初中数学:辅助线典型用法汇集,这一篇超全!

合集下载

八年级下册数学辅助线总结

八年级下册数学辅助线总结

八年级下册数学辅助线总结八年级下册数学辅助线总结如下:1. 辅助线的作用:辅助线可以帮助我们更好地理解和解决数学问题,特别是在几何图形的证明和计算过程中起到重要的作用。

2. 平行线的辅助线:当我们需要证明两条线段平行时,可以通过引入一条辅助线来简化证明过程。

常见的辅助线有平行于已知线段的线段、平行于已知直线的线段或射线等。

3. 垂直线的辅助线:当我们需要证明两条线段垂直时,可以通过引入一条辅助线来简化证明过程。

常见的辅助线有与已知线段垂直的线段、与已知直线垂直的线段或射线等。

4. 三角形的辅助线:在解决三角形相关问题时,可以通过引入一条辅助线来简化问题。

常见的辅助线有中位线、高线、角平分线、垂直平分线等。

5. 相似三角形的辅助线:当我们需要证明两个三角形相似时,可以通过引入一条辅助线来简化证明过程。

常见的辅助线有角平分线、高线、中位线等。

6. 三角形的边长关系:在计算三角形的边长时,可以通过引入一条辅助线来简化计算过程。

常见的辅助线有中线、角平分线等。

7. 圆的辅助线:在解决圆相关问题时,可以通过引入一条辅助线来简化问题。

常见的辅助线有半径、直径、切线等。

8. 辅助线的选择:在选择辅助线时,需要根据具体问题的要求和条件来确定,通常需要根据问题的特点和已知条件进行分析和判断。

选择合适的辅助线可以简化问题,提高解题效率。

总之,辅助线在数学中起到了重要的作用,可以帮助我们更好地理解和解决各种数学问题,但在使用辅助线时需要注意合理选择,根据问题的要求和条件进行分析和判断。

初中辅助线102种方法

初中辅助线102种方法

初中辅助线102种方法初中数学中的辅助线是指在解题过程中为了简化计算或证明关系而引入的辅助线条。

它可以帮助我们更好地理解问题,找到解题的思路和方法。

下面我将介绍一些常见的初中数学辅助线的方法共102种,希望对你的学习有所帮助。

一、简化计算型:1.使用除法计算2.使用平均数计算3.使用倍数计算4.使用分数计算5.使用比例计算6.使用公式计算7.使用近似值计算8.使用合并计算9.使用反向计算10.使用等差数列计算11.使用等比数列计算12.使用余数计算13.使用开平方计算14.使用全等三角形计算15.使用相似三角形计算16.使用三角函数计算17.使用面积计算18.使用体积计算19.使用平行四边形计算20.使用正方形计算21.使用等腰三角形计算22.使用垂直角计算23.使用圆的性质计算24.使用直角三角形计算二、求证关系型:25.使用数轴求证结论26.使用等距离线段求证结论27.使用相似三角形求证结论28.使用画图法求证结论29.使用平行四边形的性质求证结论30.使用正方形的性质求证结论31.使用相等线段求证结论32.使用角度和为180度求证结论33.使用角度和为360度求证结论34.使用锐角三角形角度关系求证结论35.使用直角三角形角度关系求证结论36.使用分割线段求证结论37.使用等腰三角形角度关系求证结论38.使用辅助角求证结论39.使用辅助线段求证结论40.使用同位角性质求证结论41.使用对称性求证结论42.使用对称图形求证结论43.使用等腰梯形性质求证结论44.使用等腰三角形线段关系求证结论45.使用四边形对角线性质求证结论46.使用圆的性质求证结论47.使用辐角关系求证结论48.使用有序数对求证结论49.使用矩形性质求证结论50.使用三角形内接圆性质求证结论51.使用七巧板求证结论52.使用抽屉原理求证结论53.使用排列组合求证结论三、解决线型:54.使用重要线段求解问题55.使用重要角度求解问题56.使用等距离线段求解问题57.使用正方形对称性求解问题58.使用等腰三角形求解问题59.使用平行四边形求解问题60.使用零点、对称点、最大值最小值求解问题61.使用相交弦、弧求解问题62.使用切线求解问题63.使用对称点求解问题64.使用相等线段求解问题65.使用等距离点求解问题66.使用同位角性质求解问题67.使用相似三角形求解问题68.使用全等三角形求解问题70.使用角度和为180度求解问题71.使用角度和为360度求解问题72.使用锐角三角形角度关系求解问题73.使用直角三角形角度关系求解问题74.使用同位角性质求解问题75.使用等腰三角形角度关系求解问题76.使用辅助角求解问题77.使用辅助线段求解问题78.使用分割线段求解问题79.使用等腰梯形性质求解问题80.使用对角线性质求解问题81.使用折角求解问题82.使用相似图形求解问题83.使用正方形的对称性求解问题84.使用等腰三角形线段关系求解问题85.使用三角形内角和为180度求解问题86.使用辐角关系求解问题87.使用无理方程求解问题89.使用矩形的性质求解问题90.使用弧长和面积关系求解问题91.使用正多边形的性质求解问题92.使用等腰梯形的性质求解问题93.使用命题与真值求解问题94.使用夹角的性质求解问题95.使用相对坐标求解问题96.使用中点定理求解问题97.使用边长关系求解问题98.使用距离公式求解问题99.使用勾股定理求解问题100.使用平行四边形的对角线性质求解问题101.使用足分线关系求解问题102.使用线段积关系求解问题以上便是初中辅助线的102种方法,覆盖了数学中常见的辅助线方法,可以帮助你更好地理解和解决数学问题。

初中几何辅助线大全潜心整理

初中几何辅助线大全潜心整理

. . . . 初中几何辅助线口诀三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

. . . . 辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线作辅助线的方法一、中点、中位线,延线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二、垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

初中辅助线102种方法

初中辅助线102种方法

初中辅助线102种方法1.绘制直线段:在所给的两个点上画辅助线,连接两点即可获得直线段。

2.绘制垂直线:在给定直线上选取一点,作与该点不共线的直线,通过该点引垂直线即可。

3.绘制平行线:在给定直线上选取一点作线段,然后以该线段为半径作圆,在另一点处画一条线段,两条线段平行。

4.绘制等分线:在直线上选择两个点,作圆使其与直线交于两点,连接两点画线段。

5.绘制三等分线:在直线上选择三个不共线的点,分别与直线上的点相连接,形成三个等腰三角形的底面,在三个对应顶点之间画线段。

6.绘制中位线:在三角形的两边上选择两点,使其各自与一个端点形成中位线,在两点之间画线段。

7.绘制角平分线:在给定角的两边上选择两个点,以该点为圆心作圆相交于两点,然后连接两点即可。

8.绘制垂直平分线:对于给定线段,以其中一点为圆心作大于一半长度的圆,在另一端点处画线段,连接两点即可。

9.绘制等腰三角形的高:在一个顶角上选择一点,然后与两边的端点相连,两条线段相交的点就是等腰三角形的高。

10.绘制正方形的对角线:在正方形的两个对角线上选择相对的两点,连接两点即可。

11.绘制圆:以给定的圆心为圆心,以圆上两个点的距离作半径画圆。

12.绘制圆的切线:以切点为圆心,在圆上选择两个点,连接两点即可。

13.绘制圆的弦:在圆上选择两个点,连接两点即可。

14.绘制正多边形的对角线:在正多边形的两个对角线上选择相对的两点,连接两点即可。

15.绘制垂直于圆的切线:以圆心为圆心,在圆上选择两个点,作圆与圆外一点的连线,得到的直线即为切线。

16.绘制等边三角形的高:在等边三角形的一个顶点上选择一点,然后与底边上两个相对的顶点相连,两条线段相交的点即为高所在位置。

17.绘制与给定角相等的角:在给定角的两边上选择两个点,分别以这两个点为圆心与给定角的两边相交,连接两个交点即可。

18.绘制与给定线段等长的线段:在给定线段上选择一点,以该点为圆心作圆的交点即为与给定线段等长的线段的两端点。

【推荐】初中几何辅助线大全(52页)

【推荐】初中几何辅助线大全(52页)

作辅助线的方法一:中点、中位线,延线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。

如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

六:两圆相切、离,连心,公切线。

如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。

七:切线连直径,直角与半圆。

如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。

即切线与直径互为辅助线。

如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。

即直角与半圆互为辅助线。

八:弧、弦、弦心距;平行、等距、弦。

如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

初中初中几何辅助线做法总结满分必备

初中初中几何辅助线做法总结满分必备

【初中】初中最全几何辅助线做法总结,满分必备!几何中,同学们最头疼的就是做辅助线了,所以,今天整理了做辅助线的102条规律,从此,再也不怕了!线、角、相交线、平行线规律1.如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条.规律2.平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分.规律3.如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条.规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半.规律5.有公共端点的n条射线所构成的交点的个数一共有n(n-1)个.规律6.如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个.规律7. 如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角.规律8.平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个.规律9.互为邻补角的两个角平分线所成的角的度数为90°.规律10.平面上有n条直线相交,最多交点的个数为n(n-1)个.规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半.规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直.规律13.已知AB∥DE,如图⑴~⑹,规律如下:规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半.三角形部分规律15.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或及求证有关的量)移到同一个或几个三角形中去然后再证题.规律16.三角形的一个内角平分线及一个外角平分线相交所成的锐角,等于第三个内角的一半.规律17. 三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半.规律18. 三角形的两个外角平分线相交所成的锐角等于90o减去第三个内角的一半.规律19. 从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半.注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三、灵活应变的能力.规律20.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.规律21.有角平分线时常在角两边截取相等的线段,构造全等三角形.规律22. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.规律23. 在三角形中有中线时,常加倍延长中线构造全等三角形.规律24.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:①a>b②a±b = c③a±b = c±d规律25.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。

初中几何辅助线大全(潜心整理)

初中几何辅助线大全(潜心整理)

初中几何辅助线口诀三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线作辅助线的方法一、中点、中位线,延线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二、垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三、边边若相等,旋转做实验。

初中几何辅助线大全(很详细哦)

初中几何辅助线大全(很详细哦)

初中几何辅助线大全(很详细哦)初中几何辅助线―克胜秘籍等腰三角形1.作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2.作一腰上的高;3.将底边的一端作为底边的垂直线交叉,并与另一条腰部的延长线相交,形成直角三角形。

梯形1.垂直于平行边2.垂直于下底,将上底延伸为一条平行于两条斜边的腰部3的平行线4使两条垂直于底部的垂直线5延伸两条斜边,形成一个三角形菱形1.连接两对角2.做高平行四边形1.垂直于平行边2.按对角线将平行四边形分成两个三角形,高度为3-注意形状内外的矩形1.对角线2.作垂线很简单。

无论是哪一个主题,第一个都应该考虑主题的要求,例如Ab= AC+BD,这样的方法是找到另一个与AB长度相同的线段的方法,然后证明A+BD=另一个AB。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形的中点连接成一条中线。

三角形中有中线、延长中线和其他中线。

解几何题时如何画辅助线?① 在中点处看到中线,并将中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

② 在证明比例线段时,通常使用平行线。

作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。

③ 对于梯形问题,添加辅助线的常用方法有:1。

穿过上底的两个端点用作下底的垂直线;2.穿过上底的一个端点用作一条腰部的平行线;3.穿过上底部的一个端点用作对角线的平行线;4.穿过一根腰部的中点用作另一根腰部的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形的平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

mopneAAA初中几何辅助线大全(很详细哦)

mopneAAA初中几何辅助线大全(很详细哦)

初中几何辅助线—克胜秘籍等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。

无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。

还有一些关于平方的考虑勾股,A 字形等。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

解几何题时如何画辅助线①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

②在比例线段证明中,常作平行线。

作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。

③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

初中数学常用辅助线大全

初中数学常用辅助线大全

初中数学常用辅助线大全初中数学中,辅助线是解决几何问题的重要工具。

通过添加适当的辅助线,可以转化问题,使其更容易解决。

以下是初中数学中常用的辅助线做法:1. 中点连接线:如果一条线段被另一条线段平分,则可以作出中点连接线。

中点连接线将原图形分为面积相等、形状相同的两部分。

2. 平行线:通过作平行线,可以将复杂的几何图形转化为简单的、易于处理的图形。

平行线有助于证明角度相等、线段相等和全等三角形。

3. 延长线:在需要证明某一直线或线段等于另一条直线或线段时,可以通过延长线的方式将问题简化。

4. 垂线:在证明角相等、三角形全等或线段长度等问题时,经常需要作垂线。

垂足将线段分为两段相等的部分,有助于证明和计算。

5. 角平分线:角平分线将角分为两个相等的部分,有助于证明角度相等和线段长度相等。

6. 构造法:在某些情况下,需要通过构造新的图形来解决问题。

例如,构造一个与原图形相似的三角形或平行四边形。

7. 截长补短法:当需要证明某一直线或线段等于两条其他直线或线段的和时,可以通过截长或补短的方式来证明。

8. 辅助圆:在证明与圆相关的问题时,有时需要作辅助圆。

通过辅助圆,可以将问题转化为与圆相关的定理和性质。

除了以上常用方法外,还有一些特殊图形的辅助线做法。

例如,在等腰三角形中,可以通过作底边上的高或中线来证明性质;在直角三角形中,可以通过作斜边上的中线来证明性质。

为了更好地掌握辅助线的做法,学生需要多做练习题,积累经验并熟悉各种题型。

同时,要注意总结和归纳,发现不同问题之间的联系和规律,以便能够更快地找到解决问题的方法。

另外,值得注意的是,辅助线并不是随意添加的,需要遵循一定的逻辑和推理。

添加的辅助线必须与原图形有清晰的关系,不能凭空创造。

同时,要注意证明过程中每一步的逻辑严密性,确保证明过程是正确的。

综上所述,初中数学中的辅助线做法是解决几何问题的关键。

通过熟练掌握各种辅助线的做法,学生可以更好地解决复杂的几何问题,提高数学成绩。

(完整版)初中几何辅助线大全.docx

(完整版)初中几何辅助线大全.docx

初中数学辅助线的添加浅谈人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90 °;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2 按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1 )平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2 )等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3 )等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4 )直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5 )三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

初中几何辅助线大全

初中几何辅助线大全

初中几何辅助线秘籍等腰三角形1•作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2•作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2.做高平行四边形1. 垂直于平行边2. 作对角线一一把一个平行四边形分成两个三角形3. 做高一一形内形外都要注意矩形1. 对角线2.作垂线很简单。

无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB, 就好了。

还有一些关于平方的考虑勾股,A字形等。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

②在比例线段证明中,常作平行线。

作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。

③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

初中几何辅助线大全(潜心整理)

初中几何辅助线大全(潜心整理)

初中几何辅助线口诀三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线作辅助线的方法一、中点、中位线,延线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二、垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三、边边若相等,旋转做实验。

初中几何辅助线大全

初中几何辅助线大全

三角形中作辅助线的常用方法举例一、延长已知边构造三角形:分析:欲证 AD =BC,先证分别含有AD,BC 的三角形全等,有几种方案:△ADC 与△BCD,△AOD 与△BOC,△ABD 与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角;证明:分别延长DA,CB,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD 已知∴∠CAE =∠DBE =90° 垂直的定义 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE AAS∴ED =EC EB =EA 全等三角形对应边相等 ∴ED -EA =EC -EB 即:AD =BC;当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件;二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决; 三、有和角平分线垂直的线段时,通常把这条线段延长;ABCDE17-图O分析:要证BD =2CE,想到要构造线段2CE,同时CE 与∠ABC 的平分线垂直,想到要将其延长; 证明:分别延长BA,CE 交于点F; ∵BE ⊥CF 已知∴∠BEF =∠BEC =90° 垂直的定义在△BEF 与△BEC 中,∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BECASA ∴CE=FE=21CF 全等三角形对应边相等 ∵∠BAC=90° BE ⊥CF 已知∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC在△ABD 与△ACF 中∴△ABD ≌△ACF AAS ∴BD =CF 全等三角形对应边相等 ∴BD =2CE四、取线段中点构造全等三有形;分析:由AB =DC,∠A =∠D,想到如取AD 的中点N,连接NB,NC,再由SAS 公理有19-图DCBA E F12△ABN ≌△DCN,故BN =CN,∠ABN =∠DCN;下面只需证∠NBC =∠NCB,再取BC 的中点M,连接MN,则由SSS 公理有△NBM ≌△NCM,所以∠NBC =∠NCB;问题得证;证明:取AD,BC 的中点N 、M,连接NB,NM,NC;则AN=DN,BM=CM,在△ABN 和△DCN 中 ∵⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN ∴△ABN ≌△DCN SAS∴∠ABN =∠DCN NB =NC 全等三角形对应边、角相等在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM,SSS ∴∠NBC =∠NCB 全等三角形对应角相等∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB;巧求三角形中线段的比值例1. 如图1,在△ABC 中,BD :DC =1:3,AE :ED =2:3,求AF :FC;解:过点D 作DG 如图2,BC =CD,AF =FC,求EF :FD解:过点C 作CG如图3,BD :DC =1:3,AE :EB =2:3,求AF :FD;111-图DCBAM N解:过点B 作BG如图4,BD :DC =1:3,AF =FD,求EF :FC;解:过点D 作DG如图5,BD =DC,AE :ED =1:5,求AF :FB;2. 如图6,AD :DB =1:3,AE :EC =3:1,求BF :FC;答案:1、1:10; 2. 9:1二 由角平分线想到的辅助线图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等;对于有角平分线的辅助线的作法,一般有两种;①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形如作法是在一侧的长边上截取短边;通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形;至于选取哪种方法,要结合题目图形和已知条件;与角有关的辅助线一、截取构全等例1. 如图1-2,AB 21证:BD=2CE;分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形;图1-3ABCDE 图1-4A BC DE图2-1ABCD E F图2-2ABCDE 图2-3P AB CM ND F 图示3-1AB CDH E例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的内、外角平分线,过顶点B 作BFAD,交AD 的延长线于F,连结FC 并延长交AE 于M;求证:AM=ME;分析:由AD 、AE 是∠BAC 内外角平分线,可得EA ⊥AF,从而有BF 212121∠∠21图,△ABC 中,∠BAC=90°,AB=AC,AE 是过A 的一条直线,且B,C 在AE 的异侧, BD ⊥AE 于D,CE ⊥AE 于E;求证:BD=DE+CE四 由中点想到的辅助线三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;一、由中点应想到利用三角形的中位线例2.如图3,在四边形ABCD 中,AB=CD,E 、F 分别是BC 、AD 的中点,BA 、CD 的延长线分别交EF 的延长线G 、H;求证:∠BGE=∠CHE;证明:连结BD,并取BD 的中点为M,连结ME 、MF, ∵ME 是ΔBCD 的中位线, ∴MECD,∴∠MEF=∠CHE,∵MF 是ΔABD 的中位线, ∴MFAB,∴∠MFE=∠BGE,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE, 从而∠BGE=∠CHE;二、由中线应想到延长中线例3.图4,已知ΔABC 中,AB=5,AC=3,连BC 上的中线AD=2,求BC 的长; 解:延长AD 到E,使DE=AD,则AE=2AD=2×2=4; 在ΔACD 和ΔEBD 中,D AE C BD C BAMBD C AE D CB A图3-3DBEF N ACM图3-4nEBADCM FDCB AE D FCB A ∵AD=ED,∠ADC=∠EDB,CD=BD, ∴ΔACD≌ΔEBD ,∴AC=BE, 从而BE=AC=3;在ΔABE 中,因AE 2+BE 2=42+32=25=AB 2,故∠E=90°, ∴BD===,故BC=2BD=2;例4.如图5,已知ΔABC 中,AD 是∠BAC 的平分线,AD 又是BC 边上的中线;求证:ΔABC 是等腰三角形;证明:延长AD 到E,使DE=AD; 仿例3可证: ΔBED≌ΔCAD , 故EB=AC,∠E=∠2, 又∠1=∠2, ∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC 是等腰三角形;三、直角三角形斜边中线的性质例5.如图6,已知梯形ABCD 中,AB 2:如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.3:如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 平分∠BAE.中考应用例题:以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.1如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;DMCEA BB ECD AA BDC E FAD CBA2将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ0<θ<90后,如图②所示,1问中得到的两个结论是否发生改变并说明理由.二、截长补短1.如图,ABC ∆中,AB=2AC,AD 平分BAC ∠,且AD=BD,求证:CD ⊥AC 2:如图,AC ∥BD,EA,EB 分别平分∠CAB,∠DBA,CD 过点E,求证;AB =AC+BD 3:如图,已知在ABC 内,60BAC ∠=分别在BC,CA 上,并且AP,BQ 分别是BAC ∠,ABC ∠线;求证:BQ+AQ=AB+BP4:如图,在四边形ABCD 中,BC >BA,AD 平分ABC ∠,求证:0180=∠+∠C A5三、借助角平分线造全等1:如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O,求证:OE=OD2:06郑州市中考题如图,△ABC 中,AD 平分∠且平分BC,DE ⊥AB 于E,DF ⊥AC 于F. 1说明BE=CF AB=a ,AC=b ,求AE 、BE 的长.3.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形;请你参考这个作全等三角形的方法,解答下列问题:1如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ;请你判断并写出FE 与FD 之间的数量关系;E DGFCBAAFEDCBA2如图③,在△ABC 中,如果∠ACB 不是直角,而1中的其它条件不变,请问,你在1中所得结论是否仍然成立若成立,请证明;若不成立,请说明理由;四、旋转1:正方形ABCD 中,E 为BC 上的一点,F 为C D 上的一点,BE+DF=EF,求∠EAF 的度数.2:D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F;(1) 当MDN ∠绕点D 转动时,求证(2)若AB=2,求四边形DECF 的面积;3.如图,ABC ∆是边长为3的等边三角形,BDC∆是等腰三角形,且0120BDC ∠=,以D 为顶点做一个060使其两边分别交AB 于点M,交AC 于点N,连接MN,则AMN ∆4.已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,或它们的延长线于E F ,.当MBN ∠绕B 点旋转到AE CF =时如图1,易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系请写出你的猜想,不需证明.5.以AB 为一边作正方形ABCD,使P 、D 两点落在直线AB 的两侧.1,求AB 及PD 的长;2且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.第23题图OP AMN EB C D F ACEF BD图① 图② 图③图1 图2 图36.在等边ABC ∆的两边AB 、AC 所在直线上分别有两点M 、N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图2 图3I 如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时=LQ; II 如图2,点M 、N 边AB 、AC 上,且当DM ≠DN 时,猜想I 问的两个结论还成立吗写出你的猜想并加以证明;III 如图3,当M 、N 分别在边AB 、CA 的延长线上时, 若AN=x ,则Q= 用x 、L 表示.梯形中的辅助线1、平移一腰:例1. 如图所示,在直角梯形ABCD 中,∠A =90°,AB ∥DC,AD =15,AB =16,BC =17. 求CD 的长.解:过点D 作DE ∥BC 交AB 于点E. 又AB ∥CD,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得 AE 2=DE 2-AD 2,即AE 2=172-152=64. 所以AE =8.所以BE =AB -AE =16-8=8. 即CD =8.例2如图,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围; 解:过点B作B M)(2121CH BG BC GH EF --==512=⨯=BE ED BD DH ABDCEH A BCDABCDE6251252DH BC)(AD ABCD =⨯=⨯+=∴梯形S 25252522222100)25()25(AE CE AC ==+=+DCEACD ABD S S S ∆∆∆==DBEABCDS S ∆=梯形2222DH AC DH DE EH -=-=9121522=-=1612202222=-=-=DH BD BH )(15012)169(21212cm DH BE S DBE =⨯+⨯=⋅=∆如图所示,四边形ABCD 中,AD 不平行于BC,AC =BD,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.解:四边形ABCD 是等腰梯形.证明:延长AD 、BC 相交于点E,如图所示. ∵AC =BD,AD =BC,AB =BA, ∴△DAB ≌△CBA. ∴∠DAB =∠CBA.∴EA =EB.又AD =BC,∴DE =CE,∠EDC =∠ECD.而∠E +∠EAB +∠EBA =∠E +∠EDC +∠ECD =180°, ∴∠EDC =∠EAB,∴DC ∥AB. 又AD 不平行于BC,∴四边形ABCD 是等腰梯形.三、作对角线即通过作对角线,使梯形转化为三角形; 例9如图6,在直角梯形ABCD中,ADcmBE AE 33==2342)(cmAE BC AD S ABCD=⨯+=梯形21AD OE 21=)(21AD BC EF -=A BCD ABCDEABCDE FBG EF 21=AD BC CG BC BG -=-=)(21AD BC -=如图所示,已知等腰梯形ABCD 中,AD ∥BC,∠B =60°,AD =2,BC =8,则此等腰梯形的周长为A. 19B. 20C. 21D. 228. 如图所示,梯形ABCD 中,AD ∥BC,1若E 是AB 的中点,且AD +BC =CD,则DE 与CE 有何位置关系2E 是∠ADC 与∠BCD 的角平分线的交点,则DE 与CE 有何位置关系 A B DC E FAB CD EF MN.圆中作辅助线的常用方法:例题1:如图2,在圆O 中,B 为的中点,BD 为AB 的延长线,∠OAB=500,求∠CBD 的度数; 解:如图,连结OB 、OC 的圆O 的半径,已知∠OAB=500∵B 是弧AC 的中点∴弧AB=弧BC∴AB==BC又∵OA=OB=OC∴△AOB ≌△BOC 图2∴∠OBC=∠ABO=500∵∠ABO+∠OBC+∠CBD=1800∴∠CBD=1800 - 500- 500∴∠CBD=800答:∠CBD 的度数是800.例题2:如图3,在圆O 中,弦AB 、CD 相交于点P,求证:∠APD的度数=21弧AD+弧BC 的度数; 证明:连接AC,则∠DPA=∠C+∠A∴∠C 的度数=21弧AD 的度数 ∠A 的度数=21弧BC 的度数 ∴∠APD=21弧AD+弧BC 的度数; 图3 一、造直角三角形法1.构成Rt △,常连接半径例1. 过⊙O 内一点M ,最长弦AB = 26cm,最短弦CD = 10cm ,求AM 长;2.遇有直径,常作直径上的圆周角例2. AB 是⊙O 的直径,AC 切⊙O 于A,CB 交⊙O 于D,过D 作⊙O 的切线,交AC 于E.求证:CE = AE;3.遇有切线,常作过切点的半径例3 .割线AB 交⊙O 于C 、D,且AC=BD,AE 切⊙O 于E,BF 切⊙O 于F.求证:∠OAE = ∠OBF;4.遇有公切线,常构造Rt △斜边长为圆心距,一直角边为两半径的差,另一直角边为公切线长例4 .小 ⊙O 1与大⊙O 2外切于点A,外公切线BC 、DE 分别和⊙O 1、⊙O 2切于点B 、C和D 、E,并相交于P,∠P = 60°;求证:⊙O 1与⊙O 2的半径之比为1:3;5.正多边形相关计算常构造Rt △例5.⊙O 的半径为6,求其内接正方形ABCD 与内接正六边形AEFCGH 的公共部分的面积.二、欲用垂径定理常作弦的垂线段例6. AB 是⊙O 的直径,CD 是弦,AE ⊥CD 于E,BF ⊥CD 于F.1求证:EC = DF; 2若AE = 2,CD=BF=6,求⊙O 的面积;三、转换割线与弦相交的角,常构成圆的内接四边形例7. AB 是⊙O 直径,弦CD ⊥AB,M 是AC 上一点,AM 延长线交DC 延长线于F. 求证: ∠F = ∠ACM;四、切线的综合运用 1.已知过圆上的点,常_________________例8.如图, 已知:⊙O 1与⊙O 2外切于P,AC 是过P 点的割线交⊙O 1于A,交⊙O 2于C,过点O 1的直线AB ⊥BC 于B.求证: BC 与⊙O 2相切. 六、开放性题目 例17.已知:如图,以ABC △的边AB 为直径的O 交边AC 于点D ,且过点D 的切线DE 平分边BC .1BC 与O 是否相切请说明理由;2当ABC △满足什么条件时,以点O ,B,E ,D 明理由.第23题。

初中数学常见辅助线的做法

初中数学常见辅助线的做法

初中数学常见辅助线的做法一、中点模型的构造1.已知任意三角形一边上的中点,可以考虑:(1)倍长中线或类中线(与中点有关的线段)构造全等三角形.如图1、图2所示.(2)三角形中位线定理.2.已知直角三角形斜边中点,可以考虑构造斜边中线.3.已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一二4.有些题目的中点不直接给出,此时需要我们挖掘题目中的隐含中点,例如:直角三角形中斜边中点, 等腰三角形底边上的中点,当没有这些条件的时候,可以用辅助线添加.二、角平分线模型的构造与角平分线有关的常用辅助线作法,即角平分线的四大基本模型.已知。

是4MON平分线上一点,(1)若以_L 0M于点4 ,如图1,可以过户点作PB1ON于点&则与二以.可记为“图中有角平分线, 可向两边作垂线”.(2)若点4是射线0M上任意一点,如图2,可以在ON上截取(用=0/1 ,连接/7人构造△()*?三△ /%.可记为“图中有角平分线,可以将图对折看,对称以后关系现二⑶若翼妆舔踹嚼鼠3耳以黠部交0N于点从周造A4 0H基尊健三角形/是底边4加勺中点.可记为“角平分线加垂线,三线合一试试看二(4)若过P点作PQ//0N交0M于点0,如图4,可以构造△P0Q是等腰三角形,可记为“角平分线+平行线,等腰三角形必呈现二三、轴对称模型的构造下面给出几种常见考虑要用或作轴对称的基本图形.(1 )线段或角度存在2倍关系的,可考虑对称.(2)有互余、互补关系的图形,可考虑对称.(3)角度和或差存在特殊角度的,可考虑对称.(4)路径最短问题,基本上运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实现最短路径的求解.所以最短路径问题,需考虑轴对称.几何最值问题的儿种题型及解题作图方法如下表所示.四、圆中辅助线构造在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此, 灵活掌握作辅助线的一般规律和常见方法,对.提高学生分析问题和解决问题的能力是大有帮助的。

初中数学三角形辅助线大全(精简、全面)

初中数学三角形辅助线大全(精简、全面)

三角形作辅助线方法大全1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 的外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC2.有角平分线时常在角两边截取相等的线段,构造全等三角形.例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC在△BDE 和△NDE 中,DN = DB ∠1 = ∠2ED = ED ∴△BDE ≌△NDE∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM 、FM△BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180oFABC DE D C B A4321NF E DC B A∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDFDF = DF ∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)4. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 的中线 ∴BD = CD 在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD5.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段; 补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法.当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法: ①a >b ②a ±b = c ③a ±b = c ±d例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC证明:⑴截长法:在AB 上截取AN = AC ,连结PN在△APN 和△APC 中, AN = AC∠1 = ∠2AP = AP ∴△APN ≌△APC ∴PC = PN ∵△BPN 中有PB -PC <BNMABC D E F12345 12E DB AP 12N DCB A∴PB -PC <AB -AC⑵补短法:延长AC 至M ,使AM = AB ,连结PM 在△ABP 和△AMP 中 AB = AM ∠1 = ∠2 AP = AP∴△ABP ≌△AMP ∴PB = PM 又∵在△PCM 中有CM >PM -PC ∴AB -AC >PB -PC练习:1.已知,在△ABC 中,∠B = 60o ,AD 、CE 是△ABC 的角平分线,并且它们交于点O求证:AC = AE +CD2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4. 求证:BC = AB +CD6.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。

初中几何辅助线大全很详细哦

初中几何辅助线大全很详细哦

初中几何辅助线—克胜秘籍等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。

无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。

还有一些关于平方的考虑勾股,A字形等。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

②在比例线段证明中,常作平行线。

作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。

③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学:辅助线典型用法汇集,这一篇超全!
三角形中常见辅助线的添加
1. 与角平分线有关的(1)可向两边作垂线。

(2)可作平行线,构造等腰三角形
(3)在角的两边截取相等的线段,构造全等三角形
2. 与线段长度相关的(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可
(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可
(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

(4)遇到中点,考虑中位线或等腰等边中的三线合一。

3. 与等腰等边三角形相关的(1)考虑三线合一
(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60°
四边形中常见辅助线的添加
特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯
形。

在解决一些和四边形有关的问题时往往需要添加辅助线。

下面介绍一些辅助线的添加方法。

1. 和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。

(1)利用一组对边平行且相等构造平行四边形
(2)利用两组对边平行构造平行四边形
(3)利用对角线互相平分构造平行四边形
2. 与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题。

(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少。

3. 和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.
(1)作菱形的高
(2)连结菱形的对角线
4. 与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形。

有关正方形的试题较多,解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线。

5. 与梯形有关的辅助线的作法和梯形有关的辅助线的作法
是较多的.主要涉及以下几种类型:
(1)作一腰的平行线构造平行四边形和特殊三角形
(2)作梯形的高,构造矩形和直角三角形
(3)作一对角线的平行线,构造直角三角形和平行四边形(4)延长两腰构成三角形
(5)作两腰的平行线等
圆中常见辅助线的添加
1. 遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

作用:
(1)利用垂径定理。

(2)利用圆心角及其所对的弧、弦和弦心距之间的关系。

(3)利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。

2. 遇到有直径时,常常添加(画)直径所对的圆周角作用:利用圆周角的性质得到直角或直角三角形。

3. 遇到90度的圆周角时,常常连结两条弦没有公共点的另一端点作用:利用圆周角的性质,可得到直径。

4. 遇到弦时,常常连结圆心和弦的两个端点,构成等腰三
角形,还可连结圆周上一点和弦的两个端点作用:
(1)可得等腰三角形
(2)据圆周角的性质可得相等的圆周角
5. 遇到有切线时,常常添加过切点的半径(连结圆心和切点)作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形
常常添加连结圆上一点和切点
作用:可构成弦切角,从而利用弦切角定理。

6. 遇到证明某一直线是圆的切线时(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段。

作用:若OA=r,则l为切线
(2)若直线过圆上的某一点,则连结这点和圆心(即作半径)
作用:只需证OA⊥l,则l为切线
(3)有遇到圆上或圆外一点作圆的切线
7. 遇到两相交切线时(切线长)常常连结切点和圆心、连结圆心和圆外的一点、连结两切点
作用:据切线长及其它性质,可得到
(1)角、线段的等量关系
(2)垂直关系
(3)全等、相似三角形
8. 遇到三角形的内切圆时
连结内心到各三角形顶点,或过内心作三角形各边的垂线段作用:利用内心的性质,可得
(1)内心到三角形三个顶点的连线是三角形的角平分线
(2)内心到三角形三条边的距离相等
9. 遇到三角形的外接圆时,连结外心和各顶点作用:外心到三角形各顶点的距离相等
10. 遇到两圆外离时(解决有关两圆的外、内公切线的问题)常常作出过切点的半径、连心线、平移公切线,或平移连心线作用:
(1)利用切线的性质;
(2)利用解直角三角形的有关知识
11. 遇到两圆相交时常常作公共弦、两圆连心线、连结交点和圆心等作用:
(1)利用连心线的性质、解直角三角形有关知识
(2)利用圆内接四边形的性质
(3)利用两圆公共的圆周的性质
(4)垂径定理
12.遇到两圆相切时常常作连心线、公切线
作用:
(1)利用连心线性质
(2)切线性质等
13. 遇到三个圆两两外切时(1)常常作每两个圆的连心线
(2)作用:可利用连心线性质
14. 遇到四边形对角互补或两个三角形同底并在底的同向且有相等“顶角”时常常添加辅助圆作用:以便利用圆的性质
15. 辅助线记忆歌诀人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线;线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘;全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办;四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;特殊角、特殊边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;切割线,连结弦,两圆三圆连心线;。

相关文档
最新文档