专题 图形的平移翻折与旋转
平移旋转翻折
平移旋转翻折在数学几何中,平移、旋转和翻折是常见且重要的变换方式。
它们不仅被广泛应用于各个领域,如计算机图形学、工程建模以及几何推理,还在日常生活中起到一定的作用。
本文将重点介绍平移、旋转和翻折的概念、特点以及应用。
一、平移平移是指在平面上将一个图形沿着一定方向不改变形状和大小地移动。
在数学中,平移可以用向量来表示。
假设平移向量为[dx, dy],那么图形上任意一点(x, y)经过平移后的坐标为(x+dx, y+dy)。
可以看出,平移只改变了图形的位置,而不会改变图形本身的性质。
平移在几何中有广泛的应用。
比如在地图制图中,将地图上的城市标记进行平移,便可以得到不同的地理分布方案。
此外,在工程制图中,平移也是非常常见的操作,可以通过平移来移动图形的位置,以获得更合理和更美观的设计。
二、旋转旋转是指将一个图形以某个点为中心按一定角度旋转,保持形状和大小不变。
数学中,我们可以使用旋转矩阵来描述一个图形的旋转变换。
设旋转角度为θ,旋转中心为(x0, y0),图形上任意一点(x, y)经过旋转后的坐标计算公式如下:x' = (x - x0) * cosθ - (y - y0) * si nθ + x0y' = (x - x0) * sinθ + (y - y0) * cosθ + y0可以看出,旋转的本质是改变了图形的方向和位置,但不改变图形本身的性质。
旋转在许多领域都有重要的应用。
例如,在航空航天领域中,飞行器的姿态控制需要进行旋转变换来实现平衡和机动性能。
此外,在艺术设计中,通过旋转变换可以创造出丰富多样的视觉效果。
三、翻折翻折是指将一个图形沿着某条直线对称地翻转,即将图形中的点关于对称轴做镜像对称。
在数学中,翻折也可以通过矩阵变换来表示。
设对称轴为直线y=kx+b,图形上任意一点(x, y)经过翻折后的坐标计算公式如下:x' = x - 2 * (k * x + b) / (k^2 + 1)y' = y - 2 * (k * x + b) * k / (k^2 + 1) - 2 * b / (k^2 + 1)翻折改变了图形的方向和位置,同时也改变了图形的性质。
2023年上海市16区数学中考二模专题汇编5 图形的平移、旋转、翻折、新定义(18题)含详解
专题05图形的平移、旋转、翻折、新定义(18题)一、单选题1.(2023·上海黄浦·统考二模)下列轴对称图形中,对称轴条数最多的是()A.等边三角形B.菱形C.等腰梯形D.圆2.(2023·上海嘉定·统考二模)下列图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰梯形C.矩形D.正五边形二、填空题5.(2023·上海黄浦A的对应点是点6.(2023·上海静安处,点A落在点7.(2023·上海金山·统考二模)已知线段AC上,如果点E关于直线8.(2023·上海闵行三角形为特征三角形.9.(2023·上海浦东新·于点F.如果2AD AB=10.(2023·上海徐汇·统考二模)如图,抛物线“月牙线”,抛物线1C和抛物线=,那么抛物线果BD CD11.(2023·上海宝山·统考二模)13.(2023·上海闵行·统考二模)如图,在菱形ABCD 中,6AB =,80A ∠=︒,如果将菱形ABCD 绕着点D 逆时针旋转后,点A 恰好落在菱形ABCD 的初始边AB 上的点E 处,那么点E 到直线BD 的距离为___________.14.(2023·上海嘉定·统考二模)如图,在Rt ABC 中,90C ∠=︒,4AC =,2BC =,点D 、E 分别是边BC 、BA 的中点,连接DE .将BDE 绕点B 顺时针方向旋转,点D 、E 的对应点分别是点1D 、1E .如果点1E 落在线段AC 上,那么线段1CD =____.三、解答题15.(2023·上海静安·统考二模)如图,在平面直角坐标系xOy 中,抛物线()240y ax x c a =-+≠与x 轴分别交于点()1,0A 、点()3,0B ,与y 轴交于点C ,连接BC ,点P 在线段BC 上,设点P 的横坐标为m .(1)求直线BC 的表达式;(1)如图,如果点O '恰好落在半圆O 上,求证: O A BC'=;(2)如果30DAB ∠=o ,求EF O D'的值;(3)如果3,1OA O D ==',求OF 的长.17.(2023·上海徐汇·统考二模)如图,已知抛物线2y x bx c =++经过点()2,7A -,与x 轴交于点B 、()5,0C .(1)求抛物线的顶点M 的坐标;(2)点E 在抛物线的对称轴上,且位于x 轴的上方,将BCE 沿直线BE 翻折,如果点C 的对应点F 恰好落在抛物线的对称轴上,求点E 的坐标;(3)点P 在抛物线的对称轴上,点Q 是抛物线上位于第四象限内的点,当CPQ 为等边三角形时,求直线BQ 的表达式.18.(2023·上海松江·统考二模)在平面直角坐标系xOy 中(如图),已知直线2y x =-+与y 轴交于点A ,抛物线()21(0)y x t t =-->的顶点为B .(1)若抛物线经过点A ,求抛物线解析式;(2)将线段OB 绕点B 顺时针旋转90︒,点O 落在点C 处,如果点C 在抛物线上,求点C 的坐标;(3)设抛物线的对称轴与直线2y x =-+交于点D ,且点D 位于x 轴上方,如果45BOD ∠=︒,求t 的值.专题05图形的平移、旋转、翻折、新定义(18题)一、单选题1.(2023·上海黄浦·统考二模)下列轴对称图形中,对称轴条数最多的是()A.等边三角形B.菱形C.等腰梯形D.圆【答案】D【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,从而可以画出它们的对称轴.【详解】解:等边三角形有3条对称轴,菱形有2条对称轴,等腰梯形有1条对称轴,圆形有无数条对称轴,圆的对称轴条数最多,故选:D.【点睛】此题主要考查如何确定轴对称图形的对称轴条数及位置,解题的关键是掌握轴对称的概念.2.(2023·上海嘉定·统考二模)下列图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰梯形C.矩形D.正五边形【答案】C【分析】根据轴对称图形的定义、中心对称图形的定义逐项判断即可.【详解】A选项:等边三角形是轴对称图形,不是中心对称图形.故本选项不合题意;B选项:等腰梯形是轴对称图形,不是中心对称图形.故本选项不合题意;C选项:矩形既是轴对称图形,又是中心对称图形.故本选项符合题意;D选项:正五边形是轴对称图形,不是中心对称图形,故本选项不合题意.故选C.【点睛】本题考查轴对称图形、中心对称图形,理解定义,会根据定义判断轴对称图形和中心对称图形是解答的关键.二、填空题在正方形ABCD 和正三角形∴点O ,E 均在BC 的垂直平分线上,∴点E ,O ,P ,G 四三点共线,∵正方形ABCD 和正三角形∴6BC BE ==.116OG BG BC ===⨯=在正方形ABCD 和正三角形∴点O ,E 均在BC 的垂直平分线上,∴点E ,O ,P ,G 四三点共线,∵正方形ABCD 和正三角形∴6BC BE ==.∴11622OG BG BC ===⨯【答案】20【分析】根据旋转可得根据AA B '∠【详解】解:∵∴180ACB ∠=∵将ABC 绕点∴30B A C BAC ∠=∠=''︒,∴(11802CAA CA A ''∠=∠=︒∴AA B CA A B A C '''''∠=∠-∠故答案为:20︒.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理等知识,掌握旋转的性质是关键.A 的对应点是点1A ,点B 的对应点是点1B ),如果点1A 坐标是()20-,,那么点1B 的坐标是________.【答案】()12,【分析】各对应点之间的关系是横坐标减3,纵坐标加3,那么让点B 的横坐标减3,纵坐标加3即为点1B 的坐标.【详解】解:∵()13A -,平移后对应点1A 的坐标为()20-,,∴A 点的平移方法是:先向左平移3个单位,再向上平移3个单位,∴B 点的平移方法与A 点的平移方法是相同的,∴()41B -,平移后的坐标是:()4313--+,即()12,.故答案为:()12,.【点睛】此题主要考查了点的平移规律与图形的平移,关键是掌握平移规律,左右移,纵不变,横减加,上下移,横不变,纵加减.6.(2023·上海静安·统考二模)如图,在ABC 中,AB AC =,将ABC 绕着点B 旋转后,点C 落在AC 边上的点E 处,点A 落在点D 处,DE 与AB 相交于点F ,如果BE BF =,那么DBC ∠的大小是______.【答案】108︒/108度【分析】设A x ∠=,由AB AC =,BE BF =得ABC C ∠∠=,BEF BFE ∠∠=,再由旋转的性质得DEB C ABC DBE ∠∠∠∠===,BE BC =,从而有CBE A x ∠∠==,同理可证:EBF A x ∠∠==,利用三角形的内角和定理构造方程即可求解.【详解】解:设A x ∠=,∵AB AC =,BE BF =,∴ABC C ∠∠=,BEF BFE ∠∠=,∵将ABC 绕着点B 旋转后,点C 落在AC 边上的点E 处,点A 落在点D 处,DE 与AB 相交于点F ,∴DEB C ABC DBE ∠∠∠∠===,BE BC =,∵180BEC C CBE ABC C A ∠∠∠∠∠∠++=++=︒,∴CBE A x ∠∠==,同理可证:EBF A x ∠∠==,【点睛】本题考查解直角三角形,轴对称的性质,掌握垂线段最短是解题的关键.8.(2023·上海闵行·统考二模)阅读理解:如果一个三角形中有两个内角三角形为特征三角形.问题解决:如图,在ABC 中,【答案】253【分析】由题意可分:,A B βα∠=∠=,过点∴A ADC ∠=∠,∵4tan 3A =,∴4tan 3ADC ∠=,∵ABC 是特征三角形,即∴2ABE ABC ∠=∠,∴BC 平分ABE ∠,【答案】35【分析】通过证明AEF △得出边之间的关系,即可求解.【详解】解:∵2=AD AB ∴设,2AB a AD a ==,【点睛】本题主要考查了矩形的折叠问题,以及解直角三角形的方法和步骤.10.(2023·上海徐汇·统考二模)如图,抛物线则tan tan DAC ∠=∠∴t n a CD DAC AC ∠==∴165CD =∴1695BD =-=;作DE AB ⊥于E ,则∵AD AD =,∴Rt △∵,90ACB ∠=︒,设BD x =,则CD DE =【答案】3372-【分析】利用含30度角的直角三角形的性质,分别求出出90DBE ∠=︒,在Rt【答案】3【分析】如图,旋转、菱形的性质可知,180ADE DEA ∠=︒-∠-∠由旋转、菱形的性质可知,∴80DEA A ∠=∠=︒,ABD ∠∴180ADE DEA ∠=︒-∠-∠【答案】355【分析】根据勾股定理求得AB ,根据旋转的性质得出根据相似三角形的性质即可求解.设旋转角为α,∴11ABE CBD ∠=∠,旋转,∴115,1BE BE BD BD ====,三、解答题15.(2023·上海静安·统考二模)如图,在平面直角坐标系xOy 中,抛物线()240y ax x c a =-+≠与x 轴分别交于点(1)求直线BC 的表达式;(2)如果以P 为顶点的新抛物线经过原点,且与①求新抛物线的表达式(用含②过点P 向x 轴作垂线,交原抛物线于点【答案】(1)3y x =-+(2)①()2233m y x m m m-=--+,【分析】(1)先利用待定系数法求出抛物线解析式,进而求出点式即可;(2)①先求出()3P m m -+,,设新抛物线解析式为抛物线解析式,再根据点P 在线段称时,当四边形AEDP 关于PE 【详解】(1)解:把()1,0A 、B ∴13a c =⎧⎨=⎩,∴抛物线解析式为24y x x =-+在243y x x =-+中,令0x =,则∴()0,3C ;设直线BC 的解析式为y kx b =+∴303k b b +=⎧⎨=⎩,∴13k b =-⎧⎨=⎩,∴直线BC 的解析式为y x =-+(2)解:①∵点P 在线段BC【点睛】本题主要考查了待定系数法求二次函数解析式,轴对称的性质,求一次函数解析式等等,灵活运用所学知识是解题的关键.16.(2023·上海松江·统考二模)如图,(1)如图,如果点O '恰好落在半圆O 上,求证: O A BC'=;(2)如果30DAB ∠=o ,求EF O D'的值;(3)如果3,1OA O D ==',求OF 的长.【答案】(1)见解析(2)24(3)97OF =或95OF =.【分析】(1)如图:连接,OC O C ',先根据圆的性质和对称的性质说明OAO ' 是等边三角形,明60COO BOC '∠=∠=︒即可证明结论;(2)设圆O 的半径为2a ,则2O A OA a '==,如图:作ON AD ⊥于N ;先根据对称的性质和等腰三角形的性质可得,30120ODA OAD AOD ︒︒∠=∠=∠=,然后解直角三角形可得()232O D a '=-、EF OE ==∵点O '恰好落在半圆O 上,∴OO OA '=,∵点O '与点O 关于直线AC 对称∴AO OA CO CO ==='',O AC '∠∵,30OA OD OAD =∠=︒,∴,30120ODA OAD AOD ︒∠=∠=∠=在Rt AON △中,sin 30ON OA =⋅︒∵ON AD ⊥,∴FN FM=∴1212AFD OFA AD FM S AD S AO AO FN ⨯==⨯ ,又∵AFD S DF S OF = ,∴FN FM =,∴1212AFD OFA AD FM S AD S AO AO FN ∆∆⨯==⨯,又∵AFD OFA S DF S OF ∆∆=,(1)求抛物线的顶点M 的坐标;(2)点E 在抛物线的对称轴上,且位于的对称轴上,求点E 的坐标;(3)点P 在抛物线的对称轴上,点式.【答案】(1)245y x x =--,顶点坐标为:(2)点E 的坐标为()2,3;(3)直线BQ 的函数表达式为【分析】(1)利用待定系数法求解抛物线的解析式,再化为顶点式,即可得到顶点坐标;(2)先求解抛物线与x 轴交于轴与x 轴交于点H ,则H 点的坐标为2233FH FB BH =-=,(3)连接CF ,证明FCB 于点K ,可得点K 的坐标为【详解】(1)解:∵抛物线∵抛物线与x 轴交于(1,0B -∴6BC =,抛物线的对称轴为直线设抛物线的对称轴与x 轴交于点由翻折得6CB FB ==,由勾股定理,得FH FB =∴点F 的坐标为()2,33,∴60FBH ∠=︒,∴CP CQ =,CB CF =,∠∴FCP BCQ ∠=∠,∴BCQ FCP ≌,∴CBQ CFH ∠=∠,∵BCF △为等边三角形,∴30CFH CBQ ∠=︒=∠,设BP 与x 轴相交于点K ,∴3tan 303OK OB =︒= .(1)若抛物线经过点A ,求抛物线解析式;∵旋转,∴,90OB OC OBC =∠=∴BEO OBC BDC ∠=∠=∠∴90OBE CBD ∠=︒-∠由2y x =-+,令0y =,得∴2OA OH ==,AH =∴OAH △是等腰直角三角形∵BD y ∥轴,。
平移旋转与翻折的性质
平移旋转与翻折的性质平移旋转和翻折是几何学中常用的变换方式,它们具有一些特定的性质和规律。
在本文中,我们将探讨平移旋转与翻折的性质,并举例说明它们在几何学中的应用。
1. 平移的性质平移是指在平面上将一个图形按照指定方向和距离进行整体移动,而不改变其形状和大小。
平移的性质如下:(1) 平移不改变图形的大小和形状。
无论是几何图形还是图像,经过平移后,其大小和形状都保持不变。
(2) 平移保持图形内部的相对位置关系。
对于一个多边形或复杂图形而言,其中的点之间的相对距离和角度关系在平移前后保持一致。
(3) 平移可以叠加。
如果对同一个图形进行多次平移,结果将等同于进行一次相应方向和距离的平移。
这是平移的可加性质。
例如,将一个三角形ABC向右平移3个单位距离,得到三角形A'B'C'。
经过平移后,A'B'C'的形状和大小与ABC完全相同,只是位置改变了。
2. 旋转的性质旋转是指以一个固定点(旋转中心)为中心,按照一定的角度将图形或物体绕旋转中心旋转。
旋转的性质如下:(1) 旋转不改变图形的大小。
无论是几何图形还是图像,经过旋转后,其大小保持不变。
(2) 旋转保持图形内部的相对位置关系。
对于一个多边形或复杂图形而言,其中的点之间的相对距离和角度关系在旋转前后保持一致。
(3) 旋转可以叠加。
如果对同一个图形进行多次旋转,结果将等同于进行一次相应角度的旋转。
这是旋转的可加性质。
举例来说,将一个矩形顺时针旋转90度,其形状和大小保持不变,只是方向改变了。
3. 翻折的性质翻折是指将图形或物体按照某条直线将其两侧对称折叠在一起,使得折叠前后的形状完全一致。
翻折的性质如下:(1) 翻折不改变图形的大小。
翻折前后,图形的大小保持不变。
(2) 翻折使得图形对称。
图形中的每个点关于翻折轴对称,翻折后的形状与原始形状重合。
(3) 翻折可以叠加。
如果对同一个图形进行多次翻折,结果将等同于只进行一次翻折。
图形的旋转、平移与翻折
图形的旋转、平移与翻折在几何学中,图形的旋转、平移与翻折是常见的操作,可以通过这些操作改变图形的位置、形状和方向。
这些操作在数学、物理学和计算机图形学等领域都有广泛的应用。
本文将介绍图形的旋转、平移与翻折的基本概念和相关应用。
一、图形的旋转图形的旋转是指将图形绕一个旋转中心按一定角度旋转。
旋转可以使图形发生变化,同时保持图形的大小和形状不变。
旋转操作常用的单位是度数,顺时针为正方向,逆时针为负方向。
图形的旋转可以通过旋转矩阵来描述。
设图形的坐标为(x, y),旋转的角度为θ,旋转中心为(x0, y0),则旋转后的坐标可以表示为:x' = (x - x0) * cosθ - (y - y0) * sinθ + x0y' = (x - x0) * sinθ + (y - y0) * cosθ + y0通过这个公式,我们可以将任意点围绕旋转中心进行旋转变换。
图形的旋转可以应用于很多领域,例如地理学中的地图旋转变换、物理学中的刚体旋转运动等。
在计算机图形学中,旋转操作经常用于图像处理、动画制作等方面。
二、图形的平移图形的平移是指将图形沿着特定的方向和距离进行移动。
平移操作只改变图形的位置而不改变图形的形状和方向。
图形的平移可以通过平移向量来表示。
设图形的坐标为(x, y),平移向量为(dx, dy),则平移后的坐标可以表示为:x' = x + dxy' = y + dy通过这个公式,我们可以将图形沿水平方向和垂直方向进行平移变换。
图形的平移操作在几何学中经常用于研究几何关系、证明定理等方面。
在计算机图形学中,平移操作经常用于图像编辑、游戏开发等方面。
三、图形的翻折图形的翻折是指将图形在一个轴线上进行对称变换。
翻折操作将图形上的每个点关于轴线镜像对称,使得图形在镜像轴两侧成为对称的。
图形的翻折可以通过翻折矩阵来表示。
设图形的坐标为(x, y),轴线为x轴或y轴,对称变换为x轴翻折或y轴翻折,对应的翻折矩阵为:对于x轴翻折:x' = xy' = -y对于y轴翻折:x' = -xy' = y通过这个公式,我们可以将图形关于x轴或y轴进行翻折变换。
旋转平移翻折的几何变换与性质
旋转平移翻折的几何变换与性质旋转、平移和翻折是几何中常见的基本变换方式,它们在空间和平面几何中发挥着重要的作用。
本文将介绍旋转平移翻折的几何变换及其性质,推导其数学表达式,并通过具体的实例来说明其应用。
一、旋转变换旋转是指将平面或空间中的图形按照一定角度绕着旋转中心进行旋转的操作。
对于平面上的点(x, y),其绕原点逆时针旋转θ度后的新坐标可以由以下公式计算得出:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ其中,x'和y'分别表示旋转后点的坐标,θ为旋转角度。
二、平移变换平移是指将平面或空间中的图形沿着指定的方向和距离进行移动的操作。
平移变换可以用一个向量来表示。
对于平面上的点(x, y),其平移(dx, dy)后的新坐标可以由以下公式计算得出:x' = x + dxy' = y + dy其中,(dx, dy)为平移向量,x'和y'分别表示平移后点的坐标。
三、翻折变换翻折是指将平面或空间中的图形沿着指定的轴进行对称的操作。
对于平面上的点(x, y),其关于直线y=k翻折后的新坐标可以由以下公式计算得出:x' = xy' = 2k - y其中,(x', y')为翻折后点的坐标,k为翻折轴的位置。
以上是旋转、平移和翻折的几何变换的数学表达式。
下面将通过实例说明它们在几何问题中的应用。
实例一:旋转变换假设有一张平面上的三角形ABC,顶点分别为A(1, 2),B(3, 4)和C(5, 6)。
现在需要将该三角形绕原点顺时针旋转60度,求旋转后各顶点的坐标。
根据旋转变换的公式,旋转角度θ=60°,原点为旋转中心,可以计算得出旋转后的各顶点坐标为:A'(1*cos60° - 2*sin60°, 1*sin60° + 2*cos60°) = (0.5, 2.598)B'(3*cos60° - 4*sin60°, 3*sin60° + 4*cos60°) = (-1.133, 4.330)C'(5*cos60° - 6*sin60°, 5*sin60° + 6*cos60°) = (1.333, 7.464)实例二:平移变换假设有一条直线L,其方程为y = 2x - 1。
图形的旋转、翻折与平移-三年中考数学真题分项汇编(解析版)
图形的旋转、翻折与平移一、单选题1.(2022·浙江湖州)如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是()A.2cm B.3cm C.4cm D.5cm【答案】C【分析】据平移的性质可得BB′=CC′=1,列式计算即可得解.【详解】解:∵∵ABC沿BC方向平移1cm得到△A′B′C′,∵BB′=CC′=1cm,∵B′C=2cm,∵BC′= BB′+ B′C+CC′=1+2+1=4(cm).故选:C.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.2.(2022·浙江嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心'''',形成一个“方吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A B C D胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.2-1)cm D.21)cm【答案】D【分析】先求出BD,再根据平移性质求得BB'=1cm,然后由BD BB-′求解即可.【详解】解:由题意,BD=22cm,由平移性质得BB'=1cm,∵点D,B′之间的距离为DB'=BD BB-′=(221-)cm,【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.3.(2021·浙江丽水)四盏灯笼的位置如图.已知A,B,C,D的坐标分别是(−1,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移4.5个单位B.将C向左平移4个单位C.将D向左平移5.5个单位D.将C向左平移3.5个单位【答案】C【分析】直接利用利用关于y轴对称点的性质得出答案.【详解】解:∵点A (−1,b) 关于y轴对称点为B (1,b),C (2,b)关于y轴对称点为(-2,b),需要将点D (3.5,b) 向左平移3.5+2=5.5个单位,故选:C.【点睛】本题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.4.(2021·浙江绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到16个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形【分析】根据平移和大菱形的位置得出菱形的个数进行判定即可【详解】如图所示,用2个相同的菱形放置,最多能得到3个菱形;用3个相同的菱形放置,最多能得到8个菱形,用4个相同的菱形放置,最多能得到16个菱形,用5个相同的菱形放置,最多能得到29个菱形,用6个相同的菱形放置,最多能得到47个菱形.故选:B.【点睛】本题考查了生活中的平移现象,菱形的判定,正确的识别图形是解题的关键.5.(2020·浙江台州)如图,把∵ABC 先向右平移3个单位,再向上平移2个单位得到∵DEF ,则顶点C (0,-1)对应点的坐标为( )A .(0,0)B .(1,2)C .(1,3)D .(3,1) 【答案】D 【分析】先找到顶点C 的对应点为F ,再根据直角坐标系的特点即可得到坐标.【详解】∵顶点C 的对应点为F ,由图可得F 的坐标为(3,1),故选D .【点睛】此题主要考查坐标与图形,解题的关键是熟知直角坐标系的特点.6.(2022·浙江台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -【答案】B 【分析】直接利用关于y 轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E 与点D 关于y 轴对称,∵飞机E 的坐标为(40,a ),∵飞机D 的坐标为(-40,a ),【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的符号关系是解题关键.7.(2020·浙江台州)把一张宽为1cm 的长方形纸片ABCD 折叠成如图所示的阴影图案,顶点A ,D 互相重合,中间空白部分是以E 为直角顶点,腰长为2cm 的等腰直角三角形,则纸片的长AD (单位:cm )为( )A .732+B .742+C .832+D .842+【答案】D 【分析】如图,过点M 作MH∵A'R 于H ,过点N 作NJ∵A'W 于J .想办法求出AR ,RM ,MN ,NW ,WD 即可解决问题.【详解】解:如图,过点M 作MH∵A'R 于H ,过点N 作NJ∵A'W 于J .由题意∵EMN 是等腰直角三角形,EM=EN=2,MN=22∵四边形EMHK 是矩形,∵EK= A'K=MH=1,KH=EM=2,∵∵RMH 是等腰直角三角形,∵RH=MH=1,RM=2,同法可证NW=2,题意AR=R A'= A'W=WD=4,∵AD=AR+RM+MN+NW+DW=4+2+22+2+4=842+.故答案为:D.【点睛】本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.8.(2022·浙江衢州)下列图形是中心对称图形的是( )A .B .C .D .【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180 ,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)逐项判断即可得.【详解】解:A、不是中心对称图形,此项不符合题意;B、是中心对称图形,此项符合题意;C、不是中心对称图形,此项不符合题意;D、不是中心对称图形,此项不符合题意;故选:B.【点睛】本题考查了中心对称图形,熟记中心对称图形的定义是解题关键.9.(2020·浙江绍兴)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形【答案】B【分析】根据对称中心的定义,根据矩形的性质,可得四边形AECF形状的变化情况.【详解】解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:B.【点睛】考查了中心对称,矩形的性质,平行四边形的判定与性质,菱形的性质,根据EF与AC的位置关系即可求解.二、填空题10.(2022·浙江台州)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′∵BC,则阴影部分的面积为______2cm.【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A ′B ′C ′=S △ABC ,BC =B ′C ′,BC ∵B ′C ′,∵四边形B ′C ′CB 为平行四边形,∵BB ′∵BC ,∵四边形B ′C ′CB 为矩形,∵阴影部分的面积=S △A ′B ′C ′+S 矩形B ′C ′CB -S △ABC=S 矩形B ′C ′CB=4×2=8(cm 2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:∵平移不改变图形的形状和大小;∵经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.11.(2022·浙江金华)如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C ''',连结CC ',则四边形AB C C ''的周长为_____cm .【答案】823+【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∵AB =2BC =4,∵AC =2216423AB BC -=-=,∵把ABC 沿AB 方向平移1cm ,得到A B C ''',∵1CC '=,=4+1=5AB ', =2B C BC ''=,∵四边形的周长为:23152823+++=+,故答案为:823+.【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键. 12.(2022·浙江嘉兴)如图,在扇形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则EF 的度数为_______;折痕CD 的长为_______.【答案】 60°##60度 46【分析】根据对称性作O 关于CD 的对称点M ,则点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上,再结合切线的性质和垂径定理求解即可.【详解】作O 关于CD 的对称点M ,则ON =MN连接MD 、ME 、MF 、MO ,MO 交CD 于N∵将CD 沿弦CD 折叠∵点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上∵将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .∵ME ∵OA ,MF ∵OB∵90MEO MFO ∠=∠=︒∵120AOB ∠=︒∵四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒即EF 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF =∵MEO MFO ≅(HL )∵1302EMO FMO FME ∠=∠=∠=︒ ∵643cos cos30ME OM EMO ===∠︒∵23MN =∵MO ∵DC∵222216(23)262DN DM MN CD =-=-== ∵46CD =故答案为:60°;46【点睛】本题考查了折叠的性质、切线的性质、垂径定理、勾股定理;熟练掌握折叠的性质作出辅助线是解题的关键.13.(2020·浙江金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A与点B 重合),点O 是夹子转轴位置,O E ∵AC 于点E ,OF ∵BD 于点F ,OE=OF=1cm ,AC =BD =6cm , CE =DF , CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大值时,以点A ,B ,C ,D 为顶点的四边形的周长是_____ cm .(2)当夹子的开口最大(点C 与点D 重合)时,A ,B 两点的距离为_____cm .【答案】1660 13【分析】(1)当E、O、F三点共线时,E、F两点间的距离最大,此时四边形ABCD是矩形,可得AB=CD=EF=2cm,根据矩形的性质求出周长即可.(2)当夹子的开口最大(点C与D重合)时,连接OC并延长交AB于点H,可得CH AB⊥,AH=BH,利用已知先求出125CE cm=,在Rt△OEF中利用勾股定理求出CO的长,由sinOE AHECOCO AAC∠==,求出AH,从而求出AB=2AH的长.【详解】(1)当E、O、F三点共线时,E、F两点间的距离最大,此时四边形ABCD是矩形,∵AB=CD=EF=2cm,∵以点A,B,C,D为顶点的四边形的周长为2+6+2+6=16cm.(2)当夹子的开口最大(点C与D重合)时,连接OC并延长交AB于点H,∵CH AB⊥,AH=BH,∵AC=BD=6cm,CE∵AE=2∵3,∵125CE cm=,在Rt△OEF中,2213 5CO OE CE=+=,∵sinOE AHECOCO AAC∠==,3013AH=,∴AB=2AH=60 13.故答案为16,60 13.【点睛】本题主要考查了勾股定理与旋转的结合,做题时准确理解题意利用已知的直角三角形进行求解是解题的关键.三、解答题14.(2022·浙江温州)如图,在26⨯的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180︒后的图形.【答案】(1)见解析(2)见解析【分析】(1)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可;(2)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可.(1)画法不唯一,如图1或图2等.(2)画法不唯一,如图3或图4等.【点睛】本题考查作图—旋转变换、作图—平移变换,解答本题的关键是明确题意,画出相应的图形,注意不要忘记画出平移后或旋转后的图形.15.(2022·浙江丽水)如图,在66的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与ABC相似的三角形,相似比不等于1.【答案】(1)画图见解析(2)画图见解析(3)画图见解析【分析】(1)分别确定A,B平移后的对应点C,D,从而可得答案;(2)确定线段AB,AC关于直线BC对称的线段即可;(3)分别计算ABC的三边长度,再利用相似三角形的对应边成比例确定DEF的三边长度,再画出DEF 即可.(1)解:如图,线段CD即为所求作的线段,(2)如图,四边形ABDC是所求作的轴对称图形,(3)如图,如图,DEF 即为所求作的三角形,由勾股定理可得:221310,2,AB AC而2,BC = 同理:2226210,22,DFDE 而4,EF1,2AB AC BC DF DE EF.ABC DFE ∽【点睛】本题考查的是平移的作图,轴对称的作图,相似三角形的作图,掌握平移轴对称的性质,相似三角形的判定方法是解本题的关键.16.(2021·浙江温州)如图44⨯与66⨯的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P 为它的一个顶点,并画出将它向右平移3个单位后所得的图形. (253中. 【答案】(1)见解析;(2)见解析【分析】(1)七巧板中有两个四边形,分别是正方形和平行四边形,根据题意可画出4种图形任意选一种即可,(2)七巧板中有五个等腰直角三角形,有直角边长2的两个,直角边长22的两个,直角边长2 的一个,根据题意利用数形结合的思想解决问题即可.【详解】解:(1)画法不唯一,当选四边形为正方形时可以是如图1或图2;当四边形式平行四边形时可以是图3或图4.(2)画法不唯一,当直角边长为2时,扩大5即直角边长为10利用勾股定理画出直角边长为10直角三角形可以是如图5或图6当直角边长为22时,扩大5即直角边长为210利用勾股定理画出直角边长为210直角三角形可以是如图7或图8等.【点睛】本题考查基本作图,平移,二次根式的乘法,以及勾股定理的应用,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.17.(2022·浙江宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.【答案】(1)见解析(2)见解析【分析】利用轴对称图形、中心对称图形的特点画出符合条件的图形即可;(1)答案不唯一.(2)【点睛】本题考查了轴对称图形、中心对称图形的特点,熟练掌握特殊三角形与四边形的性质才能准确画出符合条件的图形.18.(2020·浙江宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)见解析;(2)见解析【分析】(1)根据轴对称图形的定义画出图形构成一个大的等边三角形即可(答案不唯一).(2)根据中心对称图形的定义画出图形构成一个平行四边形即可(答案不唯一).【详解】解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.【点睛】本题考查利用中心对称设计图案,利用轴对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.19.(2020·浙江金华)如图,在∵ABC 中,AB =42∵B =45°,∵C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将∵AEF 折叠得到∵PEF . ∵如图2,当点P 落在BC 上时,求∵AEP 的度数. ∵如图3,连结AP ,当PF ∵AC 时,求AP 的长.【答案】(1)4;(2)∵90°;∵26【分析】(1)如图1中,过点A 作AD∵BC 于D .解直角三角形求出AD 即可. (2)∵证明BE=EP ,可得∵EPB=∵B=45°解决问题. ∵如图3中,由(1)可知:AC=83sin 603AD =︒,证明∵AEF∵∵ACB ,推出AF AE AB AC =,由此求出AF 即可解决问题.【详解】解:(1)如图1,过点A 作AD ∵BC 于点D , 在Rt∵ABD 中,sin 45AD AB =⋅︒=2422⨯=4.(2)∵如图2,∵∵AEF ∵∵PEF , ∵AE =EP . 又∵AE =BE , ∵BE =EP , ∵∵EPB =∵B =45°, ∵∵AEP =90°.∵如图3,由(1)可知:在Rt∵ADC 中,83sin 603AD AC ==︒. ∵PF ∵AC , ∵∵PF A =90°. ∵∵AEF ∵∵PEF ,∵∵AFE =∵PFE =45°,则∵AFE =∵B . 又∵∵EAF =∵CAB , ∵∵EAF ∵∵CAB ,∵AF AB=AE AC ,即42AF =22833, ∵AF =23,在Rt∵AFP 中,AF =PF ,则AP =2AF =26.【点睛】本题属于三角形综合题,考查了解直角三角形的应用,翻折变换,全等三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.20.(2021·浙江嘉兴)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.【答案】[探究1]152BC +=;[探究2]'D M DM =,证明见解析;[探究3]2MN PN DN =⋅,证明见解析 【分析】[探究1] 设BC x =,根据旋转和矩形的性质得出''//D C DA ,从而得出''D C B ADB ∆∆∽,得出比例式'''D C D BAD AB=,列出方程解方程即可; [探究2] 先利用SAS 得出''AC D DBA ∆∆≌,得出'DAC ADB ∠=∠,'ADB AD M ∠=∠,再结合已知条件得出''MDD MD D ∠=∠,即可得出'D M DM =;[探究3] 连结AM ,先利用SSS 得出ADM ADM ∆∆≌,从而证得MN AN =,再利用两角对应相等得出NPA NAD ∆∆∽,得出PN ANAN DN=即可得出结论. 【详解】[探究1]如图1,设BC x =.∵矩形ABCD 绕点A 顺时针旋转90︒得到矩形'''AB C D , ∵点A ,B ,'D 在同一直线上.∵'AD AD BC x ===,'1DC AB AB ===, ∵''1D B AD AB x =-=-. ∵'90BAD D ∠=∠=︒, ∵//D C DA ''.又∵点'C 在DB 延长线上, ∵''D C B ADB ∆∆∽, ∵'''D C D BAD AB =,∵111x x -=. 解得1152x +=,2152x -=(不合题意,舍去)∵152BC +=. [探究2] 'D M DM =. 证明:如图2,连结'DD .∵'//'D M AC , ∵'''AD M D AC ∠=∠.∵'AD AD =,''90AD C DAB ∠=∠=︒,''D C AB =,∵()''AC D DBA SAS ∆∆≌.∵'D AC ADB '∠=∠,'ADB AD M ∠=∠,∵AD AD =,''ADD AD D ∠=∠,∵''MDD MD D ∠=∠,∵'D M DM =.[探究3]关系式为2MN PN DN =⋅.证明:如图3,连结AM .∵'D M DM =,'AD AD =,AM AM =,∵()ADM AD M SSS '∆∆≌.∵'MAD MAD ∠=∠,∵AMN MAD NDA ∠=∠+∠,'NAM MAD NAP ∠=∠+∠,∵AMN NAM ∠=∠,∵MN AN =.在NAP ∆与NDA ∆中,ANP DNA ∠=∠,NAP NDA ∠=∠,∵NPA NAD ∆∆∽,∵PN AN AN DN=, ∵2AN PN DN =⋅.∵2MN PN DN =⋅.【点睛】本题考查了矩形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,解一元二次方程等,解题的关键是灵活运用这些知识解决问题.21.(2020·浙江绍兴)如图1,矩形DEFG中,DG=2,DE=3,Rt∵ABC中,∵ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG∵BC,OG=2,OC=4.将∵ABC绕点O逆时针旋转α(0°≤α<180°)得到∵A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.∵当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.∵当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.【答案】(1)点C′到直线OF的距离为23;(2)∵点C′到直线DE的距离为22±2;∵2≤d<4417或d=3.【分析】(1)过点C′作C′H∵OF于H.根据直角三角形的边角关系,解直角三角形求出CH即可.(2)∵分两种情形:当C′P∵OF时,过点C′作C′M∵OF于M;当C′P∵DG时,过点C′作C′N∵FG于N.通过解直角三角形,分别求出C′M,C′N即可.∵设d为所求的距离.第一种情形:当点A′落在DE上时,连接OA′,延长ED交OC于M.当点P落在DE上时,连接OP,过点P作PQ∵C′B′于Q.结合图象可得结论.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=25﹣2,即d=25﹣2;当点P落在EF上时,设OF交A′B′于Q,过点P作PT∵B′C′于T,过点P作PR∵OQ交OB′于R,连接OP.求出QG可得结论.第三种情形:当A′P经过点F时,此时显然d=3.综上所述即可得结论.【详解】解:(1)如图,过点C′作C′H∵OF于H.∵∵A′B′C′是由∵ABC绕点O逆时针旋转得到,∵C′O=CO=4,在Rt∵HC′中,∵∵HC′O=α=30°,∵C′H=C′O•cos30°=23,∵点C′到直线OF的距离为23.(2)∵如图,当C′P∵OF时,过点C′作C′M∵OF于M.∵∵A′B′C′为等腰直角三角形,P为A′B′的中点,∵∵A′C′P=45°,∵∵A′C′O=90°,∵∵OC′P=135°.∵C′P∵OF,∵∵O=180°﹣∵OC′P=45°,∵∵OC′M是等腰直角三角形,∵C′M =C′O•cos45°=4×22=22, ∵点C′到直线DE 的距离为222-.如图,当C′P∵DG 时,过点C′作C′N∵FG 于N .同法可证∵OC′N 是等腰直角三角形,∵C′N =22,∵GD=2,∵点C′到直线DE 的距离为222+.∵设d 为所求的距离.第一种情形:如图,当点A′落在DE 上时,连接OA′,延长ED 交OC 于M .∵OC=4,AC=2,∵ACO=90°,2216425OA CO AC =+∴+==∵OM =2,∵OMA′=90°,∵A′M =22A O OM '-=()22252-=4,∵DM=2,∵A′D=A′M-DM=4-2=2,即d=2,如图,当点P落在DE上时,连接OP,过点P作PQ∵C′B′于Q.∵P为A′B′的中点,∵A′C′B′=90°,∵PQ∵A′C′,∵'12 B P C Q PQB A BC A C'''''''===∵B′C′=2∵PQ=1,C'Q=1,∵Q点为B′C′的中点,也是旋转前BC的中点,∵OQ=OC'+C'Q=5∵OP=2251+=26,∵PM=2226422OP OM-=-=,∵PD=222PM DM-=-,∵d=22﹣2,∵2≤d≤22﹣2.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=25﹣2,即d=25﹣2,如图,当点P落在EF上时,设OF交A′B′于Q,过点P作PT∵B′C′于T,过点P作PR∵OQ交OB′于R,连接OP.由上可知OP=26,OF=5,∵FP=22OP OF-=2625-=1,∵OF=OT,PF=PT,∵F=∵PTO=90°,∵Rt∵OPF∵Rt∵OPT(HL),∵∵FOP=∵TOP,∵PR∵OQ,∵∵OPR=∵POF,∵∵OPR=∵POR,∵OR=PR,∵PT2+TR2=PR2,22215PR PR∴+(﹣)=∵PR=2.6,RT=2.4,∵∵B′PR∵∵B′QO,∵B ROB''=PRQO,∵3.46=2.6OQ,∵OQ=78 17,∵QG=OQ﹣OG=4417,即d=4417∵25﹣2≤d<44 17,第三种情形:当A′P经过点F时,如图,此时FG=3,即d=3.综上所述,2≤d<4417或d=3.【点睛】(1)本题考查了通过解直角三角形求线段长,解决本题的关键是构建直角三角形,熟练掌握直角三角形中边角关系.(2)∵本题综合性较强,考查了平行线的性质,解直角三角形,解决本题的关键是正确理解题意,能够根据题目条件进行分类讨论,然后通过解直角三角形求出相应的线段长即可.∵本题综合性较强,考查了辅助线的作法,平行线的性质以及解直角三角形,解决本题的关键是正确理解题意,能够根据情况对题目进行分类讨论,通过不同情形,能够作出辅助线,在解决本题的过程中要求熟练掌握直角三角形中的边角关系. 22.(2020·浙江嘉兴)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∵ACB=∵DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE (如图4).【探究】当EF平分∵AEO时,探究OF与BD的数量关系,并说明理由.【答案】【思考】是,理由见解析;【发现】94;【探究】BD =2OF ,理由见解析; 【分析】【思考】由全等三角形的性质得出AB =DE ,∵BAC =∵EDF ,则AB ∵DE ,可得出结论;【发现】连接BE 交AD 于点O ,设AF =x (cm ),则OA =OE =12(x +4),得出OF =OA ﹣AF =2﹣12x ,由勾股定理可得()2221123424x x ⎛⎫-+=+ ⎪⎝⎭,解方程求出x ,则AF 可求出; 【探究】如图2,延长OF 交AE 于点H ,证明∵EFO ∵∵EFH (ASA ),得出EO =EH ,FO =FH ,则∵EHO =∵EOH =∵OBD =∵ODB ,可证得∵EOH ∵∵OBD (AAS ),得出BD =OH ,则结论得证.【详解】解:【思考】四边形ABDE 是平行四边形.证明:如图,∵∵ABC ∵∵DEF ,∵AB =DE ,∵BAC =∵EDF ,∵AB ∵DE ,∵四边形ABDE 是平行四边形;【发现】如图1,连接BE 交AD 于点O ,∵四边形ABDE 为矩形,∵OA =OD =OB =OE ,设AF =x (cm ),则OA =OE =12(x +4),∵OF =OA ﹣AF =2﹣12x ,在Rt∵OFE 中,∵OF 2+EF 2=OE 2,∵()2221123424x x ⎛⎫-+=+ ⎪⎝⎭, 解得:x =94, ∵AF =94cm . 【探究】BD =2OF ,证明:如图2,延长OF 交AE 于点H ,∵四边形ABDE 为矩形,∵∵OAB =∵OBA =∵ODE =∵OED ,OA =OB =OE =OD ,∵∵OBD =∵ODB ,∵OAE =∵OEA ,∵∵ABD +∵BDE +∵DEA +∵EAB =360°,∵∵ABD +∵BAE =180°,∵AE ∵BD ,∵∵OHE =∵ODB ,∵EF 平分∵OEH ,∵∵OEF =∵HEF ,∵∵EFO =∵EFH =90°,EF =EF ,∵∵EFO ∵∵EFH (ASA ),∵EO =EH ,FO =FH ,∵∵EHO =∵EOH =∵OBD =∵ODB ,∵∵EOH ∵∵OBD (AAS ),∵BD =OH =2OF .【点睛】本题考查了图形的综合变换,涉及了三角形全等的判定与性质、平行四边形的判定与性质等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.。
三年级数学认识平移旋转与翻折
三年级数学认识平移旋转与翻折数学是一门既有趣又充满挑战的学科,而对于三年级的学生来说,他们正处于接触和学习基本几何概念的阶段。
其中,平移、旋转与翻折是他们学习的重点之一。
本文将详细介绍这三个概念以及它们在三年级数学中的应用。
平移是指将一个图形沿着平面内的某条线段按照指定的方向和距离移动的操作。
在平移中,图形的大小和形状保持不变,只是位置发生改变。
例如,将一个正方形沿着x轴向右平移3个单位长度,那么正方形的每个边上的点都将向右移动3个单位长度。
平移可以让学生直观地感受到图形之间的位置关系。
旋转是指将一个图形沿着围绕某个点旋转一定角度的操作。
在旋转中,图形的大小和形状保持不变,只是方向发生改变。
例如,将一个矩形绕着它的中心点逆时针旋转90度,那么矩形的每个边将沿逆时针方向转动90度。
旋转可以让学生更好地理解图形之间的方向关系。
翻折是指将一个图形沿着一条线折叠成新的图形的操作。
在翻折中,图形的大小和形状保持不变,只是位置发生改变。
例如,将一个长方形沿着竖直中线对折,那么对折后的图形与原图形完全重合。
翻折可以帮助学生了解图形之间的对称性。
在三年级数学中,平移、旋转与翻折并不只是简单的操作,还需要学生能够通过抽象思维来分析和解决问题。
通过这些概念的学习,学生可以培养几何思维、观察比较和逻辑推理的能力。
其中,平移的重要性在于让学生认识到物体的位置会因平移而发生变化,进而理解平面上点的坐标和方向的概念。
通过平移,学生可以观察和描述移动后图形的位置,并学习如何使用坐标表示它们。
旋转的重要性在于让学生感受到物体旋转后形状和方向的变化。
通过旋转,学生可以观察和描述旋转后图形的特征,并学习如何使用角度来表示旋转。
翻折的重要性在于让学生理解图形的对称性。
通过翻折,学生可以观察和描述改变后图形的对称特征,并学习如何使用折线来表示对称轴。
在三年级数学的学习中,平移、旋转与翻折不仅仅是为了解决具体问题,更是为了培养学生的思维能力和几何思维。
平移翻折旋转等几何变换的性质分析
平移翻折旋转等几何变换的性质分析平移、翻折、旋转等几何变换是在平面上对图形进行操作的常用方法。
它们具有独特的性质与特点,本文将对这些几何变换的性质进行详细分析。
一、平移的性质分析平移是指将图形按照指定的方向和距离进行移动,而不改变其形状和大小。
平移的性质如下:1. 平移变换是保持图形各点之间距离和相对位置不变的变换。
即使图形进行平移,其各点之间的距离关系和相对位置仍然保持不变。
2. 平移变换的结果是与原图形全等的新图形。
即平移前后的图形在大小和形状上完全相同,只是位置不同。
3. 平移变换可以通过向量的加法来表示。
设图形上一点的坐标为A(x, y),进行平移变换时,将其横向平移a个单位,纵向平移b个单位,则新点的坐标为A'(x+a, y+b)。
二、翻折的性质分析翻折是指沿直线将图形对称地折叠,使得每个点关于折叠线对称,从而得到一个新的图形。
翻折的性质如下:1. 翻折变换是保持图形各点到折叠线的距离不变,但改变图形的相对位置。
即折叠前后的图形各点到折叠线的距离相等。
2. 翻折变换的结果是与原图形全等的新图形。
具体而言,翻折变换前后的图形在大小和形状上完全相同,只是位置不同。
3. 翻折变换可以通过向量的减法来表示。
设图形上一点的坐标为A(x, y),进行翻折变换时,将其关于折叠线的对称点的坐标表示为A'(-x, y')。
三、旋转的性质分析旋转是指围绕指定的旋转中心,按照指定的旋转角度将图形沿逆时针或顺时针方向旋转,从而得到一个新的图形。
旋转的性质如下:1. 旋转变换是保持图形上各点到旋转中心的距离和相对位置不变的变换。
旋转前后的图形各点到旋转中心的距离保持不变,且各点的相对位置不变。
2. 旋转变换的结果是与原图形全等的新图形。
即旋转前后的图形在大小和形状上完全相同,只是位置不同。
3. 旋转变换可以通过矩阵乘法来表示。
设图形上一点的坐标为A(x, y),进行旋转变换时,将其绕旋转中心点逆时针旋转θ角度得到的新点的坐标表示为A'(x', y')。
初中数学中的形的平移旋转与翻折
初中数学中的形的平移旋转与翻折初中数学中的形的平移、旋转与翻折形的平移、旋转与翻折是初中数学中的重要概念和技巧。
通过学习这些内容,我们可以深入理解几何图形的性质和变化规律,提高数学解题的能力和思维逻辑能力。
本文将着重介绍初中数学中形的平移、旋转与翻折的概念、性质和相关解题方法。
一、形的平移1. 平移的概念平移是指在平面上,将一个点或者图形沿着特定的方向和距离移动之后的位置与移动前的位置相对应的变换。
2. 平移的性质(1)平移不改变图形的大小和形状。
(2)平移保持图形内部的所有角度和线段的相对关系不变。
(3)平移不改变图形的面积和周长。
3. 平移的表示方法和步骤平移可以用向量表示或者用坐标表示。
对于向量表示,我们可以通过指定平移向量的大小和方向来表示平移的规律。
对于坐标表示,我们可以通过向图形内的每个点添加相同的坐标改变量来得到平移后的图形。
平移的步骤一般为:(1)标出移动前的图形和参考点;(2)选择适当的方向和距离,确定平移的规律;(3)根据规律,将每个点移动到对应的位置,得到平移后的图形。
二、形的旋转1. 旋转的概念旋转是指在平面或空间中,围绕特定的中心点,按照一定的角度和方向,将一个点或者图形转到另一个位置的变换。
2. 旋转的性质(1)旋转不改变图形的形状。
(2)旋转保持图形内角度大小和线段的相对关系不变。
(3)旋转不改变图形的面积和周长。
3. 旋转的表示方法和步骤旋转可以通过给出旋转的中心点、旋转的角度和方向来表示旋转的规律。
在实际解题中,我们常常使用逆时针旋转的角度来表示旋转。
旋转的步骤一般为:(1)标出旋转前的图形和旋转的中心点;(2)选择适当的旋转角度和方向,确定旋转的规律;(3)根据规律,将图形的每个点旋转对应的角度和方向,得到旋转后的图形。
三、形的翻折1. 翻折的概念翻折是指通过将图形沿着一条直线对称折叠,使得折叠后的一部分与折叠前的另一部分重合的变换。
2. 翻折的性质(1)翻折不改变图形的形状。
上海中考18题 图形的平移、翻折、旋转及点的运动(解析版)
专题38 图形的平移、翻折、旋转及点的运动图形的平移、翻折、旋转及点的运动是初中数学图形的几种基本运动形式,是初中数学的重要内容之一.这类问题常常要运用“动”的思路去观察、分析、推理、猜想、探究相关图形的位置变化情况或图形的有关性质,对提高数学思维能力与发展空间观念有重要作用,也是近年的中考试题的一个热点.图形的平移、翻折、旋转有一个重要性质:任何图形经过平移、翻折、旋转后,除图形的位置发生变化外,图形的形状、大小保持不变.这个性质在解决图形运动的有关问题中常用.【例1】(2019•上海)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.【分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB=ABAE=2.【解答】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=12∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=12AD=12AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=12∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB=ABAE=2.故答案为:2.【例2】(2020•静安区一模)如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cos∠EFB的值为.【分析】如图,连接BD.设BC=2a.在Rt△BEF中,求出EF,BF即可解决问题.【解答】解:如图,连接BD.设BC=2a.∵四边形ABC都是菱形,∴AB=BC=CD=AD=2a,∠A=∠C=60°,∴△BDC是等边三角形,∵DE=EC=a,∴BE⊥CD,∴BE=√BC2−EC2=√3a,∵AB∥CD,BE⊥CD,∴BE⊥AB,∴∠EBF=90°,设AF=EF=x,在Rt△EFB中,则有x2=(2a﹣x)2+(√3a)2,∴x =7a 4, ∴AF =EF =7a 4,BF =AB ﹣AF =a 4, ∴cos ∠EFB =BF EF =a 47a 4=17, 故答案为17. 【例3】(2020•闵行区一模)如图,在等腰△ABC 中,AB =AC =4,BC =6,点D 在底边BC 上,且∠DAC =∠ACD ,将△ACD 沿着AD 所在直线翻折,使得点C 落到点E 处,联结BE ,那么BE 的长为 .【分析】只要证明△ABD ∽△MBE ,得AB BM =BD BE ,只要求出BM 、BD 即可解决问题. 【解答】解:∵AB =AC ,∴∠ABC =∠C ,∵∠DAC =∠ACD ,∴∠DAC =∠ABC ,∵∠C =∠C ,∴△CAD ∽△CBA ,∴CA CB=CD AC , ∴46=CD 4, ∴CD =83,BD =BC ﹣CD =103,∵∠DAM =∠DAC =∠DBA ,∠ADM =∠ADB ,∴△ADM ∽△BDA ,∴AD BD =DM DA ,即83103=DM 83,∴DM =3215,MB =BD ﹣DM =65,∵∠ABM =∠C =∠MED ,∴A 、B 、E 、D 四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴ABBM =BDBE,∴BE=BM⋅DBAB=1.故答案为:1.1.(2020•青浦区一模)已知,在矩形纸片ABCD中,AB=5cm,点E、F分别是边AB、CD的中点,折叠矩形纸片ABCD,折痕BM交AD边于点M,在折叠的过程中,如果点A恰好落在线段EF上,那么边AD的长至少是cm.【分析】根据已知条件得到AE=DF=BE=CF,求得四边形AEFD是矩形,得到EF=AD,∠AEN=∠BEN=90°,根据折叠的性质得到BN=AB,根据直角三角形的性质得到∠BNE=30°,于是得到EN=√32BN=5√32,即可得到结论.【解答】解:如图,∵在矩形纸片ABCD中,点E、F分别是边AB、CD的中点,∴AE=DF=BE=CF,∴四边形AEFD是矩形,∴EF=AD,∠AEN=∠BEN=90°,∵折叠矩形纸片ABCD,折痕BM交AD边于点M,∴BN=AB,∵BE=12AB,∴BE=12BN,∴∠BNE=30°,∵AB=5cm,∴EN =√32BN =5√32, ∴EF ≥EN 时,点A 恰好落在线段EF 上,即AD ≥5√32, ∴边AD 的长至少是5√32, 故答案为:5√32.2.(2020•杨浦区一模)在Rt △ABC 中,∠A =90°,AC =4,AB =a ,将△ABC 沿着斜边BC 翻折,点A 落在点A 1处,点D 、E 分别为边AC 、BC 的中点,联结DE 并延长交A 1B 所在直线于点F ,联结A 1E ,如果△A 1EF 为直角三角形时,那么a = .【分析】当△A 1EF 为直角三角形时,存在两种情况:①当∠A 1EF =90°时,如图1,根据对称的性质和平行线可得:A 1C =A 1E =4,根据直角三角形斜边中线的性质得:BC =2A 1B =8,最后利用勾股定理可得AB 的长;②当∠A 1FE =90°时,如图2,证明△ABC 是等腰直角三角形,可得AB =AC =4.【解答】解:当△A 1EF 为直角三角形时,存在两种情况:①当∠A 1EF =90°时,如图1,∵△A 1BC 与△ABC 关于BC 所在直线对称,∴A 1C =AC =4,∠ACB =∠A 1CB ,∵点D ,E 分别为AC ,BC 的中点,∴D 、E 是△ABC 的中位线,∴DE ∥AB ,∴∠CDE =∠MAN =90°,∴∠CDE =∠A 1EF ,∴AC ∥A 1E ,∴∠ACB =∠A 1EC ,∴∠A 1CB =∠A 1EC ,∴A1C=A1E=4,Rt△A1CB中,∵E是斜边BC的中点,∴BC=2A1E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB=√82−42=4√3;②当∠A1FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A1BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA1=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4√3或4;故答案为:4√3或4;3.(2020•崇明区一模)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A=.【分析】分两种情形分别求解,作DF ⊥AB 于F ,连接AA ′.想办法求出AE ,利用等腰直角三角形的性质求出AA ′即可.【解答】解:如图,作DF ⊥AB 于F ,连接AA ′.在Rt △ACB 中,BC =√AB 2−AC 2=6,∵∠DAF =∠BAC ,∠AFD =∠C =90°,∴△AFD ∽△ACB ,∴DF BC =AD AB =AF AC , ∴DF 6=410=AF 8,∴DF =125,AF =165,∵A ′E ⊥AB ,∴∠AEA ′=90°,由翻折不变性可知:∠AED =45°,∴EF =DF =125, ∴AE =A ′E =125+165=285,∴AA ′=28√25, 如图,作DF ⊥AB 于F ,当 EA ′⊥AB 时,同法可得AE =165−125=45,AA ′=√2AE =4√25.故答案为28√25或4√25. 4.(2020•闵行区一模)已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,那么tan ∠BAE = .【分析】由正方形ABCD 中四个内角为直角,四条边相等,求出BC 与DC 的长,利用勾股定理求出BD 的长,由旋转的性质可求BE 的长,即可求解.【解答】解;如图,∵正方形ABCD ,∴∠ABC =∠C =90°,在Rt △BCD 中,DC =BC =2,根据勾股定理得:BD =√AD 2+AB 2=√4+4=2√2,∵将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,∴BE =BD =2√2,∴tan ∠BAE =BE AB =2√22=√2, 故答案为:√2.5.(2020•徐汇区一模)如图,在矩形ABCD 中,AB =3,AD =4,将矩形ABCD 绕着点B 顺时针旋转后得到矩形A 'BC 'D ',点A 的对应点A '在对角线AC 上,点C 、D 分别与点C '、D '对应,A ′D '与边BC 交于点E ,那么BE 的长是 .【分析】如图,过点B 作BF ⊥AC ,过点E 作EH ⊥AC ,由勾股定理可求AC =5,由面积法可求BF =125,由勾股定理可求AF =95,由旋转的性质可得AB =BA ',∠BAD =∠BA 'D '=90°,可求AA '=75,由等腰三角形的性质可求HC 的长,通过证明△EHC ∽△ABC ,可得BC AC =HC EC ,可求EC 的长,即可求解.【解答】解:如图,过点B 作BF ⊥AC ,过点E 作EH ⊥AC ,∵AB =3,AD =4,∠ABC =90°,∴AC =√AB2+BC 2=√9+16=5, ∵S △ABC =12AB ×BC =12AC ×BF ,∴3×4=5BF ,∴BF =125∴AF =√AB 2−BF 2=√9−14425=95, ∵将矩形ABCD 绕着点B 顺时针旋转后得到矩形A 'BC 'D ',∴AB =BA ',∠BAD =∠BA 'D '=90°,且BF ⊥AC ,∴∠BAC =∠BA 'A ,AF =A 'F =95,∠BA 'A +∠EA 'C =90°,∴A 'C =AC ﹣AA '=75,∵∠BA 'A +∠EA 'C =90°,∠BAA '+∠ACB =90°,∴∠ACB =∠EA 'C ,∴A 'E =EC ,且EH ⊥AC ,∴A 'H =HC =12A 'C =710, ∵∠ACB =∠ECH ,∠ABC =∠EHC =90°,∴△EHC ∽△ABC ,∴BC AC=HC EC ∴45=710EC∴EC =78,∴BE =BC ﹣EC =4−78=258, 故答案为:258.6.(2020•普陀区一模)如图,在Rt △ABC 中,∠C =90°,AC =5,sin B =513,点P 为边BC 上一点,PC=3,将△ABC 绕点P 旋转得到△A 'B 'C '(点A 、B 、C 分别与点A '、B '、C '对应),使B 'C '∥AB ,边A 'C '与边AB 交于点G ,那么A 'G 的长等于 .【分析】如图,作PH ⊥AB 于H .利用相似三角形的性质求出PH ,再证明四边形PHGC ′是矩形即可解决问题.【解答】解:如图,作PH ⊥AB 于H .在Rt △ABC 中,∠C =90°,AC =5,sin B =513,∴AC AB =513,∴AB =13,BC =√AB 2−AC 2=√132−52=12,∵PC =3,∴PB =9,∵∠BPH ∽△BAC ,∴PH AC =PB AB , ∴PH 5=913,∴PH =4513, ∵AB ∥B ′C ′,∴∠HGC ′=∠C ′=∠PHG =90°,∴四边形PHGC ′是矩形,∴CG ′=PH =4513, ∴A ′G =5−4513=2013, 故答案为2013.7.(2020•奉贤区一模)如图,已知矩形ABCD (AB >BC ),将矩形ABCD 绕点B 顺时针旋转90°,点A 、D 分别落在点E 、F 处,连接DF ,如果点G 是DF 的中点,那么∠BEG 的正切值是 .【分析】连接BD ,BF ,EG .利用四点共圆证明∠BEG =∠BFD =45°即可.【解答】解:连接BD ,BF ,EG .由题意:BD =BF ,∠DBF =90°,∵DG =GF ,∴BG ⊥DF ,∴∠BGF =∠BEF =90°,∴∴B ,G ,E ,F 四点共圆,∠BEG=∠BFD=45°,∴∠BEG的正切值是1.故答案为1.8.(2020•嘉定区一模)在△ABC中,∠ACB=90°,AB=10,cos A=35(如图),把△ABC绕着点C按照顺时针的方向旋转,将A、B的对应点分别记为点A'、B'.如果A'B'恰好经过点A,那么点A与点A'的距离为.【分析】如图,过点C作CE⊥A'B',由锐角三角函数可求AC=6,由旋转的性质可得AC=A'C=6,∠A'=∠BAC,即可求A'E的长,由等腰三角形的性质可求AA'的长.【解答】解:如图,过点C作CE⊥A'B',∵在△ABC中,∠ACB=90°,AB=10,cos∠BAC=3 5,∴AC=6,∵把△ABC绕着点C按照顺时针的方向旋转,∴AC=A'C=6,∠A'=∠BAC,∵cos∠A'=cos∠BAC=A′EA′C=35,∴A'E=18 5,∵AC=A'C,CE⊥A'B',∴AA '=2A 'E =365, 故答案我:365.9.(2020•金山区一模)如图,在Rt △ABC 中,∠ABC =90°,AB =2,BC =4,点P 在边BC 上,联结AP ,将△ABP 绕着点A 旋转,使得点P 与边AC 的中点M 重合,点B 的对应点是点B ′,则BB ′的长等于 .【分析】如图,延长AB '交BC 于E ,过点B '作B 'D ⊥AB 于点D ,由勾股定理可求AC 的长,由旋转的性质可求AP =AM =√5,∠P AB =∠CAE ,AB =AB '=2,通过证明△ABP ∽△CBA ,可得∠P AB =∠C ,可得CE =AE ,由勾股定理可求CE ,BE 的长,由相似三角形的性质可求B 'D ,BD 的长,即可求解.【解答】解:如图,延长AB '交BC 于E ,过点B '作B 'D ⊥AB 于点D ,∵∠ABC =90°,AB =2,BC =4,∴AC =√AB 2+BC 2=√16+4=2√5,∵点M 是AC 中点,∴AM =√5,∵将△ABP 绕着点A 旋转,使得点P 与边AC 的中点M 重合,∴AP =AM =√5,∠P AB =∠CAE ,AB =AB '=2,∵AP 2=AB 2+PB 2,∴PB =1,∵BA PB =2=BC AB ,且∠ABP =∠ABC =90°, ∴△ABP ∽△CBA ,∴∠C =∠CAE ,∴CE =AE ,∵AE 2=AB 2+BE 2,∴CE 2=4+(4﹣CE )2,∴CE =AE =52,∴BE =32,∵B 'D ∥BC ,∴△AB 'D ∽△AEB ,∴AB′AE =AD AB =B′D BE, ∴252=AD 2=B′D32, ∴AD =85,B 'D =65, ∴BD =25,∴BB '=√B′D2+BD 2=√3625+425=2√105, 故答案为:2√105. 10.(2020•松江区一模)如图,矩形ABCD 中,AD =1,AB =k ,将矩形ABCD 绕着点B 顺时针旋转90°得到矩形A ′BC ′D ′,联结AD ′,分别交边CD ,A ′B 于E 、F ,如果AE =√2D ′F ,那么k = .【分析】由矩形的性质和旋转的性质可求AD =A 'D '=1,AB =A 'B =k ,∠A '=∠DAB =90°=∠DCB =∠ABC ,通过证明△ADE ∽△F A 'D ',可得AD A′F =DE A′D′=AE D′F ,可求DE ,A 'F 的长,通过证明△A 'D 'F ∽△CEF ,由相似三角形的性质可求解.【解答】解:∵将矩形ABCD 绕着点B 顺时针旋转90°得到矩形A ′BC ′D ′,∴AD =A 'D '=1,AB =A 'B =k ,∠A '=∠DAB =90°=∠DCB =∠ABC ,∴∠A 'D 'F =∠FEC =∠DEA ,且∠D =∠A '=90°,∴△ADE ∽△F A 'D ',∴AD A′F =DE A′D′=AE D′F ,且AE =√2D ′F ,∴DE =√2A 'D '=√2,A 'F =1√2AD =√22, ∵∠A '=∠DCF =90°,∠A 'FD '=∠EFC ,∴△A 'D 'F ∽△CEF ,∴EC A′D′=FCA′F , ∴k−√21=k−1−√22√22∴k =√2+1,故答案为:√2+1.11.(2019•浦东新区二模)如图,已知在△ABC 中,AB =3,AC =2,∠A =45o ,将这个三角形绕点B 旋转,使点A 落在射线AC 上的点A 1处,点C 落在点C 1处,那么AC 1= .【分析】连接AC 1,由旋转的性质先证△ABA 1为等腰直角三角形,再证△AA 1C 1为直角三角形,利用勾股定理可求AC 1的长度.【解答】解:如图,连接AC 1,由旋转知,△ABC ≌△A 1BC 1,∴AB =A 1B =3,AC =A 1C 1=2,∠CAB =∠C 1A 1B =45°,∴∠CAB =∠CA 1B =45°,∴△ABA 1为等腰直角三角形,∠AA 1C 1=∠CA 1B +∠C 1A 1B =90°,在等腰直角三角形ABA 1中,AA 1=√2AB =3√2,在Rt △AA 1C 1中,AC1=√AA12+A1C12=√(3√2)2+22=√22,故答案为:√22.12.(2019•松江区二模)如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.将△ABC绕点B旋转得到△DBE,点A的对应点D落在射线BC上.直线AC交DE于点F,那么CF的长为.【分析】由题意,可得BD=AB=10,tan D=tan∠A=BCAC=34,所以CD=4,在Rt△FCD中,∠DCF=90°,tan D=CFCD=34,即CF4=34,可得CF=3.【解答】解:∵如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.∴AB=√62+82=10,tan∠A=BCAC=34,∵将△ABC绕点B旋转得到△DBE,点A的对应点D落在射线BC上,直线AC交DE于点F,∴BD=AB=10,∠D=∠A,∴CD=BD﹣BC=10﹣6=4,在Rt△FCD中,∠DCF=90°,∴tan D=CFCD=34,即CF4=34,∴CF=3.故答案为:3.13.(2019•长宁区二模)如图,在△ABC中,AB=AC=5,BC=8,将△ABC绕着点C旋转,点A、B的对应点分别是点A'、B',若点B'恰好在线段AA'的延长线上,则AA'的长等于.【分析】由旋转的性质可得AC=A'C=5,AB=A'B'=5,BC=B'C=8,由等腰三角形的性质可得AF=A'F,由勾股定理列出方程组,可求AF的长,即可求AA'的长.【解答】解:如图,过点C作CF⊥AA'于点F,∵旋转∴AC=A'C=5,AB=A'B'=5,BC=B'C=8∵CF⊥AA',∴AF=A'F在Rt△AFC中,AC2=AF2+CF2,在Rt△CFB'中,B'C2=B'F2+CF2,∴B'C2﹣AC2=B'F2﹣AF2,∴64﹣25=(5+AF)2﹣AF2,∴AF =75∴AA '=145故答案为:14514.(2019•奉贤区二模)如图,矩形ABCD ,AD =a ,将矩形ABCD 绕着顶点B 顺时针旋转,得到矩形EBGF ,顶点A 、D 、C 分别与点E 、F 、G 对应(点D 与点F 不重合).如果点D 、E 、F 在同一条直线上,那么线段DF 的长是 .(用含a 的代数式表示)【分析】连接BD ,证明Rt △EDB ≌Rt △CBD ,可得DE =BC =AD =a ,因为EF =AD =a ,根据DF =DE +EF 即可得出DF 的长.【解答】解:如图,连接BD ,∵将矩形ABCD 绕着顶点B 顺时针旋转,得到矩形EBGF ,且D 、E 、F 在同一条直线上,∴∠DEB =∠C =90°,BE =AB =CD ,∵DB =BD ,∴Rt △EDB ≌Rt △CBD (HL ),∴DE =BC =AD =a ,∵EF =AD =a ,∴DF =DE +EF =a +a =2a .故答案为:2a .15.(2019•青浦区二模)如图,在矩形ABCD 中,AB =3,E 为AD 的中点,F 为CD 上一点,且DF =2CF ,沿BE 将△ABE 翻折,如果点A 恰好落在BF 上,则AD = .【分析】连接EF,则可证明△EA′F≌△EDF,从而根据BF=BA′+A′F,得出BF的长,在Rt△BCF 中,利用勾股定理可求出BC,即得AD的长度.【解答】解:连接EF,∵点E、点F是AD、DC的中点,∴AE=ED,DF=2CF=2,由折叠的性质可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,{EA′=ED,EF=EF∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=2,∴BF=BA′+A′F=AB+DF=3+2=5,在Rt△BCF中,BC=√BF2−CF2=√52−12=2√6.∴AD=BC=2√6.故答案为2√616.(2019•虹口区二模)如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于点G,如果DG=3,那么BF的长为.【分析】由DG =3,CD =6可知△CDG 的三角函数关系,由△CDG 分别与△A 'EG ,△B 'FC 相似,可求得CG ,CB ',由勾股定理△CFB '可求得BF 长度.【解答】解:∵△CDG ∽△A 'EG ,A 'E =4∴A 'G =2∴B 'G =4由勾股定理可知CG '=3√5则CB '=3√5−4由△CDG ∽△CFB '设BF =xCB′B′F =GD CD∴3√5−4x =36解得x =6√5−8故答案为6√5−817.(2019•杨浦区二模)如图,点M 、N 分别在∠AOB 的边OA 、OB 上,将∠AOB 沿直线MN 翻折,设点O 落在点P 处,如果当OM =4,ON =3时,点O 、P 的距离为4,那么折痕MN 的长为 .【分析】由折叠的性质可得MN ⊥OP ,EO =EP =2,由勾股定理可求ME ,NE 的长,即可求MN 的长.【解答】解:设MN 与OP 交于点E ,∵点O、P的距离为4,∴OP=4∵折叠∴MN⊥OP,EO=EP=2,在Rt△OME中,ME=√OM2−OE2=2√3在Rt△ONE中,NE=√ON2−OE2=√5∴MN=ME﹣NE=2√3−√5故答案为:2√3−√5。
图形的平移、翻折与旋转
图形的平移、翻折与旋转引言在几何学中,图形的变换是一个重要的概念。
变换可以改变图形的位置、形状或者方向。
其中,平移、翻折和旋转是最基本和常见的图形变换操作。
这些变换不仅在数学中有重要意义,而且在日常生活和工程应用中也得到广泛应用。
本篇文章将详细介绍图形的平移、翻折和旋转,包括定义、特征和实际应用。
1. 图形的平移图形的平移是指将图形沿着一定的方向和距离移动。
平移后的图形与原图形形状相同,只是位置发生了改变。
平移可以通过向量进行描述,即将图形上的所有点都沿着相同的平移向量移动。
1.1 平移的定义设P为平面上的一个点,平移向量为v,则P经过平移变换后的新位置记为P’,满足以下关系:P’ = P + v1.2 平移的特征•平移保持图形的形状不变,只改变位置。
•所有图形上的点,都具有相同的平移向量。
•平移变换是可逆的,即可通过反向平移将图形还原。
1.3 平移的应用平移在日常生活和工程应用中得到广泛应用。
以下是几个常见的应用场景:•地图上的标记:在地图中,经纬度坐标可以通过平移变换来实现标记点的移动。
•机器人运动:机器人在空间中的移动可以通过平移来描述。
•平面设计:平移是平面设计中常用的变换方式,可以用来设计标志、海报等。
2. 图形的翻折图形的翻折是指将图形沿着某条直线镜像对称,使得图形的镜像与原图形保持相等但位置相反。
翻折操作可以通过将图形上的点关于翻折轴进行对称得到。
2.1 翻折的定义设P为平面上的一个点,翻折轴为l,则P经过翻折变换后的新位置记为P’,满足以下关系:P’ = P关于l的对称点2.2 翻折的特征•翻折保持图形的形状不变,只改变位置。
•所有图形上的点,都关于翻折轴对称。
•翻折变换是可逆的,即可通过再次翻折将图形还原。
2.3 翻折的应用翻折在生活和工程中也有广泛应用。
以下是几个常见的应用场景:•双面印刷:在双面印刷中,通过翻折可以在一张纸上印刷两个不同的图案。
•镜子反射:镜子中的物体是通过翻折得到的反射图像。
2022年九年级数学复习专题---图形的变换(平移、翻折、旋转)综合问题题
2022年中考数学复习专题---图形的变换(平移、翻折、旋转)综合题班级:___________姓名:___________学号:___________1.综合与实践 问题情境:综合与实践课上,同学们以“三角形纸片的折叠与旋转“为主题展开数学活动,探究有关的数学问题. 动手操作:已知:三角形纸片ABC 中,6120AB AC BC BAC ==∠=︒,,.将三角形纸片ABC 按如下步骤进行操作: 第一步:如图1,折叠三角形纸片ABC ,使点C 与点A 重合,然后展开铺平,折痕分别交BC AC ,于点D E ,,连接AD ,易知AD CD =.第二步:在图1的基础上,将三角形纸片ABC 沿AD 剪开,得到ABD ∆和ACD ∆.保持ABD ∆的位置不变,将ACD ∆绕点D 逆时针旋转得到FDG ∆(点F G ,分别是A C ,的对应点),旋转角为()0360αα︒<<︒问题解决:(1)如图2,小彬画出了旋转角0120α︒<<︒时的图形,设线段FG AC ,交于点P ,连接AG DP ,.小彬发现DP 所在直线始终垂直平分线段AG .请证明这一结论;(2)如图3,小颖画出了旋转角90α=︒时的图形,设直线AF 与直线CG 相交于点O ,连接CF 判断此时COF ∆的形状,说明理由;(3)在ACD ∆绕点D 逆时针旋转过程中,当FG BC ⊥时,请直接写出B F ,两点间的距离.2.如图,△ABC 中,已知∠C=90°,∠B=60°,点D 在边BC 上,过D 作DE ⊥AB 于E . (1)连接AD ,取AD 的中点F ,连接CF ,EF ,判断△CEF 的形状,并说明理由(2)若.把△BED 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=3.问题背景:如图1,在矩形ABCD 中,30AB ABD =∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F . 实验探究:(1)在一次数学活动中,小明在图1中发现AEDF=_________. 将图1中的BEF 绕点B 按逆时针方向旋转90︒,连接,AE DF ,如图2所示,发现AEDF=_________. (2)小亮同学继续将BEF 绕点B 按逆时针方向旋转,连接,AE DF ,旋转至如图3所示位置,请问探究(1)中的结论是否仍然成立?并说明理由. 拓展延伸:(3)在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,AE 的长为____________.4.如图,在Rt ABC 中,90ACB ∠=︒,CD 平分ACB ∠.P 为边BC 上一动点,将DPB 沿着直线DP 翻折到DPE ,点E 恰好落在CDP 的外接圆O 上. (1)求证:D 是AB 的中点.(2)当60BDE ∠=︒,BP =DC 的长.(3)设线段DB 与O 交于点Q ,连结QC ,当QC 垂直于DPE 的一边时,求满足条件的所有QCB ∠的度数.5.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点,F E ,使OF=2OA ,OE 2OD =,连接EF ,将FOE ∆绕点O 按逆时针方向旋转角α得到F OE ''∆,连接,AE BF ''(如图2).(1)探究AE '与BF '的数量关系,并给予证明; (2)当30α=︒时,求证:AOE '为直角三角形.6.如图,在△ABC 中,AB =∠B =45°,∠C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF . ①如图2,当点P 落在BC 上时,求∠AEP 的度数. ②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.7.如图1,点C 在线段AB 上,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 和正方形BCMN , 连结AM 、BD .(1)AM与BD的关系是:________.(2)如果将正方形BCMN绕点C顺时针旋转锐角α(如图2).(1) 中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.8.已知正方形ABCD,一等腰直角三角板的一个锐角顶点与A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于M、N.(1)当M、N分别在边BC、CD上时(如图1),求证:BM+DN=MN;(2)当M、N分别在边BC、CD所在的直线上时(如图2),线段BM、DN、MN之间又有怎样的数量关系,请直接写出结论;(不用证明)(3)当M、N分别在边BC、CD所在的直线上时(如图3),线段BM、DN、MN之间又有怎样的数量关系,请写出结论并写出证明过程.9.如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.(1)如图,当BP=BA时,∠EBF=______°,猜想∠QFC =______°;(2)如图,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明.(3)已知线段AB=BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.10.我们知道,直角坐标系是研究“数形结合”的重要工具.请探索研究下列问题:(1)如图1,点A 的坐标为(-5,1),将点A 绕坐标原点(0,0)按顺时针方向旋转90°,得对应点A ',若反比例函数(0)k y x x=>的图像经过点A ',求k 的值.(2)将(1)中的(0)ky x x =>的图像绕坐标原点(0,0)按顺时针方向旋转45°,如图2,旋转后的图像与x 轴相交于点B ,若直线x =C 与点D ,求△BCD 的面积. (3)在(2)的情况下,半径为6的M 的圆心M 在x 轴上,如图3,若要使△BCD 完全在M 的内部,求M 的圆心M 横坐标xm 的范围(直接写出结果,不必写详细的解答过程).11.对于平面直角坐标系xOy 中的点A 和点P ,若将点P 绕点A 逆时针旋转90︒后得到点Q ,则称点Q 为点P 关于点A 的“垂链点”,图1为点P 关于点A 的“垂链点”Q 的示意图.(1)已知点A 的坐标为(0,0),点P 关于点A 的“垂链点”为点Q ;①若点P 的坐标为(2,0),则点Q 的坐标为________; ②若点Q 的坐标为(2,1)-,则点P 的坐标为________; (2)如图2,已知点C 的坐标为(1,0),点D 在直线113y x =+上,若点D 关于点C 的“垂链点”在坐标轴上,试求出点D 的坐标;(3)如图3,已知图形G 是端点为(1,0)和(0,2)-的线段,图形H 是以点O 为中心,各边分别与坐标轴平行的边长为6的正方形,点M 为图形G 上的动点,点N 为图形H 上的动点,若存在点(0,)T t ,使得点M 关于点T 的“垂链点”恰为点N ,请直接写出t 的取值范围.12.如图,正比例函数y =12x 与反比例函数()0k y x x =>的图象交于点A ,将正比例函数y =12x 向上平移6个单位,交y 轴于点C ,交反比例函数图象于点B ,已知AO =2BC . (1)求反比例函数解析式;(2)作直线AB ,将直线AB 向下平移p 个单位,恰与反比例函数图象有唯一交点,求p 的值.13.综合与实践:问题情境:(1)如图,点E 是正方形ABCD 边CD 上的一点,连接BD 、BE ,将DBE ∠绕点B 顺针旋转90︒,旋转后角的两边分别与射线DA 交于点F 和点G .①线段BE 和BF 的数量关系是______.②写出线段DE 、DF 和BD 之间的数量关系.并说明理由;操作探究:(2)在菱形ABCD 中,60ADC ∠=︒,点E 是菱形ABCD 边CD 所在直线上的-点,连接BD 、BE ,将DBE ∠绕点B 顺时针旋转120︒,旋转后角的两边分别与射线DA 交于点F 和点G .①如图,点E 在线段DC 上时,请探究线段DE 、DF 和BD 之间的数量关系,写出结论并给出证明;②如图,点E在线段CD的延长线上时,BE交射线DA于点M,若2==,直接写出线段FM和AGDE DC a的长度.14.两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=4.固定△ABC不动,将△DEF 进行如下操作:(1)操作发现如图①,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC,CF,FB,四边形CDBF的形状在不断的变化,那么它的面积大小是否变化呢?如果不变化,请求出其面积.(2)猜想论证如图②,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)拓展探究如图③,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,求sinα翻折问题姓名:___________班级:___________学号:___________1.如图将矩形纸片ABCD 沿AE 翻折,使点B 落在线段DC 上,对应的点为F . (1)求证:EFC DAF ∠=∠;(2)若3tan 4AE EFC =∠=,求AB 的长.2.如图,在Rt△ABC 中,∠C=90°,AC=BC=2,AD 是BC 边上的中线,将A 点翻折与点D 重合,得到折痕EF ,求:CE AE 的值.3.如图,点A ,M ,N 在O 上,将MN 沿MN 折叠后,与AM 交于点B .(1)若70MAN ∠=︒,则ANB ∠=________°; (2)如图1,点B 恰好是翻折所得MN 的中点, ①若MA MN =,求AMN ∠的度数;②若tan MAN ∠=tan AMN ∠的值; (3)如图2,若222AB BN MN +=,求MBAB的值.4.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE ,沿AE 翻折△ABE 使点B 落在点F 处.(1)连接CF ,若CF ∥AE ,求m 的值;(2)连接DF ,若65≤DF ,求m 的取值范围.5.如图1,一张矩形纸ABCD ,ABa AD=,点,E F 分别在边,CD AB 上,且AE EF =,把ADE 沿AE 翻折得到AGE .(1)如图1,若1AD =.(Ⅰ)当AD DE =时,AFE ∠=_____度; (Ⅱ)当//AG EF 时,求AF 的长度.(2)若直线EG 与边AB 交于点H ,当2AH FH =时,求a 的最小值.6.如图,在折纸游戏中,正方形ABCD 沿着BE ,BF 将BC ,AB 翻折,使A ,C 两点恰好落在点P . (1)求证:45EBF ∠=︒.(2)如图,过点P 作//MN BC ,交BF 于点Q . ①若5BM =,且10MP PN ⋅=,求正方形折纸的面积. ②若12QP BC =,求AM BM的值.7.如图,在ABC 中,12,120AC BC ACB ==∠=︒,点D 是AB 边上一点,连接CD ,以CD 为边作等边CDE △.(1)如图1,若45CDB ∠=︒,求等边CDE △的边长;(2)如图2,点D 在AB 边上移动过程中,连接BE ,取BE 的中点F ,连接,CF DF ,过点D 作DG AC ⊥于点G . ①求证:CFDF .②如图3,将CFD 沿CF 翻折得CFD ',连接BD ',求出BD '的最小值.8.在矩形ABCD 中,1AB =,BC a =,点E 是边BC 上一动点,连接AE ,将ABE △沿AE 翻折,点B 的对应点为点B '.(1)如图,设BE x =,BC =E 从B 点运动到C 点的过程中. ①AB CB ''+最小值是______,此时x =______; ②点B '的运动路径长为.(2)如图,设35BE a =,当点B 的对应点B '落在矩形ABCD 的边上时,求a 的值.9.如图1,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CD 边的垂直平分线EH 交BD 于点E ,连接AE ,CE .(1)过点A 作//AF EC 交BD 于点F ,求证:AF BF =;(2)如图2,将ABE △沿AB 翻折得到'ABE △.①求证:'//BE CE ;②若'//AE BC ,1OE =,求CE 的长度.10.如图,矩形ABCD 中,已知6AB =.8BC =,点E 是射线BC 上的一个动点,连接AE 并延长,交射线DC 于点F .将ABE △沿直线AE 翻折,点B 的对应点为点B ',延长AB '交直线CD 于点M .(1)如图1,若点B '恰好落在对角线AC 上,求BE CE的值. (2)如图2.当点E 为BC 的中点时,求DM 之长.(3)若32BE CE =,求sin DAB '∠.11.【基础巩固】(1)如图①,ABC ACD CED α∠=∠=∠=,求证:ABC CED ∽△△.【尝试应用】(2)如图②,在菱形ABCD 中,60A ∠=︒,点E ,F 分别为边,AD AB 上两点,将菱形ABCD 沿EF 翻折,点A 恰好落在对角线DB 上的点P 处,若2PD PB =,求AE AF的值. 【拓展提高】(3)如图③,在矩形ABCD 中,点P 是AD 边上一点,连接,PB PC ,若2,4,120PA PD BPC ==∠=︒,求AB 的长.12.如图,在ABC 中,60B ∠=︒,AD BC ⊥于点D ,CE AB ⊥于点E ,AB CE =.(1)如图1,将ABD △沿AD 翻折到AFD ,AF 交CE 于点G ,探索线段AB 、AG 、CG 之间有何等量关系,并加以证明;(2)如图2,H 为直线BC 上任意一点,连接AH ,将AH 绕点A 逆时针旋转60°到AH ',连接CH ',若BD =,求CH '的最小值.13.如图,在矩形ABCD 中,12BC AB =,F 、G 分别为AB 、DC 边上的动点,连接GF ,沿GF 将四边形AFGD 翻折至四边形EFGP ,点E 落在BC 上,EP 交CD 于点H ,连接AE 交GF 于点O(1)GF 与AE 之间的位置关系是:______,GF AE 的值是:______,请证明你的结论;(2)连接CP ,若3tan 4CGP ∠=,GF =CP 的长14.如图,在矩形ABCD 中,8AB =,10BC =,点P 在矩形的边CD 上由点D 向点C 运动.沿直线AP 翻折ADP ∆,形成如下四种情形,设DP x =,ADP ∆和矩形重叠部分(阴影)的面积为y .(1)如图4,当点P 运动到与点C 重合时,求重叠部分的面积y ;(2)如图2,当点P 运动到何处时,翻折ADP ∆后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?15.如图1,ABC 中,AB AC =,点D 在BA 的延长线上,点E 在BC 上,连接DE 、DC ,DE 交AC 于点G ,且DE DC =.(1)找出一个与BDE ∠相等的角;(2)若AB =mAD ,求DG GE的值(用含m 的式子表示); (3)如图2,将ABC 沿BC 翻折,若点A 的对应点A '恰好落在DE 的延长线上,求BE EC的值.16.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图1,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当时,求AE的值.(2)如图2,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′交BC于点F,求证:DF=CF.。
中考一轮复习 数学专题15 图形的旋转、翻折(对称)与平移(学生版)
专题15 图形的旋转、翻折(对称)与平移一、单选题1.(2022·广东)在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( ) A .()3,1 B .()1,1- C .()1,3 D .()1,1-2.(2022·广西)如图,在△ABC 中,点A (3,1),B (1,2),将△ABC 向左平移2个单位,再向上平移1个单位,则点B 的对应点B ′的坐标为( )A .(3,-3)B .(3,3)C .(-1,1)D .(-1,3)3.(2020·山东菏泽)在平面直角坐标系中,将点()3,2P -向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标为( )A .()0,2-B .()0,2C .()6,2-D .()6,2--4.(2020·四川自贡)在平面直角坐标系中,将点()2,1向下平移3个单位长度,所得点的坐标是( ) A .(),-11 B .(),51 C .(),24 D .(),-225.(2021·四川雅安)如图,将ABC 沿BC 边向右平移得到DEF ,DE 交AC 于点G .若:3:1BC EC =.16ADG S =△.则CEG S △的值为( )A .2B .4C .6D .86.(2021·浙江丽水)四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是 (−1,b ),(1,b ),(2,b ),(3.5,b ),平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( )A .将B 向左平移4.5个单位B .将C 向左平移4个单位 C .将D 向左平移5.5个单位 D .将C 向左平移3.5个单位7.(2022·四川南充)如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ''△,点B '恰好落在CA 的延长线上,3090∠=︒∠=︒,B C ,则BAC '∠为( )A .90︒B .60︒C .45︒D .308.(2022·山东青岛)如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''',则点A 的对应点A '的坐标是( )A .(2,0)B .(2,3)--C .(1,3)--D .(3,1)--9.(2022·内蒙古呼和浩特)如图,ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到EDC △,使点B 的对应点D 恰好落在AB 边上,AC 、ED 交于点F .若BCD α∠=,则EFC ∠的度数是(用含α的代数式表示)( )A .1902α︒+B .1902α︒-C .31802α︒-D .32α 10.(2022·四川内江)如图,在平面直角坐标系中,点B 、C 、E 在y 轴上,点C 的坐标为(0,1),AC =2,Rt△ODE 是Rt△ABC 经过某些变换得到的,则正确的变换是( )* 本号资料皆来源于微信:数学A .△ABC 绕点C 逆时针旋转90°,再向下平移1个单位B .△ABC 绕点C 顺时针旋转90°,再向下平移1个单位C .△ABC 绕点C 逆时针旋转90°,再向下平移3个单位D .△ABC 绕点C 顺时针旋转90°,再向下平移3个单位11.(2022·黑龙江绥化)如图,线段OA 在平面直角坐标系内,A 点坐标为()2,5,线段OA 绕原点O 逆时针旋转90°,得到线段OA ',则点A '的坐标为( )A .()5,2-B .()5,2C .()2,5-D .()5,2-12.(2021·四川广安)如图,将ABC 绕点A 逆时针旋转55︒得到ADE ,若70E ∠=︒且AD BC ⊥于点F ,则BAC ∠的度数为( )A .65︒B .70︒C .75︒D .80︒13.(2020·湖北黄石)在平面直角坐标系中,点G 的坐标是()2,1-,连接OG ,将线段OG 绕原点O 旋转180︒,得到对应线段OG ',则点G '的坐标为( )A .()2,1-B .()2,1C .()1,2-D .()2,1--14.(2020·四川攀枝花)如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( ).A .2πB .34πC .πD .3π15.(2022·天津)如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A .AB AN = B .AB NC ∥ C .AMN ACN ∠=∠D .MN AC ⊥16.(2022·江苏扬州)如图,在ABC ∆中,AB AC <,将ABC 以点A 为中心逆时针旋转得到ADE ,点D 在BC 边上,DE 交AC 于点F .下列结论:△AFE DFC △△;△DA 平分BDE ∠;△CDF BAD ∠=∠,其中所有正确结论的序号是( )A .△△B .△△C .△△D .△△△17.(2021·黑龙江牡丹江)如图,△AOB 中,OA =4,OB =6,AB =,将△AOB 绕原点O 旋转90°,则旋转后点A 的对应点A ′的坐标是( )A .(4,2)或(﹣4,2)B .(4)或(﹣4) C .(﹣2)或(2) D .(2,﹣2,18.(2021·广东广州)如图,在Rt ABC 中,90C ∠=︒,6AC =,8BC =,将ABC 绕点A 逆时针旋转得到A B C ''',使点C '落在AB 边上,连结BB ',则sin BB C ''∠的值为( )A .35B .45CD 19.(2021·河南)如图,OABC 的顶点(0,0)O ,(1,2)A ,点C 在x 轴的正半轴上,延长BA 交y 轴于点D .将ODA 绕点O 顺时针旋转得到OD A ''△,当点D 的对应点D 落在OA 上时,D A ''的延长线恰好经过点C ,则点C 的坐标为( )A .0)B .C .1,0)D .1,0)20.(2020·海南)如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .21.(2020·山东菏泽)如图,将ABC 绕点A 顺时针旋转角α,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠等于( )A .2α B .23α C .α D .180α︒-22.(2020·山东聊城)如图,在Rt ABC △中,2AB =,30C ∠=︒,将Rt ABC △绕点A 旋转得到Rt A B C '''∆,使点B 的对应点B '落在AC 上,在B C ''上取点D ,使2B D '=,那么点D 到BC 的距离等于( ).A .21⎫+⎪⎪⎝⎭B 1C 1D 123.(2020·山东枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB 绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是( )A .(1,2-+B .()C .(2+D .(- 二、填空题 24.(2022·山东临沂)如图,在平面直角坐标系中,ABC 的顶点A ,B 的坐标分别是()0,2A ,()2,1B -.平移ABC 得到A B C ''',若点A 的对应点A '的坐标为()1,0-,则点B 的对应点B '的坐标是_____________.25.(2021·辽宁鞍山)如图,△ABC 沿BC 所在直线向右平移得到△DEF ,若EC =2,BF =8,则BE =___.26.(2021·湖南湘潭)在平面直角坐标系中,把点()2,1A -向右平移5个单位得到点A ',则点A '的坐标为____. 27.(2021·吉林长春)如图,在平面直角坐标系中,等腰直角三角形AOB 的斜边OA 在y 轴上,2OA =,点B 在第一象限.标记点B 的位置后,将AOB 沿x 轴正方向平移至111AO B 的位置,使11A O 经过点B ,再标记点1B 的位置,继续平移至222A O B △的位置,使22A O 经过点1B ,此时点2B 的坐标为__________.28.(2021·湖南怀化)如图,在平面直角坐标系中,已知(2,1)A -,(1,4)B -,(1,1)C -,将ABC 先向右平移3个单位长度得到111A B C △,再绕1C 顺时针方向旋转90︒得到221A B C △,则2A 的坐标是____________.29.(2022·山东潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO 绕原点O 逆时针旋转75︒,再沿y 轴方向向上平移1个单位长度,则点B ''的坐标为___________.30.(2020·江苏镇江)如图,在△ABC 中,BC =3,将△ABC 平移5个单位长度得到△A 1B 1C 1,点P 、Q 分别是AB 、A 1C 1的中点,PQ 的最小值等于_____.31.(2020·广东广州)如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为_______.32.(2020·湖南湘西)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO重叠部分的面积为CODE 向右平移的距离为___________.33.(2022·湖南永州)如图,图中网格由边长为1的小正方形组成,点A 为网格线的交点.若线段OA 绕原点O 顺时针旋转90°后,端点A 的坐标变为______.34.(2021·湖北随州)如图,在Rt ABC 中,90C ∠=︒,30ABC ∠=︒,BC =ABC 绕点A 逆时针旋转角α(0180α︒<<︒)得到AB C ''△,并使点C '落在AB 边上,则点B 所经过的路径长为______.(结果保留π)35.(2020·广西)以原点为中心,把()3,4M 逆时针旋转90°得到点N ,则点N 的坐标为______. 36.(2022·广西贺州)如图,在平面直角坐标系中,OAB 为等腰三角形,5OA AB ==,点B 到x 轴的距离为4,若将OAB 绕点O 逆时针旋转90︒,得到OA B ''△,则点B '的坐标为__________.37.(2022·湖北随州)如图1,在矩形ABCD 中,8AB =,6AD =,E ,F 分别为AB ,AD 的中点,连接EF .如图2,将△AEF 绕点A 逆时针旋转角()090θθ<<︒,使EF AD ⊥,连接BE 并延长交DF 于点H ,则△BHD 的度数为______,DH 的长为______. 本@号资料皆来源于微信*:数学38.(2021·四川巴中)如图,把边长为3的正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF ,DE 与BC 交于点P ,ED 的延长线交AB 于点Q ,交OA 的延长线于点M .若BQ :AQ =3:1,则AM =__________.9(0)0αα︒<<︒得到AB C ''△,连接BB ',CC ',则CAC '△与BAB '△的面积之比等于_______.40.(2020·四川眉山)如图,在Rt ABC 中,90BAC ∠=︒,2AB =.将ABC 绕点A 按顺时针方向旋转至11AB C △的位置,点1B 恰好落在边BC 的中点处,则1CC 的长为________.41.(2020·山东烟台)如图,已知点A (2,0),B (0,4),C (2,4),D (6,6),连接AB ,CD ,将线段AB 绕着某一点旋转一定角度,使其与线段CD 重合(点A 与点C 重合,点B 与点D 重合),则这个旋转中心的坐标为_____.42.(2020·甘肃天水)如图,在边长为6的正方形ABCD 内作45EAF ∠=︒,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将ADF ∆绕点A 顺时针旋转90︒得到ABG ,若3DF =,则BE 的长为__________.三、解答题43.(2022·安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点均为格点(网格线的交点).(1)将△ABC 向上平移6个单位,再向右平移2个单位,得到111A B C △,请画出111A B C △﹔(2)以边AC 的中点O 为旋转中心,将△ABC 按逆时针方向旋转180°,得到222A B C △,请画出222A B C △.44.(2022·黑龙江牡丹江)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 与△DEF 关于点O 成中心对称,△ABC 与△DEF 的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O 的位置;(2)将△ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到△A 1B 1C 1,请画出△A 1B 1C 1; (3)在网格中画出格点M ,使A 1M 平分△B 1A 1C 145.(2021·黑龙江哈尔滨)如图,方格纸中每个小正方形的边长均为1个单位长度,ABC ∆的顶点和线段DE 的端点均在小正方形的顶点上.(1)在方格纸中将ABC ∆向上平移1个单位长度,再向右平移2个单位长度后得到MNP ∆;(点A 的对应点是点M ,点B 的对应点是点N ,点C 的对应点是点P ),请画出MNP ∆;(2)在方格纸中画出以DE 为斜边的等腰直角三角形DEF (点F 在小正方形的顶点上).连接FP ,请直接写出线段FP 的长.46.(2021·安徽)图,在每个小正方形的边长为1个单位的网格中,ABC 的顶点均在格点(网格线的交点)上.(1)将ABC 向右平移5个单位得到111A B C △,画出111A B C △;(2)将(1)中的111A B C △绕点C 1逆时针旋转90︒得到221A B C △,画出221A B C △.47.(2022·湖南)如图所示的方格纸(1格长为一个单位长度)中,AOB ∆的顶点坐标分别为(3,0)A ,(0,0)O ,(3,4)B .(1)将AOB ∆沿x 轴向左平移5个单位,画出平移后的△111AO B (不写作法,但要标出顶点字母); (2)将AOB ∆绕点O 顺时针旋转90︒,画出旋转后的△222A O B (不写作法,但要标出顶点字母); (3)在(2)的条件下,求点B 绕点O 旋转到点2B 所经过的路径长(结果保留)π.48.(2022·黑龙江)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.(1)将ABC 先向左平移6个单位,再向上平移4个单位,得到111A B C △,画出两次平移后的111A B C △,并写出点1A 的坐标;(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △,并写出点2A 的坐标; (3)在(2)的条件下,求点1A 旋转到点2A 的过程中所经过的路径长(结果保留π).49.(2020·四川巴中)如图所示,ABC 在边长为1cm 的小正方形组成的网格中.(1)将ABC 沿y 轴正方向向上平移5个单位长度后,得到111A B C △,请作出111A B C △,并求出11A B 的长度; (2)再将111A B C △绕坐标原点O 顺时针旋转180°,得到222A B C △,请作出222A B C △,并直接写出点2B 的坐标; (3)在(1)(2)的条件下,求线段AB 在变换过程中扫过图形的面积和.50.(2022·江苏常州)如图,点A 在射线OX 上,OA a =.如果OA 绕点O 按逆时针方向旋转(0360)<≤︒n n 到OA ',那么点A '的位置可以用(),︒a n 表示.(1)按上述表示方法,若3a =,37n =,则点A '的位置可以表示为______;(2)在(1)的条件下,已知点B 的位置用()3,74︒表示,连接A A '、A B '.求证:A A A B ''=.51.(2021·黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABO 的三个顶点坐标分别为()()()1,3,4,3,00,0A B --.(1)画出ABO 关于x 轴对称的11A B O ,并写出点1A 的坐标;(2)画出ABO 绕点O 顺时针旋转90︒后得到的22A B O ,并写出点2A 的坐标; (3)在(2)的条件下,求点A 旋转到点2A 所经过的路径长(结果保留π).52.(2021·青海西宁)如图,正比例函数12y x =与反比例函数(0)ky x x =>的图象交于点A ,AB x ⊥轴于点B ,延长AB 至点C ,连接OC .若2cos 3BOC ∠=,3OC =.(1)求OB的长和反比例函数的解析式;(2)将AOB绕点О旋转90°,请直接写出旋转后点A的对应点A'的坐标.53.(2021·江苏淮安)如图,方格纸上每个小正方形的边长均为1个单位长度,△ABC的顶点A、B、C都在格点上(两条网格线的交点叫格点).请仅用无刻度的直尺按下列要求画图,并保留画图痕迹(不要求写画法).(1)将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B1,点C的对应点为C1,画出△AB1C1;(2)连接CC1,△ACC1的面积为;*本号资料皆来源于微信:数学第*六感(3)在线段CC1上画一点D,使得△ACD的面积是△ACC1面积的15.54.(2021·辽宁阜新)下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G ,G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度,可以得到图形2G .(2)在图2中分别画出....G 关于 y 轴和直线1y x =+的对称图形1G ,2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度,可以得到图形2G .(3)综上,如图3,直线1:22l y x =-+和2:l y x =所夹锐角为α,如果图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示),可以得到图形2G .55.(2021·贵州毕节)如图1,在Rt ABC 中,90BAC ∠=︒,AB AC =,D 为ABC 内一点,将线段AD 绕点A 逆时针旋转90°得到AE ,连接CE ,BD 的延长线与CE 交于点F . (1)求证:BD CE =,BD CE ⊥;(2)如图2.连接AF ,DC ,已知135BDC ∠=︒,判断AF 与DC 的位置关系,并说明理由.56.(2021·内蒙古通辽)已知AOB 和MON △都是等腰直角三角形OM OA ⎫<<⎪⎪⎝⎭,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =; (2)将MON △绕点O 顺时针旋转.△如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;△当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.57.(2021·湖南衡阳)如图,点E 为正方形ABCD 外一点,90AEB =︒∠,将Rt ABE △绕A 点逆时针方向旋转90︒得到,ADF DF 的延长线交BE 于H 点.(1)试判定四边形AFHE 的形状,并说明理由; (2)已知7,13BH BC ==,求DH 的长.58.(2021·北京)如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明; (2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明.59.(2021·浙江嘉兴)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.60.(2021·四川阿坝)如图,Rt ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到DEC ,点D 落在线段AB 上,连接BE .(1)求证:DC 平分ADE ∠;(2)试判断BE 与AB 的位置关系,并说明理由:(3)若BE BD =,求tan ABC ∠的值.61.(2020·湖南邵阳)已知:如图△,将一块45°角的直角三角板DEF 与正方形ABCD 的一角重合,连接,AF CE ,点M 是CE 的中点,连接DM .(1)请你猜想AF 与DM 的数量关系是__________.(2)如图△,把正方形ABCD 绕着点D 顺时针旋转α角(090a ︒<<︒).△AF 与DM 的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长DM 到点N ,使MN DM =,连接CN )△求证:AF DM ⊥;△若旋转角45α=︒,且2EDM MDC ∠=∠,求AD ED 的值.(可不写过程,直接写出结果)62.(2020·江苏常州)如图1,点B 在线段CE 上,Rt△ABC △Rt△CEF ,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.(1)点F 到直线CA 的距离是_________;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. △请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;△如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE OB =时,求OF 的长.63.(2020·福建)如图,ADE ∆由ABC ∆绕点A 按逆时针方向旋转90︒得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求BDE ∠的度数;(2)F 是EC 延长线上的点,且∠=∠CDF DAC .△判断DF 和PF 的数量关系,并证明;△求证:=EP PC PF CF.64.(2020·甘肃金昌)如图,点M ,N 分别在正方形ABCD 的边BC ,CD 上,且45MAN ∠=︒,把ADN △绕点A 顺时针旋转90︒得到ABE △.(1)求证:AEM △△ANM .(2)若3BM =,2DN =,求正方形ABCD 的边长.。
图形的平移、翻折、旋转及点的运动
图形的平移、翻折、旋转及点的运动图形的平移、翻折、旋转及点的运动图形运动变换问题是⼀类⽤运动观点、运动思想去研究图形位置变化或图形性质的数学问题.这类问题⼀般有两种情况:(⼀)根据条件中的图形运动,研究图形在运动过程中或经过运动后的位置变化与相关性质;(⼆)条件中没有提到图形的运动,要利⽤运动的思想添置辅助线,发现隐含条件,解决问题.由于图形运动变换问题能考查学⽣对图形的认识和感受能⼒,同时对提⾼数学思维能⼒与发展空间观念也有重要的作⽤,因此成为近年中考的⼀个考查热点,许多平⾯⼏何题都是⽤图形运动变换和动点来构题的.下⾯就来举些实例谈谈解这类问题的⼀些⽅法与策略.⼀、平移[例1] (2007上海市中考第22题)在直⾓坐标平⾯内,⼆次函数图象的顶点为(14)A -,,且过点(30)B ,.(1)求该⼆次函数的解析式;(2)将该⼆次函数图象向右平移⼏个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另⼀个交点的坐标.[分析]本例的第(2)⼩题是关于⼆次函数图像的平移问题,解题的关键是理解平移前、后图像的形状、⼤⼩保持不变.我们可以将⼆次函数图像的平移问题转化为图像与x 轴交点的平移问题.即求出平移前函数图像与x 轴的交点,根据平移后图形的特点,求出平移单位,从⽽得到结论.[解](1)设⼆次函数解析式为2(1)4y a x =--,⼆次函数图象过点(30)B ,,044a ∴=-,得1a =.∴⼆次函数解析式为2(1)4y x =--,即223y x x =--.(2)令0y =,得2230x x --=,解⽅程,得13x =,21x =-.∴⼆次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,.∴⼆次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与x 轴的另⼀个交点坐标为(40),. [点评]将图形的平移问题转化为⼀些图形的特殊点的平移问题求解在解图形的平移问题中常⽤.如⼆次函数图像的平移还可研究顶点的平移;直线的平移,可研究直线与坐标轴的交点的平移,圆的平移可转化为圆⼼的平移,等.[例2] (2006嘉定区模拟第25题)如图,?ACB 与?DCE 是全等的两个直⾓三⾓形,其中∠ACB=∠DCE=900,AC=4,BC=2,点D 、C 、B 在同⼀条直线上,点E 在边AC 上. (1)直线DE 与AB 有怎样的位置关系?请证明你的结论;(2)如图(1)若?DCE 沿着直线DB 向右平移多少距离时,点E 恰好落在边AB 上,求平移距离DD ,;(3)在?DCE 沿着直线DB 向右平移的过程中,使?DCE 与?ACB 的公共部分是四边形,设平移过程中的平移距离为x ,这个四边形的⾯积为y ,求y 与x 的函数关系式,并写出它的定义域.[分析]图形在平移过程中,形状、⼤⼩不变,同时对应线段平⾏且相等.在第(3)⼩题中,?DCE 沿着直线DB 向右平移时,?DCE 与?ACB 的公共部分的图形是在改变的,因此公共部分⾯积的计算就需要分类讨论.特别在这⾥公共部分是四边形,审题时要仔细. [解] (1)直线DE 与AB 垂直.证明:延长DE 交AB 于点F∵?ACB 与?DCE 是全等的两个直⾓三⾓形∴∠D=∠A∵∠ACB=900 ∴∠A+∠B=900 ∴∠D+∠B=900 ∴∠BFD=900 ∴直线DE 与AB 垂直.(2)设平移距离DD ,=x 则CC ,=x ,BC ,=x -2 ∵AC ∥E ,C ,∴ACC E BCBC '''=⼜BC=2,EC=E ,C ,2=-x ∴1=x所以平移距离DD ,为1.(3)在?DCE 沿着直线DB 向右平移的过程中第⼀种情况:如图当点E 落在?ACB 内部或边AB 上设D ,E ,与边AC 交于点G∵DD ,=x ∴CD ,=x -4由题意可知:D ,G ∥DE∴CDE ?∽G CD '? ∴2')('CDCD SS GCD CDE =??⼜ CD=4,44221=??=CDE S∴2)44(4'x SGCD -=?∴xxy2412+-= 定义域为10≤第⼆种情况:如图点E 落在?ACB 外部,且点C 与点B 重合或在CB 的延长线上,点D 在线段CD 上(与点C 不重合).设D ,E ,分别交边AC 、AB 于点G 、F 由第⼀种情况可知:=x -由(1)可知:D ,F ⊥AB ∴∠D ,FB =∠ACB=900⼜∠ABC=∠D ,BF ∴ACB ?∽FB D '? ∴2')('BDAB SS FBD ACB =?? ⼜ AB=22BCAC+=5244221=??==??CDE ACB S S BD ,=x -6D E A B C D E A C 图(1) D D E A BC 备⽤图D E ACD,E ,,DE A C,D E A C DC ,E ,G∴2)652(4'xSFBD -=? ∴5 )6(2'x S FB D -=G CD FB D S Sy ''-==4)4(5)6(22x x ---即:5 165 2202+--定义域为42<≤x[点评]在图形平移过程中求图形重叠部分的⾯积是较常见的题型,平移时除了对应线段、对应⾓等有关的⼏何量始终保持相等外,对应线段的位置也是保持平⾏的.对于⼀些较复杂的图形运动问题,借助⽰意图的直观性,能很好降低对问题理解上的难度,但我们不能完全依赖于此,还必须借助空间想象能⼒,对图形运动作深刻的理性分析,全⾯剖析各种可能情况.⼆、翻折[例3] (2001上海市中考第13题)在边长为2的菱形ABCD 中,∠B =45°,AE 为BC 边上的⾼,将△ABE 沿AE 所在直线翻折后得△AB 'E ,那么△AB 'E 与四边形AECD 重叠部分的⾯积是.[分析] 本例⼀道填空题,没有图形,所以解决本题的关键就是画出正确的图形.画出正确图形后发现要求的重叠部分的⾯积,实际上就是两个△AEC 的⾯积.[略解] ∵'2A B A B ==,45B ∠=,∴A E B E ==2E C =-.∴(112222222A E C S S E C A E ==?=?-= 重叠.B'H EDCBA[点评] 将△ABE 沿AE 所在直线翻折后得△AB 'E ,翻折后点'B 应落在线段BC 的延长线上,很多学⽣在完成本题时,由于画出⽰意图不正确,将点'B 画在了线段BC 上,因⽽导致问题的分析解决出错.所以画出运动后的正确图形是解决问题的前提.另外对于图形的翻折问题,抓住图形在运动变换中的全等不变性是⾮常重要的.[例4] (2004奉贤区中考模拟第13题)Rt △ABC 中,2B C =,30A B C ∠=,A D 是△ABC 的中线,把△ABD 沿A D 翻折到同⼀平⾯,点B 落在'B 的位置求'B C = . [分析] 如例3所提到的,我们应先画出正确的翻折后图形,通过△ABD ≌△AB ’D ,得到四边形ADB ’C 是菱形,即'B C A D =. [略解] ∵△ABD ≌△AB ’D ∴四边形ADB ’C 是菱形∴'1B C A D ==.[点评] 在解题时应通过图形运动的性质来发现⼀些新图形,并利⽤它们的性质来解决问题,往往题中的这些隐含条件就是解题的突破⼝.D B'[例5] 如图,在矩形ABCD 中,6A B =,8A D =,将矩形A B C D 翻折,使点B 与点D 重合,点A 落在点' A 处,折痕交A D 于点E ,交BC 于点F .(1)求△A ’ED 的⾯积;(2)求折痕EF 的长.[分析] 要求△A ’ED 的⾯积,只要在△A ’ED 中利⽤勾股定理求出'A E 的长即可;要求E F 的长,则需利⽤E F 垂直平分B D ,由△BOF ∽△BCD ,求出OF 的长后,得E F 的长. [解](1)∵'A D 6AB ==,'90A A ∠=∠=,'A E A E =,∴8D E A E =-='8A E -在Rt △A ’ED 中,由勾股定理得:()2''2836A E A E -=+∴'74A E ='17216244AEDS =?=(2)连结BD 交EF 于点O由题意得:EF 是DB 的中垂线,易证△BOF ≌△DOE ∴EF=2OF ,BD=2OB∵四边形ABCD 是矩形,AB =6,BC =8 ∴?=∠90C ,1022=+=CDBCBD ∴OB =5⼜∵?=∠=∠∠=∠90,C BOF DBC DBC∴OF =415 ∴EF=215[点评]解本题的关键是理解翻折问题中的折痕是翻折前、后的两个图形的对称轴,利⽤“连结对称点的线段被对称轴垂直平分”这条性质,找到有关的数量关系.另外,在翻折问题中还经常结合勾股定理、相似三⾓形、锐⾓三⾓⽐等知识共同解决问题.三、旋转[例6] (2004松江区中考模拟第13题)如图,P 是正⽅形ABCD 内⼀点,将△ABP 绕点B 顺时针⽅向旋转能与△CBP ’重合,若3P B =,则'P P = . [分析] 由旋转可知:△ABP ≌△CBP ’ 则发现△BPP ’是等腰直⾓三⾓A'F EDCBAOPDBA形,当3P B =时,可求出'P P .[略解] 由旋转可知:△ABP ≌△CBP ’ ∴△BPP ’是等腰直⾓三⾓形∵3P B = ∴ 'P P=[点评] 解决本例的想法与在例4翻折问题时提到的解决问题的想法⼀致.在解题时应通过图形运动的性质来发现⼀些新图形,利⽤新图形的⼀些性质来解决问题.[例7] (2006长宁区中考模拟第24题)如图,∠PAB=300,PA=2.把三⾓尺300⾓的顶点固定在点P 上,转动三⾓尺,300⾓两边交直线AB 于点Q 与点R (点Q 在点R 左边).设AR=x ,QR=y ,PR=z .(1)求证:z 2=y x ?(2)三⾓尺转动时,找出所有符合题意的等腰三⾓形APQ ,分别求出这些等腰三⾓形的底⾓的正切值.(3)写出y 与x 的函数解析式及定义域.[分析] 第(1)题的结论为第(3)题作好了准备.⼀般地,综合题中难点的解决会在⼩题的设置上作⼀点铺设,同学们应在解题时注意这些细节.第(2)题中,按顶⾓的顶点分类讨论△APQ 为等腰三⾓形,分三类,其中,当AP =AQ 时,⼜分两种情况:底⾓75A Q P ∠=或15.在第(3)题中,可以不对A 、R 、Q 三点的位置作讨论,因为本质上这三点的不同位置不影响到y 与x 之间的函数关系.[解] (1)∵30P A R Q P R ∠=∠=(2)△APQ 为等腰三⾓形,可分以下三类,①当AQ =PQ ,∠A=∠APQ=300, tgA= 33;②当A P A Q =,底⾓75A Q P ∠=或15当底⾓75A Q P ∠=时作PW ⊥AB,垂⾜为W ,PW=1,AW=3.,则2W Q =-tg ∠AQP=32321+=-当底⾓15A Q P ∠=时12=-PBAPB A A Q R PBA R Q W P BR Q W③AP =QP =2时,PR //AQ ,∴点R 不在AB 上,不合题意舍去.综上所述,符合题意的等腰△APQ 共三个,它们的底⾓的正切值分别为33,2+2-.(3)作PW ⊥AB,垂⾜为W ,PW=1,AW=3.22324)3(1x x x z +-=-+= ∵ xy z =2 ∴324-+=xx y (x>0)[点评] 在运动过程中寻找特殊的图形或位置是有关图形运动的常见题型,解题时必须考虑完整.分析问题应该从理性层⾯作出全⾯剖析,并结合⽰意图作出直观判断.[例8] 如图,在A B C ?中,四边形CDEF 是正⽅形,点D 、E 、F 分别在AC ,AB ,BC 上,如果AE=a ,BE=b ,那么阴影部分的⾯积是多少?[分析] 将△BFE 绕点E 逆时针旋转90,则△BFE ≌△GDE ,阴影部分的⾯积就是△AGE 的⾯积,⽽△AGE 我们能证明它是直⾓三⾓形. [略解]过点E 作EG ⊥AB ,交AC 于点G .易证△BFE ≌△GDE ,∴E G B E b == ∴阴影部分的⾯积=122E G A a b S A E E G ==[点评]在本例中,条件中没有提到图形的运动,要利⽤运动的思想添置辅助线,改变图形的结构,发现隐含条件,解决问题.这类题⽬,能⼒的要求较⾼.四、点的运动[例9] (2008上海市中考第25题)已知24A B A D ==,,90D A B ∠=,A D B C ∥(如图).E 是射线B C 上的动点(点E 与点B 不重合),M 是线段D E 的中点.(1)设BE x =,A B M △的⾯积为y ,求y 关于x 的函数解析式,并写出函数的定义域;(2)如果以线段A B 为直径的圆与以线段D E 为直径的圆外切,求线段B E 的长;(3)联结B D ,交线段A M 于点N ,如果以A N D ,,为顶点的三⾓形与B M E △相似,求线段B E 的长.B A D M E CB A DC 备⽤图 P B AA R QW 123-x P B AARQ W 12x -3F AF A[分析] 在第(1)题中,要重视梯形常见辅助线的添加,另外辅助线如果作⾼,不要忘记证明中点,如取中点,不要忘记证明垂直.第(2)题是关于两圆外切问题,我们只要抓住外切时圆⼼距与两圆半径之间的数量关系,即可解决问题.在第(3)题中,⾸先要找到⼀对相等的⾓,即D A M E B M ∠=∠,M H B E A D =+⼜∵AB ⊥BE ,∴MH ⊥AB .∴12A B M S A B M H =,得122y x =+(0x )(2)由已知得D E =∵以线段AB 为直径的圆与以线段DE 为直径的圆外切,∴1122M H A B D E =+,即:()114222x ?+=+??解得43x =,即线段BE 的长为43.(3)由已知,以A 、N 、D 为顶点的三⾓形与△BME 相似,⼜易证得D A M E B M ∠=∠由此可知,另⼀对对应⾓相等有两种情况:①当A D N B E M ∠=∠时,∵AD ∥BE ,∴A D N D B E ∠=∠,∴D B E B E M ∠=∠.∴D B D E =,易得2B E A D =,得8B E = ②当A D B B M E ∠=∠时,∵AD ∥BE ,∴A D B D B E ∠=∠,∴D B E B M E ∠=∠.⼜B E D M E B ∠=∠,∴△BED ∽△MEB .∴D E B E B EE M=,即2BE E M D E = ,得2x =解得12x =,210x =-(舍去)即2B E =.综上所述:所求线段BE 的长为8或2.[点评]动点问题⼀直是中考综合题构题的热点,近⼏年的上海市中考最后⼀题都是与点的运动有关的.解决动点问题的最好⽅法莫过于⽤某个变量来表⽰1、如图1,把ΔABC 沿AB 边移动到Δ'''A B C 的位置,它们重叠部分的⾯积是ΔABC ⾯积的⼀半,若A B =,则此三⾓形移动的距离AA ′是多少?C'B'A 'CB A图12、如图2,把长⽅形ABCD 的⼀边AB 沿直线AP 对折过来,使点B 落在边CD 上的点E 处,已知AB=15cm ,BC=12cm ,则折痕线段AP 的长为多少厘⽶?EDBCP图23、如图3,在三⾓形ABC 中,30,70A B ∠=∠=,将A B C ?绕点C 顺时针旋转,使点B 落在边AC 上的点1B 处,点A 落在点1A 处,求11A A B ∠的度数.B C图31、在A B C ?中,BC=4 ,点D 为BC 中点, 60A D C ∠=,将AD C ?沿AD 翻折⾄'A D C ?,求'B C 的长.2、在A B C ?中,AB=AC ,将A B C ?绕点B 旋转,使点A 落在BC 边上'A ,点C 落在点'C ,如果点A 、'A 、'C 在同⼀条直线上,求A B C ∠的度数.1、如图4,等腰梯形ABCD 中,AD ∥BC ,∠DBC =45°.翻折梯形ABCD ,使点B 重合于点D ,折痕分别交边AB 、BC 于点F 、E .若AD =2,BC =8,求:(1)BE 的长;(2)∠CDE 的正切值.2、把两个全等的等腰直⾓三⾓板ABC 和EFG (其直⾓边长均为4)叠放在⼀起(如图5),且使三⾓板EFG 的直⾓顶点G 与三⾓板ABC 的斜边中点O 重合,现将三⾓板EFG 绕O 点顺时针旋转(旋转⾓α满⾜条件:?<(1)在上述旋转过程中,BH 与CK 有怎样的数量关系?四边形CHGK 的⾯积有⽆变化?证明你发现的结论;(2)连接HK ,在上述旋转过程中,设BH=x ,ΔGKH 的⾯积为y ,求y 与x 之间的函数关系式,并写出⾃变量x 的取值范围;C 图4图5图6G(O)FEC BHK G(O)ABCEF1、如图7,在直⾓坐标系中,O 为原点.点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,tg 2O A B =∠.⼆次函数22y x m x =++的图象经过点A ,B ,顶点为D .(1)求这个⼆次函数的解析式;(2)将O A B △绕点A 顺时针旋转90后,点B 落到点C 的位置.将上述⼆次函数图象沿y 轴向上或向下平移后经过点C .请直接写出点C 的坐标和平移后所得图象的函数解析式;(3)设(2)中平移后所得⼆次函数图象与y 轴的交点为1B ,顶点为1D .点P 在平移后的⼆次函数图象上,且满⾜1P B B △的⾯积是1P D D △⾯积的2倍,求点P 的坐标.2、操作:将⼀把三⾓尺放在边长为1的正⽅形ABCD上,并使它的直⾓顶点P在对⾓线AC上滑动,直⾓的⼀边始终经过点B,另⼀边与射线DC相交于点Q.(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的⼤⼩关系?试证明你观察得到结论;(2)当点Q在边CD上时,设四边形PBCQ的⾯积为y,求y与x之间的函数解析式,并写出函数的定义域;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三⾓形?如果可能,指出所有能使△PCQ成为等腰三⾓形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由.答案⼀、1、12- 223、20?⼆、1、2 2、∠ABC=36o 三、1、(1)BE=5(2)53==∠DEEC CDE tg2、(1)连结CG ,易证ΔGBH ≌ΔGCK ,∴BH=CK ,四边形CHGK 的⾯积不变等于4.(2)连结KH ,∵AC=BC=4,BH=x ,∴CK=x ,CH=x -4,有C HK C HGK GHK S S S ??-=,得)4(214x x y --=,∴42212+-=x xy )40(<四、1、解:(1)由题意,点B 的坐标为()02,, 2O B ∴=,tg 2O A B = ∠,即2O B O A=.1O A ∴=.∴点A 的坐标为()10,.⼜⼆次函数22y x m x =++的图象过点A ,2012m ∴=++.解得3m =-,∴所求⼆次函数的解析式为232y x x =-+.(2)由题意,可得点C 的坐标为()31,,所求⼆次函数解析式为231y x x =-+.(3)由(2),经过平移后所得图象是原⼆次函数图象向下平移1个单位后所得的图象,那么对称轴直线32x =不变,且111B B D D ==.点P 在平移后所得⼆次函数图象上,设点P 的坐标为()231x x x -+,.在1P B B △和1P D D △中,112P B B P D D S S = △△,∴边1B B 上的⾼是边1D D 上的⾼的2倍.①当点P 在对称轴的右侧时,322x x ?,得3x =,∴点P 的坐标为()31,;②当点P 在对称轴的左侧,同时在y 轴的右侧时,322x x ??=-,得1x =,∴点P 的坐标为()11-,;③当点P 在y 轴的左侧时,0x <,⼜322x x ??-=-,得30x =>(舍去),∴所求点P 的坐标为()31,或()11-,. 2、图1 图 2 图3(1)解:PQ =PB证明如下:过点P 作MN ∥BC ,分别交AB 于点M ,交CD 于点N ,那么四边形AMND 和四边形BCNM 都是矩形,△AMP 和△CNP 都是等腰直⾓三⾓形(如图1).∴ NP =NC =MB .∵∠BPQ =90°,∴∠QPN +∠BPM =90°.⽽∠BPM +∠PBM =90°,∴∠QPN =∠PBM .⼜∵∠QNP =∠PMB =90°,∴△QNP ≌△PMB .∴ PQ =PB .(2)解法⼀由(1)△QNP ≌△PMB .得NQ =MP .∵ AP =x ,∴ AM =MP =NQ =DN =x 22,BM =PN =CN =1-x 22,∴ CQ =CD -DQ =1-2·x 22=1-x 2.得S △PBC =21BC ·BM =21×1×(1-x 22)=21-42x .S △PCQ =1×(1-x 2)(1-x 22)=21-x 423+21x 2S 四边形PBCQ =S △PBC +S △PCQ =21x 2-x 2+1.即 y =21x 2-x 2+1(0≤x <22).解法⼆作PT ⊥BC ,T 为垂⾜(如图2),那么四边形PTCN 为正⽅形.∴ PT =CB =PN .⼜∠PNQ =∠PTB =90°,PB =PQ ,∴△PBT ≌△PQN .S 四边形PBCQ =S △四边形PBT +S 四边形PTCQ =S 四边形PTCQ +S △PQN =S 正⽅形PTCN =CN 2=(1-x 22)2=21x 2-x 2+1∴ y =21x 2-x 2+1(0≤x <22).(3)△PCQ 可能成为等腰三⾓形②当点Q 在边DC 的延长线上,且CP =CQ 时,△PCQ 是等腰三⾓形(如图3)解法⼀此时,QN =PM =x 22,CP =2-x ,CN =22CP =1-x 22.∴ CQ =QN -CN =x 22-(1-x 22)=x 2-1.当2-x =x 2-1时,得x =1.解法⼆此时∠CPQ =21∠PCN =22.5°,∠APB =90°-22.5°=67.5°,∠ABP =180°-(45°+67.5°)=67.5°,得∠APB =∠ABP ,∴ AP =AB =1,∴ x =1.。
五年级数学技巧之平移旋转与翻折
五年级数学技巧之平移旋转与翻折数学是一门需要技巧和创造力的学科,它帮助我们理解世界,解决问题。
在五年级的数学学习过程中,我们将学习许多重要的数学技巧。
本文将介绍三个重要的数学技巧:平移、旋转和翻折。
一、平移平移是指将一个图形在平面上沿着一条直线进行移动,移动的方向和距离保持不变。
平移是一种保持图形形状和大小不变的变化方式。
我们使用平移来解决一些空间关系和几何问题。
在平移中,我们需要知道两个重要的要素:平移向量和平移后的图形。
平移向量是指平移的方向和距离。
平移后的图形是指原图形通过平移后得到的新图形。
例如,给定一个平面上的三角形ABC,如果我们平移这个三角形,使得A点移动到A’点,B点移动到B’点,C点移动到C’点。
那么我们可以将平移向量表示为向量△A’B’C’。
二、旋转旋转是指将一个图形绕着一个固定的点进行旋转,旋转的角度可以是顺时针或逆时针方向。
旋转是一种改变图形位置和朝向的变化方式。
旋转也是常用的数学技巧之一。
在旋转中,我们需要知道两个重要的要素:旋转中心和旋转角度。
旋转中心是指图形绕着的固定点,旋转角度是指图形旋转的角度。
举个例子,给定一个平面上的四边形ABCD,如果我们围绕着点O进行逆时针旋转θ度。
那么我们可以将旋转表示为R(θ, O)。
三、翻折翻折是指通过将一个图形沿着一条直线对称地折叠,得到与原图形对称的图形。
翻折也是一种常见的变换方式,可以帮助我们研究图形的对称性。
在翻折中,我们需要知道两个重要的要素:翻折线和翻折后的图形。
翻折线是指图形折叠的直线,翻折后的图形是指通过折叠得到的新图形。
以例子来说明,给定一个平面上的矩形ABCD,如果我们将这个矩形沿着中心点O所在的直线对称折叠。
那么我们可以将翻折表示为F(O)。
总结:在五年级数学学习中,我们学习了许多数学技巧,其中包括平移、旋转和翻折。
这些数学技巧可以帮助我们思考和解决各种几何和空间问题。
通过平移,我们可以改变图形的位置;通过旋转,我们可以改变图形的朝向;通过翻折,我们可以研究图形的对称性。
中考数学压轴题 第四部分 图形的平移翻折与旋转
4.1 图形的平移、翻折与旋转1.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2, 0),点A在第一象限内,将△OAB沿直线OA 的方向平移至△O′B′A′的位置,此时点A′的横坐标为3,则点B′的坐标为().A.(4,B.(3,C.(4,D.(3,2.如图,在平面直角坐标系中,点A的坐标为(0, 6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线34y x=-上,则点B与其对应点B′间的距离为______.3.已知直线y=2x+(3-a)与x轴的交点在A(2, 0),B(3, 0)之间(包括A、B两点)则a的取值范围是_____________.4.如图,在矩形ABCD中,AD=15,点E在边DC上,连结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为G.如果AD=3GD,那么DE=_____.5.如图,在△ABC中,CA=CB,∠C=90°,点D是BC的中点,将△ABC沿着直线EF折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin∠BED的值为____________.6.如图,在矩形ABCD中,AB=6,AD=8,把矩形ABCD沿直线MN翻折,点B落在边AD上的E点处,若AE=2AM,那么EN的长等于.7.如图,已知在Rt△ABC中,∠C=90°,AC=BC=1,点D在边BC上,将△ABC沿直线AD翻折,使点C落在点C′处,连结AC′.直线AC′与CB的延长线相交于点F.如果∠DAB=∠BAF,那么BF=______________.8.如图,已知Rt△ABC中,D是斜边AB的中点,AC=4,BC=2,将△ACD沿直线CD折叠,点A落在点E处,连结AE,那么线段AE的长度等于__________.9.如图,在矩形纸片ABCD中,AB<BC,点M、N分别在AD、BC上,沿直线MN将四边形DMNC翻折,点C恰好与点A重合.如果此时在原图中△CDM与△MNC的面积比是1∶3,那么MNDM的值等于___________.10.如图,△ABC中,AB=AC=5cm,BC=6cm,BD平分∠ABC,BD交AC于点D.如果将△ABD沿BD翻折,点A 落在点A′处,那么△DA′C的面积为_______.11.如图,在Rt△ABC中,∠ACB=90°.将△ABC沿BD折叠,点C恰好落在AB边上的点C′处,折痕为BD.再将其沿DE折叠,使点A落在DC′的延长线上的点A′处,若△BED与△ABC相似,则相似比BDAC=___________.12.如图,已知扇形OAB的半径为6,圆心角为90°,E是半径OA上一点,F是AB上一点.将扇形AOB沿着EF 对折,使得折叠后的'A F恰好与半径OB相切于点G,若OE=5,则O到折痕EF的距离为__________.13.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.14.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为().A B.C.D15.如图,将正方形ABCD沿MN折叠,使点D落在AB边上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为_________.16.如图,矩形ABCD中,AB=8,BC=6,点P为AD边上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为_______.17.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是_________.18.如图,正方形ABCD的边长为3,点E在AB边上且BE=1,点P、Q分别是边BC、CD上的动点(均不与顶点重合),当四边形AEPQ的周长取得最小值时,四边形AEPQ的面积是____________.19.如图,已知钝角三角形ABC,∠A=35°,OC为AB边的中线.将△AOC绕着点O顺时针旋转,点C落在BC 边上的点C′处,点A落在点A′处,连结BA′,如果A、C、A′在同一条直线上,那么∠BA′C′的度数为__________.20.如图,在Rt△ABC中,∠C=90°,AC=BC ABC绕着点A顺时针旋转60°得到△AB′C′,连结C′B,则C′B的长为___________.21.如图,△ABC中,∠ABC>90°,tan∠BAC=34,BC=4,将三角形绕着点A旋转,点C落在直线AB上的点C′处,点B落在点B′处,若C、B、B′恰好在一直线上,则AB的长为______________.22.如图,在正方形ABCD中,E、F分别在BC、AB边上,如果AF=BE,那么∠AOD的度数是__________.23.如图,△ABC、△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2B1C D124.如图,已知Rt△ACB中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC,若点F是DE的中点,连结AF,则AF= .25.如图,在△ABC中,∠ABC=90°,AB=BC ABC绕点C逆时针旋转60°,得到△MNC,则BM的长是___________.26.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′//AB,则旋转角的度数为().A.35°B.40°C.50°D.65°27.已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处.延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于.28.如图,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,BC=6.△ABC固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE始终经过点A,EF与AC边交于点M,当△AEM是等腰三角形时,BE=_________.29.如图,在四边形ABCD中,∠A=90°,AB=AD=3,点M、N分别是线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别是DM、MN的中点,则EF长度的最大值为.30.如图,正方形ABCD的边长为16,点E在边AB上,AE=3,点F是边BC上不与B、C重合的一个动点,把△EBF 沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为_______________.31.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.32.在平面直角坐标系中,点A,B,动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为().A.2B.3C.4D.533.在平行四边形ABCD中,AB<BC,已知∠B=30°,AB=ABC沿AC翻折至△AB′C,使点B′落在平行四边形ABCD所在的平面内,连结B′D.若△AB′D是直角三角形,则BC的长为_____________.34.如图,AC是矩形ABCD的对角线,AB=2,BC=E、F分别是线段AB、AD上的点,连结CE、CF,当∠BCE=∠ACF且CE=CF时,AE+AF=______.35.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是().A.B.C.5 D.636.如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的平行四边形AEMG 的面积S 1与平行四边形HCFM 的面积S 2的大小关系是( ).A .S 1>S 2B .S 1<S 2C .S 1=S 2D .2S 1=S 237.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD ,B 与D 两点之间用一根橡皮筋...拉直固定,然后向右扭动框架,观察所得四边形的变化.下面判断错误..的是( ). A .四边形ABCD 由矩形变为平行四边形; B .BD 的长度增大;C .四边形ABCD 的面积不变; D .四边形ABCD 的周长不变.38.如图,C 是以AB 为直径的半圆O 上一点,连结AC 、BC ,分别以AC 、BC 为边向外作正方形ACDE 和正方形BCFG ,DE 、FG 、AC 、BC 的中点分别是M 、N 、P 、Q .若MP +NQ =14,AC +BC =18,则AB 的长是( ). A. 29 B. 790 C. 13 D. 16 39.如图1,点P 是以r 为半径的⊙O 外一点,点P ′在线段OP 上,若满足OP ·OP ′=r 2,则称点P ′是点P 关于⊙O的反演点.如图2,在Rt △ABO 中,∠B =90°,AB =2,BO =4,⊙O 的半径为2,如果点A ′、B ′分别是点A 、B 关于⊙O 的反演点,那么A ′B ′的长是____.40.如图,已知⊙O 1的半径为1,⊙O 2的半径为2,O 1O 2=5,⊙O 分别与⊙O 1外切,与⊙O 2内切,那么⊙O 半径r 的取值范围是__________.41.如图,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 为半径画弧,再以AB 边的中点为圆心,AB 的一半为半径画弧,则两弧之间的阴影部分的面积是_________(结果保留π).42.如图,半圆O 的直径AE =4,点B 、C 、D 均在半圆上,若AB =BC ,CD =DE ,连结OB 、OD ,则图中阴影部分的面积为_________.43.如图1,菱形ABCD 的边长为2,∠A =60°,以点B 为圆心的圆与AD ,DC 相切,与AB 、CB 的延长线分别相交于点E 、F ,则图中阴影部分的面积为( ).A 2πB πC 2πD .2π+44.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于_____.45.如图,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P 与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为_________. A. 4π B. 2π C. 6π D. 3π 46.如图,在平面直角坐标系中,已知点A (0, 1),点P 在线段OA 上,以AP 为半径的⊙P 的周长为1.点M 从点A 开始沿⊙P 按照逆时针方向转动,射线AM 交x 轴于点N (n , 0) ,设点M 转过的路程为m (0<m <1).随着点M 的转动,当m 从13变化到23时,点N 相应移动的路程长为____________.47.已知⊙P 的半径为2,圆心在函数y=8x的图象上运动,当⊙P 与坐标轴相切于点D 时,则符合条件的点D 的个数为( ).A .0B .1C .2D .448.如图,AB 是⊙O 的弦,AB =6,点C 是⊙O 上的一个动点,且∠ACB =45°.若M 、N 分别是AB 、BC 的中点,那么MN 长的最大值是__________.49.如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为 . 50.如图,正比例函数11y k x =的图象与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( ). A .x <-2或x >2 B . x <-2或0<x <2 C .-2<x <0或0<x <2 D .-2<x <0或x >251.正比例函数y 1=mx (m >0)的图象与反比例函数2k y x=(k ≠0)的图象交于A (n , 4)、B 两点,AM ⊥y 轴,垂足为M ,若△AMB 的面积为8,则满足y 1>y 2的实数x 的取值范围是___________.52.如图,在平面直角坐标系中,四边形ODEF 和四边形ABCD 都是正方形,点F 在x 轴的正半轴上,点C 在边DE 上,反比例函数k y x=(k ≠0,x >0)的图象过点B 、E .若AB =2,则k 的值为________.53.如图,点A 1、A 2依次在y =(x >0)的图象上,点B 1、B 2依次在x 轴的正半轴上,若△A 1OB 1、△A 2B 1B 2均为等边三角形,则点B 2的坐标为________.54.如图,在平面直角坐标系中,直线y =k 1x +2与x 轴交于点A ,与y 轴交于点C ,与反比例函数2k y x =在第一象限内的图象交于点B ,连结BO ,若S △OBC =1,tan ∠BOC =13,则k 2的值是( ).A .-3B .1C .2D .3 55.如图,在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,点A 的坐标为(a , a ).若曲线3y x=(x >0)与此正方形的边有交点,则a 的取值范围是_____________. 56.如图,已知点A 在反比例函数k y x =(x <0)上,作Rt △ABC ,点D 为斜边AC 的中点,连结DB 并延长交y 轴于点E ,若△BCE 的面积为8,则k = .57.如图,已知∠AOB =90°,在∠AOB 的平分线ON 上依次取点C 、F 、M ,过点C 作DE ⊥OC ,分别交OA 、OB 于点D 、E ,以FM 为对角线作菱形FGMH ,已知∠DFE =∠GFH =120°,FG =FE .设OC =x ,图中阴影部分的面积为y ,则y 与x 之间的函数关系式是( ). A. 223x y = B. 23x y = C. 232x y = D. 233x y = 58.如图1,正方形ABCD 的边长为3,动点P 从点B 出发以每秒3个单位长度的速度沿着BC -CD -DA 运动,到达点A 停止运动;另一动点Q 同时从点B 出发以每秒1个单位长度的速度沿着BA 边向点A 运动,到达点A 停止运动.设点P 运动时间为x 秒,△BPQ 的面积为y ,则y 关于x 的函数图象是( ).A .B .C .D .59.如图1,在平面直角坐标系中,点A 的坐标为(2, 2),点P (m , n )在直线y =-x +2上运动.设△APO 的面积为S ,则下面能够反映S 与m 的函数关系的图象是( ).60.如图1,在Rt△ABC中,∠C=90°,∠BAC=30°,AB=8.以DEFG的一边在直线AB上,且点D与点A重合.现将正方形DEFG沿A→B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是().61.如图,已知正△ABC的边长为2,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是().图1 A.B.C.D.62.如图1,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图像中,能表示y 与x的函数关系的图象大致是().63.函数x xx y2 2+=的图象为().A.B.C.D.。
图形的平移、旋转和翻折
图形的平移、旋转、翻折1、运动的性质:运动前、后的图形全等A、平移的性质:(1)对应点之间的距离等于平移的距离;(2)对应点之间的距离相等,对应角大小相等,对应线段的长度相等;(3)平移前、后的图形全等.B、旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.C、翻折的性质:(1)对应线段的长度相等,对应角的大小相等,对应点到对称轴的距离相等;(2)翻折前、后的图形全等3、中心对称图形与轴对称图形比较:例题:1、下图中,不是旋转对称图形的是( ).2、有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化A.1个B.2个C.3个D.4个3、下列图形中,既是轴对称图形,又是中心对称图形的是( )4、下列图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个5、已知:如图,四边形ABCD与四边形EFGH成中心对称,试画出它们的对称中心,并简要说明理由.6、如图,五角星可看作是由什么“基本图形”通过怎样的旋转而得到的?7、已知:如图,四边形ABCD及一点P.求作:四边形A′B′C′D′,使得它是由四边形ABCD绕P点顺时针旋转150°得到的.8、如图,△AOB旋转到△A′OB′的位置.若∠AOA′=90°,则旋转中心是点______.旋转角是______.点A的对应点是______.线段AB的对应线段是______.∠B的对应角是______.∠BOB′=______.9、已知:如图,F是正方形ABCD中BC边上一点,延长AB到E,使得BE=BF,试用旋转的性质说明:AF=CE且AF⊥CE.10、已知:如图,若线段CD是由线段AB经过旋转变换得到的.求作:旋转中心O点.11、如图,ΔABC与ΔA'B'C'关于直线l对称,则∠B的度数为()A.30°B.50°C.90°D.100°12、如图,直线L 是四边形ABCD 的对称轴,若AB CD =,有下面的结论:①AB CD ∥ ②AC BD ⊥ ③AO OC = ④AB BC ⊥,其中正确的结论有_______.13、如图,ABC ∆和'''A B C ∆关于直线l 对称,且90B ∠=︒,''6cm A B =,求'B ∠的度数和AB 的长。
小学数学点知识归纳平移旋转与翻折
小学数学点知识归纳平移旋转与翻折小学数学点知识归纳:平移、旋转与翻折数学作为一门基础学科,既要注重学生对基本概念的掌握,又要培养学生的思维能力和解决问题的能力。
在小学数学中,平移、旋转和翻折是重要的几何变换概念,本文将对这些知识进行归纳总结,并探讨其在小学数学中的教学。
一、平移平移是指在平面上保持形状和大小不变的情况下,将图形沿着一定方向进行移动的几何变换。
在平移中,图形的每一个点都按照相同的方向和距离进行移动。
平移有以下几个重要的特点:1. 平移后的图形与原图形全等。
平移不改变图形的形状和大小,因此平移后的图形与原图形全等。
这也是平移与其他几何变换(如旋转和翻折)的区别之一。
2. 平移是由向量描述的。
平移是由一个向量来描述的,这个向量既包括平移的方向,也包括平移的距离。
在平移时,我们可以选取任意一点作为起点,通过向量来确定平移的方向和距离。
3. 平移的性质:保持向量平行关系、保持直线平行关系、保持角度大小关系等。
平移不仅可以保持向量平行关系,还可以保持直线平行关系以及角度大小关系。
这些性质使得平移在解决实际问题中有着广泛的应用。
二、旋转旋转是指在平面上围绕某一点或某一直线进行旋转的几何变换。
旋转有以下几个重要的特点:1. 旋转后的图形与原图形形状相同,大小可以相同也可以不同。
旋转过程中,图形的形状保持相同,但其大小可以相同也可以不同。
这取决于旋转的角度。
2. 旋转是由旋转中心和旋转角度来描述的。
旋转的中心可以是图形上的一个点,也可以是平面上的某一直线。
旋转角度可以为正也可以为负,表示顺时针或逆时针旋转。
3. 旋转的性质:保持向量的大小和相对位置不变、保持角度大小不变等。
旋转可以保持向量的大小和相对位置不变,还可以保持角度大小不变。
这些性质使得旋转在解决几何问题和构造图形等方面有着重要的应用。
三、翻折翻折是指在平面上绕一条直线将图形进行镜像的几何变换。
翻折有以下几个重要的特点:1. 翻折后的图形与原图形形状完全相同,只是位置关系发生变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题图形的平移翻折与旋转4.1图形的平移例1 2015年泰安市中考第15题如图1,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2, 0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′B′A′的位置,此时点A′的横坐标为3,则点B′的坐标为().A.(4,B.(3,C.(4,D.(3,图1 图2动感体验请打开几何画板文件名“15泰安15”,拖动点A'运动的过程中,可以体验到,△A′OC 保持等边三角形的形状.答案A.思路如下:如图2,当点B的坐标为(2, 0),点A的横坐标为1.当点A'的横坐标为3时,等边三角形A′OC的边长为6.在Rt△B′CD中,B′C=4,所以DC=2,B′D=B′.例2 2014年江西省中考第11题如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后,得到△A′B′C′,联结A′C,则△A′B′C的周长为_______.动感体验请打开几何画板文件名“14江西11”,拖动点B′运动,可以体验到,△A′B′C′向右移动2个单位后,△A′B′C是等边三角形.答案12.4.2图形的翻折例1 2015年上海市宝山区嘉定区中考模拟第18题如图1,在矩形ABCD 中,AD =15,点E 在边DC 上,联结AE ,△ADE 沿直线AE 翻折后点D 落到点F ,过点F 作FG ⊥AD ,垂足为G .如果AD =3GD ,那么DE =_____.图1动感体验请打开几何画板文件名“15宝山嘉定18”,拖动点E 在DC 上运动,可以体验到, △ADE 与△AFE 保持全等,△AMF 与△FNE 保持相似(如图2所示).答案如图2,过点F 作AD 的平行线交AB 于M ,交DC 于N .因为AD =15,当AD =3GD 时,MF =AG =10,FN =GD =5.在Rt △AMF 中,AF =AD =15,MF =10,所以AM =设DE =m ,那么NE =m .由△AMF ∽△FNE ,得AM FNMF NE ==m =图2例2 2014年上海市中考第18题如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为______________(用含t的代数式表示).图1动感体验请打开几何画板文件名“14福州10”,拖动点F在AD上运动,可以体验到,当点C′、D′、B在同一条直线上时,直角三角形BCE的斜边BE等于直角边C′E的2倍,△BCE是30°角的直角三角形,此时△EFG是等边三角形(如图2).答案.思路如下:如图2,等边三角形EFG的高=AB=t.图24.3图形的旋转例1 2015年扬州市中考第17题如图1,已知Rt△ABC中,∠ABC=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC,若点F是DE的中点,连接AF,则AF= .图1 图2动感体验请打开几何画板文件名“15扬州17”,拖动点D绕着点C旋转,可以体验到,当旋转角为90°时,FH是△ECD的中位线,AF是直角三角形AHF的斜边.答案5.思路如下:如图2,作FH⊥AC于H.由于F是ED的中点,所以HF是△ECD的中位线,所以HF=3.由于AE=AC-EC=6-4=2,EH=2,所以AH=4.所以AF=5.例2 2014年上海市黄浦区中考模拟第18题如图1,在△ABC中,AB=AC=5,BC=4,D为边AC上一点,且AD=3,如果△ABD 绕点A逆时针旋转,使点B与点C重合,点D旋转至D',那么线段DD'的长为.图1动感体验请打开几何画板文件名“14黄浦18”,拖动点B'绕点A逆时针旋转,可以体验到,两个等腰三角形ABB'与等腰三角形ADD'保持相似(如图2).答案12.思路如下:如图3,由△ABC∽△ADD',可得.5∶4=3∶DD'.5图2 图34.4三角形例1 2015年上海市长宁区中考模拟第18题如图1,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,BC=6.△ABC 固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE 始终经过点A,EF与AC边交于点M,当△AEM是等腰三角形时,BE=_________.图1动感体验请打开几何画板文件名“15长宁18”,拖动点E在BC上运动,可以体验到,△AEM 有三个时刻成为等腰三角形,其中一个时刻点E与点B重合.答案116或1.思路如下:设BE=x.由△ABE∽△ECM,得AB EAEC ME=,即56EAx ME=-.等腰三角形AEM分三种情况讨论:①如图2,如果AE=AM,那么△AEM∽△ABC.所以5566EAME x==-.解得x=0,此时E、B重合,舍去.②如图3,当EA=EM时,516EAx ME==-.解得x=1.③如图4,当MA=ME时,△MEA∽△ABC.所以6556EAME x==-.解得x=116.图2 图3 图4例2 2014年泰州市中考第16题如图1,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP的长等于__________cm.图1动感体验请打开几何画板文件名“14泰州16”,拖动点P在AD上运动,观察度量值,可以体验到,存在两个时刻PQ=AE.答案1或2.思路如下:如图2,当PQ=AE时,可证PQ与AE互相垂直.在Rt△ADE中,由∠DAE=30°,AD=3,可得AE=23.在Rt△APM中,由∠P AM=30°,AM=3,可得AP=2.在图3中,∠ADF=30°,当PQ=DF时,DP=2,所以AP=1.图2 图34.5四边形例1 2015年安徽省中考第9题如图1,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( ).A .B .C .5D .6图1动感体验请打开几何画板文件名“15安徽09”,拖动点E 在AB 上运动,可以体验到,当EF 与AC 垂直时,四边形EGFH 是菱形(如图2).答案 C .思路如下:如图3,在Rt △ABC 中,AB =8,BC =4,所以AC =由cos ∠BAC =AB AOAC AE =,得=AE =5.图2 图3例2 2014年广州市中考第8题将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变.当∠B=90°时,如图1,测得AC=2.当∠B=60°时,如图2,AC等于().(B)2;(C)图1 图2动感体验请打开几何画板文件名“14广州08”,拖动点A绕着点B旋转,可以体验到,当∠B=90°时,△ABC是等腰直角三角形;当∠B=60°时,△ABC是等边三角形(如图3).答案(A).思路如下:4.6圆例1 2015年兰州市中考第15题如图1,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P 与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为__________.A.4π B. 2π C. 6π D. 3π图1动感体验请打开几何画板文件名“15兰州15”,拖动点P 在圆周上运动一周,可以体验到,当点P 沿着圆周转过45°时,点Q 走过的路径是圆心角为45°半径为1的一段弧.答案 A .思路如下:如图2,四边形PMON 是矩形,对角线MN 与OP 互相平分且相等,因此点Q 是OP 的中点.如图3,当∠DOP =45°时, 'DQ 的长为121=84ππ⨯⨯.图2 图3例2 2014年温州市中考第16题如图1,在矩形ABCD中,AD=8,E是AB边上一点,且AE=14AB,⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线相交于另一点F,且EG∶EF=5∶2.当边AD或BC所在的直线与⊙O相切时,AB的长是________.图1动感体验请打开几何画板文件名“14温州16”,拖动点B运动,可以体验到,⊙O的大小是确定的,⊙O既可以与BC相切(如图3),也可以与AD相切(如图4).答案12或4.思路如下:如图2,在Rt△GEH中,由GH=8,EG∶EF=5∶2,可以得到EH=4.在Rt△OEH中,设⊙O的半径为r,由勾股定理,得r2=42+(8-r)2.解得r=5.设AE=x,那么AB=4x.如图3,当⊙O与BC相切时,HB=r=5.由AB=AE+EH+HB,得4x=x+4+5.解得x=3.此时AB=12.如图4,当⊙O与AD相切时,HA=r=5.由AE=AH-EH,得x=5-4=1.此时AB=4.图2 图3 图44.7函数图像的性质例1 2015年青岛市中考第8题如图1,正比例函数11y k x =的图像与反比例函数22k y x=的图像相交于A 、B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( ).A .x <-2或x >2B . x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >2图1动感体验请打开几何画板文件名“15青岛08”,拖动点D 在x 轴上运动,观察线段EF 的两个端点E 、F 的位置关系,可以体验到,当-2<x <0或x >2时,点E 在点F 的上方.答案 D .如图2所示.图2例2 2014年苏州市中考第18题如图1,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B ,联结P A .设P A =x ,PB =y ,则(x -y )的最大值是_____.图1动感体验请打开几何画板文件名“14苏州18”,拖动点P 在圆上运动一周,可以体验到,AF 的长可以表示x -y ,点F 的轨迹象两叶新树丫,当AF 最大时,OF 与AF 垂直(如图2).答案 2.思路如下:如图3,AC 为⊙O 的直径,联结PC .由△ACP ∽△P AB ,得AC PA AP PB =,即8x x y =.所以218y x =. 因此2211(4)288x y x x x -=-=--+.所以当x =4时,x -y 最大,最大值为2.图2 图3。