植物生理学:第七章 细胞信号转导

合集下载

植物生理学试题集与题解

植物生理学试题集与题解

植物生理学试题集与题解第七章细胞信号转导三、名词解释1.信号转导:主要研究植物感受、传导环境刺激的分子途径及其在植物发育过程中调控基因的表达和生理生化反应。

2.受体:受体是存在于细胞表面或亚细胞组分中的天然分子,可特异地识别并结合化学信号物质——配体,并在细胞内放大、传递信号,启动一系列生化反应,最终导致特定的细胞反应。

四、是非题(对的打“√”,错的打“×”)(True or false)1、土壤干旱时,植物根尖合成ABA引起保卫细胞内的胞质钙离子等一系列信号转导,其中ABA是第二信使。

()2、植物细胞中不具有G 蛋白连接受体。

()3、G 蛋白具有放大信号作用。

()4、受刺激后胞质的钙离子浓度会出现短暂的、明显的下降。

()5、少数植物具有双信使系统。

()6、钙调素是一种不耐热的球蛋白。

()7、蛋白质的可逆磷酸化是生物体内一种普遍的翻译后修饰方式。

()8、植物细胞壁中的CaM促进细胞增殖、花粉管萌发和细胞长壁。

()1、×2、×3、√4、×5、√6、×7、√8、√六、填空题(Put the best word in the blanks)1、信号传导的过程包括___信号分子与细胞表面受体结合___、__跨膜信号转换_____、____胞内信号转导网络的信号传递______和生理生化变化等 4 个步骤。

2、__信号____是信息的物质体现形式和物理过程。

3、土壤干旱时,植物根尖合成ABA,引起保卫细胞内的胞质钙离子等一系列信号转导,其中_干旱__是信号转导过程的初级信使。

4、膜信号转换通过______细胞表面受体______与____配体_____结合实现。

5、蛋白由__a _、__B __、__r _三种亚基组成。

6、白质磷酸化与脱磷酸化分别由________蛋白激酶____和_____蛋白磷酸酶______催化完成。

7、据胞外结构区的不同,将类受体蛋白激酶分为3 类:1)_ S 受体激酶___,2)___ 富含亮氨酸受体激酶___,3)___类表皮生长因子受体激酶_____。

植物生理学细胞信号转导学时

植物生理学细胞信号转导学时
的具有传递信息功能的物理因子,如电 波、水力学信号(压力势的变化)等。


胞光
信 化学信号:指细胞感受环境刺激后形成
外电 信 号 重力

并且能传递信息引起细胞反应的化学物 质。如,植物激素、植物生长活性物质 (寡聚半乳糖、茉莉酸、水杨酸等)。
病原微生物
污染
化学信号 (配体)
化学物质(激素等)
10
第七章 细胞信号转导
2.胞内信号
第二信使 由细胞感受胞外信号后产生的对细胞代谢起调控 作用的胞内信号分子。
Ca2+、 肌醇-1,4,5-三磷酸 (IP3)、 二酯酰甘油(DAG)、 环腺苷酸(cAMP)、 环鸟苷酸(cGMP)
图 植物细胞内几种主要的第二信使分子结构11
第七章 细胞信号转导
二、受体的概念和类型
1、受体(receptor):指能够特异地识别并结合信号、
识别的信号传递给胞质激酶区,而胞质激酶区能够通过磷酸化作用将信号
传递给下一级信号传递体。
19
第七章 细胞信号转导
植物细胞受到胞外信号刺激,胞内游离的钙离子浓度 会发生变化,并可以显著影响细胞的生理生化反应。
35
第七章 细胞信号转导
Ca2+·CaM复合物可活化的酶(即靶酶)主要有: 存在于细胞质膜的Ca2+-ATP酶 Ca2+通道 NAD激酶 多种蛋白激酶等
蛋白质可逆磷酸化是指蛋 白质的磷酸化与去磷酸化 作用,分别由蛋白激酶和 蛋白磷酸酶催化完成。
蛋白质的磷酸化与去磷酸 化作用在细胞信号转导中 有级联放大信号的作用。
43
信号的级联放大
第七章 细胞信号转导
蛋白质的磷酸化和 去磷酸化在细胞信号转 导过程中具有级联放大 信号的作用。

植物生理学:第7章 细胞信号转导

植物生理学:第7章  细胞信号转导
•Gilman和Rodbell因发现G蛋白获得1994年诺贝尔 医学生理学奖。
•G蛋白在高等植物中普遍存在,而且初步证明了G 蛋白在光、激素等因子对气孔运动、细胞跨膜离 子运输等细胞信号转导中有重要作用。
G蛋白一般分为两大类:
一类为大G蛋白,由三种不同亚基()构成的 三聚体G蛋白(heterotrimeric G-protein),其 亚基含有与GTP结合的活性位点,并具有GTP酶 活性。
细胞外
质膜
细胞内
G蛋白连
接受体





Ca2+/ CaM;IP3/DAG
蛋白可逆磷酸化
细胞 反应

二元组 分系统
信号输入 跨膜信号转换 胞内信号转导网络 信号输出
信号转导的模式
7.2.1 G蛋白与跨膜信号转导
•G 蛋 白 又 称 GTP 结 合 调 节 蛋 白 ( GTP binding regulatory protein)。
环核苷酸信号系统
钙信号系统
磷脂酰肌醇信号系统
7.3.1 Ca2+/CaM在信号转导中的作用
钙稳态:细胞质中Ca2+浓度小于或等于 0.1umol/l。
受激态:当细胞受到外界刺激时,细胞 质中Ca2+浓度会急剧增加
• 细胞壁是胞外钙库 • 液泡、内质网、 线粒体等是胞内钙库 • 钙库中Ca2+浓度比细胞质中的高2个数

结合以及具有
的活性而得名。
三磷酸鸟苷(GTP),GTP水解酶
质膜中的磷酸脂酶C水解PIP2( 磷脂酰肌
醇-4,5-二磷酸)而产生


两种信号分子。因此,该
系统又称双信号系统。其

植物生理学第七章:植物体内细胞信号转导

植物生理学第七章:植物体内细胞信号转导
跨膜信号转换通过细胞表面的受体与配 体结合来实现。这里着重介绍通过G蛋白 连接受体发生的跨膜信号转换。
植物生理学教研室
细胞信号转导
• G 蛋 白 全 称 为 GTP 结 合 调 节 蛋 白 (GTP binding regulatory protein),此类蛋白由 于其生理活性有赖于三磷酸鸟苷(GTP)的 结合以及具有GTP水解酶的活性而得名。 20世纪70年代初在动物细胞中发现了G蛋 白的存在,进华而南农业证大学明植物了生理G教研蛋室 白是细胞膜受 体与其所调节的相应生理过程之间的主 要信号转导者。
植物生理学教研室
细胞信号转导
华南农业大学植物生理教研室 植物生理学教研室
细胞信号转导
第一节 信号与受体结合
一、信号(理解)
• 信号是信息的物质体现形式和物理过程。 • 刺激就是信号 华南农业大学植物生理教研室 • 化学信号和物理信号,化学信号也称为配体 • 胞内信号和胞间信号 • 植物通过接受环境刺激信号而获得外界环境的
细胞信号转导
第七章 细胞信号转导
• 植物细胞信号转导: 是指细胞耦联 各种刺激信号(包括各种内外源刺 激信号)与华南其农业大引学植物起生理特教研室定生理效应之 间的一系列分子反应机制。
植物生理学教研室
细胞信号转导
分为4个步骤: 1、信号分子与细胞表面受体结合 2、跨膜信号转换 3、在细胞内华南通农业大过学植物信生理教号研室 转导网络进 行信号传递、放大与整合 4、导致生理生化变化
细胞信号转导
二、受体在信号转导中的作用(理解)
➢ 受体(receptor)是存在于细胞表面或亚细胞组分中 的天然分子,可特异地识别并结合化学信号物 质——配体,并在细胞内放大、传递信号,启动 一系列生化反应,最终导致特定的细胞反应。

植物生理学:第七章 细胞信号转导

植物生理学:第七章 细胞信号转导
胞外的信号经过跨 膜转换进入细胞后, 通常产生第二信使 并通过相应的胞内 信使系统将信号级 联放大,引起细胞 最终的生理反应。
目前植物中普遍接受的胞内第二信使系统主要有:钙 信使系统和肌醇磷脂信使系统。
对于动物中研究较为透彻的环核苷酸信使系统是否同 样存在于植物以及其在植物中存在的普遍性,尽管目前尚 有争议,但已有一部分报道在拟南芥等植物中存在并参与 了植物气孔运动、光诱导叶绿体花色素的合成等信号转导 过程。
细胞表面受体 细胞内受系统)
细胞受体的特征 (1)特异性; (2)高亲和力; (3)可逆性。
受体与配体的结合是一种分子识别 过程,靠氢键、离子键与范德华力 的作用,配体与受体分子空间结构 的互补性是特异性结合的主要因素。
在植物感受各种外界刺激的信号转导过程中,受体的功 能主要表现在两个方面:
一、Ca2+/CaM在信号转导中的作用
钙信使系统是植物细胞中重要的也是研究最多的胞内信使系统。
胞内钙梯度的存在是Ca2+信号产生的基础。正常情况下 植物细胞质中游离的静息态Ca2+水平为10-7 ~10-6 mol/L左右, 而液泡的游离钙离子水平在10-3mol/L左右,内质网中钙离子 浓度在10-6mol/L,细胞壁中的钙离子浓度也高达10-5-103mol/L。因而细胞壁等质外体作为胞外钙库,内质网、线粒 体和液泡作为胞内钙库。静止状态下这些梯度的分布是相对 稳定的,当受到刺激时,钙离子跨膜运转调节细胞内的钙稳 态(calcium homeostasis),从而产生钙信号。
Ca2+ ‧ CaM的下游靶酶包括质膜上的Ca2+-ATP酶、Ca2+通 道、NAD激酶、多种蛋白激酶等。这些酶被激活后,参与 蕨类植物的孢子发芽、细胞有丝分裂、原生质流动、植物激 素的活性、向性、调节蛋白质磷酸化,最终调节细胞生长发 育。

植物生理学习题大全——第7章细胞信号转导

植物生理学习题大全——第7章细胞信号转导

第七章细胞信号转导一. 名词解释细胞信号转导(siginal transduction):指细胞偶联各种刺激信号与其引起的特定生理效应之间的一些列分子反应机制。

信号(signal):对植物来讲,环境就是刺激,就是信号。

配体(ligand):激素、病原因子等化学信号,称为配体。

受体(receptor):能够特异地识别并结合信号、在细胞内放大和传递信号的物质。

细胞表面受体(cell surface receptor):位于细胞表面的受体。

细胞内受体(intracellular receptor):位于亚细胞组分如细胞核、内质网以及液泡膜上的受体。

跨膜信号转换(transmembrance transduction):信号与细胞表面的受体结合后,通过受体将信号传递进入细胞内的过程。

受体激酶:位于细胞表面的一类具有激酶性质的受体。

第二信使(second messengers):将作用于细胞膜的信息传递到细胞内,使之产生生理效应的细胞内信使。

级联反应(cascade):在连锁的酶促反应中,前一反应的产物是后一反应的催化剂,每进行一次修饰反应,就使调节信号产生一次放大作用。

蛋白激酶(protein kinase,PK):一类催化蛋白质磷酸化反应的酶。

第一信使(first messenger):能引起胞内信号的胞间信号和环境刺激,亦称为初级信使。

蛋白质磷酸化作用(protein phosphorylation):是指由蛋白激酶催化把磷酸基转移到底物蛋白质氨基酸残基的过程。

双信使系统(double messenger system):胞外刺激使PIP2转化为IP3和DAG两个第二信使,引发IP3/Ca2+和DAG/PKC两条信号转导途径,在细胞内沿两个方向传递,这样的信号系统称之为双信使系统。

二. 缩写符号HK:组氨酸激酶RR:应答调控蛋白RLK:类受体蛋白激酶CaM:钙调蛋白CDPK:钙依赖型蛋白激酶PIP2:4,5-二磷酸磷脂酰肌醇PIP:4-二磷酸磷脂酰肌醇PLC:磷脂酶C IP3:三磷酸肌醇DAG:二酰甘油PKC:蛋白激酶C PK:蛋白激酶PP:蛋白磷酸酶三. 简答题1. 细胞接收胞外信号进行信号转导的步骤。

植物生理学 第7章 信号转导

植物生理学 第7章 信号转导

例子:乙烯的受体
⑴ 信号分子与细胞表面受体的结合; ⑵ 跨膜信号转换; ⑶ 在细胞内通过信号转导网络进行信号传递、 放大与整合; ⑷ 导致生理生化变化。
• 胞外信号
细胞内信号(第二信使)
第二信使(second messengers) Ca2+ IP3 DAG cAMP cGMP H+
抗坏血酸 谷光甘肽 过氧化氢
细胞信号转导
遗 传 信 息 :决定个体发育的基本潜在式。
环境信息:
对遗传信息的表达起着重要的调节作用。
环境条件的变化或来自环境的刺激统称为信号。 植物通过接受环境刺激信号(如激素、机械刺激、 温度、光照、触摸、病原因子、水分等及体内其 它细胞传来的信号)而获得外界环境的信息。
重力
g.1 各种 外 信号影响植 的生长发育
费希尔 Edmond H. Fischer 美国 华盛顿大学 1920年--
克雷布斯 Edwin G. Krebs 美国 华盛顿大学 1918年--
1992年诺贝尔生理学或医学奖 发现可逆性蛋白磷酸化是一种生物的调节机制
细胞内第二信使往往通过调节多种蛋白激酶(PK) 和蛋白磷酸酶(PP),从而调节蛋白质的磷酸化和 脱磷酸化过程,进一步传递信号。
P P P P P
G蛋白关 联受体
亚基
GTP
P
蛋白 激酶C
G蛋白亚基
PIP2
IP3
Ca2+
Ca2+通道开放
内质网
内质网腔
蛋白质激酶C激活的信号传递途径
⑴ 信号分子与细胞表面受体的结合; ⑵ 跨膜信号转换; ⑶ 在细胞内通过信号转导网络进行信号传递、 放大与整合; ⑷ 导致生理生化变化。
• 胞外信号

[第七章细胞信号转导]

[第七章细胞信号转导]

对于细胞信号传导的分子途径,可分为四 个阶段:
1、信号分子与细胞表面受体结合
2、 膜上信号转换
3、胞内信号转导网络进行的信号传递、 放大及整合。
4、引起生理生化变化
在植物细胞的信号反应中,已发现有 几十种信号分子。按其作用范围可分为胞 间信号分子和胞内信号分子。
外界环
细胞膜
境刺激
cAMP PKA 酪蛋 细
怀尔登(Wildon)等用番茄做实验,指 出由子叶伤害而引起第一真叶产生蛋白 酶抑制物(PIs)的过程中,动作电位是 传播的主要方式。他们采取让电信号 通过后马上就除去子叶以及使子叶叶 柄致冷以阻碍筛管运输、排除化学物 质传递的试验,其结果都证明单有电 信号就可以引起PIs反应,而且他们也 首次证明了电信号可引起包括基因转 录在内的生理生化变化。
GTP,形成激活型的α亚基。
•活化的α亚基进一步与βγ亚基复合体解离
,并与下游的靶效应器结合,包括PLC、
腺苷酸环化酶、离子通道等,将信号传递
下去。
•当α亚基把信号传递给下游组份后,其上
的GTP酶活性使结合的GTP水解为GDP,α
亚基恢复最初构象,成为非激活型,并与
下游靶效应器分离。
•α亚基重新与βγ亚基复合体结合,完成一
G蛋白自身的活化和非 活化作为一种分子开 关,将膜外的信号转 换为膜内的信号并进 一步放大信号!
(二)二元组分系统的跨膜信号 转换途径two-component system
首先是在细菌中发现的,受体有两个基 本的部分,一个是组氨酸蛋白激酶(His protein kinase,HK),另一个是应答 调控蛋白(response-regulator protein,RR)。
已知1,3-β-D葡聚糖、寡聚半乳糖醛 酸、富含甘露糖的糖蛋白、聚氨基葡萄 糖等都是构成细胞壁的主要成分,它们 除了具有支持细胞框架的功能外,还起 诱导抗性和控制发育的信号作用,成为 引人注目的胞间信号分子。此外,一些 其他生长调节物质如壳梭孢菌素、水杨 酸、花生四烯酸、茉莉酸、茉莉酸甲酯、 多胺类物质以及乙酰胆碱等都具有化学 信号的功能。

植物生理学试题集与题解

植物生理学试题集与题解

第七章细胞信号转导三、名词解释1.信号转导:主要研究植物感受、传导环境刺激的分子途径及其在植物发育过程中调控基因的表达和生理生化反应。

2.受体:受体是存在于细胞表面或亚细胞组分中的天然分子,可特异地识别并结合化学信号物质——配体,并在细胞内放大、传递信号,启动一系列生化反应,最终导致特定的细胞反应。

四、是非题(对的打“√”,错的打“×”)(True or false)1、土壤干旱时,植物根尖合成ABA引起保卫细胞内的胞质钙离子等一系列信号转导,其中ABA是第二信使。

()2、植物细胞中不具有G 蛋白连接受体。

()3、G 蛋白具有放大信号作用。

()4、受刺激后胞质的钙离子浓度会出现短暂的、明显的下降。

()5、少数植物具有双信使系统。

()6、钙调素是一种不耐热的球蛋白。

()7、蛋白质的可逆磷酸化是生物体内一种普遍的翻译后修饰方式。

()8、植物细胞壁中的CaM促进细胞增殖、花粉管萌发和细胞长壁。

()1、×2、×3、√4、×5、√6、×7、√8、√六、填空题(Put the best word in the blanks)1、信号传导的过程包括___信号分子与细胞表面受体结合___、__跨膜信号转换_____、____胞内信号转导网络的信号传递______和生理生化变化等 4 个步骤。

2、__信号____是信息的物质体现形式和物理过程。

3、土壤干旱时,植物根尖合成ABA,引起保卫细胞内的胞质钙离子等一系列信号转导,其中_干旱__是信号转导过程的初级信使。

4、膜信号转换通过______细胞表面受体______与____配体_____结合实现。

5、蛋白由__a _、__B __、__r _三种亚基组成。

6、白质磷酸化与脱磷酸化分别由________蛋白激酶____和_____蛋白磷酸酶______催化完成。

7、据胞外结构区的不同,将类受体蛋白激酶分为3 类:1)_ S 受体激酶___,2)___ 富含亮氨酸受体激酶___,3)___类表皮生长因子受体激酶_____。

植物生理学第七章 细胞信号转导

植物生理学第七章 细胞信号转导

第二信使:Ca 2+
cAMP cGMP IP3 H+ 某些氧化还原剂:抗坏血酸、谷胱甘
肽、H2O2
一、Ca 2+/CaM在信号转导中 的 作用 2+浓度≤0.1µmol/L 静态胞质Ca 而细胞壁、内质网、液泡中Ca 2+ 浓度比胞质中高2-3个数量级。 2+浓度 细胞刺激后胞质内Ca 短暂明显升高或区域梯度变化。 2+与CaM等结合而起作用 Ca
第七章
细胞信号转导
生长发育是基因在一定时间、空间上顺序表
达的过程,除受遗传因素支配外,还受周围环境 的调控。
植物细胞信号转导是指细胞耦联各种刺激信号与
其引起的特定生理效应之间的一系列分子反应机 制。
4个步骤:1、信号分子与细胞表面受体结合
2、跨膜信号转换 3、细胞内信号转导网络进行信号的 传递、放大、整合 4、导致生理生化变化 图7-1
细胞壁——胞外钙库 质膜上Ca 2+ 通道控制Ca 2+内流 质膜上Ca 2+泵负责胞内的Ca 2+泵出 胞外 胞内钙库(液泡、内质网、线粒体): 膜上存在着Ca 2+通道(外流) Ca 2+泵和Ca 2+/nH+反向运输体(泵 入) 图7-4
钙调蛋白:耐热球蛋白,有148个氨基 酸单链多肽 CaM两种作用方式: 1、可以直接与靶酶结合,诱导构 象变化和调节靶酶的活性 2、与Ca 2+结合,形成活化态的 Ca 2+· CaM复合体,再与靶酶结合,将 靶酶激活 CaM的三维结构:哑铃型,长650nm 图7-5
氨酸激酶、酪氨酸激酶和组氨酸激酶
1、钙依赖型PK酶(CDPK)属丝氨酸/ 苏氨酸激酶 图7-8
2、类受体蛋白激酶(RLK) 植物中RLK大多属于丝氨酸/苏 氨酸激酶 由胞外结构区、跨膜螺旋区 、 胞内蛋白激酶催化区三个部分组成 根据胞外结构区不同,将RLK 分为三类:含S结构域的RLK、含 富亮氨酸重复的RLK、类表皮生长 因子重复的RLK

(完整版)植物生理学习题大全——第7章细胞信号转导

(完整版)植物生理学习题大全——第7章细胞信号转导

第七章细胞信号转导一. 名词解释细胞信号转导(siginal transduction):指细胞偶联各种刺激信号与其引起的特定生理效应之间的一些列分子反应机制。

信号(signal):对植物来讲,环境就是刺激,就是信号。

配体(ligand):激素、病原因子等化学信号,称为配体。

受体(receptor):能够特异地识别并结合信号、在细胞内放大和传递信号的物质。

细胞表面受体(cell surface receptor):位于细胞表面的受体。

细胞内受体(intracellular receptor):位于亚细胞组分如细胞核、内质网以及液泡膜上的受体。

跨膜信号转换(transmembrance transduction):信号与细胞表面的受体结合后,通过受体将信号传递进入细胞内的过程。

受体激酶:位于细胞表面的一类具有激酶性质的受体。

第二信使(second messengers):将作用于细胞膜的信息传递到细胞内,使之产生生理效应的细胞内信使。

级联反应(cascade):在连锁的酶促反应中,前一反应的产物是后一反应的催化剂,每进行一次修饰反应,就使调节信号产生一次放大作用。

蛋白激酶(protein kinase,PK):一类催化蛋白质磷酸化反应的酶。

第一信使(first messenger):能引起胞内信号的胞间信号和环境刺激,亦称为初级信使。

蛋白质磷酸化作用(protein phosphorylation):是指由蛋白激酶催化把磷酸基转移到底物蛋白质氨基酸残基的过程。

双信使系统(double messenger system):胞外刺激使PIP2转化为IP3和DAG两个第二信使,引发IP3/Ca2+和DAG/PKC两条信号转导途径,在细胞内沿两个方向传递,这样的信号系统称之为双信使系统。

二. 缩写符号HK:组氨酸激酶RR:应答调控蛋白RLK:类受体蛋白激酶CaM:钙调蛋白CDPK:钙依赖型蛋白激酶PIP2:4,5-二磷酸磷脂酰肌醇PIP:4-二磷酸磷脂酰肌醇PLC:磷脂酶C IP3:三磷酸肌醇DAG:二酰甘油PKC:蛋白激酶C PK:蛋白激酶PP:蛋白磷酸酶三. 简答题1. 细胞接收胞外信号进行信号转导的步骤。

植物生理学课件】第7章细胞信号转导

植物生理学课件】第7章细胞信号转导

膜受体的种类及信号分子的作用
不同类型的膜受体可以识别不同类型的信号分 子,并触发特定的细胞反应。典型的膜Fra bibliotek路:酪氨酸激酶受体
酪氨酸激酶受体是一类常见的膜受体,它们通 过酪氨酸激酶活性媒介信号转导。
膜通路的分类和特点
膜通路根据信号传递的方式和参与的分子特点 而被归类,每种通路在细胞内部的作用方式也 不同。
除了生长素和ABRE通路,还 有许多其他信号转导通路在 植物发育和适应中发挥着重 要作用。
未来展望和研究趋势
随着技术和研究的进展,我们能够更深入地了解细胞信号转导的机制。未来 的研究将继续聚焦于植物的发育调控和环境适应。
结论
细胞信号转导是植物生长发育和环境适应的关键过程。了解这个过程对于理 解植物的生物学机制和应对逆境非常重要。
参考文献
1. Smith, A. B., et al. (2020). Advances in plant cell signaling: molecular and environmental interactions. Springer. 2. Zhang, C., et al. (2019). Plant cell signaling: Ethylene, abscisic acid, and other hormones. Springer. 3. Wu, G., et al. (2018). Molecular mechanisms of plant cell signaling. CRC Press.
植物生理学课件 第7章 细 胞信号转导
这是第7章,关于植物的细胞信号转导。你将学习细胞如何感知和传递信号, 以及信号转导在植物生长和环境适应中的重要作用。
细胞信号转导的概念

植物生理学007 植物体内的细胞信号转导

植物生理学007 植物体内的细胞信号转导
由胞外刺激信号激活或抑制的、具有生理调节活性 的细胞内因子称为第二信使(second messenger)。
到目前,发现在植物细胞中的第二信使系统主要有:
1、环核苷酸信号系统 2、钙信号系统 3、磷脂酰肌醇信号系统。
6.3.1.环核苷酸信号系统
环核苷酸主要是指cAMP和cGMP:
cAMP作为重要的第二信使物质在动物细胞中早已定论。植物 细胞中的cAMP是否普遍存在以及是否也具有象动物细胞类似的 第二信使作用,尚无定论。目前已在某些植物中测到cAMP的存 在,但其浓度远低于动物细胞中的有效生理浓度。另一方面, 有报道证明外加cAMP可以引起植物细胞的生理反应,如细胞质 膜离子通道(e.g NSCCs)的开关等。说明cAMP作为植物细胞的第 二信使是可能的。
CaM的三维结构(A)和Ca2+·CaM复合体结合到靶 酶上(B)
Ca2+•CaM复合物的形成使CaM与许多靶酶的 亲和力大大提高,导致靶酶的活性全酶浓度增 加,这就是所谓的调幅机制(amplitude modulation)。而调敏机制(sensitive modulation)是指在细胞内Ca2+浓度保持不变 的情况下,通过调节CaM或靶酶对Ca2+的敏感程 度,增加活性全酶。现已发现许多Ca2+•CaM复 合体的靶酶,如质膜上的Ca2+-ATP酶、Ca2+通道、 NAD激酶和多种蛋白激酶等。这些靶酶被活化 后参与细胞分裂、生长和分化等过程,最终调 节细胞的生长发育。
磷脂酰肌醇(phosphatidylinositol, PI)主要分 布在细胞质膜内侧,其总量仅占膜磷脂的很少一部分。 现已确定的磷脂酰肌醇主要有三种:磷脂酰肌醇 (phosphatidylinositol , PI),磷脂酰肌醇-4,5二磷酸 (phosphatidylinositol-4,5-bisphosphate , PIP2 ) 和 磷 脂 酰 肌 醇 -4- 磷 酸 ( phosphatidylinositol-4-phosphate , PIP ) , PIP和PIP2是由PI和PIP分别在PI激酶和PIP激酶催化下 磷酸化而形成的,其基本结构及其相应磷脂酶 (phospholipase)作用位点如(图5.9)。图中箭头 所示位置为相应磷脂酶作用位点,这些磷脂酶分别称 为 磷 脂 酶 A1 , A2 , C 和 D 。 其 中 质 膜 中 的 磷 脂 酶 C (phospholipase C , PLC)最为重要,它催化PIP2水 解形成肌醇三磷酸(inositol-1,4,5-triphosphate , IP3)和二酯酰甘油(diacylglycerol , DG)。

植物生理学-第七章 细胞信号转导

植物生理学-第七章 细胞信号转导

RTKs的失敏:
催化性受体的效应器位于受体本身,因此失敏即酶活性速发抑制。 机制:受体的磷酸化修饰。EGF受体Thr654的磷酸化导致RTK活性的 抑制,如果该位点产生Ala突变,则阻止活性抑制,后又发现C 端的Ser1046/7也是磷酸化位点。磷酸化位点所在的C端恰好是 SH2蛋白的结合部位。
激活。CaM与Ca2+有很高的亲和力,一个CaM分子可与4个Ca2+结合。
Ca2+ CaM的靶酶
激素激活的基因调控蛋白(胞内受体超家族)
细胞表面受体: 为胞外亲水性信号分子所激活
细胞表面受体分属三大家族:
离子通道偶联的受体(ion-channel-linked receptor) G-蛋白偶联的受体(G-protein-linked receptor) 酶偶连的受体(enzyme-linked receptor)
红光刺激后大麦叶肉原生质体的钙离子浓度变化
钙调素(CaM)
耐热的球蛋白,等电点4.0, 分子量约为16.7 kD。它是具有148个氨 基酸的单链多肽。
作用方式: 直接与靶酶结合,诱导靶酶的活性构象,而调节靶酶的活性 与Ca2+结合,形成活化态的Ca2+ CaM复合体,然后再与靶酶结合将靶酶
●细胞信号传递的基本特征:
具有收敛(convergence)或发散(divergence)的特点
细胞的信号传导既具有专一性又有作用机制的相似性
信号的放大作用和信号所启动的作用的终止并存 细胞以不同的方式产生对信号的适应(失敏与减量调节)
●蛋白激酶的网络整合信息与信号网络系统中的cross talk
跨膜信号转导无需中间步骤 主要存在于神经细胞或其他可兴奋细胞间的突触信号传递 有选择性:配体的特异性选择和运输离子的选择性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

G蛋白下游的靶效应器很多,包括磷酯酶C(PLC)、 磷酯酶D(PLD)、磷酯酶A2(PLA2)、磷酯酰肌醇3激 酶(PI3K)、腺苷酸环化酶、离子通道等。
通常认为,G蛋白参与的跨膜转换信号方式主要是α亚 基调节,而βγ亚基的功能主要是对G蛋白功能的调节和修饰, 或把G蛋白锚定在细胞膜上。随着研究的深入,越来越多的 证据表明,G蛋白被受体激活后βγ亚基游离出来也可以直接 激活胞内的效应酶。有些甚至是α亚基和βγ亚基复合体协同 调节。在目前所知道的8种不同的腺苷酸环化酶(AC)同工 酶中,AC1通过α亚基激活,AC2、AC4、AC7则直接被βγ 亚基激活,但需要α亚基存在,两种协同起作用。
信号的主要功能:在细胞内和细胞间传递生物信息,当植 物体感受信号分子所携带的信息后,或引起跨膜的离子流动, 或引起相应基因的表达,或引起相应酶活性的改变等,最终 导致细胞和生物体特异的生理反应。
外部信号对 拟南芥植株 生长和发育 的影响
二、受体(receptor)在信号转导中的作用
受体(指能够特 异地识别并结合 信号、在细胞内 放大和传递信号 的物质)
一、G蛋白参与的跨膜信号转换
是细胞跨膜转换信号的主要方式。G蛋白 即GTP结合蛋白(GTP binding protein),是细胞内一类具有重要生理调节功能的蛋白质。G蛋 白可以和三磷酸鸟苷(GTP)结合,并具有GTP水解酶的活性。在所有 的G蛋白中只有两种类型G蛋白参与细胞信号传递:小G蛋白和异三聚体 G蛋白。小G蛋白是一类只含有一个亚基的单聚体G蛋白,它们分别参与 细胞生长与分化、细胞骨架、膜囊泡与蛋白质运输的调节过程。
在细胞跨膜信号转导中起主要作用的是异三聚体G蛋白(heterotrimeric G-proteins,也被称作大G蛋白)。常把异三聚体G蛋白简称为G蛋白。
异三聚体G蛋白由3种不同亚基(α、β、γ)构成,α亚基含 有GTP结合的活性位点,并具有GTP酶活性,β和γ亚基一般 以稳定的复合状态存在。
异三聚体G蛋白参与胞外信号跨膜转换的特点是:胞外信 号被细胞表面的受体识别后,通过膜上的G蛋白转换到膜内 侧的效应酶上,再通过效应酶产生多种第二信使,从而把胞 外的信号转换到胞内。
第一,识别并结合特异的信号物质,接受信息,告知细 胞在环境中存在一种特殊信号或刺激因素。
第二,把识别和接受的信号准确无误地放大并传递到细 胞内部,启动一系列胞内信号级联反应,最后导致特定的 细胞效应。要使胞外信号转换为胞内信号,受体的这两方 面功能缺一不可。
第二节 跨膜信号转换
信号与细胞表面的受体结合之后,通过受体将信号转导进入细胞内, 这个过程称为跨膜信号转换(transmenbrame transduction)。
Fig.7-1 Plant cell signal transduction processes
一些常见的植物信号转导反应
生理现象
感受的刺激
相应的生理反应
光诱导的种子萌发 光
ቤተ መጻሕፍቲ ባይዱ种子萌发
气孔运动
光、黑暗、ABA 等 气孔开闭运动
植物向光性反应

植物向光性生长
含羞草感振运动
机械刺激
含羞草小叶运动
根的向地性生长运动 重力
根向地性生长
光照控制植物开花 光
植物开花
植物的春化反应
低温
植物开花
植物叶片脱落
光周期
叶脱落
乙烯诱导果实成熟 乙烯
果实成熟
第一节 信号与受体结合
一、信号(signal)
根据信号性质
物理信号:光、电等刺激 化学信号(配体ligand):激素、病原因子等
根据信号位置
胞外(胞间)信号(植物激素是主要的) 胞内信号
二、二元组分系统
二元组分系统首先是在细菌中发现的,受体有两个基本的 部分,一个是组氨酸蛋白激酶(His protein kinase,HPK), 另一个是反应调节蛋白(response-regulator protein,RR)。 HPK位于质膜,分为感受细胞外刺激部分和激酶部分。当HPK 接受信号后,激酶的组氨酸残基发生磷酸化,并且将磷酸基团 传递给下游的RR。RR也有两个部分,一是接受磷酸基团的部 分,具有天冬氨酸残基,另一部分为信号输出部分,将信号传 递给下游的组分,通常是转录因子,调控基因的表达。
第七章 细胞信号转导 (signal transduction)
植物细胞信号转导(signal transduction)是 指细胞偶联各种刺激信号(包括各种内外源刺激 信号)与其引起的特定生理效应之间的一系列分 子反应机制。
信号转导可以分为4个步骤,1)信号分子与 细胞表面受体的结合;2)跨膜信号转换;3)在 细胞内通过信号转导网络进行信号传递、放大与 整合;4)导致生理生化变化
现已证明,异三聚体G蛋白在植物中普遍存在,运用免 疫转移电泳等生化手段先后在拟南芥、水稻、蚕豆、燕麦等 植物的叶片、根、培养细胞和黄化幼苗中检测到植物G蛋白, 并参与了光、植物激素以及病原菌等信号的跨膜转导,以及 在质膜K+离子通道、植物细胞分裂、气孔运动和花粉管生长 等生理过程的调控。
在G蛋白偶联受体的研究上,目前已从拟南芥分离到一 种G蛋白偶联受体(GPCR),其氨基酸序列上与动物GPCR 达到20%左右一致性和50%左右的相似性,在功能上可能参 与了细胞分裂素的信号转导过程。
信号转导是信息的物质体现形式和物理过程
胞间信号是指植物体自身合成的、能从产生之处运到别处, 并对其他细胞作为刺激信号的细胞间通讯分子,通常包括植物 激素、气体信号分子NO以及多肽、糖类、细胞代谢物、甾体、 细胞壁片段等 。
胞外信号的概念并不是绝对的,随着研究的深入,人们发现 有些重要的胞外信号如光、电等也可以在生物体内组织、细胞 之间或其内部起信号分子的作用。
细胞表面受体 细胞内受体
G蛋白连接受体
类受体蛋白激酶
(酶连受体,包括二元组分系统)
细胞受体的特征 (1)特异性; (2)高亲和力; (3)可逆性。
受体与配体的结合是一种分子识别 过程,靠氢键、离子键与范德华力 的作用,配体与受体分子空间结构 的互补性是特异性结合的主要因素。
在植物感受各种外界刺激的信号转导过程中,受体的功 能主要表现在两个方面:
相关文档
最新文档