数字万用表测量三极管静态工作点参数

数字万用表测量三极管静态工作点参数
数字万用表测量三极管静态工作点参数

自设计数字万用表测量三极管静态工作点参数随着大规模集成电路的发展,传统指针式电表已逐渐被数字式电表所取代。数字万用表具有高精确度、高分辨率、高测量速率、抗过载能力强等诸多优点,HLD-WYB-Ⅲ型数字万用表设计性试验仪能提供测量与显示所需要的独立模块,可将独立的电路模块进行有机结合构成各种使用的数字万用表测量电路。

【实验目的】

1、了解万用表的特性、组成和工作原则

2、掌握分压原理、计算与连接

3、了解共集放大电路三极管静态工作点设置的重要性及参数计算

【实验仪器】

1、HLD-WYB-Ⅲ一台

2、三位半数字万用表一台

3、导线若干

【仪器介绍】

仪器面板如下图所示:

面板说明:

1、电源开关

2、200mV 量程31/2位直流数字电压表头

3、电压表头的小数点移动开关(小数点位置根据需要自行设置,但不影响表头的实际量程)

4、0-20V 直流电压源

5、0-20V 交流电压源

6、三极管放大倍数测量电路

7、待测元件组

8、电阻测量电路

9、实用分压器 10、使用分流器 11、多量程分压器 12、多量程式分流器 13、交流-直流转换电路

【实验原理】

无论何种数字表计电路通常由A/D 转化电路、时钟电路、驱动电路、显示电路等组成,本试验仪中使用的电压表头是有7107构成,它是一个量程为0-199.9mV 的直流电压表。日常使用过程中我们通常测量的量不单单是直流电压,还有电流、电阻、交流电压等参数,需借助于其他的转化电路将这些非电压量或非直流量转化为直流电压量来测量,因此,懂得了电压测量原理有助于对其他参量的检测。

直流电压测量电路分析:

为了扩大电压表的测量量程,需在数字电压表头前面加一级分压电路(分压器)。如图1所示,U 0为电压表头的量程(如200mv ),r 为其内阻(如10M Ω),r 1、r 2为分压电阻,U i0为扩展后的量程。 00i U - 1r 2r 00U - r

由于r 》r 2,所以分压比为: 2

1200r r r U U i += 扩展后的量程为:02

210U r r r U i += 多量程分压器原理电路见图2,5档量程的分压比分布为1、0.1、0.01、0.001和0.0001,对应的量程分布为2000V 、200V 、20V 、2V 和200mV 。

采用图2的分压电路虽然可以扩展电压表的量程,但在小量程档明显降低了电压的输入阻抗,这在实际使用中是所不希望的。所以,实际数字万用表的直流电压档电路为图3所示,它能在不降低输入阻抗的数字电压表头

10M

2000V 数字电压表头 1M 99K 9K

200V 20V 2V

200mV U i 1k

IN+ IN- 图1

图2

情况下,达到同样的分压效果。

例如:其中200V 档的分压比为:001.010*********==+++++M

k R R R R R R R 其余各档的分压比可同样算出。

实际设计时是根据各档的分压比和总电阻来确定各分压电阻的。如先确定:

M R R R R R R 1054321=++++=总

再计算2000V 档的电阻:k R R 1001.005==总

再逐档计算R 4、R 5、R 2、R 1。尽管上述最高量程档的理论量程是2000V ,但通常的数字万用表出于耐压和安全考虑,规定最高电压量限为1000V 。

电表小数点的确定,对于200mV 、200V ,应点亮DP 1,2V 应电路DP 3,20V 应点亮D P2。对于后述的测电流、电阻原理相同,应由学生动手设计。

在放大电路中,当有信号输入时,交流量与支流量共存。当输入信号为零时,晶体管的基极电流I B 、集电极电流I C 、b-e 间电压U BE 、管压降U CE 成为放大电路的静态工作点,记为I BQ 、I CQ 、U BEQ 、U CEQ 。在估算中,U BEQ 通常认为为已知量,硅管取0.7v ,锗管取0.2v 。对于放大电路而言,一是不失真,二是能够放大。只有在信号的整个周期内晶体管始终工作在放大状态,输出信号才不会产生失真,设置静态工作点,就是为了保证在信号输入时,能保证晶体管始终处于导通放大状态。

DP3 DP2 DP1 Ui R1 R2 R3 R4 R5 9M 900k 90k 9k 1k

200mV

2V 20V 200V 2000V 图3

【实验内容及步骤】

1、开启实验台,插上外部电源线,按下电源开关,保证有电接入,再关闭开关。

2、电源设置:实验开始时,将0-20v 直流电源控制旋钮逆时针旋到底,保证输出为0V 。

3、表头设置:表头调至0-199.9mV 量程档,即小数点开关拨至最右端。

4、电压表连线:选择实用分压器200mV 档,将右侧输出端按颜色对应接入表头输入端。

5、共集放大电路连接:选择实验台面板最左端NPN 晶体管,板上最右端为三极管放大电路,左半部分为PNP 测量电路,右半部分为NPN 测量电路,两个测量电路公用一输入与一输出,右端三口3.2V 口与黑色端口为输入,中间红色端口与黑色为输出,是为共地模式。将右半部分的NPN 测量电路C\E\B 端口与NPN 晶体管C\E\B 口对应连接。测量电路的输入接0-20v 电源的输出,输出端口接至分压器的输入端。

6、三位半数字万用表的红黑表笔接至0-20v 直流电源的输出,并将表调制20伏电压档。

7、开启实验台电源,顺时针调节直流电源旋钮,按表格记录三位半数字万用表和试验台上表头显示的数值。

【注意事项】

1、实验时应当遵循“先接线,再加电;先断电,再拆线”原则,加电前必须确认接线无误,避免短路。

2、通常情况下,红色线代表电源正极,黑色线代表电源负极,接线时务必按要求进行相应连接,避免短路,造成危险。

3、万用表的V/Ω档公用一个表笔插孔,而A 档单独用一个插孔,使用时应注意根据被测量调换插孔,否则可能造成测量错位或仪表损坏。

4、当测量值超过量程时(>199.9mv ),表头最高位显示为±1,表示溢出,应该变电阻网络的阻值,应尽快换大量程档或减小(断开)输入信号,避免长时间超量程。

Ui

U0 Rb

Re I BQ

U BEQ

I EQ

5、测量时,小数点遵循上述原则,减小测量误差。

【数据处理】 U i /V

3 3.5

4 4.

5 5 U 0/mV b 0

BEQ i BQ R U -U U I -=

e

0EQ R U I = 1-I I BQ EQ

0i CEQ U U U -=

三极管的测量方法

三级管的在路测量,(1).NPN管的电压正常是:VC>VB>VE.其中PN结电压是0.5V左右,也就是:VB>VE的电压是0.5V,明显大于2V或者VB∠VE,三极管是损坏,(注: VC的电压大小是不固定的,看这个管的承受多大的内压) (2).PNP管的电压正常是:VE>VB>VC. 其中PN结电压是0.5V左右, 也就是: VE>VB 的电压是0.5V,明显大于2V或者VE∠VB, 三极管是损坏,( VC的电压大小是不固定的,看偏置电路是要多大的电压,但一定适上面的VE>VB>VC电压的大小) 2.拆下来时的三极管测量(R*1K档来测量) 根据PN结的原理:和二极管一样,正向电阻一边用万用表测是相通,对调红.黑笔反向来测是不通.拆下来时的三极管,(1) NPN管:任意测三极管的两个脚,当发现固定黑笔接的一脚不动,用红笔分别接另外两脚时,万用表的指针摆动,电阻是相同.反过来对调表笔,红笔固定的一脚不动,用黑笔分别接另外两脚时,万用表的指针不摆动,电阻是无穷大.哪确定;固定的一脚确定是b极(坏的三极管是对调表笔也是相通的) . (2) PNP管:任意测三极管的两个脚,当发现固定红笔接的一脚不动, 用黑笔分别接另外两脚时,万用表的指针摆动,电阻是相同.反过来对调表笔,黑笔固定的一脚不动, 用红笔分别接另外两脚时,万用表的指针不摆动,电阻是无穷大.哪确定;固定的一脚确定是b极 3(确定C极和E极) 三极管好坏的判断(R*10K档来测量) (1)(确定C极和E极) NPN好坏的判断:上面已确定了B极,R*10K档来测量.用黑笔和红笔分别接触另外两极,保持红笔和黑笔现在状态不变用手指捏b极+红笔接的一极,发现指针摆动的幅度大,放大倍数大,黑笔接的是c极,红笔接的是e极(坏的三极管,用万用表的R*10K档来测量.红,黑笔测量c.e极,接法和二极管测量相同,一边相通,对调表笔另一边是不通,例如;R*10K档的黑笔接C极红笔接E极指针摆动一点,说明是漏电损坏.经验总结:如果是好的三级管,用万用表的R*10K档来测量c.e电阻一边不通,极笔对调后,另一边是相通的有电阻,电阻大的和原来没有用过的同型号的三极管对比.B极E极输出电压偏低的. (2) (确定C极和E极) PNP好坏的判断 R*10K档来测量.用黑笔和红笔分别接触另外两极保持红笔和黑笔现在状态不变用手指捏b极+黑笔接的一极,同时捏两极,发现指针摆动的幅度大,放大倍数大,黑笔接的是e极,红笔接的是c极(坏的三极管,用万用表的R*10K档来测量.红,黑笔测量c.e极,接法和二极管测量相同,一边相通,对调表笔另一边是不通,例如:R*10K档的黑笔接E极红笔接极

很多人出错的数字万用表二极管挡使用方法

数字万用表的使用已很普及了,但在常见的电工技术方面的书中,半导体的测量办法多是使用指针万用表,很少介绍使用数字万用表的。数字万用表和指针万用表测量半导体的办法是不同的。 一、二极管 数字万用表二极管档开路电压约为2.8V,红表笔接正,黑表笔接负,测量时提供电流约为1mA,显示值为二极管正向压降近似值,单位是mV或V。硅二极管正向导通压降约为0.3~0.8V。锗二极管锗正向导通压降约为0.1~0.3V。并且功率大一些的二极管正向压降要小一些。如果测量值小于0.1V,说明二极管击穿,此时正反向都导通。如果正反向均开路说明二极管PN节开路。对于发光二极管,正向测量时二极管发光,管压降约1.7V左右。二、三极管 三极管有两个PN节,发射节(be)和集电节(bc),按测量二极管的办法测量即可。在实际测量时,每两个管脚间都要测正反向压降,共要测6次,其中有4次显示开路,只有两次显示压降值,否则三极管是坏的或是特殊三极管(如带阻三极管、达林顿三极管等,可通过型号与普通三极管区分开来)。在两次有数值的测量中,如果黑表笔或红表笔接同一极,则该极是基极,测量值较小的是集电节,较大的是发射节,因为已判定出基极,对应可以判定出集电极和发射极。同时可以判定:如果黑表笔接同一极,则三极管是PNP型,如果红表笔接同一极,则三极管是NPN型;压降为0.6V左右的是硅管,压降为0.2V左右的是锗管。 三、可控硅: 可控硅阳极与阴极及控制极是开路的,据此可以确定阳极管脚和判定可控硅是否击穿。可控硅控制极和阴极间也是PN节,但是大功率可控硅控制极和阴极间有一个保护电阻,测量时显示值为电阻上的压降。潮人电器论坛: W0 c! x; h% C 四、光耦 光耦的一侧是发光二极管,测量时压降约1V左右,另外一侧是三极管,有的只引出c、e,测量正反向均截止,如果三个脚都引出,测量特性同上面三极管(多为NPN管)。当用一个万用表使二极管正向导通,此时用另外一块万用表测三极管c对e导通压降约为0.15V;断开接二极管的万用表,三极管c对e截止,说明该光耦是好的。 1 / 1

三极管放大电路设计-参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么容? (1)分析电路中各元件的作用; (2)解放大电路的放大原理; (3)能分析计算电路的静态工作点; (4)理解静态工作点的设置目的和方法。 以上四项中,最后一项较为重要。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。

常用晶体三极管参数

常用晶体三极管参数 2008-05-12 11:12 常用晶体三极管参数 名称封装极性耐压电流功率频率配对管 D633 28 NPN 音频功放 100V 7A 40W 达林顿 9013 21 NPN 低频放大 50V 0.5A 0.625W 9012 9014 21 NPN 低噪放大 50V 0.1A 0.4W 150HMZ 9015 9015 21 PNP 低噪放大 50V 0.1A 0.4W 150MHZ 9014 9018 21 NPN 高频放大 30V 0.05A 0.4W 1000MHZ 8050 21 NPN 高频放大 40V 1.5A 1W 100MHZ 8550 8550 21 PNP 高频放大 40V 1.5A 1W 100MHZ 8050 2N2222 21 NPN 通用 60V 0.8A 0.5W 25/200NS 2N2369 4A NPN 开关 40V 0.5A 0.3W 800MHZ 2N2907 4A NPN 通用 60V 0.6A 0.4W 26/70NS 2N3055 12 NPN 功率放大 100V 15A 115W MJ2955 2N3440 6 NPN 视放开 450V 1A 1W 15MHZ 2N6609 2N3773 12 NPN 音频功放 160V 16A 50W 2N3904 21E NPN 通用 60V 0.2A 2N2906 21C PNP 通用 40V 0.2A 2N2222A 21铁 NPN 高频放大 75V 0.6A 0.625W 300MHZ 2N6718 21铁 NPN 音频功放 100V 2A 2W 2N5401 21 PNP 视频放大 160V 0.6A 0.625W 100MHZ 2N5551 2N5551 21 NPN 视频放大 160V 0.6A 0.625W 100MHZ 2N5401 2N5685 12 NPN 音频功放 60V 50A 300W 2N6277 12 NPN 功放开 180V 50A 250W 9012 21 PNP 低频放大 50V 0.5A 0.625W 9013 2N6678 12 NPN 音频功放 650V 15A 175W 15MHZ 9012 贴片 PNP 低频放大 50V 0.5A 0.625W 9013 3DA87A 6 NPN 视频放大 100V 0.1A 1W 3DG6B 6 NPN 通用 20V 0.02A 0.1W 150MHZ 3DG6C 6 NPN 通用 25V 0.02A 0.1W 250MHZ 3DG6D 6 NPN 通用 30V 0.02A 0.1W 150MHZ MPSA42 21E NPN 电话视频 300V 0.5A 0.625W MPSA92 MPSA92 21E PNP 电话视频 300V 0.5A 0.625W MPSA42

贴片三极管引脚-三极管的识别分类及测量

贴片三极管引脚三极管的识别分类及测量 符号:“Q、VT” 三极管有三个电极,即b、c、e,其中c为集电极(输入极)、b为基极(控制极)、e为发射极(输 出极) 三极管实物图: 贴片三极管功率三极管普通三极管金属壳三极管 二、三级管的分类: 按极性划分为两种:一种是NPN型三极管,是目前最常用的一种,另一种是PNP型三极管。按材料分为两种:一种是硅三极管,目前是最常用的一种,另一种是锗三极管,以前这种三极管用的多。三极按工作频率划分为两种:一种是低频三极管,主要用于工作频率比较低的地方;另一种是高频三极管,主要用于工作频率比较高的地方。按功率分为三种:一种是小功率三极管,它的输出功率小些;一种是中功率三极管,它的输出功率大些;另一种是大功率三极管,它的输出功率可以很大,主要用于大功率输出场合。 按用途分为:放大管和开关管。 三、三极管的组成: 三极管由三块半导体构成,对于NPN型三极管由两块N型和一块P型半导体构成,如图A所示,P型半导体在中间,两块N型半导体在两侧,各半导体所引出的电极见图中所示。在P型和N型半导体的交界面形成两个PN结,在基极与集电极之间的PN结称为集电结,在基极与发射极之间的PN结称为发射结。图B是PNP型三极管结构示意图,它用两块P型半导体和一块N型半导体构成。 AB 四、三极管在电路中的工作状态:

三极管有三种工作状态:截止状态、放大状态、饱和状态。当三极管用于不同目的时,它的工作状 态是不同的。 1、截止状态:当三极管的工作电流为零或很小时,即IB=0时,IC和IE也为零或很小,三极管处于 截止状态。 2、放大状态:在放大状态下,IC=βIB,其中β(放大倍数)的大小是基本不变的(放大区的特征)。 有一个基极电流就有一个与之相对应的集电极电流。 3、饮和状态:在饮和状态下,当基极电流增大时,集电极电流不再增大许多,当基极电流进一步增 大时,集电极电流几乎不再增大。 工作状态 定义 电流特征 解流 截止状态 集电极与发射极之间电阻很大IB=0或很小,IC或IE为零或很 小因为IC=βIB 利用电流为零或很小特征,可以判断三极管已处于截止状态 放大状态 集电极与发射极之间内阻受基极电流大小控制,基极电流大,其内阻小IC=βIB IE=(1+β)IB 有一个基极电流就有一个对应的集电极电流和发射极电流,基极电流能有效地控制集电极电流和发射极电 流 饱和状态

如何测量三极管的好坏

下面是三极管的架构以及在电路图中的各种标识方法

万用表打到二极管档(蜂鸣档)对三极管测量时...首先我们要确定哪只脚是b极.于是用红表笔接触其中任意一只脚不动.用黑表笔去接触另外两只脚.如果能够测得两组相近且小于1的数字.说明此时红笔接触的就是b极.如果测得两组数字不相近..那说明此时红笔接触的不是b极..应把红笔换一只脚..黑笔去测另外两只脚...直到找到b极为止...假设我们知道哪只脚是b极...怎样去判断另外两只脚c极和e极呢?如下图:

图中红笔为b极.黑笔在另外两脚分别没得两组相近的数据..其中有一组数据会稍微大一点...此脚即为e极.小的那脚则为c极....并且我们知道此管为NPN三极管.因为红笔在b 极! 而对于PNP型三极管的测量方法也一样...只不过是黑表笔在b极..红笔接触另外两脚能测得两组相近的数据.,如下图: 下面是对场效应管的测量方法 场效应管英文缩写为FET.可分为结型场效应管(JFET)和绝缘栅型场效应管(MOSFET),我们平常简称为MOS管.而MOS管又可分为增强型和耗尽型而我们平常主板中常见使用的也就是增强型的MOS管. 下图为MOS管的标识

我们主板中常用的MOS管G D S三个引脚是固定的。。。不管是N沟道还是P沟道都一样。。。把芯片放正。。。从左到右分别为G极D极S极!如下图: 用二极管档对MOS管的测量。。。首先要短接三只引脚对管子进行放电。。。 1然后用红表笔接S极.黑表笔接D极.如果测得有500多的数值..说明此管为N沟道..

2黑笔不动..用红笔去接触G极测得数值为1. 3红笔移回到S极.此时管子应该为导通...

三极管放大电路设计,参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种 类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容? ⑴ 分析电路中各元件的作用; (2) 解放大电路的放大原理; (3) 能分析计算电路的静态工作点; (4) 理解静态工作点的设置目的和方法。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的 电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说 明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三 种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。 首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCG 若Uce接近于0V,则三极管工作于饱和状态,何谓饱和状态?就是说,Ic电流达到了最大值,就算I b增大,它也不能再增大了。 以上两种状态我们一般称为开关状态,除这两种外,第三种状态就是放大状态,一般测Uce接近于电源电压的一半。若测Uce偏向VCC,则三极管趋向于载止状态,若测Uce偏向0V,则三极管趋向于饱和状态。 理解静态工作点的设置目的和方法 放大电路,就是将输入信号放大后输出,(一般有电压放大,电流放大和功率放大几种,这个不在这 讨论内)。先说我们要放大的信号,以正弦交流信号为例说。在分析过程中,可以只考虑到信号大 小变化是有正有负,其它不说。上面提到在图1放大电路电路中,静态工作点的设置为Uce接近于

三极管的基础知识及参数对照表

[知识学堂] 三极管的基础知识及参数对照表双极结型三极管相当于两个背靠背的二极管PN结。正向偏置的EB结有空 穴从发射极注入基区,其中大部分空穴能够到达集电结的边界,并在反向偏置的CB结势垒电场的效果下到达集电区,形成集电极电流IC。在共发射极晶体管电路中,发射结在基极电路中正向偏置,其电压降很小。绝大部分的集电极和发射极之间的外加偏压都加在反向偏置的集电结上。由于VBE很小,所以基极电流约为IB=5V/50kΩ=0.1mA。 如果晶体管的共发射极电流放大系数β=IC/IB=100,集电极电流IC=β*IB=10mA。在500Ω的集电极负载电阻上有电压降VRC=10mA*500Ω=5V,而晶体管集电极和发射极之间的压降为VCE=5V,如果在基极偏置电路中叠加一个交变的小电流ib,在集电极电路中将出现一个相应的交变电流ic,有c/ib=β,实现了双极晶体管的电流放大效果。 常用中小功率三极管参数表: 型号材料与极性Pcm( W) Icm(mA ) BVcbo(V) ft(MHz) 3DG6C SI-NPN 0.1 20 45 >100 3DG7C SI-NPN 0.5 100 >60 >100 3DG12C SI-NPN 0.7 300 40 >300 3DG111 SI-NPN 0.4 100 >20 >100 3DG112 SI-NPN 0.4 100 60 >100 3DG130C SI-NPN 0.8 300 60 150 3DG201C SI-NPN 0.15 25 45 150 C9011 SI-NPN 0.4 30 50 150 C9012 SI-PNP 0.625 -500 -40 C9013 SI-NPN 0.625 500 40 C9014 SI-NPN 0.45 100 50 150 C9015 SI-PNP 0.45 -100 -50 100 C9016 SI-NPN 0.4 25 30 620 C9018 SI-NPN 0.4 50 30 1.1G

如何检测三极管的三个极

如何检测三极管的三个极 可以用万用表来初步确定三极管的好坏及类型(NPN 型还是PNP 型), 并辨别出e(发射极)、b(基极)、c(集电极)三个电极。测试方法如下: ①用指针式万用表判断基极 b 和三极管的类型:将万用表欧姆挡置"R ×100" 或"R×lk" 处,先假设三极管的某极为"基极",并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧 至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大( 约为几千欧至几十千欧), 则假设的基极是正确的,且被 测三极管为PNP 型管。如果两次测得的电阻值是一大一小,则原来假设的基极是错误的,这时必须重新假设另一电极为"基极",再重复上述测试。 ②判断集电极c和发射极e:仍将指针式万用表欧姆挡置"R × 100"或"R × 1k" 处,以NPN管为例,把黑表笔接在假设的集电极c上,红表笔接到假设的发射极e上,并用手捏住b和c极( 不能使b、c直接接触), 通过人体, 相当 b 、C 之间接入偏置电阻, 读出表头所示的阻值, 然后将两表笔反接重测。若第一次测得的阻值比第二次小, 说明原假设成立, 因为 c 、 e 问电阻值小说明通过万用表的电流大, 偏置正常。 ③用数字万用表测二极管的挡位也能检测三极管的PN结,可以很方便地确定三极管的好坏及类型,但要注意,与指针式万用表不同,数字式万用表红表笔为 内部电池的正端。例:当把红表笔接在假设的基极上, 而将黑表笔先后接到其余两个极上, 如果表显示通〈硅管正向压降在0.6V 左右), 则假设的基极是正确的, 且被测三极管为NPN 型管。 数字式万用表一般都有测三极管放大倍数的挡位(hFE), 使用时, 先确认晶体管类型, 然后将被测管子 e 、b 、c三脚分别插入数字式万用表面板对应的三极管插孔中,表显示出hFE 的近似值。 三极管的管型及管脚的判别 为了迅速掌握测判方法,结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面进行解释。 一、三颠倒,找基极 大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管; 测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位,红表笔正,黑表笔负。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的

静态工作点分析要点

设计单级共基极放大电路 ——静态工作点分析 1绪论 本课程设计的基本要求是对静态工作点分析(白冰);输入信号的变化对放大电路输出的影响(师晓辉);测量放大电路的放大倍数(闫斌);输入电阻(刘特);输出电阻(齐帅)。 本论文针对静态工作点的分析,静态工作点是在分析放大电路时提出来的,它是放大电路正常工作的重要条件。当把放大器的输入信号短路,把IN直接接地,则放大器处于无信号输入状态,称为静态。如果静态工作点选择不合适,则输出波形会失真,因此设置合适静态工作点是放大电路正常工作的前提。 静态分析就是求解静态工作点Q,再输入信号为零时,晶体管和场效应管各电极间的电流和电压就是Q点。可用估算法和图解法求解。 Multisim软件是一个专门用于电子线路仿真与设计的 EDA 工具软件。作为 Windows 下运行的个人桌面电子设计工具, Multisim 是一个完整的集成化设计环境。Multisim计算机仿真与虚拟仪器技术可以很好地解决理论教学与实际动手实验相脱节的这一问题。学生可以很方便地把刚刚学到的理论知识用计算机仿真真实的再现出来,并且可以用虚拟仪器技术创造出真正属于自己的仪表。它具有直观的图形界面, 丰富的元器件,强大的仿真能力,丰富的测试仪器,完备的分析手段,独特的射频模块,强大的MCU模块,完善的后处理,详细的报告,兼容性好的信息转换特点。所以NI Multisim软件电子学教学的首选软件工具。

2 设计任务 (一)目的: 1. 了解单极共基极放大电路的基本工作原理; 2.学会运用软件模拟设计电路、应用各种仪器。了解电路在不同状态下的变 化特点,学会对电路的变化分析; 3.了解设置静态工作点分析的必要性 4.熟悉静态工作点与动态参数的估算 5.了解稳定静态工作点的措施 (二)原理: 1.共基极放大电路中,输入信号是由三极管的发射极与基极两端输入的,再由三极管的集电极与基极两端获得输出信号因为基极是共同接地端,所以称为共基极放大电路。 2.共基极放大电路具有以下特性: (1)、输入信号与输出信号同相; (2)、电压增益高; (3)、电流增益低(≤1); (4)、功率增益高; (5)、适用于高频电路。 共基极放大电路的最大优点是频带宽,因而常用于无线电通信方面。 3设计电路 (一)单级共基极放大电路图

三极管放大电路设计-参数计算及静态工作点设置方法

三极管放大电路设计-参数计算及静态工作点设置方法

————————————————————————————————作者:————————————————————————————————日期:

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容? (1)分析电路中各元件的作用; (2)解放大电路的放大原理; (3)能分析计算电路的静态工作点; (4)理解静态工作点的设置目的和方法。 以上四项中,最后一项较为重要。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近

如何用万用表测量场效应管三极管的好坏.doc

如何用万用表测量场效应管三极管的好坏 导读: 将万用表拨至R×100档,红表笔任意接一个脚管,黑表笔则接另一个脚管,使第三脚悬空。若发现表针有轻微摆动,就证明第三脚为栅极。欲获得更明显的观察效果,还可利用人体靠近或者用手指触摸悬空脚,只要看到表针作大幅度偏转,即说明悬空脚是栅极,其余二脚分别是源极和漏极。 一、定性判断MOS型场效应管的好坏 先用万用表R×10kΩ挡(内置有9V或15V电池),把负表笔(黑)接栅极(G),正表笔(红)接源极(S)。给栅、源极之间充电,此时万用表指针有轻微偏转。再改用万用表R×1Ω挡,将负表笔接漏极(D),正笔接源极(S),万用表指示值若为几欧姆,则说明场效应管是好的。 二、定性判断结型场效应管的电极 将万用表拨至R×100档,红表笔任意接一个脚管,黑表笔则接另一个脚管,使第三脚悬空。若发现表针有轻微摆动,就证明第三脚为栅极。欲获得更明显的观察效果,还可利用人体靠近或者用手指触摸悬空脚,只要看到表针作大幅度偏转,即说明悬空脚是栅极,其余二脚分别是源极和漏极。 判断理由:JFET的输入电阻大于100MΩ,并且跨导很高,当栅极开路时空间电磁场很容易在栅极上感应出电压信号,使管子趋于截止,或趋于导通。若将人体感应电压直接加在栅极上,由于输入干扰信号较强,上述现象会更加明显。如表针向左侧大幅度偏转,就意味着管子趋于截止,漏-源极间电阻RDS增大,漏-源极间电流减小IDS。反之,表针向右侧大幅度偏转,说明管子趋向导通,RDS↓,IDS↑。但表针究竟向哪个方向偏转,应视感应电压的极性(正向电压或反向电压)及管子的工作点而定。 注意事项: (1)试验表明,当两手与D、S极绝缘,只摸栅极时,表针一般向左偏转。但是,如果两手分别接触D、S极,并且用手指摸住栅极时,有可能观察到表针向右偏转的情形。其原因是人体几个部位和电阻对场效应管起到偏置作用,使之进入饱和区。 (2)也可以用舌尖舔住栅极,现象同上。 三、晶体三极管管脚判别 三极管是由管芯(两个PN结)、三个电极和管壳组成,三个电极分别叫集电极c、发射极e和基极b,目前常见的三极管是硅平面管,又分PNP和NPN型两类。现在锗合金管已经少见了。这里向大家介绍如何用万用表测量三极管的三个管脚的简单方法。 1.找出基极,并判定管型(NPN或PNP)

教大家如何用数字万用表对三极管 MOS管正确测量(有图,有真相)

由于原贴无法编辑,于是重新开了张贴,哪位斑竹看到后,把我原来的同名贴删除掉,谢谢。 所有图片已经编辑好了,如果觉得好一定要支持哦,你们的回帖是我发贴的最大的动力。。。 下面是三极管的架构以及在电路图中的各种标识方法

万用表打到二极管档(蜂鸣档)对三极管测量时...首先我们要确定哪只脚是b极.于是用红表笔接触其中任意一只脚不动.用黑表笔去接触另外两只脚.如果能够测得两组相近且小于1的数字.说明此时红笔接触的就是b极.如果测得两组数字不相近..那说明此时红笔接触的不是b 极..应把红笔换一只脚..黑笔去测另外两只脚...直到找到b极为止...假设我们知道哪只脚是b 极...怎样去判断另外两只脚c极和e极呢?如下图:

图中红笔为b极.黑笔在另外两脚分别没得两组相近的数据..其中有一组数据会稍微大一点...此脚即为e极.小的那脚则为c极....并且我们知道此管为NPN三极管.因为红笔在b 极! 而对于PNP型三极管的测量方法也一样...只不过是黑表笔在b极..红笔接触另外两脚能测得两组相近的数据.,如下图: 下面是对场效应管的测量方法 场效应管英文缩写为FET.可分为结型场效应管(JFET)和绝缘栅型场效应管(MOSFET),我们平常简称为MOS管.而MOS管又可分为增强型和耗尽型而我们平常主板中常见使用的也就是增强型的MOS管. 下图为MOS管的标识

我们主板中常用的MOS管G D S三个引脚是固定的。。。不管是N沟道还是P沟道都一样。。。

把芯片放正。。。从左到右分别为G极D极S极!如下图: 用二极管档对MOS管的测量。。。首先要短接三只引脚对管子进行放电。。。 1然后用红表笔接S极.黑表笔接D极.如果测得有500多的数值..说明此管为N沟道..

【E课堂】三极管放大电路静态工作点设置目的和方法

【E课堂】三极管放大电路静态工作点设置目的和方法 放大电路,就是将输入信号放大后输出,(一般有电压放大,电流放大和功 率放大几种,这个不在这讨论内)。先说我们要放大的信号,以正弦交流信号为例说。在分析过程中,可以只考虑到信号大小变化是有正有负,其它不说。上面提 到在这是为了使信号正负能有对称的变化空间,在没有信号输入的时候,即信号 输入为0,假设Uce为电源电压的一半,我们当它为一水平线,作为一个参考点。 当输入信号增大时,则Ib增大,Ic电流增大,则电阻R2的电压U2=Ic乘以R2会 随之增大,Uce=VCC-U2,会变小。U2最大理论上能达到等于VCC,则Uce最小 会达到0V,这是说,在输入信增加时,Uce最大变化是从1/2的VCC变化到0V. 同理,当输入信号减小时,则Ib减小,Ic电流减小,则电阻R2的电压U2=Ic 乘以R2会随之减小,Uce=VCC-U2,会变大。在输入信减小时,Uce最大变化是从1/2的VCC变化到VCC。这样,在输入信号一定范围内发生正负变化时,Uce以 1/2VCC为准的话就有一个对称的正负变化范围,所以一般要把Uce设计成接近于电源电压的一半,这是我们的目的,但如何才能把Uce设计成接近于电源电压 的一半?这就是的手段了。 这里要先知道几个东西,第一个是我们常说的Ic、Ib,它们是三极管的集电极电流和基极电流,它们有一个关系是Ic=β乘以Ib,但我们初学的时候,老师很明显的没有告诉我们,Ic、Ib是多大才合适?这个问题比较难答,因为牵涉的东 西比较的多,但一般来说,对于小功率管,一般设Ic在零点几毫安到几毫安,中功率管则在几毫安到几十毫安,大功率管则在几十毫安到几安。 在 在一般R4取100Ω,R3为2.9KΩ,实际上R3我们一般直取

三极管的识别与检测方法(2)

三极管的识别与检测方法(2) 课型:理论+实践 教学目标 1、熟悉三极管外形,图形符号和文字符号; 2、了解三极管的种类与特点; 3、了解三极管的特性与参数; 4、掌握常用三极管的命名方法; 教学重点与难点 1、掌握三极管的外形,图形符号和文字符号; 2、了解三极管的种类与特点; 教学方法 讲授法、演示法 教学安排:2课时 教学过程 一、项目实施 任务一:普通三极管的识别与检测 工作任务: 1.识别不同类别的三极管 2.测量三极管 工作步骤: 1.识别各种三极管(按功率) (1)普通小功率三极管 普通小功率三极管通常采用TO-92封装,如图所示为9013三极管,其引脚顺序为E、B、C(引脚向下,面向元件型号)。 (2)中功率三极管 图所示为NPN型中功率三极管TIP41,其引脚顺序为B、C、E(引脚向下,面向元件型号),中功率三极管通常采用TO-220封装。 (3)金属外壳三极管 如图所示为开关三极管2N2222A,该三极管为NPN型三极管,采用金属外壳封装TO-18或TO-39,其引脚顺序如图所示,引脚向下,从凸起位置依次为E、B、C。

(4)大功率金属外壳三极管 图为大功率金属外壳三极管,其封装形式通常为TO-3,其外壳通常为集电极(C),另外两个引脚分别为基极(B)和发射极(E)。 (5)贴片三极管 图为贴片三极管8550,8550为小功率PNP三极管,其贴片型号为2TY,引脚顺序如图所示。 2、识别各种三极管(按引脚的现状) (1)色点标志 (2)凸形标记 (3)三角排列 (4)三脚等距平面性 (5)带散热片的三极管 3.用指针式万用表测量三极管 步骤一:判断三极管的基极(B) 用万用表R×1K档或R×100档依次测量三极管各极之间的正反向阻值,并将测得阻值填入表中。然后分析表中测得数据,观察哪一个引脚与其他两个引脚之间的测得的阻值均较小,如果符合这一条件,则这个引脚就是三极管的基极(B)。 步骤二:判断三极管的管型(PNP还是NPN) 将万用表置于R×1K档或R×100档,将万用表的黑表笔接三极管的基极,红表笔在其他极,如果阻值均较小,则表明这是一个NPN型三极管。如果是高阻值,改用红表笔接三极管的基极,黑表笔在其他引脚,若阻值均较小,则表明这是一个PNP型三极管。 步骤三:辨别三极管的集电极(C)和发射极(E) 方法一:将万用表置于R×1K档或R×100档,用“鳄鱼夹”夹持管脚,或用两手分别捏住表笔和管脚,然后用舌尖舔基极,利用人体电阻作为基极偏流电阻,也可进行测量。指针偏转较大的那一次,黑表笔所接为集电极(NPN管),红表笔所接为发射极。PNP管正好相反。 方法二:将万用表置于HFE档,将三极管管按假定的E、C插入万用表的“三极管测量

部分常见三极管参数大全

部分常见三极管参数大全[1] 晶体管型号反压Vbe0电流IC m功率PCM放大系数特征频率管子类型2SA1012Y 60V 5A 25W * * PNP 2SC752G 40V 0.2A 0.2W * * NPN 2SA1013R 160V 1A 0.9W * * PNP 2SA933S 50V 0.1A 0.9W * * PNP BF324 30V 0.26A 0.25W * * PNP BD941F 120V 3A 19W * * NPN BC636 45V 1A 0.8W * * PNP 2SD1480 80V 4A 25W * * NPN 2SC3271 300V 0.1A 5W * * NPN 2SC2688 300V 0.2A 10W * * NPN 2SC1875 50V 0.15A 0.4W * * NPN 2SA1175H 50V 0.1A 0.3W * * PNP 2SD1138C 150V 2A 30W * * NPN 2SB882 60V - 1.7W * * PNP 2SC2377 20V 0.015A 0.2W * * NPN 晶体管型号反压Vbe0电流Icm功率Pcm放大系数特征频率管子类型 IRFU020 50V 15A 42W * * NMOS场效应IR FP G42 1000V 4A 150W * * NMOS场效应IRFPF40 900V 4.7A 150W * * NMOS场效应IRFP9240 200V 12A 150W * * PMOS场效应IRFP9140 100V 19A 150W * * PMOS场效应IRFP460 500V 20A 250W * * NMOS场效应IRFP450 500V 14A 180W * * NMOS场效应IRFP440 500V 8A 150W * * NMOS场效应IRFP353 350V 14A 180W * * NMOS场效应IRFP350 400V 16A 180W * * NMOS场效应IRFP340 400V 10A 150W * * NMOS场效应IRFP250 200V 33A 180W * * NMOS场效应IRFP240 200V 19A 150W * * NMOS场效应IRFP150 100V 40A 180W * * NMOS场效应晶体管型号反压Vbe0电流Icm功率Pcm放大系数特征频率管子类型

实验一-万用表测量二极管、三极管

实验一万用表测量二极管、三极管 一、实验目的 1.熟练掌握指针式万用表和数字万用表的使用方法。 1.熟练掌握用指针式万用表测量普通二极管和三极管。 2.熟练掌握用数字万用表测量普通二极管和三极管。 二、主要元件及仪器 1、MF-47指针式万用表 2、VC890D数字万用表 3、1N4001~1N4007系列普通整流二极管 4、1N4735(6.2V)、1N4738(8.2V)稳压二极管 5、9011~9014小功率晶体三极管 二、实验原理 (一)指针式万用表测量二极管: 二极管参数的测试可用晶体管图示仪,或其它仪器进行测试。 在没有仪器的情况下也可用万用表来简单检查二极管的好坏,但这种检测方法不能测量二极管的参数。 初学者在业余条件下可以使用万用表测试二极管性能的好坏。测试前先把万用表的转换开关拨到欧姆档的RX1k档位(注意不要使用RX1档,以免电流过大烧坏二极管,也不要用RX10K,该档电压太高,可能击穿管子),再将红、黑两根表笔短路,进行欧姆调零。

正向特性测试: 把万用表的黑表笔(表内正极)搭触二极管的正极,红表笔(表内负极)搭触二极管的负极。若表针不摆到0值而是停在标度盘的中间,这时的阻值就是二极管的正向电阻,一般小功率锗管的正向电阻为1KΩ左右,硅二极管约为5KΩ左右。一般正向电阻越小越好。若正向电阻为0值,说明管芯短路损坏,若正向电阻接近无穷大值,说明管芯断路。短路和断路的管子都不能使用。 反向特性测试: 把万用表的红表笔搭触二极管的正极,黑表笔搭触二极管的负极,若表针指在无穷大值或接近无穷大值,管子就是合格的。一般小功率锗管的反向电阻为几十KΩ,硅二极管约为500KΩ以上。 1.普通二极管的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。 (1)极性的判别将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。两次测量的结果中,有一次测量出的阻值较大(为反向电阻),一次测量出的阻值较小(为正向电阻)。在阻值较小的一次测量中,黑表笔接的是二极管的正极,红表笔接的是二极管的负极。 (2)单向导电性能的检测及好坏的判断通常,锗材料二极管的正向电阻值为1kΩ左右,反向电阻值为300 kΩ左右。硅材料二极管的电阻值为5 kΩ左右,反向电阻值为∞(无穷大)。正向电阻越小越好,反向电阻越大越好。正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。 若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏。若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。 2.稳压二极管的检测 (1)正、负电极的判别测量的方法与普通二极管相同,即用万用表R×1k 档,将两表笔分别接稳压二极管的两个电极,测出一个结果后,再对调两表笔进行测量。在两次测量结果中,阻值较小那一次,黑表笔接的是稳压二极管的正极,红表笔接的是稳压二极管的负极。 若测得稳压二极管的正、反向电阻均很小或均为无穷大,则说明该二极管已击穿或开路损坏。 (2)稳压值的测量用0~30V连续可调直流电源,对于13V以下的稳压二极管,可将稳压电源的输出电压调至15V,将电源正极串接1只1.5kΩ限流电阻后与被测稳压二极管的负极相连接,电源负极与稳压二极管的正极相接,再用万用表

三极管的测量方法

三极管的测量方法 判断基极和三极管的类型: 先假设三极管的某极为“基极”,将黑表笔接在假设基极上,再将红表笔依次接到其余两个电极上,若两次测得的电阻都大(约几K到几十K),都小(几百至几K),对换表笔重复上述测量, 若测得两个阻值相反(都很小或都很大),则可确定假设的基极是正确的,否则另假设一极为“基极”,重复上述测试,以确定基极. 当基极确定后,将黑表笔接基极,红表笔笔接基它两极若测得电阻值都很少,则该三极管为NPN,反之为PNP. 判断集电极C和发射极E,以NPN为例: 把黑表笔接至假充的集电极C,红表笔接到假设的发射极E,并用手捏住B和C极,读出表头 C,E电阻值,将红,黑表笔反接重测.若第一次电阻比第二次小,说明原假设成立. 三极管测量方法 2007-04-22 08:40 三极管的管脚必须正确辨认,否则,接入电路不但不能正常工作,还可能烧坏晶体管。己知三极管类型及电极,指针式万用表判别晶体管好坏的方法如下: ①测 NPN 三极管:将万用表欧姆挡置 "R × 100" 或 "R × lk" 处,把黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是好的。 ②测 PNP 三极管:将万用表欧姆挡置 "R × 100" 或 "R × lk" 处,把红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是好的。

当三极管上标记不清楚时,可以用万用表来初步确定三极管的好坏及类型 (NPN 型还是 PNP 型 ),并辨别出e、b、c三个电极。测试方法如下 : ①用指针式万用表判断基极 b 和三极管的类型:将万用表欧姆挡置 "R ×100" 或"R×lk" 处,先假设三极管的某极为"基极",并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧至几千欧 ),则假设的基极是正确的,且被测三极管为 NPN 型管;同上,如果两次测得的电阻值都很大( 约为几千欧至几十千欧 ), 则假设的基极是正确的,且被测三极管为 PNP 型管。如果两次测得的电阻值是一大一小,则原来假设的基极是错误的,这时必须重新假设另一电极为"基极",再重复上述测试。 ②判断集电极c和发射极e:仍将指针式万用表欧姆挡置 "R ×100"或"R × 1k" 处,以NPN管为例,把黑表笔接在假设的集电极c上,红表笔接到假设的发射极e上,并用手捏住b和c极 ( 不能使b、c直接接触 ), 通过人体 , 相当 b 、 C 之间接入偏置电阻 , 如图 5-27(a) 所示。读出表头所示的阻值 , 然后将两表笔反接重测。若第一次测得的阻值比第二次小 , 说明原假设成立 , 因为 c 、 e 问电阻值小说明通过万用表的电流大 , 偏置正常。其等效电路如图5-27(b) 所示 , 图中V CC是表内电阻挡提供的电池 ,R为表内阻 ,R m为人体电阻。 用数字万用表测二极管的挡位也能检测三极管的PN结,可以很方便地

相关文档
最新文档