性位点上发生吸附,从而激活单体。
吸附机理通常包括物理吸附和化学吸附两种。
物理吸附是通过范德华力使单体与活性位点相互吸引形成吸附态。
而化学吸附则是通过单体中的π键与活性位点之间发生共有键形成吸附态。
3. 聚合反应的进行活化的单体在催化剂的作用下,通过链转移和增长,形成聚合物链。
链转移是指在聚合反应中,反应中心从原来的链末端转移到其他位置。
而链增长则是指新增的单体分子加入到聚合物链的末端,从而使聚合物链增长。
4. 终止反应的产生在聚合反应中,终止反应是指聚合物链的末端反应中心与其他分子发生反应,从而使聚合反应停止。
终止反应的形式多样,包括链传递反应和歧化反应等。
三、烯烃聚合反应的影响因素除了催化剂的设计和选择,烯烃聚合反应的效果还受到其他多种因素的影响。
1. 温度和压力温度和压力是烯烃聚合反应中两个基本的工艺参数。
适当的温度和压力能够提高聚合反应的速度和效率。
2. 单体的种类和浓度不同种类的烯烃单体具有不同的反应活性和特性。
选择合适的烯烃单体种类和控制其浓度能够调节聚合反应的产物结构和性质。
有机化学基础知识点整理烯烃的聚合和环加成反应
有机化学基础知识点整理烯烃的聚合和环加成反应聚合反应是指通过共价键的形成,将多个单体分子连接成长链或者网络结构的过程。
烯烃是一类具有双键的有机化合物,因此在聚合反应中起着重要的作用。
而环加成反应是将烯烃与其他化合物发生加成反应,生成环状化合物的过程。
本文将对烯烃的聚合和环加成反应进行整理和介绍。
1. 烯烃的聚合反应聚合反应是有机合成中非常常见的一类反应,其中烯烃的聚合反应具有重要的意义。
烯烃的聚合反应可以通过不同方式进行,如自由基聚合反应、阴离子聚合反应和阳离子聚合反应。
1.1 自由基聚合反应自由基聚合反应是指烯烃通过自由基引发剂的作用,发生共轭双键的开裂和新单体分子的加入,生成长链状聚合物。
最常见的自由基聚合反应是丙烯酸甲酯的聚合反应,其反应机理如下:- 第一步:引发剂(如过氧化苯甲酰)发生分解,产生两个自由基。
- 第二步:自由基与丙烯酸甲酯分子发生反应,生成一个自由基和一个连接了丙烯酸甲酯分子的临时中间体。
- 第三步:临时中间体与其他丙烯酸甲酯分子发生反应,形成长链状的聚合物。
1.2 阴离子聚合反应阴离子聚合反应是指烯烃通过碱性引发剂的作用,发生双键的开裂和新单体分子的加入,生成分子结构均一的聚合物。
最典型的阴离子聚合反应是合成丁二烯橡胶的反应,其反应机理如下:- 第一步:引发剂(如有机锂化合物)与丁二烯分子发生反应,生成负离子和一个连接了丁二烯分子的临时中间体。
- 第二步:临时中间体与其他丁二烯分子发生反应,形成长链状的聚合物。
1.3 阳离子聚合反应阳离子聚合反应是指烯烃通过酸性或银盐型引发剂的作用,发生双键的开裂和新单体分子的加入,生成分子结构均一的聚合物。
最常见的阳离子聚合反应是合成聚异丁烯的反应,其反应机理如下: - 第一步:引发剂(如硫酸)将异丁烯双键上的氢离子化,生成连接了异丁烯分子的正离子。
- 第二步:正离子与其他异丁烯分子发生反应,形成长链状的聚合物。
2. 烯烃的环加成反应环加成反应是指烯烃通过与其他化合物的加成反应,生成环状化合物。
烯烃聚合工艺技术
烯烃聚合工艺技术烯烃聚合工艺技术是一种重要的化工工艺,用于生产各种烯烃聚合物。
烯烃聚合物是一类重要的塑料原料,广泛用于包装、建筑、电子、汽车等各个领域。
烯烃聚合工艺技术的主要步骤包括聚合反应、分离纯化和加工制品等。
聚合反应是该工艺的核心步骤,通过反应催化剂的作用,将烯烃单体分子连接起来,形成高分子链。
聚合反应可以通过热聚合、盐聚合、高压聚合等不同方式进行。
热聚合是烯烃聚合的基本方法,通过加热使烯烃单体分子发生自由基聚合反应。
盐聚合是利用亲水性盐或诱导剂加速聚合反应的方法,可以提高聚合反应的效率和选择性。
高压聚合是利用高压条件下,使烯烃单体分子发生聚合反应,可以得到高分子密度较高的聚合物。
分离纯化是指将聚合反应后的混合物中的催化剂、副产物、催化剂残留物等杂质去除,得到纯净的聚合物。
常用的分离纯化方法有溶剂萃取、沉淀、蒸馏等。
溶剂萃取是利用溶剂的选择性溶解性能,将目标物质从混合物中分离出来。
沉淀则是通过调整温度、压力等条件,使部分杂质在溶液中沉淀下来。
蒸馏则是根据杂质和目标物质的沸点差异,通过加热使目标物质蒸发,然后冷凝回收。
加工制品是将分离纯化后的聚合物加工成各种产品的过程。
常见的加工方法有挤出、注射成型、吹塑等。
挤出是将热熔聚合物挤出成连续的带状体,用于制备塑料膜、板材、管材等产品。
注射成型是将热熔聚合物注入到模具中,通过冷却凝固,得到各种成型品,如塑料零件、容器等。
吹塑是将热熔聚合物挤出成管状,然后通过吹气使其膨胀成一定形状,用于生产塑料瓶、塑料玩具等。
烯烃聚合工艺技术的关键是反应催化剂的选择和合成。
催化剂是促进烯烃聚合反应进行的物质,常见的催化剂有Ziegler-Natta催化剂、合成树脂催化剂、金属络合物催化剂等。
不同类型的催化剂有不同的适用范围和特点,选择合适的催化剂可以提高聚合反应的效率和产品质量。
总之,烯烃聚合工艺技术是一项重要的化工工艺,通过聚合反应、分离纯化和加工制品等步骤,可以生产出各种烯烃聚合物,广泛应用于各个领域。
烯烃聚合反应工程基础催化剂
聚合物分子构造对力学性能旳影响
高等规度: 高结晶度,高强度 高分子量: 高熔融粘度,高强度,低熔融流动速率 宽分子量分布:
高硬度,低抗冲,高溶胀及熔融强度,高扭曲强度,良 好旳BOPP挤出性能
等规度与模量及抗冲强度旳关系
弯曲模量 抗冲强度
1800 1600 1400 1200 1000
90
80 75
不同
MgCl2前体
MgR2, Mg(OR)2, MgCl2 Mg(OR)Cl, MgRCl, Mg(OCOR)2
合成活化MgCl2旳措施
研磨 醇加合物 : DQ 溶解沉析: N 化学反应
MgCl2与钛化合物及Di旳接触措施
1、机械法:
TiCl4,MgCl2,Di合适百分比,研磨而成
2、机械加化学法:
历史
国内聚丙烯催化剂研究机构
北京化工研究院 中科院化学所 北京石油化工科学研究院 中山大学 浙江大学
北化院Z-N聚丙烯催化剂研发历史
1962年 开始研究第一代Z-N催化剂,64年开始中试, 70年AA•TiCl31/3AlCl3用于兰化5000吨/年 淤浆法聚丙烯装置上
1972年 开始研究一步法AA•TiCl3 1/3AlCl3, 74年用于燕化5000t/y(北化院自行开发)旳 连续PP装置上
活性* kg/g
2--4
10-15
15
15-30
40-70 70130
40-70
等规度 %
90-94 94-97
40 95-97 95-99
95-99
95-99
2400
2200
弯曲模量
2000
1800
1600
0
5
10
有机化学基础知识点整理烯烃的聚合和环加成反应类型
有机化学基础知识点整理烯烃的聚合和环加成反应类型有机化学基础知识点整理-烯烃的聚合和环加成反应类型烯烃是有机化合物中一个重要的功能团,它具有双键的特征。
在有机合成中,烯烃常常参与聚合和环加成反应,形成新的有机化合物。
本文将整理烯烃的聚合和环加成反应类型,以帮助读者更好地理解有机化学的基础知识。
一、烯烃的聚合反应烯烃的聚合反应是指两个或多个烯烃单体通过共轭或非共轭的方式连接在一起,形成聚合物的过程。
常见的烯烃聚合反应包括:1.1.1 乙烯聚合反应乙烯是一种简单的烯烃,通过聚合反应可得到聚乙烯。
聚乙烯是一种常见的塑料,具有良好的韧性和可塑性。
1.1.2 丙烯聚合反应丙烯是另一种常见的烯烃,通过聚合反应可得到聚丙烯。
聚丙烯也是一种重要的塑料,广泛应用于包装、纺织和日用品等领域。
1.1.3 顺式-1,4-聚合反应其他烯烃如丁二烯、戊二烯等可以通过顺式-1,4-聚合反应形成聚合物,如聚丁二烯和聚戊二烯。
这些聚合物具有良好的弹性和耐撕裂性,广泛应用于橡胶制品领域。
二、烯烃的环加成反应烯烃的环加成反应是指烯烃与其他化合物发生加成反应,形成环状结构的有机化合物。
常见的烯烃环加成反应包括:2.1 二烯环加成反应二烯是一种同时含有两个烯烃基团的化合物。
二烯可以通过环加成反应,形成环状结构。
例如,丁二烯与二氯乙烷反应可得到环戊烷。
2.2 烯烃与卤代烃的环加成反应烯烃与卤代烃反应可形成环状结构。
例如,乙烯与氯乙烷反应可得到环丙烷。
2.3 烯烃与酸或酸衍生物的环加成反应烯烃与酸或酸衍生物反应可形成环状结构。
例如,乙烯与乙酸反应可得到环丙酮。
2.4 烯烃与其他亲电试剂的环加成反应烯烃与其他亲电试剂如醇、酰氯等反应可形成环状结构。
例如,乙烯与乙醇反应可得到环丙醇。
结语烯烃的聚合和环加成反应是有机化学中常见的重要反应类型。
通过聚合反应,烯烃可以形成聚合物,拓展了有机化合物的用途和应用领域;而通过环加成反应,烯烃可以形成各种环状结构的化合物,拓展了有机合成的方法和手段。
烯烃聚合书籍
烯烃聚合书籍(原创版)目录1.烯烃聚合书籍概述2.烯烃聚合的概念和分类3.烯烃聚合的书籍推荐4.烯烃聚合在各领域的应用5.烯烃聚合书籍的价值正文1.烯烃聚合书籍概述烯烃聚合是一门研究烯烃分子通过化学反应形成聚合物的学科,它涉及到有机化学、高分子化学、材料科学等多个领域。
近年来,随着科学技术的进步,烯烃聚合技术得到了广泛关注,并在众多领域中取得了突破性进展。
为了帮助读者深入了解烯烃聚合的相关知识,本文将介绍几本烯烃聚合领域的专业书籍。
2.烯烃聚合的概念和分类烯烃聚合是指烯烃分子在引发剂的作用下,通过加成聚合反应形成聚合物的过程。
根据聚合反应的类型和引发剂的结构,烯烃聚合可分为以下几类:(1)自由基聚合:以自由基为引发剂的聚合反应,主要包括自由基引发剂和自由基终止剂。
(2)配位聚合:以过渡金属配合物为催化剂的聚合反应,主要包括钛、锆、铪等过渡金属。
(3)活性聚合:以活性中心为引发剂的聚合反应,主要包括阴离子和阳离子聚合。
3.烯烃聚合的书籍推荐以下是几本关于烯烃聚合领域的经典书籍,供读者参考:(1)《烯烃聚合化学与技术》:作者:张传义、黄维垣。
该书全面介绍了烯烃聚合的基本原理、聚合反应类型、聚合物结构与性能,以及烯烃聚合在各领域的应用。
(2)《烯烃聚合催化剂》:作者:李静、周其凤。
该书主要讲述了烯烃聚合催化剂的研究进展,包括自由基引发剂、过渡金属催化剂等。
(3)《聚合物科学与工程》:作者:陈文、吴大诚。
该书详细介绍了聚合物材料的制备、结构与性能,以及聚合物在各领域的应用。
4.烯烃聚合在各领域的应用烯烃聚合技术在材料科学领域具有广泛的应用,主要包括以下几个方面:(1)塑料工业:烯烃聚合技术可制备各种塑料,如聚乙烯、聚丙烯、聚氯乙烯等。
(2)橡胶工业:通过烯烃聚合技术可制备各种合成橡胶,如丁苯橡胶、顺丁橡胶等。
(3)纤维工业:烯烃聚合技术在合成纤维领域有广泛应用,如聚酯纤维、聚酰胺纤维等。
(4)涂料、胶粘剂等领域:烯烃聚合技术可制备各种高性能涂料、胶粘剂等。
烯烃催化聚合的原理与应用
烯烃催化聚合的原理与应用烯烃催化聚合是一种重要的聚合反应,广泛应用于化工行业中。
它的原理是通过在催化剂的作用下,将烯烃单体分子连接成长链聚合物。
这种聚合反应具有高效、可控性强等特点,被广泛应用于塑料、橡胶、纤维和油料等领域。
烯烃是一类具有碳碳双键的烃类化合物,如乙烯、丙烯等。
它们的碳碳双键可以开环,与其他烯烃单体分子连接成长链聚合物。
烯烃催化聚合的原理是通过催化剂的作用,使烯烃单体分子中的碳碳双键发生开环反应,形成自由基。
然后,自由基通过与其他烯烃单体分子发生加成反应,形成新的碳碳双键,连接成长链聚合物。
催化剂是烯烃催化聚合过程中的关键因素,可以选择合适的催化剂来控制聚合反应的速度和产物的分子量。
常用的烯烃催化聚合催化剂有金属催化剂和非金属催化剂两类。
金属催化剂常用的金属有钯、镍、钴等。
非金属催化剂常用的有过渡金属化合物、有机酸、有机硅等。
催化剂的选择要考虑到反应条件、烯烃的结构、聚合反应的机理和产物的要求等因素。
烯烃催化聚合的应用非常广泛。
首先,它是合成塑料的重要方法。
例如,聚乙烯是一种常见的塑料,通过乙烯的催化聚合可以得到聚乙烯。
聚乙烯具有轻质、耐腐蚀、绝缘等优点,被广泛用于包装材料、塑料袋、塑料管等领域。
其次,烯烃催化聚合也被应用于合成橡胶。
例如,通过丁烯的催化聚合可以得到丁腈橡胶。
丁腈橡胶具有耐油、耐溶剂、耐寒等优点,被广泛用于汽车、轮胎、密封件等领域。
另外,烯烃聚合还可以应用于纤维和油料的生产。
例如,通过苯乙烯的催化聚合可以得到聚苯乙烯纤维,聚苯乙烯纤维具有耐磨、保温等性能,被广泛用于衣物、家居用品等领域。
此外,烯烃催化聚合还可以用于生产燃料和化工原料,如合成润滑油、燃料添加剂等。
总结起来,烯烃催化聚合是一种通过催化剂的作用,将烯烃单体分子连接成长链聚合物的反应。
它广泛应用于塑料、橡胶、纤维和油料等领域。
烯烃催化聚合具有高效、可控性强等优点,为化工行业的发展提供了重要的支持。
烯烃催化聚合的原理与应用
烯烃催化聚合的原理与应用在化学领域中,烯烃聚合是一种常见的反应类型。
通过催化剂的使用,能够将烯烃单体分子在较低的温度和压力下高效地聚合形成高聚物,广泛应用于人造材料的制备中。
本文将就烯烃聚合的原理、催化剂的作用以及应用等方面进行探讨、总结。
一、烯烃聚合的基本概念和原理烯烃,是指一类含有双键结构的加氢反应性碳氢化合物,例如乙烯、乙烯基苯等。
在聚合化学中,烯烃单体具有良好的反应性和进行反应时较低的能量阈值,且多数情况下不需要引发剂或增效剂等协同作用。
通过反应温度、反应压力、支链结构和反应介质等多个因素的调节,能够调控反应速率和产物分子量大小等性质。
烯烃聚合的基本原理可以概括为链式生长聚合和双键加成聚合。
其中,链式生长聚合是指以烯烃为基础单体,采用能够引发自由基聚合的催化剂,使烯烃单体在催化剂的作用下逐步发生自由基聚合。
通过反应时间的延长,产物可以形成不同分子量的高聚物。
而双键加成聚合是指通过双键反应的方式,两个单体分子之间转化为一种共轭的链状分子。
二、烯烃聚合的催化剂烯烃聚合的反应需要催化剂的参与,不同类型的催化剂有不同的作用原理。
1.金属催化剂金属催化剂是烯烃聚合反应的主要催化剂,包括钯、铂、铱、铑等多种金属。
金属催化剂的作用机理可以通过与烯烃单体发生反应,形成络合物的方式进行解释。
同时,其亲和能力和双键的反应活性都较高,可以加速反应速率和提高产率。
2.离子催化剂离子催化剂,也称为酸催化剂,是通过生成离子或质子,加速烯烃单体的反应速率和提高选择性。
原理主要包括弱酸的质子化和碱性催化等两种机理。
3.配位催化剂配位催化剂以其低毒性、高效率、方便加工等特点,受到了广泛的关注。
其作用机理为在催化剂分子内部形成介于金属与烯烃之间的多核复合物,通过软化少枝化部分,提高反应速率和产物分子量等方面发挥作用。
三、烯烃聚合的应用在化工和材料科学中,烯烃聚合技术作为一种常见的改性化学方法,被广泛应用于新材料的开发中。
其应用还可以分为以下几个方面:1.聚乙烯的制造除了少量的乙烯本体制备聚乙烯外,大多数聚乙烯聚合反应都是异构聚合反应或配位聚合反应。
有机化学基础知识烯烃的聚合反应
有机化学基础知识烯烃的聚合反应有机化学基础知识:烯烃的聚合反应烯烃是有机化合物中的一类重要化合物,其分子结构中含有一个或多个碳-碳双键。
烯烃可以通过聚合反应来合成高分子化合物,这是一种重要的有机合成方法。
本文将介绍烯烃的聚合反应的基本原理、常用的聚合方法以及应用领域。
一、烯烃的聚合反应原理烯烃的聚合反应是指将含有碳-碳双键的烯烃单体分子连接到一起,形成高分子化合物的过程。
在聚合反应中,烯烃单体的双键被打破,而碳原子之间形成新的化学键。
聚合反应一般需要催化剂的存在,常用的催化剂有过渡金属催化剂和酸碱催化剂等。
烯烃的聚合反应可以分为两种类型:加聚和共聚。
加聚是指将同一种烯烃单体分子连接成长链高分子化合物,而共聚是指将不同种类的烯烃单体连接在一起,形成由两种或多种单体组成的高分子化合物。
二、烯烃的聚合方法1. 常压聚合法:常压聚合法是一种通过在常压下进行的聚合反应来合成高分子化合物的方法。
该方法适用于温度较低(室温至70℃)且反应速率较慢的聚合反应。
其中,最常用的常压聚合法是自由基聚合反应,其通过自由基引发剂引发聚合反应。
2. 高压聚合法:高压聚合法是一种在高压条件下进行的聚合反应。
由于高压条件可以提高反应速率和产物收率,因此适用于高温(100℃以上)或反应速率较快的聚合反应。
高压聚合法常用的方法有高压加聚、高压共聚以及环状聚合(采用环状烯烃作单体)等。
3. 溶液聚合法:溶液聚合法是一种在溶液中进行聚合反应的方法。
该方法适用于高分子溶液中的聚合反应,可以控制聚合反应的速度和分子量分布。
溶液聚合法常用的方法有溶液自由基聚合、阴离子聚合以及阳离子聚合等。
三、烯烃聚合反应的应用领域烯烃聚合反应是一种重要的有机合成方法,广泛应用于各个领域。
以下是烯烃聚合反应在一些领域的应用举例:1. 高分子材料合成:聚乙烯、聚丙烯、聚苯乙烯等是烯烃聚合反应合成的高分子材料,广泛应用于塑料、纤维、橡胶等领域。
2. 药物合成:烯烃聚合反应可以用于药物中间体的合成,为制药工业提供了一种重要的合成方法。
烯烃聚合及产品加工应用
烯烃聚合及产品加工应用烯烃聚合是指将烯烃分子进行共价键的开裂和重组,形成长链烯烃聚合物的过程。
在聚合过程中,烯烃分子通过引发剂或催化剂的作用,发生聚合反应,最终形成聚合物。
聚合过程中,常用的引发剂有有机过氧化物和有机硫化合物。
它们能够引发烯烃的自由基聚合反应,使单体分子上的双键开裂,形成活性自由基。
这些自由基会与其他烯烃单体分子发生反应,逐渐形成长链聚合物。
Polypropene(聚丙烯)是一种常见的烯烃聚合物。
聚丙烯具有高强度、良好的化学稳定性和耐热性,广泛应用于塑料制品、纺织品、医疗器械、电子电器等领域。
聚烯烃的加工应用主要包括注塑、挤出和吹塑等工艺。
注塑是将熔融状态的烯烃聚合物注入模具中,通过冷却固化得到所需形状的制品。
注塑工艺广泛应用于塑料制品制造。
例如,家电外壳、汽车零件、日用品等。
挤出是将烯烃聚合物熔化后,通过挤出机加热和挤出头挤出成型。
此工艺适用于制备长条状或管状产品。
例如,PVC水管、电线电缆外套等产品都是通过挤出工艺制备的。
吹塑是将烯烃聚合物熔化后注入吹塑机内,通过高压气流吹塑成型。
此工艺适用于制作中空容器,如饮料瓶、瓶盖等。
吹塑产品通常具有较高的透明度和韧性。
除了以上的加工应用,烯烃聚合物还可以通过共混改性、聚合物合金等工艺进行产品加工和改性。
共混改性是将烯烃聚合物与其他材料进行混合,以改变聚烯烃的性能。
例如,将聚丙烯与聚苯乙烯混合,可以获得具有更好机械性能和热稳定性的共混物。
聚合物合金是将两种或多种烯烃聚合物进行共聚,形成一种新的聚合物。
聚合物合金可以获得两种聚合物各自的优点,具有更好的综合性能。
总结来说,烯烃聚合及其产品加工应用广泛且多样化。
烯烃聚合是通过引发剂或催化剂将烯烃分子进行共价键的开裂和重组,形成长链聚合物的过程。
注塑、挤出、吹塑等工艺是常用的聚烯烃加工工艺,可以制备不同形状和性能的聚烯烃制品。
此外,共混改性和聚合物合金是改性烯烃聚合物的重要方法,可以获得具有特定性能的复合材料。
有机化学基础知识点整理烯烃的聚合和环加成反应机理
有机化学基础知识点整理烯烃的聚合和环加成反应机理有机化学基础知识点整理:烯烃的聚合和环加成反应机理烯烃是有机化学中一类重要的碳氢化合物,具有多个碳-碳双键。
在有机合成和材料科学中,烯烃的聚合和环加成反应是非常重要的反应类型。
本文将对烯烃聚合和环加成反应的机理进行系统地整理和解析。
一、聚合反应机理1. 自由基聚合自由基聚合是一类通过自由基引发和传递的聚合反应。
在烯烃的自由基聚合反应中,常用的引发剂包括过氧化物和有机过氧化物。
以乙烯为例,其聚合反应机理如下:首先,引发剂会通过光照或热解产生自由基,如过氧化氢自由基(H•)和过氧化二甲基自由基(CH3•COO•)。
这些自由基会与乙烯分子发生反应,并引发聚合反应。
乙烯自由基(CH2=CH•)会通过链延长和链传递的方式与其他乙烯分子发生反应,形成长链聚乙烯。
聚合过程中,自由基的引发和传递是不断进行的,直到引发剂用尽或反应停止。
2. 离子聚合离子聚合是通过阴离子或阳离子的引发和传递实现的聚合反应。
离子聚合的反应速度较快,适用于制备高分子量的聚合物。
以丙烯酸甲酯为例,其离子聚合反应机理如下:首先,引发剂如过硫酸铵会产生离子,如硫酸根离子(S2O8^2-)。
硫酸根离子与丙烯酸甲酯分子结合,形成丙烯酸甲酯自由基离子。
该离子可以与其他丙烯酸甲酯分子反应,聚合过程进行。
离子聚合的反应速度较快,需要控制反应条件以避免过度聚合或副反应的发生。
二、环加成反应机理环加成反应是指烯烃的双键与其他化合物的官能团之间发生加成反应,生成环状产物。
环加成反应可发生在烯烃的内部,也可以与其他分子外加成。
1. 烯烃内部环加成以1,3-丁二烯为例,其内部环加成反应机理如下:首先,1,3-丁二烯双键中的一个碳原子攻击另一个碳原子,形成一个环状的共轭烯烃中间体。
这个中间体进一步发生异构化和质子化,生成环状产物。
2. 烯烃与外部分子的环加成以1,3-戊二烯与甲醛的环加成反应为例,其反应机理如下:首先,1,3-戊二烯中的一个双键与甲醛中的醛基发生加成反应,形成一个环状产物的中间体。
化学反应中的烯烃聚合机制探究
化学反应中的烯烃聚合机制探究烯烃聚合是一种重要的聚合反应,可以将烯烃单体通过化学反应转化为高分子化合物。
这种聚合机制广泛应用于工业生产中的合成橡胶、塑料以及其他合成材料的制备过程中。
本文将探究烯烃聚合的机制和其在化学反应中的应用。
1. 烯烃聚合的机制烯烃聚合的基本机制可以分为两大类:自由基聚合和离子聚合。
1.1 自由基聚合自由基聚合是一种通过自由基引发剂将烯烃单体逐个连接起来形成高分子链的过程。
典型的烯烃自由基聚合反应是乙烯的聚合反应。
在该反应中,乙烯单体通过首先生成自由基、然后与其他乙烯单体发生反应的方式进行聚合。
自由基聚合的步骤包括起始、传递和终止三个部分。
首先,自由基引发剂通过光照、热解或化学反应产生自由基。
这个自由基称之为起始剂,它启动了聚合反应的开始。
其次,起始剂与烯烃单体发生反应,并将烯烃单体转化为自由基。
这个过程被称为传递步骤,因为自由基在烯烃分子之间传递。
最后,聚合链可以通过不同的途径终止。
例如,聚合过程中可以添加终止剂来消除自由基,或者自由基可以互相发生反应以终止聚合链的增长。
1.2 离子聚合离子聚合是指通过离子聚合剂引发的一种聚合反应,将烯烃单体转化为高分子化合物。
离子聚合包括阳离子聚合和阴离子聚合两种类型。
阳离子聚合是指通过阳离子聚合剂引发的聚合反应。
在聚合过程中,阳离子聚合剂首先与烯烃单体发生反应形成阳离子。
然后,这个阳离子可以通过与更多的烯烃单体发生反应,产生一个足够长的聚合链。
阴离子聚合是指通过阴离子聚合剂引发的聚合反应。
在这种情况下,阴离子聚合剂会将烯烃单体转化为负离子。
这些负离子可以通过与其他烯烃单体发生反应形成聚合链。
总结起来,烯烃聚合的机制可以通过自由基聚合和离子聚合两种方式进行。
这些机制使得烯烃聚合在实验室和工业生产中得到了广泛应用。
2. 烯烃聚合的应用烯烃聚合机制的了解对于研究和应用烯烃聚合反应具有重要意义。
烯烃聚合广泛应用于工业生产中的合成橡胶、塑料以及其他合成材料的制备过程中。
heck反应 烯烃聚合
heck反应烯烃聚合摘要:1.Heck 反应概述2.烯烃聚合的概念和分类3.Heck 反应在烯烃聚合中的应用4.Heck 反应在烯烃聚合过程中的优势和挑战5.我国在烯烃聚合领域的研究和发展正文:1.Heck 反应概述Heck 反应,又称为Heck-Matsuda 反应或Heck-Type 反应,是一种有机合成中常用的反应,主要用于合成卤代烃和芳烃。
该反应是由日本化学家喜一郎·黑川(Kazuo Heck)和韩国化学家顺一松(Sun-I Matsuda)于1967 年独立发现的。
Heck 反应具有反应条件温和、产率高、立体选择性好等特点,因此在有机合成领域具有广泛的应用。
2.烯烃聚合的概念和分类烯烃聚合是指两个或多个烯烃分子通过共价键结合形成高分子化合物的过程。
根据聚合反应的类型和催化剂的不同,烯烃聚合可分为以下几类:(1)自由基聚合:以自由基为催化剂的聚合反应。
(2)阳离子聚合:以阳离子为催化剂的聚合反应。
(3)阴离子聚合:以阴离子为催化剂的聚合反应。
(4)配位聚合:以过渡金属配位化合物为催化剂的聚合反应。
3.Heck 反应在烯烃聚合中的应用Heck 反应在烯烃聚合中的应用主要体现在以下几个方面:(1)制备聚合物单体:通过Heck 反应,可以合成具有不同结构和功能的烯烃单体,从而制备具有特定性能的聚合物。
(2)调控聚合物的结构和性能:通过改变Heck 反应的条件,如反应温度、反应时间、催化剂种类等,可以调控聚合物的分子量、分子量分布、立体构型等结构参数,从而调节聚合物的性能。
(3)提高聚合反应的立体选择性:Heck 反应具有良好的立体选择性,可以制备具有特定空间结构的聚合物,从而提高聚合反应的立体选择性。
4.Heck 反应在烯烃聚合过程中的优势和挑战Heck 反应在烯烃聚合过程中具有以下优势:(1)反应条件温和:Heck 反应一般在室温下进行,对设备和反应条件要求较低。
(2)产率高:Heck 反应具有较高的产率,可以提高聚合物的收率。
烯烃聚合物的研究与开发
烯烃聚合物的研究与开发烯烃聚合物是一类重要的高分子化合物,在现代工业、生活中具有广泛的应用。
它们可以用于制造塑料、橡胶、涂料、粘合剂、沥青、纤维等,也可以用于医药、农药、燃料等领域。
因此,对烯烃聚合物的研究和开发具有重要意义。
烯烃聚合物的结构烯烃聚合物是由烯烃单体经过聚合反应得到的高分子化合物。
烯烃单体是碳链上仅有一个双键的烃类化合物,例如乙烯、丙烯、丁烯等。
在聚合反应中,烯烃单体的双键被打开,形成自由基,然后与其他单体反应形成链状聚合物。
烯烃聚合物的结构通常为直链、支链、交联等形式,这与聚合过程中自由基的反应路径、传递性等有关。
烯烃聚合物的性质烯烃聚合物的性质受其结构、分子量、分子量分布等因素的影响。
一般来说,烯烃聚合物具有以下特点:1. 烯烃聚合物通常为非极性、无序的高分子化合物,具有较好的耐热、耐腐蚀性能。
2. 烯烃聚合物的机械性能(如强度、韧性等)随着分子量的增加而提高,但在一定分子量范围内,机械性能随着分子量分布的增加而降低。
3. 烯烃聚合物的熔点、玻璃转变温度等热力学性质与其分子量、链结构有关,也受添加剂、填料等因素的影响。
4. 烯烃聚合物的物理性质和化学性质(如溶解性、降解性等)与其结构有关,也受光、湿、氧、臭氧等环境因素的影响。
烯烃聚合物的研究与开发烯烃聚合物作为高分子化合物的重要代表之一,其研究与开发具有广泛的应用前景。
其中,以下几个方面值得深入探讨:1. 烯烃聚合物的合成与改性烯烃聚合物的合成是研究该类化合物的基础,通过调整聚合反应的条件、改变催化剂、添加助剂等手段,可以控制聚合物的分子量、分子量分布、支链结构等性质。
此外,烯烃聚合物的改性也是研究的热点之一,例如加入玻璃纤维等填料提高机械性能,加入抗氧剂、紫外线吸收剂等添加剂提高耐候性等。
2. 烯烃聚合物材料的应用烯烃聚合物材料在工业、生活中有着广泛的应用,例如建筑、汽车、电子、医药等领域。
其中,塑料、橡胶、涂料等是最常见的应用,它们可以用于制造不同的产品,例如食品包装、汽车轮胎、油漆等。
烯烃聚合物的用途
烯烃聚合物的用途
烯烃聚合物是由烯烃单体通过聚合反应形成的一类高分子材料,它们具有许多重要的用途。
烯烃聚合物的一个重要用途是作为塑料材料使用。
它们可以用于制造各种塑料制品,如塑料袋、塑料瓶、塑料管道、塑料餐具等。
这些塑料制品具有轻便、耐用、防水、防油等优点,广泛应用于日常生活和工业生产中。
烯烃聚合物还可以用于制造纤维材料。
它们可以用于制造各种纤维制品,如聚酯纤维、尼龙纤维、聚丙烯纤维等。
这些纤维制品具有轻便、柔软、耐磨、耐腐蚀等优点,广泛应用于服装、纺织品、绳索、渔网等领域。
烯烃聚合物还可以用于制造橡胶材料。
它们可以用于制造各种橡胶制品,如轮胎、橡胶管、橡胶垫等。
这些橡胶制品具有弹性好、耐磨、耐腐蚀等优点,广泛应用于汽车、机械、建筑等领域。
此外,烯烃聚合物还可以用于制造涂料、粘合剂、密封剂等材料。
它们可以用于涂覆金属、木材、塑料等表面,提高其耐磨、耐腐蚀、防水等性能。
烯烃聚合物还可以用于制造粘合剂和密封剂,用于粘接和密封各种材料。
总之,烯烃聚合物具有广泛的用途,是现代工业和日常生活中不可或缺的重要材料。
随着科技的不断进步,烯烃聚合物的应用领域还将不断扩大。
烯烃聚合的条件
烯烃聚合的条件
烯烃聚合是一种重要的化学反应,可以制备许多重要的高分子材料,如聚乙烯、聚丙烯等。
然而,烯烃聚合的条件却并不简单,需要考虑许多因素,下面列举了一些常用的条件:
1. 催化剂:烯烃聚合需要使用催化剂,常用的催化剂有铬酸盐、钨酸盐、钛酸盐等。
选择催化剂要考虑烯烃的种类、反应条件等因素。
2. 反应温度:不同的烯烃聚合反应需要不同的反应温度,一般在100-300℃之间。
温度过高会导致副反应的发生,温度过低则反应速率过慢。
3. 反应压力:烯烃聚合反应需要一定的压力,一般在1-10MPa 之间。
压力过高会导致副反应的发生,压力过低则影响反应速率。
4. 原料质量:烯烃聚合反应需要高纯度的原料,杂质会影响催化剂的活性,导致反应失效。
5. 反应时间:不同的烯烃聚合反应需要不同的反应时间,一般在数小时到数十小时之间。
反应时间过短则反应不完全,反应时间过长则会导致副反应的发生。
总的来说,烯烃聚合需要在适当的反应条件下进行,才能得到理想的产物。
这也是烯烃聚合工艺优化的重要课题。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ethylene-Norbornene Copolymer Microstructure.Assessment and Advances Based on Assignments of13C NMR Spectra†Incoronata Tritto,*Catherine Marestin,‡Laura Boggioni,Lucia Zetta,Augusto Provasoli,and Dino R.FerroIstituto di Chimica delle Macromolecole del CNR,Via E.Bassini,15-I-20133Milano,ItalyReceived May8,2000;Revised Manuscript Received September14,2000ABSTRACT:A best-fitting procedure for the quantitative determination of the molar fractions of the stereosequences that define the microstructure of an ethylene-norbornene(E-N)copolymer from13C NMR spectra has been set up.The quantitative determination of copolymer microstructure will allow one to clarify the E-N copolymerization mechanism.This method utilizes the observed peak areas of the 13C signals and takes into account the consistency between peak areas and the stoichiometry of the copolymer chain.Thus,a further extension of signal assignments is made possible by guessing assignments of unknown signals and by discarding inconsistent hypotheses.This procedure has been applied to the analysis of the13C NMR spectra of a large number of E-N copolymers,prepared with catalyst precursors rac-Et(indenyl)2ZrCl2(1),rac-Me2Si(2-Me-benz[e]indenyl)2ZrCl2(2),Me2Si(Me4Cp)(N t Bu)TiCl2(3),and Me2C(Flu)(Cp)ZrCl2(4).An estimate of the molar fractions of the various stereosequences with a standard deviation on the order of1-2%has been obtained.The comparison between controversial assignments existing in the literature for a number of ethylene signals has confirmed our previous assignments.New signals such as those of the C2/C3carbons of EENNEE meso sequences(M)and of the external carbons C5of MM and MR triads in ENNNE sequences have been assigned.IntroductionThe discovery of metallocene-methylaluminoxane-based catalysts has caused an upsurge of academic and industrial research in the field of transition-metal-catalyzed olefin polymerization.1The exploitation of changes in metallocene symmetry and ligands yielded catalysts with increased selectivity,stability,or pro-ductivity with respect to the first racemic ansa-bridged metallocene obtained by Brintzinger.2Among the ad-vances produced by these catalysts are the syntheses of new classes of polymers such as ethylene-norbornene (E-N)copolymers.3-5The resulting amorphous E-N copolymers are of great interest because of their trans-parency,high glass transition temperatures,and good heat resistance.They can be used in optical applications such as coatings for compact disks.Although their first synthesis was already reported in1991,3the structure of these copolymers has not yet been thoroughly inves-tigated.13C NMR spectroscopy is surely the most powerful method for polymer microstructural investigations. However,E-N copolymer spectra are quite complex for the presence in the polymer chain of two stereogenic carbons per norbornene unit and for the fact that the chemical shifts of these copolymers do not obey straight-forward additive rules,owing to the bicyclic nature of the norbornene structural units.Thus,until recently analyses of13C NMR spectra were scarce,and only in the past few years have a number of groups accepted the challenge of assigning the13C NMR spectra of E-N copolymers.6-15Our group has devoted a significant effort to clarifying some of the shifts in the13C NMR spectra of E-N copolymers,especially taking into account meso/racemic relationships between norbornene units in alternating NEN and in ENNE sequences,i.e.,accounting for the configuration,as well as for the composition,of the copolymer chain.10,12-15At the onset of our studies,no mention of isotactic or syndiotactic types of regularity for alternating NENEN or of meso/racemic norbornene diads(ENNE sequences) had been found in the literature.Our investigations were based on the comparison of13C NMR spectra of E-N copolymers of various compositions prepared with different metallocenes.Substantial progress has come from the elucidation of the conformational structure of the chain of E-N copolymers on the basis of molecular mechanics calculations and from the correlation be-tween conformation and13C NMR chemical shifts.15,16 A comparison of conformer populations for stereoregular and stereoirregular alternating E-N copolymer chains predicted stereochemical shifts in these copolymers and allowed us to recognize and distinguish isotactic and syndiotactic N-E-N sequences.Conformer modeling evidenced strong deformations of the norbornene rings in N-N diads or triads and allowed us to understand the splitting of C5/C6signals,such distortions being much stronger in meso diads.INADEQUATE13C-13C correlated NMR spectra were also of great help in correcting previous assignments of ethylene and nor-bornene methylenes.9,13Quantitative analysis of copolymer sequences is needed for determining the sequence distribution at the triad level or higher,which allows one to understand the copolymerization mechanism.In the present work we have examined the complete13C NMR spectra of a great number of E-N copolymers,prepared with different catalysts and having various norbornene contents. Starting from the available certain assignments and taking into account the consistency between peak areas and the stoichiometric requirements of the copolymer chain,we have set up a procedure for the determination†Dedicated to Prof.Umberto Giannini on his70th birthday.‡Present address:Laboratoire de Mate´riaux Organiques a` Proprie´te´s Spe´cifiques(CNRS)F-69390Vernaison,France.8931Macromolecules2000,33,8931-894410.1021/ma000795u CCC:$19.00©2000American Chemical SocietyPublished on Web11/28/2000of the different stereosequences of E -N copolymers.This method can be used to guess assignments of unknown signals and to verify the new signal assign-ments by discarding inconsistent hypotheses,allowing one to further extend signal assignments.As these studies were completed,other 13C NMR studies of E -N copolymer microstructures were reported,17-19showing that a disagreement in the interpretation of a number of signals exists in the literature.Thus,the procedure has also been used to compare the different existing assignments,and the results will be discussed.The complete assignments of the spectra of E -N copolymers containing ENNE diads will be reported.As a result of this analysis,we shall point out that some norbornene signals in ENNE sequences and the central ethylene signals in EN E NE are sensitive to the type of adjacent comonomer sequences.Furthermore,although the triad assignments have not been pursued in detail,the methodology reported allows us to quantify the norbornene present in norbornene triads (NNN)or longer sequences.Ethylene -Norbornene Copolymer Microstruc-ture and Previous 13C NMR Assignments.Previous studies have shown that norbornene in metallocene-catalyzed copolymerization is enchained by 2,3-exo -cis addition.3A section of an ethylene -norbornene chain (EENEE)in which norbornene can be considered iso-lated from other norbornene units is shown in Figure 1along with the numbering of carbon atoms used.Figure 2gives an overview of possible segments of an E -N copolymer chain in which norbornene units are in alternating (ENENE),diad (ENNE),and triad (ENNNE)sequences,without considering stereochemical differ-ences.The adopted numbering of norbornene carbons,which is similar to that of other authors,19has been chosen in order to evidence differences in assignments;thus,C2,C1,and C6are always closer to another norbornene unit than atoms C3,C4,and C5,respec-tively.Moreover,configuration at atoms C2/C3in a ring can be either S/R or R/S,and the relationship between two subsequent norbornene units can be either erythro di-isotactic (meso )or erythro di-syndiotactic (racemic ).The possible stereochemical environments of norbornene in alternating sequences,diads,and triads are il-lustrated in Figure 3.Our previous findings have shown that erythro di-isotactic and erythro di-syndiotactic microstructures of E -N -E -N -E and E -N -N -E seg-ments can be obtained depending on the catalyst structure.12-15The spectrum of an E -N copolymer with 50.8mol %of norbornene produced by catalyst rac -Et(indenyl)2ZrCl 2(1)is shown in Figure 4.General assignments of norbornene and ethylene carbons allow us to calculate the mole percent of norbornene incorporated in the polymer.At a higher level of norbornene the spectra are more complex since the various stereosequences of triads and longer norbornene sequences originate split-tings and shifts of the signals,which can make even the norbornene contentuncertain.Figure 1.Isolated -E -N -E -E -segment of an ethylene -norbornene chain showing carbon atomsnumbering.Figure 2.Overview of possible segments of an E -N copoly-mer chain where norbornene units are in alternating (ENENE),diad (ENNE),and triad (ENNNE)sequences.Figure 3.Erythro di-isotactic (meso )and erythro di-syndio-tactic (racemic )stereochemical environments of norbornene in alternating sequences (A and B),diads (C and D),and triads (E -G).8932Tritto et al.Macromolecules,Vol.33,No.24,2000Our previous assignments of 13C NMR spectra of E -N copolymers 10,12-15are summarized in Table 1.The region of tertiary carbons C2/C3between 45and 55ppm and the region of C5/C6and of the methylenes of ethylene units are the most sensitive to differences in microstructural environments and hence are the ones that have been analyzed in greater detail for different sequences.Besides the above assignments published earlier,Table 1also includes further assignments of C1/C4and C7signals corresponding to the same sequences.These assignments could be easily obtained by analyz-ing the complete spectra of copolymers with different norbornene content and by comparing the relative peak areas.Several of these assignments are in agreement with those reported by other authors.7,9,18,19A specific comparison of controversial assignments will be pre-sented in one of the following sections.Examples of spectra of E -N copolymers prepared with four different catalyst precursors are presented in order to evidence signal assignments of stereoregular and stereoirregular alternating E -N copolymers,as well as the assignments of the most relevant carbons in ENNE meso and racemic sequences reported in Table 1.This will evidence the complexity of the spectra we are dealing with and will make clear the procedure used in the following sections to extend the assignments.A more in-depth discussion of relationships between cata-lyst ligand,polymer structures,and polymer properties will be reported elsewhere.The 13C NMR spectra of E -N copolymers produced with rac -Me 2Si(2-Me-benzindenyl)2ZrCl 2(KM103)(2)and Me 2Si(Me 4Cp)(N t Bu)TiCl 2(KM108)(3)based cata-lysts are compared in Figure 5,A and B,respectively.The two copolymers contain 43.6and 43.5mol %of norbornene.The spectra are relatively simple due to the mainly alternating nature of these copolymers.The main differences in the more intense signals are due to the isotactic or syndiotactic type of stereoregularity in the copolymers prepared with catalyst 2and 3,respec-tively.In Figure 6the spectra of E -N copolymers prepared with rac -Et(indenyl)2ZrCl 2(1)with increasing nor-bornene content are compared.This catalyst precursor having C 2symmetry produces mainly meso stereorese-quences,and the C2/C3signals at 47.12and 46.04ppm characteristic of meso ENNE diads become more intense as the norbornene content increases.The C s symmetric Me 2C(Flu)CpZrCl 2(4)based cata-lyst shows a high selectivity for producing E -N copoly-mers with racemic ENNE diads.In Figure 7,where the spectra of copolymers obtained by catalyst precursor 4are compared,the intensity of the C2/C3signals at 48.07and 45.62ppm,characteristic of racemic ENNE se-quences,clearly increases with the norbornene content.In Figures 5A and 6C a number of small signals in all the regions appear which are due to the norbornene blocks longer than diads.Their large number is due to the increase of possible stereosequences with the in-crease of norbornene block length.However,detailed assignments of such signals to the specific configuration of C2/C3carbons of norbornene triads are notavailable.Figure 4.13C NMR spectrum of an E -N copolymer with 50.8mol %of norbornene produced by catalyst rac -Et(indenyl)2ZrCl 2(1).Table 1.Assignments of 13C Chemical Shifts (ppm)for Carbons of Norbornene and Ethylene Units in E -NCopolymers sequence type aconfig carbon chemicalshifts b sequences refEthylene cI S δ+δ+CH 227.73EEE E EEE 10I S δδ+CH 227.80NE E EEE 10I S δ+CH 227.95N E EEE 15A S R synd CH 228.04EN E NE 15I S γδ,S γδ+CH 228.07NE E E 15I S R δ+CH 228.13N E EE...13I S R δCH 228.20NEEN 13I S γCH 228.41NEEN15A S R isot CH 228.63EEN E NEE 15A S R isot CH 228.74NEN E NEN 15Norbornene D isot C526.24ENNE 12,13,14D synd C527.58ENNE 12,13,14I C5/C628.33EE N EE 12,13,14A synd C5/C628.33NE N EN 12,13,14A isot C5/C628.33NE N EN 12,13,14D synd C629.37ENNE 12,13,14D isot C629.68ENNE 12,13,14I C730.90EE N EE 10A isot C730.98NE N EN this work A synd C730.98NE N EN this work A isot C731.05NE N EN this work D isot C731.17ENNE this work D isot C731.32ENNE this work D synd C731.57ENNE this work D synd C138.93ENNE this work I C1/C439.50EE N EE 10A synd C1/C439.54NE N EN 15D isot C139.88ENNE this work A isot C439.90EE N EN 15A isot C140.04NE N EN 15D isot C440.43ENNE this work I C2/C345.03EE N EE 10I C3“EE N EN A synd C245.21NE N EN 15D synd C345.62ENNE 12,13,14A isot C245.82NE N EN 12,13,14D isot C346.04ENNE 12,13,14D isot C247.12ENNE 12,13,14DsyndC248.07ENNE12,13,14aSequence key:I,isolated;A,alternative;D,NN dyad;isot,isotactic;synd,syndiotactic.b The 13C NMR spectra were mea-sured in C 2D 2Cl 4at 105°C;chemical shifts are referred to HMDS.c The Greek subscripts indicate the distance of the observed secondary carbon atom S from the closest norbornene carbons 10(see also Figures 2and 9).Macromolecules,Vol.33,No.24,2000Ethylene -Norbornene Copolymer Microstructure 8933MethodTo obtain a quantitative determination of the different stereosequences of E -N copolymers from the observed integrals of signals of 13C NMR spectra and to extend previous assignments,we have set up a procedure starting from assignments of the different peaks already available.The E -N copolymer chain sketched below (Figure 8)has a typical random copolymer sequence distribution and is composed of the segments listed in Figure 2.It should be noted that such a classification of the segments does not correspond to the complete sequence assignment at a given level (e.g.,at pentad level),but rather it is adequate to the present state of the interpretation of the 13C NMR spectra in terms of sequence composition.Indeed,the current assignments of the ethylene CH 2signals are much more detailed than those for the signals arising from norbornene carbons.The classification is obviously open to further extensions as the interpretation of the spectra will improve.Our purpose is to determine the molar fractions of isolated ,alternating sequences,NN diads and blocks (triads and longer sequences),and to distinguish be-tween meso and racemic alternating or diad sequences.The analysis of the spectra provides a certain number of peak integrals,each peak corresponding to one or more signals.For each peak we can write a linear equation describing the observed (normalized)integral as a function of the unknown molar fractions.A further equation is provided by the average observed nor-bornene content.We obtain a set of linear equations,whose variables are chosen among the molar fractions defined below.A number of stoichiometric constraints reduce the number of independent variables.Least-squares fitting of the (weighted)set of equations pro-vides the best solution for the unknown molar fractions.Definitions of Molar Fractions.The E and N molar fractions are obviouslywhereThe molar fractions of alternating,isolated,diad and block sequences are defined as following,where we distinguish between meso and racemic alternating sequences (f (m )and f (r ),respectively)and between Meso and Racemic diads (f (M )and f (R ),respectively):The total E content is givenbyFigure 5.13C NMR spectra of copolymer samples KM103(A)prepared with rac -Me 2Si(2-Me-benz[e ]indenyl)2ZrCl 2(2)and KM108(B)prepared with Me 2Si(Me 4Cp)(N t Bu)TiCl 2(3).Figure 6.13C NMR spectra of E -N copolymers prepared with rac -Et(indenyl)2ZrCl 2(1),with N mole percent:4%(A);33%(B);52%(C).f (N))[N][N]+[E]f (E))[E][N]+[E](1)f (N)+f (E))1(2)f (alt))[N -E -N]/{[N]+[E]})f (m )+f (r )(3)f (isl)){∑i )0[N -E -E i -E -N]}/{[N]+[E]})∑i )0f i (4)f (diad))[E -N -N -E]/{[N]+[E]})f (M )+f (R )(5)f (block)){∑i )1[E -N -N i -N -E]}/{[N]+[E]})f (triad)+ (6)8934Tritto et al.Macromolecules,Vol.33,No.24,2000where f i is the molar fraction of sequences formed byan N followed by 2+i E’s,and 2+x is the average length of the isolated sequences,with x g 0.The total N content is given bywhere 3+y is the average length of blocks (includingtriads),with y g 0.One can see thatwhileand thatBy combining this equation with eqs 12-15,we obtain the relationshipFinally,our previous assignments allow us to distin-guish among E -E...sequences of different lengths,having defined f i in eqs 3and 9as the molar fractions of N units followed by 2+i E units.When only short EE sequences are present (see Figure 9A -C),we observe thatAlthough in a few examples of mainly alternating copolymers we could describe the E sequences consider-ing only the three terms f 0,f 1,and f 2(whence f (isl)and f E (isl)could be computed),in general we consider the variables f (isl),f E (isl),and f 0(from eq 18),while the signals considered in eqs 19and 20contain contribu-tions arising from longer E sequences (see Figure 9D),so that these equations are replaced byWhen the two peaks f (S δδ+)and f (S δ+δ+)are measured distinctly,then the variable f 1contained in eq 20′must be considered;otherwise,the sum of eqs 20′and 21providesand f 1is not needed.Choice of Variables.We choose the variables,depending on the characteristics of a given copolymer,among the following quantities defined above:f (m ),f (r ),f (isl),f E (isl),f 0,f (M ),f (R ),f (block),f N (block),∆f (m ),∆f (r ),∆f (isl).We discussed above the possible use of f 1and f 2.Constraints.The number of independent variables nv is then reduced by a certain number of constraints.Equations 2and 17represent two constraints tobeFigure 7.13C NMR spectra of E -N copolymers prepared with Me 2C(Flu)CpZrCl 2(4),with N mole percent:25%(A);58%(B);62%(C).f (E))f E (alt)+f E (isl))f (m )+f (r )+f E (isl)(7)f E (isl))∑i )0(2+i )f i )2f 0+3f 1+4f 2+...)(2+x )f (isl)(8)f (N))f N (block)+f N (diad)+f N (alt)+f N (isl)(9)f N (diad))2f (diad)(10)f N (block)){∑i )1(2+i )[E -N -N i -N -E]}/{[N]+[E]})(3+y )f (block)(11)f N (alt))f N (m )+f N (r )){[N -E -N -E -N]+1/2[E -E -N -E -N]}/{[N]+[E]}(12)f N (isl)){[E -E -N -E -E]+1/2[E -E -N -E-N]}/{[N]+[E]}(13)f E (alt)){[N -E -N -E -N]+1/2[E -E -N -E -N]+1/2[N -N -E -N]}/{[N]+[E]})f N (alt)+1/2[N -N -E -N]/{[N]+[E]}(14)f (isl)){[E -E -N -E -E]+1/2[E -E -N -E -N]+1/2[N -N -E -E]}/{[N]+[E]})f N (isl)+1/2[N -N -E -E]/{[N]+[E]}(15)f (diad)+f (block)){1/2[N -N -E -N]+1/2[N -N -E -E]}/{[N]+[E]}(16)f (diad)+f (block))f (m )+f (r )+f (isl)-(f N (m )+f N (r )+f N (isl)))∆f (m )+∆f (r )+∆f (isl)(17)for the N -E-E -N sequence:f 0)f (S R δ))f (S γ)(18)for the N -E -E -E -N sequence:f 1)f (S R ))f (S ))f (S γδ)(19)for the N -E -E -E -E -N sequence:f 2)f (S δ )(20)f (S R δ+))f (S δ+))f (S γγ+))f (isl)-f 0(19′)f (S δδ+))f (isl)-f 0-f 1(20′)f (S δ+δ+))f E (isl)-4f (isl)+2f 0+f 1(21)f (S δδ+)+f (S δ+δ+))f E (isl)-3f (isl)+f 0(22)Macromolecules,Vol.33,No.24,2000Ethylene -Norbornene Copolymer Microstructure 8935satisfied always.Moreover,in copolymers containing a small amount of blocks we can assume that these are formed purely by triads;henceFinally,to reduce nv we assume thatwhich is equivalent to stating that diads and blocks have the same probability of following (and preceding)an alternating or an isolated sequence.Hence,only ∆f (m )is considered and nv is reduced by 1or 2.We should also add that a solution must meet further conditions in order to be accepted,namelyResults and DiscussionAnalysis of 13C NMR Spectra.The procedure described in the previous section was used to analyze the 13C NMR spectra of a great number of E -N copolymers having N content ranging from 1to 56mol %,prepared with catalysts 1-4.Examples of the complete spectra are displayed in Figures 4-7.We note that chemical shifts of a given signal in copolymersprepared with the same catalyst were found to be identical or to differ by less than (0.05ppm.The application of the procedure provided the molar frac-tions of the various stereosequences for each sample as well as an advancement in the chemical shift assign-ments.The final assignments are listed in Table 2.Here,we present a few examples of the analysis of 13C NMR spectra of copolymers prepared with various catalysts:KM103(catalyst 2),KM108(3),and KM55and KM65(1).The spectra of copolymer samples prepared with 2(KM103)and 3(KM108)are displayed in Figures 10and 11,respectively.The spectra of the two copolymers obtained from 1(KM55and KM65)are shown in Figures 12and 13.Their norbornene content ranges from 43to 52mol %.The spectra with a lower norbornene content are simpler,while those with very high norbornene content are too complex and are beyond the scope of this work.In Table 2all the data for each of the four spectra are reported.Column 1lists all the values observed for the chemical shifts,while column 2gives the corre-sponding assignments for each type of signals as either derived from previous works or achieved in the present work (in bold).Column 1of each section (A,B,C,D)lists the chemical shifts of the signals observed in the given spectrum.The normalized peak areas of distin-guishable signals observed in each spectrum are given in the second column of each section.Tables 3-6present the observed and calculated values of the normalized peak areas for each distinct and measurable group of signals,along with the carbon types from which the signals arise.For each datum we also report the coefficients of the independent and dependent variables considered.The best fitting for the molar fractions and their standard deviations are given at the bottom of the table,together with the average length of isolated sequences.In the four examples considered here we assume that blocks longer than triads are absent.a.Microstructure of the Copolymers Prepared with rac -Me 2Si(2-Me-benz[e ]indenyl)2ZrCl 2(KM103).The complete 13C NMR spectrum of an E -N copolymer prepared with rac -Me 2Si(2-Me-benz[e ]indenyl)2ZrCl 2(2)activated with methylaluminoxane (MAO)is reported in Figure 10,while the chemical shifts of all the observed signals,along with the normalized peak areas of groups of signals which will be used for the calcula-tion,are listed in Table 2,column A.The norbornene content of this copolymer is 43.64mol %,estimated as the ratio between the average intensities for carbons C1,C2,and C7and the total intensity for the CH 2carbons (carbons C5and E):Considering that norbornene content is ca.44mol %and the integrals of the resonances of norborneneinFigure 8.A random E -N copolymerchain.Figure 9.Carbon nomenclature in ethylene blocks:N -E -E -N (A),N -E -E -E-N (B),N -E -E -E -E -N (C),N -E -E -E -E -E -N (D).f N (block))3f (block)(23)∆f (m ):∆f (r ):∆f (isl))f (m ):f (r ):f (isl)(24)f 0<f (isl)(from eq 4)x ,yg 0(eqs 8and 11)∆f (m ),∆f(r ),∆f (isl)g 0(eq 17)f (N))[N][N]+[E])13(I C1+I C2+2I C7)I CH 28936Tritto et al.Macromolecules,Vol.33,No.24,2000Table2.Chemical Shifts(ppm)and Peak Areas of the Assigned Signals for the Spectra of Four E-N Copolymer SamplesA(KM103) f(N))0.436B(KM108)f(N))0.435C(KM55)f(N))0.479D(KM65)f(N))0.522CH2chemicalshifts assignt chemicalshifts I/I tot CH2achemicalshifts I/I tot CH2achemicalshifts I/I tot CH2achemicalshifts I/I tot CH2a26.24C5D M26.230.005526.220.004426.220.094126.220.122726.59C5T26.54/590.020727.20C5T27.220.0091 27.39/43C5D R27.410.0108 27.58C5D R27.500.0052 27.73Sδ+δ+or T MR27.720.068027.720.014227.720.031127.720.0231 27.80Sδδ+27.820.006727.83∧27.95S δ+27.97∨27.970.018828.04S R r28.040.187028.07Sγγ+28.08∨28.070.0446 28.13S Rδ+28.13∨28.140.056128.20S Rδ28.30C5/C628.320.537128.320.594328.320.313728.320.3004 28.41S γ28.43∧28.440.049428.45∨28.52S R m b28.520.028828.520.0528 28.59S R m b28.63S R m b28.63∨28.63∨28.68S R m b28.67∨28.67∨28.73S R m b28.720.279828.720.178128.730.143528.730.1270 28.82S R m b28.87S R m b28.870.076028.87∨29.00S R m b29.000.054829.000.1454 29.11S R m b29.090.015629.37C6D R29.370.004729.37C6T29.300.030929.300.0348 29.49C6T29.500.049329.500.002129.5629.68C6D M29.690.008529.670.102829.670.1242 29.7729.88C6T29.880.024029.95T30.16C7chemicalshifts assignt chemicalshifts I/I tot C7×f(N)achemicalshifts I/I tot C7×f(N)achemicalshifts I/I tot C7×f(N)achemicalshifts I/I totC7×f(N)a30.50T30.58T30.570.025330.7730.90I30.98A m30.98∨30.980.414430.980.119530.98∨31.05A m31.050.371531.270.009831.050.151231.050.3263 31.17D M31.380.003531.160.047631.32D M31.570.007231.310.156631.310.1960 31.57D R33.07T33.060.039633.070.0039C1-C4chemicalshifts assignt chemicalshiftsI/I tot C1-C4×f(N)achemicalshiftsI/I tot C1-C4×f(N)achemicalshiftsI/I tot C1-C4×f(N)achemicalshiftsI/I tot C1-C4×f(N)34.34T34.340.003334.330.007334.92T34.86/910.020335.18T35.180.003235.180.007135.70T35.720.005435.730.006836.74T36.78∨36.8836.94T36.940.020937.87T37.8737.870.009738.93D R/T38.940.009139.05T39.080.006939.27/38T39.37∨39.320.009139.50I39.50∨39.54A r39.530.236239.6239.590.100839.590.073139.560.0655 39.88D M39.880.073039.87∨39.85∨39.85∨39.90A m40.010.182739.900.216339.900.235540.04A m40.020.169140.030.106640.030.0944 40.43D M40.430.070940.410.0893 40.6240.61∨40.6640.80T40.780.021041.0141.0741.060.0064 41.1341.1641.2341.32T41.32∨41.45T41.430.021741.4341.56T41.57∧Macromolecules,Vol.33,No.24,2000Ethylene-Norbornene Copolymer Microstructure8937diads and in blocks are rather small,this copolymer is mainly alternating.Of all the variables,eight are necessary for the description of this spectrum;we chose f (m ),f (M ),f 0,f (isl),and f E (isl)as independent variables,while the other three (∆f (m ),f (block),and ∆f (isl))are dependent due to the relationships 2,17,23,and 24described above.In this case relationship 23was as-sumed due to the very low content of norbornene blocks.The first row of Table 3reports the total norbornene molar fraction described in terms of the selected vari-ables by combining eqs 9,10,11,and 17,i.e.hence,the coefficients for this equation are 1,-1,1,-1,2,and 3for f (m ),∆f (m ),f (isl),∆f (isl),f (M ),and f (block),respectively.As in Table 2,we start from the right side of the spectrum.The resonance at 26.23ppm is due to carbon C5(external )of the meso ENNE sequence,while the internal C6resonates at 29.88ppm and is included in the group of signals between 29.37and 29.88ppm.The normalized peak area observed is 0.009;the coefficient 2for the independent variable f (M )derives fromIn this spectrum the resonances of signals S δδ+and S δ+δ+are not distinct,so the second row gives the sum of f (δδ+)and f (δ+δ+)which is derived fromThe coefficients for this equation are 1,-3,and 1for f E (isl),f (isl),and f 0,respectively.The signals from 27.97to 28.43ppm,corresponding to S δ+,S γγ+,S R δ+,S R δ,S γ,and C5/C6(isl)and C5/C6-(alt),are not distinct enough,and they have been integrated together.Since from eqs 18,19,and 19′we obtainandthe normalized peak area,found to be 0.53,corresponds toTable 2(Continued)C2-C3chemical shifts assigntchemical shifts I /I tot C2-C3×f (N)achemical shifts I /I tot C2-C3×f (N)a chemical shifts I /I tot C2-C3×f (N)chemical shifts I /I tot C2-C3×f (N)a42.5642.9742.970.006343.2443.7244.0144.040.006344.1744.8044.800.002245.07I 45.05∨45.14I 45.110.090145.14∨45.140.058645.130.037945.21A r 45.210.249345.3245.370.004245.42/53T 45.400.013745.540.012045.420.010645.62D R 45.73A m 45.730.071445.720.082945.82A m 45.800.253145.790.164145.790.157245.800.140545.96D M 45.960.022746.05D M 46.010.005446.020.063146.020.098146.2346.230.007346.3346.50D M 46.50∨46.550.002446.500.022846.500.022346.63D M 46.640.016046.70D M 46.78∧46.9147.11D M 47.100.013347.120.001947.080.073647.090.106647.27/32D M 47.340.005147.6648.07D R48.248.5248.9949.34T 49.56T 49.5349.360.006749.80T 49.790.019850.00T 52.70T 52.68∨52.8052.810.017553.0553.05∧53.44T53.440.0073aI is the measured peak area.Symbols ∨and ∧indicate that the area was included in the normalized peak area below or above,respectively.A few very small peaks,where the normalized area is not given,were not included in the calculation.b The chemical shift of meso S R is sensitive to adjacent units sequences;see the discussion in the text.f N )f (m )-∆f (m )+f (isl)-∆f (isl)+2f (M )+3f (block)f N (diad))2f (diad)(10)f (S δδ+)+f (S δ+δ+))f E (isl)-3f (isl)+f 0(22)f (S δ+)+f (S γγ+)+f (S R δ+)+f (S R δ)+f (S γ))2f (S R δ)+3f (S R δ+))3f (isl)-f 0f N (m ))f (m )-∆f (m )and f N (isl))f (isl)-∆f (isl)f N (m )+f N (isl)+2f (S R δ)+3f (S R δ+))f (m )-∆f (m )+f N (isl)+4f (isl)-∆f (isl)-f 08938Tritto et al.Macromolecules,Vol.33,No.24,2000。