第七章植物体内的细胞信号转导

合集下载

第7章植物细胞信号转导

第7章植物细胞信号转导
上章回顾:
6.1 同化物的运输
胞间、长距运输。环割的利用。形式及特点(稳定、溶解、运速)
6.2 同化物的运输机制
三种学说:压力流动说、泵动说、蛋白质收缩说
6.3.同化物的分配
代谢源、库,源库单位。分配特点:优先中心、就近同侧、在利用、功能叶间无关
6.4 影响同化物运输的因素
温度、光、水、矿
第7章 细胞信号转导
• 第一节 信号与受体结合
• 一、信号
• 对植物体来讲,环境变化就是刺激,就是信号。 根据信号分子的性质信号分为物理信号和化学信 号;光、电等刺激属于物理信号,而激素、病原 因子等属于化学信号。化学信号也称之为配体。 根据所处的位置信号,可分为胞外(胞间)信号 和胞内信号。
• 信号进入细胞后,最终引起生理生化变化和形态 反应。例如,电波就是在植物体进行传递的物理 信号。植物受到外界刺激时可产生电波,通过维 管束、共质体和外质体快速传递信息。又如,植 物根尖合成的ABA,通过导管向上运送到叶片保 卫细胞,引起气孔关闭,这个过程就是信号转导 的过程。
• 位于亚细胞组分如细胞核、液泡膜上的受 体叫做细胞内受体。一些信号(如甾类物 质)是疏水性小分子,不经过跨膜信号转 换,而直接扩散入细胞,与细胞内受体结 合后,在细胞内进一步传递和放大。
• 第二节 跨膜信号转换
• 信号与细胞表面的受体结合之后,通过受 体将信号转导进入细胞内,这个过程称为 跨膜信号转换。
• 二、受体在信号转导中的作用Fra bibliotek• 受体:是指能够特异地识别并结合信号、在细 胞内放大和传递信号的物质。细胞受体的特征是 有特异性、高亲和力和可逆性。至今发现的受体 大都为蛋白质。
• 位于细胞表面的受体称为细胞表面受体。在很多 情况下,信号分子不能跨过细胞膜,它们必须与 细胞表面受体结合,经过跨膜信号转换,将胞外 信号传入胞内,并进一步通过信号转导网络来传 递和放大信号。例如,细胞分裂素受体就是细胞 表面受体。

[农学]8植物生理学课件 第七章 植物生长物质和细胞信号转导

[农学]8植物生理学课件 第七章 植物生长物质和细胞信号转导

人工合成的细胞分裂素
人工合成的细胞分裂素,常用的有: 激动素(KN) 、 6-苄基腺嘌呤(6-BA) 、 四氢吡喃苄基腺嘌呤(PBA)。
二苯脲不具腺嘌呤的结构,但具有细 胞分裂素的生理功能。
细胞分裂素的分布和运输
• 细胞分裂素主要存在于可进行细胞分裂 的部位,如茎尖、根尖、未成熟的种子、 萌发的种子和生长着的果实等。
1. 促进麦芽糖化(应用于啤酒生产) 2. 促进营养器官(茎、叶)生长 3. 促进抽苔和开花 4. 打破芽及种子的休眠 5. 促进雄花分化 6. 诱导单性结实 7. 防止花果脱落
细胞分裂素类
• 把激动素以及具有与激动素相同生理活 性的天然的和人工合成的化合物,都称 为细胞分裂素(cytokinin, CTK)。
生长素的运输
• 在茎中,生长素极性运输(polar transport) 是指生长素只能从植物的形态学上端向 下端运输,而不能倒转运输。主要是通 过薄壁细胞间进行。
• 生长素的极性运输是主要的运输方式。
• 在根中,根尖生成的生长素向顶运输。
• 成熟叶片合成的生长素可通过韧皮部进 行非极性运输,即可向上或向下运输到 其他器官或组织中。
吲哚乙酸(indole acid , IAA)是最早发现的生长 素(auxin)。
生长素类物质:把吲哚乙酸以及具有与吲哚乙 酸同样生理作用的化合物称为生长素类物质。
天然存在的生长素类物质
• 吲哚乙酸(IAA) • 吲哚丁酸(I BA) • 苯乙酸 • 4-氯吲哚乙酸 • 苯乙酸胺 • 对羟基苯乙酸 • 吲哚乙腈
2、GA诱导一些酶 (如α-淀粉酶、蛋白酶、 核糖核酸酶、β-1,3-葡萄糖苷酶)的合成。
大麦种子在萌发时,贮藏在胚中的束缚型
GA解离出游离的 GA(也有新合成的GA ),通过 胚乳扩散到糊粉层,并诱导糊粉层细胞合成ɑ-淀 粉酶和蛋白酶等水解酶,这些水解酶扩散到胚乳

植物生理学第七章 植物体内细胞信号转导

植物生理学第七章 植物体内细胞信号转导

土壤干旱
ABA
ABA受体
Ca2+
(胞外刺激)
等信号分子
初级信使
胞间化 学信号
膜上信 号转换
第二信使
• 二、受体在信号转导中的作用
• 受体:位于细胞的质膜或细胞内,能感受到胞外信

号的蛋白质分子。
• 配体:能与受体发生特异性结合的物质。
• 1. 受体特点:组成型表达。 • 2. 受体与配体结合特点 • ⑴ 特异性 • ⑵ 高亲和力 • ⑶ 可逆性
吉尔曼
Alfred G. Gilman 美国
得克萨斯大学西南医 学中心 1941年--
罗德贝尔
Martin Rodbell 美国 国立环境卫生研究所 1925年--1998年
2、小G蛋白(小GTPase)
类似G蛋白的亚基,结合在质膜朝向胞质溶 胶的一侧。受上游的鸟嘌呤核苷酸交换因子的活化, 并将信号传递给下游组分。结合GTP后活化,成为 植物信号网络中重要的分子开关。目前未发现小G 蛋白参与跨膜的信号转换。参与细胞骨架的运动、 细胞扩大、根毛发育和细胞极性生长的信号转导。
结构模式图及其激活机制
(B) (A)
⑴ CaM 的作用机制 第一,直接与靶酶结合,诱导靶酶的活性构
象,从而调节靶酶的活性。 第二,与Ca2+结合,形成活化态的Ca2+·CaM复合
体,然后再与靶酶结合,将靶酶激活。 ⑵ CaM 的活性调节
① 调幅机制
② 调敏机制
⒋ Ca2+·CaM复合体的靶酶 Ca2+- ATP 酶, Ca2+通道, NAD激酶 , 多种蛋白激酶等。
参与蕨类植物的孢子发芽,细胞有丝分裂、原 生质流动、植物激素的活性、向性、调节蛋白质磷 酸化,最终调节细胞的生长发育。

植物生理学第七章:植物体内细胞信号转导

植物生理学第七章:植物体内细胞信号转导
跨膜信号转换通过细胞表面的受体与配 体结合来实现。这里着重介绍通过G蛋白 连接受体发生的跨膜信号转换。
植物生理学教研室
细胞信号转导
• G 蛋 白 全 称 为 GTP 结 合 调 节 蛋 白 (GTP binding regulatory protein),此类蛋白由 于其生理活性有赖于三磷酸鸟苷(GTP)的 结合以及具有GTP水解酶的活性而得名。 20世纪70年代初在动物细胞中发现了G蛋 白的存在,进华而南农业证大学明植物了生理G教研蛋室 白是细胞膜受 体与其所调节的相应生理过程之间的主 要信号转导者。
植物生理学教研室
细胞信号转导
华南农业大学植物生理教研室 植物生理学教研室
细胞信号转导
第一节 信号与受体结合
一、信号(理解)
• 信号是信息的物质体现形式和物理过程。 • 刺激就是信号 华南农业大学植物生理教研室 • 化学信号和物理信号,化学信号也称为配体 • 胞内信号和胞间信号 • 植物通过接受环境刺激信号而获得外界环境的
细胞信号转导
第七章 细胞信号转导
• 植物细胞信号转导: 是指细胞耦联 各种刺激信号(包括各种内外源刺 激信号)与华南其农业大引学植物起生理特教研室定生理效应之 间的一系列分子反应机制。
植物生理学教研室
细胞信号转导
分为4个步骤: 1、信号分子与细胞表面受体结合 2、跨膜信号转换 3、在细胞内华南通农业大过学植物信生理教号研室 转导网络进 行信号传递、放大与整合 4、导致生理生化变化
细胞信号转导
二、受体在信号转导中的作用(理解)
➢ 受体(receptor)是存在于细胞表面或亚细胞组分中 的天然分子,可特异地识别并结合化学信号物 质——配体,并在细胞内放大、传递信号,启动 一系列生化反应,最终导致特定的细胞反应。

植物生理学:第七章 细胞信号转导

植物生理学:第七章 细胞信号转导
胞外的信号经过跨 膜转换进入细胞后, 通常产生第二信使 并通过相应的胞内 信使系统将信号级 联放大,引起细胞 最终的生理反应。
目前植物中普遍接受的胞内第二信使系统主要有:钙 信使系统和肌醇磷脂信使系统。
对于动物中研究较为透彻的环核苷酸信使系统是否同 样存在于植物以及其在植物中存在的普遍性,尽管目前尚 有争议,但已有一部分报道在拟南芥等植物中存在并参与 了植物气孔运动、光诱导叶绿体花色素的合成等信号转导 过程。
细胞表面受体 细胞内受系统)
细胞受体的特征 (1)特异性; (2)高亲和力; (3)可逆性。
受体与配体的结合是一种分子识别 过程,靠氢键、离子键与范德华力 的作用,配体与受体分子空间结构 的互补性是特异性结合的主要因素。
在植物感受各种外界刺激的信号转导过程中,受体的功 能主要表现在两个方面:
一、Ca2+/CaM在信号转导中的作用
钙信使系统是植物细胞中重要的也是研究最多的胞内信使系统。
胞内钙梯度的存在是Ca2+信号产生的基础。正常情况下 植物细胞质中游离的静息态Ca2+水平为10-7 ~10-6 mol/L左右, 而液泡的游离钙离子水平在10-3mol/L左右,内质网中钙离子 浓度在10-6mol/L,细胞壁中的钙离子浓度也高达10-5-103mol/L。因而细胞壁等质外体作为胞外钙库,内质网、线粒 体和液泡作为胞内钙库。静止状态下这些梯度的分布是相对 稳定的,当受到刺激时,钙离子跨膜运转调节细胞内的钙稳 态(calcium homeostasis),从而产生钙信号。
Ca2+ ‧ CaM的下游靶酶包括质膜上的Ca2+-ATP酶、Ca2+通 道、NAD激酶、多种蛋白激酶等。这些酶被激活后,参与 蕨类植物的孢子发芽、细胞有丝分裂、原生质流动、植物激 素的活性、向性、调节蛋白质磷酸化,最终调节细胞生长发 育。

植物生理学习题大全——第7章细胞信号转导

植物生理学习题大全——第7章细胞信号转导

第七章细胞信号转导一. 名词解释细胞信号转导(siginal transduction):指细胞偶联各种刺激信号与其引起的特定生理效应之间的一些列分子反应机制。

信号(signal):对植物来讲,环境就是刺激,就是信号。

配体(ligand):激素、病原因子等化学信号,称为配体。

受体(receptor):能够特异地识别并结合信号、在细胞内放大和传递信号的物质。

细胞表面受体(cell surface receptor):位于细胞表面的受体。

细胞内受体(intracellular receptor):位于亚细胞组分如细胞核、内质网以及液泡膜上的受体。

跨膜信号转换(transmembrance transduction):信号与细胞表面的受体结合后,通过受体将信号传递进入细胞内的过程。

受体激酶:位于细胞表面的一类具有激酶性质的受体。

第二信使(second messengers):将作用于细胞膜的信息传递到细胞内,使之产生生理效应的细胞内信使。

级联反应(cascade):在连锁的酶促反应中,前一反应的产物是后一反应的催化剂,每进行一次修饰反应,就使调节信号产生一次放大作用。

蛋白激酶(protein kinase,PK):一类催化蛋白质磷酸化反应的酶。

第一信使(first messenger):能引起胞内信号的胞间信号和环境刺激,亦称为初级信使。

蛋白质磷酸化作用(protein phosphorylation):是指由蛋白激酶催化把磷酸基转移到底物蛋白质氨基酸残基的过程。

双信使系统(double messenger system):胞外刺激使PIP2转化为IP3和DAG两个第二信使,引发IP3/Ca2+和DAG/PKC两条信号转导途径,在细胞内沿两个方向传递,这样的信号系统称之为双信使系统。

二. 缩写符号HK:组氨酸激酶RR:应答调控蛋白RLK:类受体蛋白激酶CaM:钙调蛋白CDPK:钙依赖型蛋白激酶PIP2:4,5-二磷酸磷脂酰肌醇PIP:4-二磷酸磷脂酰肌醇PLC:磷脂酶C IP3:三磷酸肌醇DAG:二酰甘油PKC:蛋白激酶C PK:蛋白激酶PP:蛋白磷酸酶三. 简答题1. 细胞接收胞外信号进行信号转导的步骤。

植物生理学 第7章 信号转导

植物生理学 第7章 信号转导

例子:乙烯的受体
⑴ 信号分子与细胞表面受体的结合; ⑵ 跨膜信号转换; ⑶ 在细胞内通过信号转导网络进行信号传递、 放大与整合; ⑷ 导致生理生化变化。
• 胞外信号
细胞内信号(第二信使)
第二信使(second messengers) Ca2+ IP3 DAG cAMP cGMP H+
抗坏血酸 谷光甘肽 过氧化氢
细胞信号转导
遗 传 信 息 :决定个体发育的基本潜在式。
环境信息:
对遗传信息的表达起着重要的调节作用。
环境条件的变化或来自环境的刺激统称为信号。 植物通过接受环境刺激信号(如激素、机械刺激、 温度、光照、触摸、病原因子、水分等及体内其 它细胞传来的信号)而获得外界环境的信息。
重力
g.1 各种 外 信号影响植 的生长发育
费希尔 Edmond H. Fischer 美国 华盛顿大学 1920年--
克雷布斯 Edwin G. Krebs 美国 华盛顿大学 1918年--
1992年诺贝尔生理学或医学奖 发现可逆性蛋白磷酸化是一种生物的调节机制
细胞内第二信使往往通过调节多种蛋白激酶(PK) 和蛋白磷酸酶(PP),从而调节蛋白质的磷酸化和 脱磷酸化过程,进一步传递信号。
P P P P P
G蛋白关 联受体
亚基
GTP
P
蛋白 激酶C
G蛋白亚基
PIP2
IP3
Ca2+
Ca2+通道开放
内质网
内质网腔
蛋白质激酶C激活的信号传递途径
⑴ 信号分子与细胞表面受体的结合; ⑵ 跨膜信号转换; ⑶ 在细胞内通过信号转导网络进行信号传递、 放大与整合; ⑷ 导致生理生化变化。
• 胞外信号

植物生理学:第七章 细胞信号转导

植物生理学:第七章 细胞信号转导

G蛋白下游的靶效应器很多,包括磷酯酶C(PLC)、 磷酯酶D(PLD)、磷酯酶A2(PLA2)、磷酯酰肌醇3激 酶(PI3K)、腺苷酸环化酶、离子通道等。
通常认为,G蛋白参与的跨膜转换信号方式主要是α亚 基调节,而βγ亚基的功能主要是对G蛋白功能的调节和修饰, 或把G蛋白锚定在细胞膜上。随着研究的深入,越来越多的 证据表明,G蛋白被受体激活后βγ亚基游离出来也可以直接 激活胞内的效应酶。有些甚至是α亚基和βγ亚基复合体协同 调节。在目前所知道的8种不同的腺苷酸环化酶(AC)同工 酶中,AC1通过α亚基激活,AC2、AC4、AC7则直接被βγ 亚基激活,但需要α亚基存在,两种协同起作用。
信号的主要功能:在细胞内和细胞间传递生物信息,当植 物体感受信号分子所携带的信息后,或引起跨膜的离子流动, 或引起相应基因的表达,或引起相应酶活性的改变等,最终 导致细胞和生物体特异的生理反应。
外部信号对 拟南芥植株 生长和发育 的影响
二、受体(receptor)在信号转导中的作用
受体(指能够特 异地识别并结合 信号、在细胞内 放大和传递信号 的物质)
一、G蛋白参与的跨膜信号转换
是细胞跨膜转换信号的主要方式。G蛋白 即GTP结合蛋白(GTP binding protein),是细胞内一类具有重要生理调节功能的蛋白质。G蛋 白可以和三磷酸鸟苷(GTP)结合,并具有GTP水解酶的活性。在所有 的G蛋白中只有两种类型G蛋白参与细胞信号传递:小G蛋白和异三聚体 G蛋白。小G蛋白是一类只含有一个亚基的单聚体G蛋白,它们分别参与 细胞生长与分化、细胞骨架、膜囊泡与蛋白质运输的调节过程。
在细胞跨膜信号转导中起主要作用的是异三聚体G蛋白(heterotrimeric G-proteins,也被称作大G蛋白)。常把异三聚体G蛋白简称为G蛋白。

植物体内的细胞信号转导-植物生理

植物体内的细胞信号转导-植物生理

第七章植物体内的细胞信号转导生长发育是基因在一定时间、空间上顺序表达的过程,而基因的表达则受周围环境的调控。

动物通过神经和内分泌系统调节自身,适应环境,而植物没有这两个系统,它是通过精确、完善的信号转导系统来调节8身,适应环境。

植物细胞信号转导(signal transduction)主要研究植物感受、传导环境刺激的分子途径及其在植物发育过程中调控基因的表达和生理生化反应。

信号传导包括信号、受体、信号转导网络和反应等环节。

图7-l是细胞信号转导的主要分子途径模式图。

各种各样的信号通过受体输入之后,细胞内的各种转导途径如同电脑的集成块那样,纵横交错,复杂而有序,经过分析、整理,最终输出命令,调节细胞的生理生化反应。

当然,有生命的活体细胞的信号转导系统远比电脑系统复杂得多。

第一节环境刺激和胞外信号一信号信号(Signal 信息的物质体现形式和物理过程。

简单地说,刺激就是信号。

植物通过接受环境刺激信号而获得外界环境的信息。

植物在生长和发育过程中,时刻处于大量外界环境信号,如机械刺激、温度、光照、气体、重力、触摸、病原因子、伤害、水分等的刺激之下,同时还面对体内其他细胞传来的信号,如生长调节剂、多肽、糖、代谢物、甾体、细胞壁片段、与膨压有关的细胞壁二、胞间信号当环境刺激作用于植物体的不同部位时,会发生细胞间的信号传递。

胞间信号包括物理信号(电信号)和化学信号(激素、寡聚糖等)。

在研究胞间物理信号方面,娄成后认为,植物受到外界刺激时可产生电波,通过维管束、共质体和外质体快速传递信息。

研究表明,细胞动作电位的产生与质膜上的离子流动有关。

土壤干旱时,植物根尖合成脱落酸(ABA),通过导管向上运到叶片保卫细胞,引起保卫细胞内的胞质Ca2+等一系列信号转导,产生生理、生化反应,最后使气孔关闭。

详细信号转导过程见第八章。

在上述生理反应中,土壤干旱(胞外刺激)是信号转导过程中的初级信使(primary messenger),ABA是胞间的化学信号,保卫细胞内的胞质Ca2+等传递胞外信号的一系列信号分子就是第二信使(second messenger)。

植物生理学第七章 细胞信号转导

植物生理学第七章 细胞信号转导

第二信使:Ca 2+
cAMP cGMP IP3 H+ 某些氧化还原剂:抗坏血酸、谷胱甘
肽、H2O2
一、Ca 2+/CaM在信号转导中 的 作用 2+浓度≤0.1µmol/L 静态胞质Ca 而细胞壁、内质网、液泡中Ca 2+ 浓度比胞质中高2-3个数量级。 2+浓度 细胞刺激后胞质内Ca 短暂明显升高或区域梯度变化。 2+与CaM等结合而起作用 Ca
第七章
细胞信号转导
生长发育是基因在一定时间、空间上顺序表
达的过程,除受遗传因素支配外,还受周围环境 的调控。
植物细胞信号转导是指细胞耦联各种刺激信号与
其引起的特定生理效应之间的一系列分子反应机 制。
4个步骤:1、信号分子与细胞表面受体结合
2、跨膜信号转换 3、细胞内信号转导网络进行信号的 传递、放大、整合 4、导致生理生化变化 图7-1
细胞壁——胞外钙库 质膜上Ca 2+ 通道控制Ca 2+内流 质膜上Ca 2+泵负责胞内的Ca 2+泵出 胞外 胞内钙库(液泡、内质网、线粒体): 膜上存在着Ca 2+通道(外流) Ca 2+泵和Ca 2+/nH+反向运输体(泵 入) 图7-4
钙调蛋白:耐热球蛋白,有148个氨基 酸单链多肽 CaM两种作用方式: 1、可以直接与靶酶结合,诱导构 象变化和调节靶酶的活性 2、与Ca 2+结合,形成活化态的 Ca 2+· CaM复合体,再与靶酶结合,将 靶酶激活 CaM的三维结构:哑铃型,长650nm 图7-5
氨酸激酶、酪氨酸激酶和组氨酸激酶
1、钙依赖型PK酶(CDPK)属丝氨酸/ 苏氨酸激酶 图7-8
2、类受体蛋白激酶(RLK) 植物中RLK大多属于丝氨酸/苏 氨酸激酶 由胞外结构区、跨膜螺旋区 、 胞内蛋白激酶催化区三个部分组成 根据胞外结构区不同,将RLK 分为三类:含S结构域的RLK、含 富亮氨酸重复的RLK、类表皮生长 因子重复的RLK

(完整版)植物生理学习题大全——第7章细胞信号转导

(完整版)植物生理学习题大全——第7章细胞信号转导

第七章细胞信号转导一. 名词解释细胞信号转导(siginal transduction):指细胞偶联各种刺激信号与其引起的特定生理效应之间的一些列分子反应机制。

信号(signal):对植物来讲,环境就是刺激,就是信号。

配体(ligand):激素、病原因子等化学信号,称为配体。

受体(receptor):能够特异地识别并结合信号、在细胞内放大和传递信号的物质。

细胞表面受体(cell surface receptor):位于细胞表面的受体。

细胞内受体(intracellular receptor):位于亚细胞组分如细胞核、内质网以及液泡膜上的受体。

跨膜信号转换(transmembrance transduction):信号与细胞表面的受体结合后,通过受体将信号传递进入细胞内的过程。

受体激酶:位于细胞表面的一类具有激酶性质的受体。

第二信使(second messengers):将作用于细胞膜的信息传递到细胞内,使之产生生理效应的细胞内信使。

级联反应(cascade):在连锁的酶促反应中,前一反应的产物是后一反应的催化剂,每进行一次修饰反应,就使调节信号产生一次放大作用。

蛋白激酶(protein kinase,PK):一类催化蛋白质磷酸化反应的酶。

第一信使(first messenger):能引起胞内信号的胞间信号和环境刺激,亦称为初级信使。

蛋白质磷酸化作用(protein phosphorylation):是指由蛋白激酶催化把磷酸基转移到底物蛋白质氨基酸残基的过程。

双信使系统(double messenger system):胞外刺激使PIP2转化为IP3和DAG两个第二信使,引发IP3/Ca2+和DAG/PKC两条信号转导途径,在细胞内沿两个方向传递,这样的信号系统称之为双信使系统。

二. 缩写符号HK:组氨酸激酶RR:应答调控蛋白RLK:类受体蛋白激酶CaM:钙调蛋白CDPK:钙依赖型蛋白激酶PIP2:4,5-二磷酸磷脂酰肌醇PIP:4-二磷酸磷脂酰肌醇PLC:磷脂酶C IP3:三磷酸肌醇DAG:二酰甘油PKC:蛋白激酶C PK:蛋白激酶PP:蛋白磷酸酶三. 简答题1. 细胞接收胞外信号进行信号转导的步骤。

第七章植物细胞的信号转导

第七章植物细胞的信号转导

第七章植物细胞的信号转导1信号转导:受体细胞通过受体接收胞外信号,将胞外信号转变为胞内信号,并经一系列胞内信号转导途径的传导和放大,控制相关基因表达和引起特定的生理生化反应,这种从细胞受体感受胞外信号,到引起特定生理生化反应的一系列信号转换过程和反应机制称为信号转导。

2化学信号:指细胞感受刺激后合成并传递到作用部位引起生理生化反应的化学物质。

3物理信号:指细胞感受到刺激后产生的能够起传递信息作用的电信号和水力学信号等物理性因子。

4第二信使:是指细胞感受胞外环境信号和胞间信号后产生的具有生理调节活性的胞内信号分子,都是小分子物质。

植物中的第二信使主要有cAMP、钙离子、NO、DAG和IP3等。

5受体:存在于细胞表面或细胞内部,能感受信号或与信号分子特异性结合,并引起特定的生理生化反应的生物大分子。

6细胞表面受体:指存在于细胞质膜上的受体,也称膜受体。

通常由与配基相互作用的细胞外结构域、将受体固定在细胞膜上的跨膜结构域和起传递信号作用的胞内结构域3部分组成。

细胞表面受体通常是跨膜蛋白质,大多数信号分子不能过膜,通过与细胞表面受体结合,经跨膜信号转换将胞外信号传至胞内。

7细胞内受体:指存在于细胞质中或亚细胞组分(细胞核、液泡膜等)上的受体。

胞内受体识别和结合的是能够穿过细胞质膜的信号分子。

8配基:指与受体特异结合的化学信号分子。

9钙指纹:指能被细胞识别的、由某种刺激产生的、具有特异性时空变化的钙信息。

10G蛋白:是细胞内一类具有重要生理调节功能的蛋白质,参与细胞信号转导过程的G蛋白主要有小G蛋白和异三聚体G蛋白,其中三聚体G蛋白由β、α、ϒ3个不同亚基构成。

11双信使系统:指肌醇磷脂信号系统。

胞外信号被膜受体接受后以G蛋白为中介,由质膜中的磷脂酶C水解肌醇磷脂,产生两个胞内信号分子:三磷酸肌醇(IP3)和二脂酰甘油(DAG),分别激活两个信号传递途径:IP3-Ca2+和DAG-PKC途径,因此把这一信号系统称为双信号系统。

第七章植物细胞的信号转导

第七章植物细胞的信号转导

1信号转导:受体细胞通过受体接收胞外信号,将胞外信号转变为胞内信号,并经一系列胞内信号转导途径的传导和放大,控制相关基因表达和引起特定的生理生化反应,这种从细胞受体感受胞外信号,到引起特定生理生化反应的一系列信号转换过程和反应机制称为信号转导。

2化学信号:指细胞感受刺激后合成并传递到作用部位引起生理生化反应的化学物质。

3物理信号:指细胞感受到刺激后产生的能够起传递信息作用的电信号和水力学信号等物理性因子。

4第二信使:是指细胞感受胞外环境信号和胞间信号后产生的具有生理调节活性的胞内信号分子,都是小分子物质。

植物中的第二信使主要有cAMP、钙离子、NO、DAG和IP3等。

5受体:存在于细胞表面或细胞内部,能感受信号或与信号分子特异性结合,并引起特定的生理生化反应的生物大分子。

6细胞表面受体:指存在于细胞质膜上的受体,也称膜受体。

通常由与配基相互作用的细胞外结构域、将受体固定在细胞膜上的跨膜结构域和起传递信号作用的胞内结构域3部分组成。

细胞表面受体通常是跨膜蛋白质,大多数信号分子不能过膜,通过与细胞表面受体结合,经跨膜信号转换将胞外信号传至胞内。

7细胞内受体:指存在于细胞质中或亚细胞组分(细胞核、液泡膜等)上的受体。

胞内受体识别和结合的是能够穿过细胞质膜的信号分子。

8配基:指与受体特异结合的化学信号分子。

9钙指纹:指能被细胞识别的、由某种刺激产生的、具有特异性时空变化的钙信息。

10G蛋白:是细胞内一类具有重要生理调节功能的蛋白质,参与细胞信号转导过程的G蛋白主要有小G蛋白和异三聚体G蛋白,其中三聚体G蛋白由β、α、ϒ3个不同亚基构成。

11双信使系统:指肌醇磷脂信号系统。

胞外信号被膜受体接受后以G蛋白为中介,由质膜中的磷脂酶C水解肌醇磷脂,产生两个胞内信号分子:三磷酸肌醇(IP3)和二脂酰甘油(DAG),分别激活两个信号传递途径:IP3-Ca2+和DAG-PKC途径,因此把这一信号系统称为双信号系统。

12激发子:指由病原体产生,并能够激发或诱导植物寄主产生防御反应的因子。

植物生理学-第七章 细胞信号转导

植物生理学-第七章 细胞信号转导

RTKs的失敏:
催化性受体的效应器位于受体本身,因此失敏即酶活性速发抑制。 机制:受体的磷酸化修饰。EGF受体Thr654的磷酸化导致RTK活性的 抑制,如果该位点产生Ala突变,则阻止活性抑制,后又发现C 端的Ser1046/7也是磷酸化位点。磷酸化位点所在的C端恰好是 SH2蛋白的结合部位。
激活。CaM与Ca2+有很高的亲和力,一个CaM分子可与4个Ca2+结合。
Ca2+ CaM的靶酶
激素激活的基因调控蛋白(胞内受体超家族)
细胞表面受体: 为胞外亲水性信号分子所激活
细胞表面受体分属三大家族:
离子通道偶联的受体(ion-channel-linked receptor) G-蛋白偶联的受体(G-protein-linked receptor) 酶偶连的受体(enzyme-linked receptor)
红光刺激后大麦叶肉原生质体的钙离子浓度变化
钙调素(CaM)
耐热的球蛋白,等电点4.0, 分子量约为16.7 kD。它是具有148个氨 基酸的单链多肽。
作用方式: 直接与靶酶结合,诱导靶酶的活性构象,而调节靶酶的活性 与Ca2+结合,形成活化态的Ca2+ CaM复合体,然后再与靶酶结合将靶酶
●细胞信号传递的基本特征:
具有收敛(convergence)或发散(divergence)的特点
细胞的信号传导既具有专一性又有作用机制的相似性
信号的放大作用和信号所启动的作用的终止并存 细胞以不同的方式产生对信号的适应(失敏与减量调节)
●蛋白激酶的网络整合信息与信号网络系统中的cross talk
跨膜信号转导无需中间步骤 主要存在于神经细胞或其他可兴奋细胞间的突触信号传递 有选择性:配体的特异性选择和运输离子的选择性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 二元组分系统的夸膜信号转换途径:细胞感 受到外界刺激后,信号与位于质膜表面的组
氨酸蛋白激酶结合,激酶的组氨酸残基发生
磷酸化,并且将磷酸基团传递给下游的反应
调节蛋白。反应调节蛋白具有两个部分,一
是接受磷酸基团的部分,另一部分为信号输
出部分。将信号传递给下游的组分,通常是 转录因子,调控基因的表达。
• 第七章 植物细胞信号转导 • (由于细胞生物学正在上,不
讲)
第七章 植物细胞信号转导
• 信号转导(signal transduction):指植物细胞偶联各种刺激 信号(包括内外源刺激信号)与其引起的特定生理效应 之间的一系列分子反应机制(理)。
• 信号转导可以分为4个步骤: • 1、信号分子与细胞表面受体结合; • 2、跨膜信号转换; • 3、细胞内通过信号转导网络进行信号传递、放大与整合; • 4、导致生理生化变化。 • (p157,图7-1)
合拢。 信号→ 受体→ 反应 手触摸含羞草后小叶合拢。
手触摸就是刺激(信号),小 叶合拢就是反应。偶联刺激到 反应之间的生化和分子途径就 是这个反应的信号转导途径 ( signaling pathway)。 • 一般认为,植物激素是植物体主要化学信号。
• 如当植物根系受到水分亏缺胁迫时,根系迅速合成ABA,向上运
3、受体的种类
1)细胞表面受体(cell surface receptor):存在于细胞表面的
受体。 • 在大多数情况下,信号分子与细胞表面受体结合,经过跨膜
信号转换,将细胞外信号传入细胞内再通过信号转导网络 (第二信使)传递和放大信号。如CTK
2)细胞内受体:存在于亚细胞组分(如细胞核、液泡膜等) 上的受体就是细胞内受体。如
• 生长(growth):植物体积的增大,它是通过细胞分裂和伸长 来完成的。
• 发育(development):在整个生活史上,植物体的构造和机 能从简单到复杂的变化过程,它的表现就是细胞、组织和器 官的分化(differentiation)。
• 形态建成(morphogenesis):在植物的发育过程中,由于不 同细胞逐渐向不同方向分化,从而形成了具有各种特殊构造 和机能的细胞、组织和器官,这个过程就称为形态建成。
第二信使:
• 胞外信号跨膜转换以后,进入细胞,再通过 第二 信使进一步传递和放大,最终引起细胞反应。
• 第二信使:由胞外刺激信号激活或抑制的、具有 生理调节活性的细胞内因子被称为第二信使。
• 现已发现了一系列第二信使: 如Ca2+ 、cAMP、 cGMP 、H+ 、Vc、H2O2、谷光甘肽、三磷酸肌 醇(IP3)、二酯酰甘油(DAG)等。其中对Ca2+ 的研究最为深入。
• 1)定义:
• 又称钙调节蛋白,是广泛存在于所有真核生 物中的一种钙依赖性的,具有调节细胞内多 种重要酶活性和细胞功能的小分子量的耐热 的球状蛋白。简称CaM。
——化学信号也称为配体(ligand)。 • 信号的位置有所差异,可以分为:
胞外(胞间)信号和胞内信号 • 当环境刺激作用于植物体的不同部位时,会发
生细胞间的信号传递。
信号进入细胞后,最终引起生理生化和形态变化例如:
• 电波是植物体内进行信号传递的物理信号。
• 如含羞草受到机械振动,立即产生电信号传递到小叶,引起小叶
膜上Ca2+通道控制Ca2+内流,而质膜上的 Ca2+泵负责将胞内Ca2+泵出细胞。 2)胞内钙库:如液泡、内质网、线粒体的 膜上存在Ca2+通道、 Ca2+泵和Ca2+ /nH+反 向运输体,前者控制Ca2+外流,后两者将 胞质的Ca2+积累在胞内钙库 。
• P162,图7-5
3、钙调素(calmodulin,CaM)
类受体蛋白激酶
• 受体本身是一种酶蛋白,当细胞外区域 与配体结合时,可激活酶,通过细胞内 侧酶的反应传递信号。
第二节 跨膜信号转换
• 指信号与细胞表面的受体结合之后,通过受体将信号转导进入细 胞内的过程。 G蛋白的活化和非活化循环是跨膜信号转换的 分子开关其将膜外信号转换为膜内信号并放大。
P160 Figure 7-3
• 一些信号,如甾类小分子,不经过跨膜信号转换,直接扩散 进入细胞,与细胞内受体结合,进一步传递和放大。
植物细胞表面受体已发现有2种
• 1) G蛋白连接受体
• 2)类受体蛋白激酶
G蛋白连接受体
• 受体蛋白的氨基端位于细胞外侧,羧基位 于内侧,一条单肽链形成几个(多数情况 下是7个)跨膜α螺旋的结构。羧基端具有 与G蛋白相互作用的区域,受体活化后直 接将G蛋白激活,进行跨膜信号转换。
第三节 细胞内信号转导形成网络
• 由于植物移动性不如动物,植物在长期进化过程中就发 展起一套完善的信号系统,以适应环境的变化,更好的 生存。
• 在植物生长发育的某一阶段,常常是多种刺激同时作用。 • 这样,在植物体内和细胞内,复杂、多样的信号系统之
间存在着相互作用,形成信号转导网络,也有人将这种 相互作用称为“交谈”(cross talk)。 • 初级信号:胞外信号。---→第一信使 • 次级信号:胞内信号。---→第二信使
p157,图7-1
第一节 信号与受体结合
• 一、信号(signal) • 1、定义 • 信号——是信息的物质体现形式和物理过程。 • 对植物来说,环境变化就是刺激,就是信号。植物
通过接受环境刺激信号而获得外界环境的信息。
2、种类
• 物理信号(如:光、电信号) • 化学信号(如:激素、病原因子等)
一、 Ca2+/CaM在信号转导中的作用ห้องสมุดไป่ตู้
• 1、细胞中Ca2+区域差异
• 细胞受刺激后,胞质Ca2+浓度有一个短暂 地明显升高,或在细胞内的梯度分布和区 域分布发生变化,胞质中的Ca2+继而与钙 结合蛋白如钙调素(CaM)或钙依赖型蛋 白激酶(CDPK)等结合而起作用。
2、钙库
• Ca2+的跨膜转运调节细胞内的钙稳态。 1)细胞外钙库:细胞壁是细胞外钙库,质
送到保卫细胞,引起气孔关闭。
P158,Figure 7-2
二、受体在信号转导中的作用
• 1、受体(receptor): 指可特异地识别并结合信号、在细胞
内放大和传递信号的物质。 细胞受体接受信号后启动一系列生化
反应,最终导致特定的细胞反应。
2、受体的特征
• 特异性 • 高亲合力 • 可逆性
• 至今发现的受体大多是蛋白质。
相关文档
最新文档