数据挖掘实验报告三

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据挖掘实验报告

班级统计121班学号姓名胡越

实验名称实验三:分类知识挖掘实验类型综合性实验

实验目的:

(1)掌握利用决策树(C4.5算法)进行分类的方法。

(2)掌握利用朴素贝叶斯分类的方法。

实验要求:

(1)对数据集bankdata.arff利用决策树(C4.5算法)进行分类,给出得出的决策树及分类器的性能评价指标,并利用建立的分类模型对下列表中给出的实例进行分类。

age sex region income married children car save_act current_act mortgage pep

21 MALE TOWN 5014.21 NO 0 YES YES YES YES

42 MALE INNER_CITY 17390.1 YES 0 NO YES YES NO

59 FEMALE RURAL 35610.5 NO 2 YES NO NO NO

45 FEMALE TOWN 26948 NO 0 NO YES YES YES

58 FEMALE TOWN 34524.9 YES 2 YES YES NO NO

30 MALE INNER_CITY 27808.1 NO 3 NO NO YES NO

(2)对数据集bankdata.arff利用朴素贝叶斯分类方法进行分类,给出分类模型的参数及分类器的性能评价指标,并利用建立的分类模型对上表中给出的实例进行分类。

实验结果:

(1)

分类器的性能评价指标: Kappa statistic 0.7942

age sex region income married children car save_act current_act mortgage pep

21 MALE TOWN 5014.21 NO 0 YES YES YES YES no

42 MALE INNER_CITY 17390.1 YES 0 NO YES YES NO no

59 FEMALE RURAL 35610.5 NO 2 YES NO NO NO yes

45 FEMALE TOWN 26948 NO 0 NO YES YES YES no

58 FEMALE TOWN 34524.9 YES 2 YES YES NO NO yes

30 MALE INNER_CITY 27808.1 NO 3 NO NO YES NO no

(2)=== Classifier model (full training set) ===

Naive Bayes Classifier

Class

Attribute YES NO

(0.46) (0.54)

===================================== age

mean 45.1277 40.0982 std. dev. 14.3018 14.1018

weight sum 274 326 precision 1 1

sex

FEMALE 131.0 171.0 MALE 145.0 157.0 [total] 276.0 328.0

region

INNER_CITY 124.0 147.0 TOWN 72.0 103.0 RURAL 47.0 51.0 SUBURBAN 35.0 29.0 [total] 278.0 330.0 income

mean 30644.8069 24902.2958

std. dev. 13585.1095 11640.5073

weight sum 274 326 precision 97.1838 97.1838 married

NO 121.0 85.0 YES 155.0 243.0 [total] 276.0 328.0 children

mean 0.9453 1.0675 std. dev. 0.859 1.1937

weight sum 274 326 precision 1 1

car

NO 137.0 169.0

YES 139.0 159.0

[total] 276.0 328.0

save_act

NO 96.0 92.0

YES 180.0 236.0

[total] 276.0 328.0

current_act

NO 64.0 83.0

YES 212.0 245.0

[total] 276.0 328.0

mortgage

NO 183.0 210.0

YES 93.0 118.0

[total] 276.0 328.0

Time taken to build model: 0.01 seconds

分类器的性能评价指标: Kappa statistic 0.2851

age sex region income married children car save_act current_act mortgage pep

21 MALE TOWN 5014.21 NO 0 YES YES YES YES no

42 MALE INNER_CITY 17390.1 YES 0 NO YES YES NO no

59 FEMALE RURAL 35610.5 NO 2 YES NO NO NO yes

45 FEMALE TOWN 26948 NO 0 NO YES YES YES no

58 FEMALE TOWN 34524.9 YES 2 YES YES NO NO no

30 MALE INNER_CITY 27808.1 NO 3 NO NO YES NO no

相关文档
最新文档