洪帆《离散数学基础》(第三版)课后习题答案

合集下载

离散数学课后习题答案(第三章)

离散数学课后习题答案(第三章)
a)(A×A)-R1;
b)R1-R2;
c)R12;
d) r(R1-R2)(即R1-R2的自反闭包)。
解a)(A×A)-R1不是A上等价关系。例如:
A={a,b},R1={<a,a>,<b,b>}
A×A={<a,a>,<a,b>,<b,a>,<b,b>}
(A×A)-R1={<a,b>,<b,a>}
所以(A×A)-R1不是A上等价关系。
c)若R1是A上等价关系,则
<a,a>∈R1<a,a>∈R1○R1
所以R12是A上自反的。
若<a,b>∈R12则存在c,使得<a, c>∈R1∧<c,b>∈R1。因R1对称,故有
<b, c>∈R1∧<c,a>∈R1<b, a>∈R12
即R12是对称的。
若<a,b>∈R12∧<b, c>∈R12,则有
若c<0,则a<0u<0au>0
所以(a+bi)R(u+vi),即R在C*上是传递的。
关系R的等价类,就是复数平面上第一、四象限上的点,或第二、三象限上的点,因为在这两种情况下,任意两个点(a,b),(c,d),其横坐标乘积ac>0。
3-10.9设Π和Π是非空集合A上的划分,并设R和R分别为由Π和Π诱导的等价关系,那么Π细分Π的充要条件是RR。
证明:若Π细分Π。由假设aRb,则在Π中有某个块S,使得a,b∈S,因Π细分Π,故在Π中,必有某个块S,使SS,即a,b∈S,于是有aRb,即RR。
反之,若RR,令S为H的一个分块,且a∈S,则S=[a]R={x|xRa}
但对每一个x,若xRa,因RR,故xRa,因此{x|xRa}{x|xRa}即[a]R[a]R
<<x,y>,<u,v>>∈R∧<<u,v>,<w,s>>∈R

离散数学习题答案如下

离散数学习题答案如下

离散数学习题答案如下离散数学是一门研究离散结构和离散现象的数学学科。

它与连续数学相对应,强调的是离散的、不连续的数学对象和现象。

离散数学的研究对象包括集合、关系、函数、图论等。

在离散数学的学习过程中,习题是不可或缺的一部分,通过解答习题可以加深对知识的理解和掌握。

下面是一些离散数学习题的答案,希望对大家的学习有所帮助。

1. 集合论习题题目:给定集合A={1,2,3,4,5}和集合B={3,4,5,6,7},求A与B的并集、交集和差集。

答案:A与B的并集为{1,2,3,4,5,6,7},交集为{3,4,5},A与B的差集为{1,2}。

2. 关系与函数习题题目:给定关系R={(1,2),(2,3),(3,4),(4,5)},判断该关系是否为自反、对称、传递关系。

答案:该关系不是自反关系,因为元素1没有与自身相关联;该关系不是对称关系,因为(1,2)属于R,但(2,1)不属于R;该关系是传递关系,因为对于任意的(a,b)和(b,c),若(a,b)和(b,c)均属于R,则(a,c)也属于R。

3. 图论习题题目:给定无向图G,其邻接矩阵为:0 1 1 01 0 1 11 1 0 10 1 1 0求图G的度数序列和邻接矩阵的平方。

答案:图G的度数序列为(2,3,3,2),即顶点1的度数为2,顶点2的度数为3,顶点3的度数为3,顶点4的度数为2;邻接矩阵的平方为:2 23 22 3 3 33 34 32 3 3 24. 组合数学习题题目:有5个红球和3个蓝球,从中选取3个球,求选取的球中至少有一个红球的概率。

答案:选取的球中至少有一个红球等价于选取的球中没有红球的概率的补集。

选取的球中没有红球的情况只有选取3个蓝球,所以概率为C(3,3)/C(8,3)=1/56。

因此,选取的球中至少有一个红球的概率为1-1/56=55/56。

以上是一些离散数学习题的答案,通过解答这些习题可以加深对离散数学的理解和掌握。

离散数学作为一门重要的数学学科,不仅在理论研究中有广泛应用,也在计算机科学、信息科学等领域中发挥着重要作用。

离散数学课后习题答案(最新)

离散数学课后习题答案(最新)

习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5)P:他今天乘火车去了北京Q:他随旅行团去了九寨沟PQ(7)P:不识庐山真面目Q:身在此山中Q→P,或~P→~Q(9)P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3))()()()()()(R P Q P R P Q P R Q P R Q P →∨→⇔∨⌝∨∨⌝⇔∨∨⌝⇔∨→(4)()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右2、不, 不, 能习题 1.41(3) (())~((~))(~)()~(~(~))(~~)(~)P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、主合取范式)()()()()()()()()()()()()()())(())(()()(())()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∧∧∨⌝∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∨⌝∧∧∨∨⌝∧⌝∧∨∨⌝∧∨⌝∧⌝=∧∨⌝∧∨⌝=∨⌝∧∨⌝=→∧→ ————主析取范式(2) ()()(~)(~)(~(~))(~(~))(~~)(~)(~~)P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨ 2、()~()(~)(~)(~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价3、解:根据给定的条件有下述命题公式:(A →(C ∇D ))∧~(B ∧C )∧~(C ∧D )⇔(~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D ∧~C )) ∧(~C ∨~D )⇔(~A ∧~B ∧~C )∨(C ∧~D ∧~B ∧~C )∨(~C ∧D ∧~B ∧~C )∨ (~A ∧~C ∧~C )∨(~C ∧D ∧~C ∧~C )∨(~A ∧~B ∧~D )∨(C ∧~D ∧~B ∧~D )∨(~C ∧D ∧~B ∧~D )∨(~A ∧~C ∧~D )∨ (~C ∧D ∧~C ∧~D )(由题意和矛盾律)⇔(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D )∨(C ∧~D ∧~B )⇔(~C ∧D ∧~B ∧A )∨ (~C ∧D ∧~B ∧~A )∨ (~A ∧~C ∧B )∨ (~A ∧~C ∧~B )∨ (~C ∧D ∧A )∨ (~C ∧D ∧~A )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~A ∧~C ∧B ∧~D )∨(~A ∧~C ∧~B ∧D )∨ (~A ∧~C ∧~B ∧~D )∨(~C ∧D ∧A ∧B )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B )∨ (~C ∧D ∧~A ∧~B )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A ) ⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B ) ∨(C ∧~D ∧~B ∧A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨(C ∧~D ∧~B ∧A ) 三种方案:A 和D 、 B 和D 、 A 和C习题 1.51、 (1)需证()(())P Q P P Q →→→∧为永真式()(())~(~)(~())~~(~)(()(~))~(~)(~)()P Q P P Q P Q P P Q P P P Q P Q TP Q P Q T P Q P P Q →→→∧=∨∨∨∧∨=∨∨∧∨=∨∨∨=∴→⇒→∧(3)需证S R P P →∧⌝∧为永真式SR P P T S F S R F S R P P ⇒∧⌝∧∴⇔→⇔→∧⇔→∧⌝∧3A B A B ⇒∴→ 、为永真式。

(完整版)洪帆《离散数学基础》(第三版)课后习题答案

(完整版)洪帆《离散数学基础》(第三版)课后习题答案

第1章 集合1、列举下列集合的元素 (1) 小于20的素数的集合 (2) 小于5的非负整数的集合 (3) 2{|,10240515}i i I i i i ∈--<≤≤且 答:(1) {1,3,5,7,11,13,17,19}(2) {0,1,2,3,4} (3) {5,6,7,8,9,10,11}2、用描述法表示下列集合 (1) 12345{,,,,}a a a a a 答:{|,15}i a i I i ∈≤≤ (2) {2,4,8,}L 答:{2|}i i N ∈ (3) {0,2,4,100}L答:{2|,050}i i Z i ∈≤≤3、下面哪些式子是错误的? (1) {}{{}}a a ∈ 答:正确 (2) {}{{}}a a ⊆ 答:错误 (3) {}{{},}a a a ∈ 答:正确 (4) {}{{},}a a a ⊆ 答:正确4、已给{2,,{3},4}S a =和{{},3,4,1}R a =,指出下面哪些论断是正确的?哪些是错误的? (1) {}a S ∈ 错误(2) {}a R ∈ 正确 (3) {,4,{3}}a S ⊆ 正确 (4) {{},1,3,4}a R ⊆ 正确 (5)R S = 错误 (6) {}a S ⊆ 正确 (7) {}a R ⊆错误 (8) R φ⊆正确 (9) {{}}a R φ⊆⊆ 正确 (10) {}S φ⊆错误 (11) R φ∈错误 (12) {{3},4}φ⊆正确5、 列举出集合,,A B C 的例子,使其满足A B ∈,B C ∈且A C ∉答:{}A a =,{{}}B a =,显然A B ∈,{{{}}}C a =,显然B C ∈,但是A C ∉。

6、 给出下列集合的幂集 (1) {,{}}a b答:幂集{,{},{{}},{,{}}a b a b φ (2) {,,{}}a a φ答:幂集{,{},{},{{}},{,},{,{}},{,{}},{,,{}}}a a a a a a a a φφφφφ 7、设{}A a =,给出A 和2A 的幂集答:2{,{}}A a φ= 22{,{{}},{{}},{,{}}}Aa a φφφ=8、 设128{,,,}A a a a =L 由17B 和31B 所表示的A 的子集各是什么?应如何表示子集2,67{,}a a a 和13{,}a a 答:170001000148{,}B B a a ==310001111145678{,,,,}B B a a a a a ==2,670100011070{,}a a a B B ==,1310100000160{,}a a B B ==9、 设{1,2,3,4,5}U =,{1,4}A =,{1,2,5}B =,{2,4}C =,确定集合: (1) A B '⋂ (2) ()A B C '⋂⋃ (3) ()A B C ⋃⋂ (4)()()A B A C ⋃⋂⋃ (5) ()A B '⋂ (6) A B ''⋃ (7) ()B C '⋃ (8)B C ''⋂ (9) 22A C - (10)22A C ⋂ 答:(1) {3,4}B '=,{4}A B '⋂=(2) {1}A B ⋂=,{1,3,5}C '=,(){1,3,5}A B C '⋂⋃= (3) {2}B C ⋂=,(){1,2,4}A B C ⋃⋂=(4) {1,2,4,5}A B ⋃=,{1,2,4}A C ⋃=,()(){1,2,4}A B A C ⋃⋂⋃= (5) (){2,3,4,5}A B '⋂= (6) {2,3,5}A '=,{2,3,4,5}A B ''⋃= (7) {1,2,4,5}B C ⋃=,(){3}B C '⋃= (8) {3,4}B '=,{1,3,5}C '=,{3}B C ''⋂=(9) 2{,{1},{4},{1,4}}A φ=,2{,{2},{4}{24}}C φ=,,,22{{1},{1,4}}A C -= (10) 22{,{4}}A C φ⋂=10、 给定自然数集N 的下列子集:{1,2,7,8}A =,2{|50}B i i =<,{|330}C i i i =≤≤可被整数,0{|2,,06}k D i i k Z k ==∈≤≤求下列集合: (1) (())A B C D ⋃⋃⋃ 答:{1,2,3,4,5,6,7}B =,{0,3,6,9,12,15,18,21,24,27,30}C =,{1,2,4,8,16,32,64}D =(()){0,1,2,3,4,5,6,7,8,9,12,15,16,18,21,24,27,30,32,64}A B C D ⋃⋃⋃= (2) (())A B C D φ⋂⋂⋂=(3) ()B A C -⋃解:{0,1,2,3,6,7,8,9,12,15,18,21,24,27,30}A C ⋃=,(){4,5}B A C -⋃= (4) ()A B D '⋂⋃解:{3,4,5,6}A B B A '⋂=-=,(){1,2,3,4,5,6,8,16,32,64}A B D '⋂⋃=11、 给定自然数集N 的下列子集{|12}A n n =<,{|8}B n n =≤,{|2,}C n n k k N ==∈,{|3,}D n n k k N ==∈ {|21,}E n n k k N ==-∈将下列集合表示为由,,,,A B C D E 产生的集合:(1) {2,4,6,8} (2){3,6,9} (3){10} (4){|369}n n n n ==≥或或 (5) {|109}n n n n n ≤>是偶数且或是奇数且 (6) {|6}n n 是的倍数答:{1,2,3,4,5,6,7,8,9,10,11}A =,{1,2,3,4,5,6,7,8}B ={2,4,6,8,}C =L ,{3,6,9,12,}D =L ,{1,3,5,7,}E =L {2,4,6,8}B C =⋂ {3,6,9}=A D ⋂ {10}=(())A B D E ---(4){|369}n n n n ==≥=或或{3}{6}{9,10,11,12,}⋃⋃L{3,6,9,10,11,12,}()A D B '==⋂⋃L(5) {2,4,6,8,10,11,13,15,}(()())(())A E E B A D B =-⋃--⋂-L (6) {|6}{6,12,18,24,30}n n ==L 是的倍数C D ⋂12、 判断以下哪些论断是正确的,哪些论断是错误的,并说明理由。

离散数学课后习题答案(第三章)(doc)

离散数学课后习题答案(第三章)(doc)
R={<a,b>,<b,a>,<b,c>,<c,d>}
a) 用矩阵运算和作图方法求出 R 的自反、对称、传递闭包; b) 用 Warshall 算法,求出 R 的传递闭包。
解 a) 0 1 00
MR= 1 0 1 0 0 0 01
0 0 00
R 的关系图如图所示。
a
b
d
c
MR+MIA=
0 1 00 1 0 10
反之,若 S∩ScIX,设<x,y>∈S 且 <y,x>∈S,则 <x,y>∈S∧<x,y>∈Sc <x,y>∈S∩Sc <x,y>∈IX 故 x=y,即 S 是反对称的。
3-7.3 设 S 为 X 上的关系,证明若 S 是自反和传递的,则 S○S=S,其逆为真 吗?
证明 若 S 是 X 上传递关系,由习题 3-7.2a)可知(S○S)S, 令<x,y>∈S,根据自反性,必有< x,x> ∈S, 因此有< x,y >∈S○S, 即 SS○S。得到 S=S○S.
自反的; b)若 R1 和 R2 是反自反的,则 R1○R2 也
是反自反的; c)若 R1 和 R2 是对称的,则 R1○R2 也是
对称的; d)若 R1 和 R2 是传递的,则 R1○R2 也是
传递的。
证明 a)对任意 a∈A,设 R1 和 R2 是自 反的,则<a,a>∈R1,<a,a>∈R2 所以,<a,a>∈R1○R2,即 R1○R2 也是 自反的。
解:L= {<1,2>,<1,3>,<1,6>,<2,3>,<2,6>, <3,6>,<1,1>,<2,2>,<3,3>,<6,6>} D={<1,2>,<1,3>,<1,6>, <2,6>,<3,6>,<1, 1>,<2,2>,<3,3>,<6,6>} L∩D= {<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>, <2,2>,<3,3>,<6,6>}

离散数学及其应用第三版第二章计数问题课后答案

离散数学及其应用第三版第二章计数问题课后答案

离散数学及其应用第三版第二章计数问题课后答案1、从3点到6点,分针旋转了多少度?[单选题] *90°960°-1080°(正确答案)-90°2、由数字1、2、3、4、5可以组成多少个不允许有重复数字的三位数?()[单选题]*A、125B、126C、60(正确答案)D、1203、已知5m-2n-3=0,则2??÷22?的值为( ) [单选题] *A. 2B. 0C. 4D. 8(正确答案)4、7.已知点A(-2,y1),B(3,y2)在一次函数y=-x+b的图象上,则( ) [单选题]* A.y1 > y2(正确答案)B.y1 < y2C.y1 ≤y2D.y1 ≥y25、若3x+4y-5=0,则8?·16?的值是( ) [单选题] *A. 64B. 8C. 16D. 32(正确答案)6、16.若过多边形的每一个顶点只有6条对角线,则这个多边形是()[单选题] * A.六边形B.八边形C.九边形(正确答案)D.十边形7、计算-(a-b)3(b-a)2的结果为( ) [单选题] *A. -(b-a)?B. -(b+a)?C. (a-b)?D. (b-a)?(正确答案)8、函数式?的化简结果是()[单选题] *A.sinα-cosαB.±(sinα-cosα)(正确答案)C.sinα·cosαD.cosα-sinα9、8.一个面积为120的矩形苗圃,它的长比宽多2米,苗圃长是()[单选题] *A 10B 12(正确答案)C 13D 1410、函数y=kx(k是不为0的常数)是()。

[单选题] *正比例函数(正确答案)一次函数反比例函数二次函数函数11、4、已知直角三角形的直角边边长分别是方程x2-14x+48=0的两个根,则此三角形的第三边是()[单选题] *A、6B、10(正确答案)C、8D、212、4.已知第二象限的点P(-4,1),那么点P到x轴的距离为( ) [单选题] *A.1(正确答案)B.4C.-3D.313、27.下列各函数中,奇函数的是()[单选题] *A. y=x^(-4)B. y=x^(-3)(正确答案)C .y=x^4D. y=x^(2/3)14、-120°用弧度制表示为()[单选题] *-2π/3(正确答案)2π/3-π/3-2π/515、函数y= 的最小正周期是()[单选题] *A、B、(正确答案)C、2D、416、下列说法中,正确的是()[单选题] *A、第一象限角是锐角B、第一象限角是锐角(正确答案)C、小于90°的角是锐角D、第一象限的角不可能是钝角17、1.(必修1P5B1改编)若集合P={x∈N|x≤2 022},a=45,则( ) [单选题] * A.a∈PB.{a}∈PC.{a}?PD.a?P(正确答案)18、9.已知关于x,y的二元一次方程组的解满足x+y=8,则k的值为( ) [单选题] * A.4B.5C.-6D.-8(正确答案)19、8.如果直角三角形的三条边为2,4,a,那么a的取值可以有()[单选题] *A. 0个B. 1个C. 2个D. 3个(正确答案)20、7.把点平移到点,平移方式正确的为()[单选题] *A.先向左平移3个单位长度,再向下平移2个单位长度B.先向左平移3个单位长度,再向上平移2个单位长度C.先向右平移3个单位长度,再向下平移2个单位长度D.先向右平移3个单位长度,再向上平移2个单位长度(正确答案)21、35、下列判断错误的是()[单选题] *A在第三象限,那么点A关于原点O对称的点在第一象限.B在第二象限,那么它关于直线y=0对称的点在第一象限.(正确答案)C在第四象限,那么它关于x轴对称的点在第一象限.D在第一象限,那么它关于直线x=0的对称点在第二象限.22、22、在平面直角坐标系中,已知点P,在轴上有点Q,它到点P的距离等于3,那么点Q的坐标是()[单选题] *(0,3)(0,5)(0,-1)(0,5)或(0,-1) (正确答案)23、5.下列说法中正确的是()[单选题] *A.没有最大的正数,但有最大的负数B.没有最小的负数,但有最小的正数C.没有最小的有理数,也没有最大的有理数(正确答案)D.有最小的自然数,也有最小的整数24、4.小亮用天平称得牛奶和玻璃杯的总质量为0.3546㎏,用四舍五入法将0.3546精确到0.01的近似值为()[单选题] *A.0.35(正确答案)B.0.36C.0.354D.0.35525、下列表示正确的是()[单选题] *A、0={0}B、0={1}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ26、22.如图棋盘上有黑、白两色棋子若干,找出所有使三颗颜色相同的棋在同一直线上的直线,满足这种条件的直线共有()[单选题] *A.5条(正确答案)B.4条C.3条D.2条27、已知2x=8,2y=4,则2x+y=()[单选题] *A 、32(正确答案)B 、33C、16D、428、28.已知点A(2,3)、B(1,5),直线AB的斜率是()[单选题] *A.2B.-2C.1/2D.-1/2(正确答案)29、x3??(m为正整数)可写成( ) [单选题] *A. x3+x?B. x3-x?C. x3·x?(正确答案)D. x3?30、已知x-y=3,x2-y2=12,那么x+y的值是( ??) [单选题] *A. 3B. 4(正确答案)C. 6D. 12。

最新洪帆《离散数学基础》(第三版)课后习题答案

最新洪帆《离散数学基础》(第三版)课后习题答案

第1章 集合1、列举下列集合的元素 (1) 小于20的素数的集合 (2) 小于5的非负整数的集合 (3) 2{|,10240515}i i I i i i ∈--<≤≤且 答:(1) {1,3,5,7,11,13,17,19}(2) {0,1,2,3,4} (3) {5,6,7,8,9,10,11}2、用描述法表示下列集合 (1) 12345{,,,,}a a a a a 答:{|,15}i a i I i ∈≤≤ (2) {2,4,8,} 答:{2|}i i N ∈ (3) {0,2,4,100}答:{2|,050}i i Z i ∈≤≤3、下面哪些式子是错误的? (1) {}{{}}a a ∈ 答:正确 (2) {}{{}}a a ⊆ 答:错误 (3) {}{{},}a a a ∈ 答:正确 (4) {}{{},}a a a ⊆ 答:正确4、已给{2,,{3},4}S a =和{{},3,4,1}R a =,指出下面哪些论断是正确的?哪些是错误的? (1) {}a S ∈ 错误(2) {}a R ∈ 正确 (3) {,4,{3}}a S ⊆ 正确 (4) {{},1,3,4}a R ⊆ 正确 (5)R S = 错误 (6) {}a S ⊆ 正确 (7) {}a R ⊆错误 (8) R φ⊆正确 (9) {{}}a R φ⊆⊆ 正确 (10) {}S φ⊆错误 (11) R φ∈错误 (12) {{3},4}φ⊆正确5、 列举出集合,,A B C 的例子,使其满足A B ∈,B C ∈且A C ∉答:{}A a =,{{}}B a =,显然A B ∈,{{{}}}C a =,显然B C ∈,但是A C ∉。

6、 给出下列集合的幂集 (1) {,{}}a b答:幂集{,{},{{}},{,{}}a b a b φ (2) {,,{}}a a φ答:幂集{,{},{},{{}},{,},{,{}},{,{}},{,,{}}}a a a a a a a a φφφφφ 7、设{}A a =,给出A 和2A 的幂集答:2{,{}}A a φ= 22{,{{}},{{}},{,{}}}Aa a φφφ= 8、 设128{,,,}A a a a =由17B 和31B 所表示的A 的子集各是什么?应如何表示子集2,67{,}a a a 和13{,}a a 答:170001000148{,}B B a a ==310001111145678{,,,,}B B a a a a a ==2,670100011070{,}a a a B B ==,1310100000160{,}a a B B ==9、 设{1,2,3,4,5}U =,{1,4}A =,{1,2,5}B =,{2,4}C =,确定集合: (1) A B '⋂ (2) ()A B C '⋂⋃ (3) ()A B C ⋃⋂ (4)()()A B A C ⋃⋂⋃ (5) ()A B '⋂ (6) A B ''⋃ (7) ()B C '⋃ (8)B C ''⋂ (9) 22A C - (10)22A C ⋂ 答:(1) {3,4}B '=,{4}A B '⋂=(2) {1}A B ⋂=,{1,3,5}C '=,(){1,3,5}A B C '⋂⋃= (3) {2}B C ⋂=,(){1,2,4}A B C ⋃⋂=(4) {1,2,4,5}A B ⋃=,{1,2,4}A C ⋃=,()(){1,2,4}A B A C ⋃⋂⋃= (5) (){2,3,4,5}A B '⋂= (6) {2,3,5}A '=,{2,3,4,5}A B ''⋃= (7) {1,2,4,5}B C ⋃=,(){3}B C '⋃= (8) {3,4}B '=,{1,3,5}C '=,{3}B C ''⋂=(9) 2{,{1},{4},{1,4}}A φ=,2{,{2},{4}{24}}C φ=,,,22{{1},{1,4}}A C -= (10) 22{,{4}}A C φ⋂=10、 给定自然数集N 的下列子集:{1,2,7,8}A =,2{|50}B i i =<,{|330}C i i i =≤≤可被整数,0{|2,,06}k D i i k Z k ==∈≤≤求下列集合: (1) (())A B C D ⋃⋃⋃ 答:{1,2,3,4,5,6,7}B =,{0,3,6,9,12,15,18,21,C =,{1,2,4,8,16,32,64}D =(()){0,1,2,3,4,5,6,7,8,9,12,15,16,18,24,27,30,32,64}A B C D ⋃⋃⋃= (2) (())A B C D φ⋂⋂⋂=(3) ()B A C -⋃解:{0,1,2,3,6,7,8,9,12,15,18,21,24,27,30}A C ⋃=,(){4,5}B A C -⋃= (4) ()A B D '⋂⋃解:{3,4,5,6}A B B A '⋂=-=,(){1,2,3,4,5,6,8,16,32,64}A B D '⋂⋃=11、 给定自然数集N 的下列子集{|12}A n n =<,{|8}B n n =≤,{|2,}C n n k k N ==∈,{|3,}D n n k k N ==∈ {|21,}E n n k k N ==-∈将下列集合表示为由,,,,A B C D E 产生的集合:(1) {2,4,6,8} (2){3,6,9} (3){10} (4){|369}n n n n ==≥或或 (5) {|109}n n n n n ≤>是偶数且或是奇数且 (6) {|6}n n 是的倍数答:{1,2,3,4,5,6,7,8,9,10,11}A =,{1,2,3,4,5,6,7,8}B ={2,4,6,8,}C =,{3,6,9,12,}D =,{1,3,5,7,}E = {2,4,6,8}B C =⋂ {3,6,9}=A D ⋂ {10}=(())A B D E ---(4){|369}n n n n ==≥=或或{3}{6}{9,10,11,12,}⋃⋃{3,6,9,10,11,12,}()A D B '==⋂⋃(5) {2,4,6,8,10,11,13,15,}(()())(())A E E B A D B =-⋃--⋂- (6) {|6}{6,12,18,24,30}n n ==是的倍数C D ⋂12、 判断以下哪些论断是正确的,哪些论断是错误的,并说明理由。

离散数学课后习题答案

离散数学课后习题答案

离散数学课后习题答案1.3.1习题1.1解答1设S = {2,a,{3},4},R ={{a},3,4,1},指出下⾯的写法哪些是对的,哪些是错的?{a}∈S,{a}∈R,{a,4,{3}}?S,{{a},1,3,4}?R,R=S,{a}?S,{a}?R,φ?R,φ?{{a}}?R?E,{φ}?S,φ∈R,φ?{{3},4}。

解:{a}∈S ,{a}∈R ,{a,4,{3}} ? S ,{{a},1,3,4 } ? R ,R = S ,{a}?S ,{a}? R ,φ? R ,φ? {{a}} ? R ? E ,{φ} ? S ,φ∈R ,φ? {{3},4 }2写出下⾯集合的幂集合{a,{b}},{1,φ},{X,Y,Z}解:设A={a,{b}},则ρ(A)={ φ,{a},{{b}},{a,{b}}};设B={1,φ},则ρ(B)= { φ,{1},{φ},{1,φ}};设C={X,Y,Z},则ρ(C)= { φ,{X},{Y},{Z},{X,Y },{X,Z },{ Y,Z },{X,Y,Z}};3对任意集合A,B,证明:(1)A?B当且仅当ρ(A)?ρ(B);(2)ρ(A)?ρ(B)?ρ(A?B);(3)ρ(A)?ρ(B)=ρ(A?B);(4)ρ(A-B) ?(ρ(A)-ρ(B)) ?{φ}。

举例说明:ρ(A)∪ρ(B)≠ρ( A∪B)证明:(1)证明:必要性,任取x∈ρ(A),则x?A。

由于A?B,故x?B,从⽽x∈ρ(B),于是ρ(A)?ρ(B)。

充分性,任取x∈A,知{x}?A,于是有{x}∈ρ(A)。

由于ρ(A)?ρ(B),故{x}∈ρ(B),由此知x∈B,也就是A?B。

(2)证明:任取X∈ρ(A)∪ρ(B),则X∈ρ(A)或X∈ρ(B)∴X?A或X?B∴X?(A∪B)∴X∈ρ(A∪B)所以ρ(A)∪ρ(B) ?ρ( A∪B)(3)证明:先证ρ(A)∩ρ(B) ?ρ( A∩B)任取X∈ρ(A)∩ρ(B),则X∈ρ(A)且X∈ρ(B)∴X?A且X?B∴X? A∩B∴X∈ρ( A∩B)所以ρ(A)∩ρ(B) ?ρ( A∩B)再证ρ( A∩B) ?ρ(A)∩ρ(B)任取Y∈ρ(A∩B),则Y? A∩B∴Y?A且Y?B∴Y∈ρ(A)且Y∈ρ(B)∴Y∈ρ(A)∩ρ(B)所以ρ( A∩B) ?ρ(A)∩ρ(B)故ρ(A)∩ρ(B) = ρ( A∩B)得证。

《离散数学1-7习题解答

《离散数学1-7习题解答

p q r 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1
¬p ∧ ¬q ∨ p∧r 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1
2.4. 用等值演算法证明下面等值式: (1) p⇔ (p∧q) ∨ (p∧¬q) (3) ¬ (p↔q) ⇔ (p∨q) ∧¬ (p∧q) (4) (p∧¬q) ∨ (¬p∧q) ⇔ (p∨q) ∧¬ (p∧q) (1) (p∧q) ∨ (p∧¬q) ⇔ p ∧ (q¬∨q) ⇔ p ∧ 1 ⇔ p. (3) ¬ (p↔q)
4
(1)p→ (p∨q∨r) (2)(p→¬q) →¬q (3) ¬ (q→r) ∧r (4)(p→q) → (¬q→¬p) (5)(p∧r) ↔ ( ¬p∧¬q) (6)((p→q) ∧ (q→r)) → (p→r) (7)(p→q) ↔ (r↔s)
离散数学习题解 (1), (4), (6)为重言式. (3)为矛盾式. (2), (5), (7)为可满足式. 1.20. 1.21. 1.22. 1.23. 1.24. 1.25. 1.26. 1.27. 1.28. 1.29. 1.30. 1.31. 略 略 略 略 略 略 略 略 略 略 略 将下列 命题符号化, 并给出各命题的 真值:
5
(1)若 3+=4, 则地球是静止不动的. (2)若 3+2=4, 则地球是运动不止的. (3)若地球上没有树木, 则人类不能生存. (4)若地球上没有水, 则 3 是无理数. (1)p→q, 其中, p: 2+2=4, q: 地球静止不动, 真值为 0. (2)p→q, 其中, p: 2+2=4, q: 地球运动不止, 真值为 1. (3) ¬p→¬q, 其中, p: 地球上有树木, q: 人类能生存, 真值为 1. (4) ¬p→q, 其中, p: 地球上有水, q: 3 是无理数, 真值为 1.

[离散数学课后习题答案]离散数学课后习题答案(第一章)

[离散数学课后习题答案]离散数学课后习题答案(第一章)

[离散数学课后习题答案]离散数学课后习题答案(第一章)篇一: 离散数学课后习题答案1-1,1-2指出下列哪些语句是命题,那些不是命题,如果是命题,指出它的真值。

离散数学是计算机科学系的一门必修课。

是命题,真值为T。

b)计算机有空吗?不是命题。

c)明天我去看电影。

是命题,真值要根据具体情况确定。

d)请勿随地吐痰。

不是命题。

e)不存在最大的质数。

是命题,真值为T。

f)如果我掌握了英语,法语,那么学习其他欧洲语言就容易多了。

是命题,真值为T。

g)9+5≤12.是命题,真值为F。

h)X=3.不是命题。

i)我们要努力学习。

不是命题。

举例说明原子命题和复合命题。

原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

设P表示命题“天下雪。

”Q表示“我将去镇上。

”R表示命题“我有时间。

”以符号形式写出下列命题a)如果天不下雪和我有时间,那么我将去镇上。

b)我将去镇上,仅当我有时间时。

c)天不下雪。

d)天下雪,那么我不去镇上。

用汉语写出一些句子,对应下列每一个命题。

a)Q?Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q?:我将去参加舞会当且仅当我有时间和天不下雨。

→QQ→R ┓PP→┓Qb)R∧QR:我在看电视。

[)Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c)∧Q:一个数是奇数。

R:一个数不能被2除。

∧:一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

将下列命题符号化。

a)王强身体很好,成绩也很好。

设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)小李一边看书,一边听音乐。

设P:小李看书。

Q:小李听音乐。

P∧Qc)气候很好或很热。

设P:气候很好。

Q:气候很热。

P∨Qd)如果a和b是偶数,则a+b是偶数。

设P:a和b是偶数。

Q:a+b是偶数。

P→Qe)四边形ABCD是平行四边形,当且仅当它的对边平行。

设P:四边形ABCD是平行四边形。

Q:四边形ABCD的对边平行。

P?Qf)停机的原因在于语法错误或程序错误。

离散数学习题答案精选全文完整版

离散数学习题答案精选全文完整版

可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。

(2)5是无理数。

(3)3是素数或4是素数。

(4)x2+3<5,其中x是任意实数。

(5)你去图书馆吗?(6)2与3都是偶数。

(7)刘红与魏新是同学。

(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。

(11)只有6是偶数,3才能是2的倍数。

(12)8是偶数的充分必要条件是8能被3整除。

(13)2025年元旦下大雪。

1、2、3、6、7、10、11、12、13是命题。

在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。

2.将上题中是简单命题的命题符号化。

(1)p:中国有四大发明。

(2)q:5是无理数。

(7)r:刘红与魏新是同学。

(10)s:圆的面积等于半径的平方乘π。

(1)t:2025年元旦下大雪。

3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。

“5是有理数”的否定式是“5不是有理数”。

解:原命题可符号化为:p:5是有理数。

其否定式为:非p。

非p的真值为1。

4.将下列命题符号化,并指出真值。

(1)2与5都是素数。

(2)不但π是无理数,而且自然对数的底e也是无理数。

(3)虽然2是最小的素数,但2不是最小的自然数。

(4)3是偶素数。

(5)4既不是素数,也不是偶数。

a:2是素数。

b:5是素数。

c:π是无理数。

d:e是无理数。

f:2是最小的素数。

g:2是最小的自然数。

h:3是偶数。

i:3是素数。

j:4是素数。

k:4是偶数。

解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。

这五个复合命题的真值分别为1,1,1,0,0。

5.将下列命题符号化,并指出真值。

a:2是偶数。

b:3是偶数。

c:4是偶数。

离散数学基础(洪帆)第二章_关系

离散数学基础(洪帆)第二章_关系
定义 设A={a1,a2,…,an}, 是A上的关系,
则称有向图G为关系 的关系图。
令有向图G=(V,E), 其中顶点集V=A,边集E按如下规定: 有向边 (ai ,a j ) E (ai , a j )
例3 设集合A={1,2,3,4}, R={(1,1),(1,2),(1,3),(1,4),(2,3)} S={(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)} 都是 A上的二元关系。 画出关系R与S的关系图。 R和S的关系图分别如下图(1)和图(2)所示:
例3 设A={a,b,c,d},A上的关系: ={(a,a),(a,b),(b,d),(c,a),(d,c)} 4 试求复合关系 。
2.4 复合关系的关系矩阵和关系图
一、布尔运算 布尔运算只涉及数字0和1, 数字的加法和乘法按照以下方式进行: 0+0=0 0+1=1+0=1+1=1 1· 1=1 1· 0=0· 1=0· 0=0 如:(1· 1)+(0· 1· 1)+(1· 0· 0)+1+0=1
例2 设A={0,1}, B={2,3}, C={3,4}则: A×B×C={(0,2,3), (0,2,4),(0,3,3),(0,3,4) (1,2,3),(1,2,4),(1,3,3),(1,3,4)} (A×B)×C={((0,2),3),((0,2),4),((0,3),3),((0,3),4), ((1,2),3),((1,2),4),((1,3),3),((1,3),4)} A×(B×C)={(0,(2,3)),(0,(2,4)),(0,(3,3)),(0,(3,4)), (1,(2,3)),(1,(2,4)),(1,(3,3)),(1,(3,4))}.

(完整版)洪帆《离散数学基础》(第三版)课后习题答案

(完整版)洪帆《离散数学基础》(第三版)课后习题答案

(完整版)洪帆《离散数学基础》(第三版)课后习题答案第1章集合1、列举下列集合的元素 (1) 小于20的素数的集合 (2) 小于5的非负整数的集合(3) 2{|,10240515}i i I i i i ∈--<≤≤且答:(1) {1,3,5,7,11,13,17,19}(2) {0,1,2,3,4} (3) {5,6,7,8,9,10,11}2、用描述法表示下列集合 (1) 12345{,,,,}a a a a a 答:{|,15}i a i Ii ∈≤≤ (2) {2,4,8,}L 答:{2|}i i N ∈ (3) {0,2,4,100}L答:{2|,050}i i Z i ∈≤≤3、下面哪些式子是错误的?(1) {}{{}}a a ∈ 答:正确 (2) {}{{}}a a ? 答:错误(3) {}{{},}a a a ∈ 答:正确 (4) {}{{},}a a a ? 答:正确4、已给{2,,{3},4}S a =和{{},3,4,1}R a =,指出下面哪些论断是正确的?哪些是错误的?(1) {}a S ∈ 错误(2) {}a R ∈ 正确 (3) {,4,{3}}a S ? 正确 (4) {{},1,3,4}a R ? 正确 (5)R S = 错误 (6) {}a S ? 正确 (7) {}a R ?错误(8) R φ?正确(9) {{}}a R φ?? 正确(10) {}S φ?错误(11) R φ∈错误(12) {{3},4}φ?正确5、列举出集合,,A B C 的例子,使其满足A B ∈,B C ∈且A C ?答:{}A a =,{{}}B a =,显然A B ∈,{{{}}}C a =,显然B C ∈,但是A C ?。

6、给出下列集合的幂集 (1) {,{}}a b答:幂集{,{},{{}},{,{}}a b a b φ (2) {,,{}}a a φ答:幂集{,{},{},{{}},{,},{,{}},{,{}},{,,{}}}a a a a a a a a φφφφφ 7、设{}A a =,给出A 和2A 的幂集答:2{,{}}A a φ= 22{,{{}},{{}},{,{}}}Aa a φφφ=8、设128{,,,}A a a a =L 由17B 和31B 所表示的A 的子集各是什么?应如何表示子集2,67{,}a a a 和13{,}a a 答:170001000148{,}B B a a ==310001111145678{,,,,}B B a a a a a ==2,670100011070{,}a a a B B ==,1310100000160{,}a a B B ==9、设{1,2,3,4,5}U =,{1,4}A =,{1,2,5}B =,{2,4}C =,确定集合: (1) A B '? (2) ()A B C '?? (3) ()A B C ?? (4)()()A B A C (5) ()A B '? (6) A B ''? (7) ()B C '? (8)B C ''? (9) 22A C - (10)22A C ? 答:(1) {3,4}B '=,{4}A B '?=(2) {1}A B ?=,{1,3,5}C '=,(){1,3,5}A B C '??= (3) {2}B C ?=,(){1,2,4}A B C ??=(4) {1,2,4,5}A B ?=,{1,2,4}A C ?=,()(){1,2,4}A B A C = (5) (){2,3,4,5}A B '?= (6) {2,3,5}A '=,{2,3,4,5}A B ''?= (7) {1,2,4,5}BC ?=,(){3}B C '?= (8) {3,4}B '=,{1,3,5}C '=,{3}B C ''?=(9) 2{,{1},{4},{1,4}}A φ=,2{,{2},{4}{24}}C φ=,,,22{{1},{1,4}}A C -= (10) 22{,{4}}A C φ?=10、给定自然数集N 的下列子集:{1,2,7,8}A =,2{|50}B i i =<,{|330}C i i i =≤≤可被整数,0{|2,,06}k D i i k Z k ==∈≤≤求下列集合: (1) (())A B C D 答:{1,2,3,4,5,6,7}B =,{0,3,6,9,12,15,18,21,24,27,30}C =,{1,2,4,8,16,32,64}D =(()){0,1,2,3,4,5,6,7,8,9,12,15,16,18,21,24,27,30,32,64}A B CD = (2) (())A B C D φ=(3) ()B A C -?解:{0,1,2,3,6,7,8,9,12,15,18,21,24,27,30}A C ?=,(){4,5}B A C -?= (4) ()A B D '??解:{3,4,5,6}A B B A '?=-=,(){1,2,3,4,5,6,8,16,32,64}A B D '??=11、给定自然数集N 的下列子集{|12}A n n =<,{|8}B n n =≤,{|2,}C n n k k N ==∈,{|3,}D n n k k N ==∈ {|21,}E n n k k N ==-∈将下列集合表示为由,,,,A B C D E 产生的集合:(1) {2,4,6,8} (2){3,6,9} (3){10} (4){|369}n n n n ==≥或或(5) {|109}n n n n n ≤>是偶数且或是奇数且 (6) {|6}n n 是的倍数答:{1,2,3,4,5,6,7,8,9,10,11}A =,{1,2,3,4,5,6,7,8}B ={2,4,6,8,}C =L ,{3,6,9,12,}D =L ,{1,3,5,7,}E =L {2,4,6,8}B C =? {3,6,9}=A D ? {10}=(())A B D E ---(4){|369}n n n n ==≥=或或{3}{6}{9,10,11,12,}??L{3,6,9,10,11,12,}()A D B '==??L(5) {2,4,6,8,10,11,13,15,}(()())(())A E E B A D B =-?--?-L (6) {|6}{6,12,18,24,30}n n ==L 是的倍数C D ?12、判断以下哪些论断是正确的,哪些论断是错误的,并说明理由。

离散数学课后答案

离散数学课后答案

离散数学课后答案第一章离散数学基础题目1问题:证明集合A和集合B的笛卡尔积的基数等于集合A 和集合B的基数的乘积。

答案:设集合A的基数为|A|,集合B的基数为|B|。

我们要证明集合A和集合B的笛卡尔积的基数等于集合A和集合B的基数的乘积,即|(A x B)| = |A| * |B|。

首先,我们可以将集合A x B表示为{(a, b) | a∈A, b∈B}。

由于A和B是两个集合,集合A x B中的元素可以看作是将A 中每个元素与B中每个元素组成的有序对。

因此,集合A x B 中的元素个数等于A中元素的个数乘以B中元素的个数,即|(A x B)| = |A| * |B|。

题目2问题:对任意两个集合A和B,证明A∩(A∪B) = A。

答案:要证明A∩(A∪B) = A,首先我们需要理解集合的交和并的定义。

- 集合的交:集合A∩B表示同时属于集合A和集合B的元素组成的集合。

- 集合的并:集合A∪B表示属于集合A或集合B的元素组成的集合。

现在,我们开始证明。

首先,根据集合的并的定义,A∪B 表示属于集合A或集合B的元素组成的集合。

因此,任意属于集合A的元素也一定属于A∪B,即A⊆A∪B。

其次,根据集合的交的定义,A∩(A∪B)表示同时属于集合A和集合A∪B的元素组成的集合。

由于A⊆A∪B,所以A中的元素一定属于A∪B,因此A∩(A∪B) = A。

综上所述,对任意两个集合A和B,A∩(A∪B) = A成立。

第二章命题逻辑题目1问题:证明合取命题的真值表达式。

答案:合取命题的真值表达式表示命题P和命题Q同时为真时合取命题为真,否则为假。

假设命题P和命题Q的真值分别为真(T)或假(F),那么合取命题的真值可以通过以下真值表得出:P Q P∧QT T TT F FF T FF F F从上述真值表可以看出,只有P和Q都为真时,合取命题才为真。

如果其中一个或两个命题为假,则合取命题为假。

题目2问题:证明命题的等价关系。

(完整版)洪帆《离散数学基础》(第三版)课后习题答案

(完整版)洪帆《离散数学基础》(第三版)课后习题答案

第1章 集合1、列举下列集合的元素 (1) 小于20的素数的集合 (2) 小于5的非负整数的集合 (3) 2{|,10240515}i i I i i i ∈--<≤≤且 答:(1) {1,3,5,7,11,13,17,19}(2) {0,1,2,3,4} (3) {5,6,7,8,9,10,11}2、用描述法表示下列集合 (1) 12345{,,,,}a a a a a 答:{|,15}i a i I i ∈≤≤ (2) {2,4,8,}L 答:{2|}i i N ∈ (3) {0,2,4,100}L答:{2|,050}i i Z i ∈≤≤3、下面哪些式子是错误的? (1) {}{{}}a a ∈ 答:正确 (2) {}{{}}a a ⊆ 答:错误 (3) {}{{},}a a a ∈ 答:正确 (4) {}{{},}a a a ⊆ 答:正确4、已给{2,,{3},4}S a =和{{},3,4,1}R a =,指出下面哪些论断是正确的?哪些是错误的? (1) {}a S ∈ 错误(2) {}a R ∈ 正确 (3) {,4,{3}}a S ⊆ 正确 (4) {{},1,3,4}a R ⊆ 正确 (5)R S = 错误 (6) {}a S ⊆ 正确 (7) {}a R ⊆错误 (8) R φ⊆正确 (9) {{}}a R φ⊆⊆ 正确 (10) {}S φ⊆错误 (11) R φ∈错误 (12) {{3},4}φ⊆正确5、 列举出集合,,A B C 的例子,使其满足A B ∈,B C ∈且A C ∉答:{}A a =,{{}}B a =,显然A B ∈,{{{}}}C a =,显然B C ∈,但是A C ∉。

6、 给出下列集合的幂集 (1) {,{}}a b答:幂集{,{},{{}},{,{}}a b a b φ (2) {,,{}}a a φ答:幂集{,{},{},{{}},{,},{,{}},{,{}},{,,{}}}a a a a a a a a φφφφφ 7、设{}A a =,给出A 和2A 的幂集答:2{,{}}A a φ= 22{,{{}},{{}},{,{}}}Aa a φφφ=8、 设128{,,,}A a a a =L 由17B 和31B 所表示的A 的子集各是什么?应如何表示子集2,67{,}a a a 和13{,}a a 答:170001000148{,}B B a a ==310001111145678{,,,,}B B a a a a a ==2,670100011070{,}a a a B B ==,1310100000160{,}a a B B ==9、 设{1,2,3,4,5}U =,{1,4}A =,{1,2,5}B =,{2,4}C =,确定集合: (1) A B '⋂ (2) ()A B C '⋂⋃ (3) ()A B C ⋃⋂ (4)()()A B A C ⋃⋂⋃ (5) ()A B '⋂ (6) A B ''⋃ (7) ()B C '⋃ (8)B C ''⋂ (9) 22A C - (10)22A C ⋂ 答:(1) {3,4}B '=,{4}A B '⋂=(2) {1}A B ⋂=,{1,3,5}C '=,(){1,3,5}A B C '⋂⋃= (3) {2}B C ⋂=,(){1,2,4}A B C ⋃⋂=(4) {1,2,4,5}A B ⋃=,{1,2,4}A C ⋃=,()(){1,2,4}A B A C ⋃⋂⋃= (5) (){2,3,4,5}A B '⋂= (6) {2,3,5}A '=,{2,3,4,5}A B ''⋃= (7) {1,2,4,5}B C ⋃=,(){3}B C '⋃= (8) {3,4}B '=,{1,3,5}C '=,{3}B C ''⋂=(9) 2{,{1},{4},{1,4}}A φ=,2{,{2},{4}{24}}C φ=,,,22{{1},{1,4}}A C -= (10) 22{,{4}}A C φ⋂=10、 给定自然数集N 的下列子集:{1,2,7,8}A =,2{|50}B i i =<,{|330}C i i i =≤≤可被整数,0{|2,,06}k D i i k Z k ==∈≤≤求下列集合: (1) (())A B C D ⋃⋃⋃ 答:{1,2,3,4,5,6,7}B =,{0,3,6,9,12,15,18,21,24,27,30}C =,{1,2,4,8,16,32,64}D =(()){0,1,2,3,4,5,6,7,8,9,12,15,16,18,21,24,27,30,32,64}A B C D ⋃⋃⋃= (2) (())A B C D φ⋂⋂⋂=(3) ()B A C -⋃解:{0,1,2,3,6,7,8,9,12,15,18,21,24,27,30}A C ⋃=,(){4,5}B A C -⋃= (4) ()A B D '⋂⋃解:{3,4,5,6}A B B A '⋂=-=,(){1,2,3,4,5,6,8,16,32,64}A B D '⋂⋃=11、 给定自然数集N 的下列子集{|12}A n n =<,{|8}B n n =≤,{|2,}C n n k k N ==∈,{|3,}D n n k k N ==∈ {|21,}E n n k k N ==-∈将下列集合表示为由,,,,A B C D E 产生的集合:(1) {2,4,6,8} (2){3,6,9} (3){10} (4){|369}n n n n ==≥或或 (5) {|109}n n n n n ≤>是偶数且或是奇数且 (6) {|6}n n 是的倍数答:{1,2,3,4,5,6,7,8,9,10,11}A =,{1,2,3,4,5,6,7,8}B ={2,4,6,8,}C =L ,{3,6,9,12,}D =L ,{1,3,5,7,}E =L {2,4,6,8}B C =⋂ {3,6,9}=A D ⋂ {10}=(())A B D E ---(4){|369}n n n n ==≥=或或{3}{6}{9,10,11,12,}⋃⋃L{3,6,9,10,11,12,}()A D B '==⋂⋃L(5) {2,4,6,8,10,11,13,15,}(()())(())A E E B A D B =-⋃--⋂-L (6) {|6}{6,12,18,24,30}n n ==L 是的倍数C D ⋂12、 判断以下哪些论断是正确的,哪些论断是错误的,并说明理由。

离散数学第三版课后习题答案

离散数学第三版课后习题答案
反之,对任x∈(A\C)\(B\C),可知x∈A\C,xB\C。由x∈A\C,可知x∈A,xC。又因为xB\C及xC,可知xB。所以,x∈(A\B)\C。因此(A\B)\C(A\B)\C。
由此可得(A\B)\(B\C)(A\B)\C。
3)方法一:(A\C)\C
=A\(B∪C)(根据1))
=A\(C∪B)(并运算交换律)
4)真。因为是集合{}的元素;
5)真。因为{a,b}是集合{a,b,c,{a,b,c}}的子集;
6)假。因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;
7)真。因为{a,b}是集合{a,b,{{a,b}}}的子集;
8)假。因为{a,b}不是集合{a,b,{{a,b}}}的元素。
4.对任意集合A,B,C,确定下列命题的真假性:
A′∪B=(A∪A′)∪B(∪的交换律)
A′∪B=X∪B(互补律)
A′∪B=X(零壹律)
方法三:因为A′X且BX,所以根据定理2的3)就有A′∪BX;
另一方面,由于BA′∪B及根据换质位律可得B′A′A′∪B,因此,由互补律及再次应用定理2的3),可得X=B∪B′A′∪B,即XA′∪B;
所以,A′∪B=X。
=(A\C)\B(根据1))
方法二:对任一元素x∈(A\B)\C,可知x∈A,xB,xC。由为x∈A,xC,所以,x∈A\C。又由xB,x∈(A\C)\B。所以,(A\B)\C(A\C)\B。
同理可证得(A\C)\B(A\B)\C。
9.设A、B是Ⅹ全集的子集,证明:
ABA′∪B=XA∩B′=
[解](采用循环证法)
离散数学辅助教材
概念分析结构思想与推理证明
第一部分
集合论
离散数学习题解答
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 集合1、列举下列集合的元素 (1) 小于20的素数的集合 (2) 小于5的非负整数的集合 (3) 2{|,10240515}i i I i i i ∈--<≤≤且 答:(1) {1,3,5,7,11,13,17,19}(2) {0,1,2,3,4} (3) {5,6,7,8,9,10,11}2、用描述法表示下列集合 (1) 12345{,,,,}a a a a a 答:{|,15}i a i I i ∈≤≤ (2) {2,4,8,} 答:{2|}i i N ∈ (3) {0,2,4,100}答:{2|,050}i i Z i ∈≤≤3、下面哪些式子是错误的? (1) {}{{}}a a ∈ 答:正确 (2) {}{{}}a a ⊆ 答:错误 (3) {}{{},}a a a ∈ 答:正确 (4) {}{{},}a a a ⊆ 答:正确4、已给{2,,{3},4}S a =和{{},3,4,1}R a =,指出下面哪些论断是正确的?哪些是错误的? (1) {}a S ∈ 错误(2) {}a R ∈ 正确 (3) {,4,{3}}a S ⊆ 正确 (4) {{},1,3,4}a R ⊆ 正确 (5)R S = 错误 (6) {}a S ⊆ 正确 (7) {}a R ⊆错误 (8) R φ⊆正确 (9) {{}}a R φ⊆⊆ 正确 (10) {}S φ⊆错误 (11) R φ∈错误 (12) {{3},4}φ⊆正确5、 列举出集合,,A B C 的例子,使其满足A B ∈,B C ∈且A C ∉答:{}A a =,{{}}B a =,显然A B ∈,{{{}}}C a =,显然B C ∈,但是A C ∉。

6、 给出下列集合的幂集 (1) {,{}}a b答:幂集{,{},{{}},{,{}}a b a b φ (2) {,,{}}a a φ答:幂集{,{},{},{{}},{,},{,{}},{,{}},{,,{}}}a a a a a a a a φφφφφ 7、设{}A a =,给出A 和2A 的幂集答:2{,{}}A a φ= 22{,{{}},{{}},{,{}}}Aa a φφφ= 8、 设128{,,,}A a a a =由17B 和31B 所表示的A 的子集各是什么?应如何表示子集2,67{,}a a a 和13{,}a a 答:170001000148{,}B B a a ==310001111145678{,,,,}B B a a a a a ==2,670100011070{,}a a a B B ==,1310100000160{,}a a B B ==9、 设{1,2,3,4,5}U =,{1,4}A =,{1,2,5}B =,{2,4}C =,确定集合: (1) A B '⋂ (2) ()A B C '⋂⋃ (3) ()A B C ⋃⋂ (4)()()A B A C ⋃⋂⋃ (5) ()A B '⋂ (6) A B ''⋃ (7) ()B C '⋃ (8)B C ''⋂ (9) 22A C - (10)22A C ⋂ 答:(1) {3,4}B '=,{4}A B '⋂=(2) {1}A B ⋂=,{1,3,5}C '=,(){1,3,5}A B C '⋂⋃= (3) {2}B C ⋂=,(){1,2,4}A B C ⋃⋂=(4) {1,2,4,5}A B ⋃=,{1,2,4}A C ⋃=,()(){1,2,4}A B A C ⋃⋂⋃= (5) (){2,3,4,5}A B '⋂= (6) {2,3,5}A '=,{2,3,4,5}A B ''⋃= (7) {1,2,4,5}B C ⋃=,(){3}B C '⋃= (8) {3,4}B '=,{1,3,5}C '=,{3}B C ''⋂=(9) 2{,{1},{4},{1,4}}A φ=,2{,{2},{4}{24}}C φ=,,,22{{1},{1,4}}A C -= (10) 22{,{4}}A C φ⋂=10、 给定自然数集N 的下列子集:{1,2,7,8}A =,2{|50}B i i =<,{|330}C i i i =≤≤可被整数,0{|2,,06}k D i i k Z k ==∈≤≤求下列集合: (1) (())A B C D ⋃⋃⋃ 答:{1,2,3,4,5,6,7}B =,{0,3,6,9,12,15,18,21,24,27,30}C =,{1,2,4,8,16,32,64}D =(()){0,1,2,3,4,5,6,7,8,9,12,15,16,18,21,24,27,30,32,64}A B C D ⋃⋃⋃= (2) (())A B C D φ⋂⋂⋂=(3) ()B A C -⋃解:{0,1,2,3,6,7,8,9,12,15,18,21,24,27,30}A C ⋃=,(){4,5}B A C -⋃= (4) ()A B D '⋂⋃解:{3,4,5,6}A B B A '⋂=-=,(){1,2,3,4,5,6,8,16,32,64}A B D '⋂⋃=11、 给定自然数集N 的下列子集{|12}A n n =<,{|8}B n n =≤,{|2,}C n n k k N ==∈,{|3,}D n n k k N ==∈ {|21,}E n n k k N ==-∈将下列集合表示为由,,,,A B C D E 产生的集合:(1) {2,4,6,8} (2){3,6,9} (3){10} (4){|369}n n n n ==≥或或 (5) {|109}n n n n n ≤>是偶数且或是奇数且 (6) {|6}n n 是的倍数答:{1,2,3,4,5,6,7,8,9,10,11}A =,{1,2,3,4,5,6,7,8}B ={2,4,6,8,}C =,{3,6,9,12,}D =,{1,3,5,7,}E = {2,4,6,8}B C =⋂ {3,6,9}=A D ⋂ {10}=(())A B D E ---(4){|369}n n n n ==≥=或或{3}{6}{9,10,11,12,}⋃⋃{3,6,9,10,11,12,}()A D B '==⋂⋃(5) {2,4,6,8,10,11,13,15,}(()())(())A E E B A D B =-⋃--⋂- (6) {|6}{6,12,18,24,30}n n ==是的倍数C D ⋂12、 判断以下哪些论断是正确的,哪些论断是错误的,并说明理由。

(1) 若a A ∈,则a A B ∈⋃答:正确,根据集合并的定义 (2) 若a A ∈,则a A B ∈⋂答:显然不正确,因为根据集合交运算的定义,必须a 同时属于A 和B (3) 若a A B ∈⋂,则a B ∈ 答:正确(4) 若A B ⊆,则A B B ⋂= 答:错误(5) 若A B ⊆,则A B A ⋂= 答:正确(6) 若a A ∉,则a A B ∉⋃ 答:错误(7) 若a A ∉,则a A B ∉⋂ 答:正确13、 设,,A B C 是任意的集合,下述论断哪些是正确的?哪些是错误的?说明理由(1) 若A B A C ⋂=⋂,则B C =答:不正确,反例,设A φ=,则不论,B C 是什么集合,都有A B A C φ⋂=⋂=,但显然,B C 不一定相等。

(2) 当且仅当A B B ⋃=,有A B ⊆;答:正确,证明如下:若A B B ⋃=,则对a A ∀∈,有a A B B ∈⋃=,则有a B ∈,因此有A B ⊆。

反之,若A B ⊆,则A B B ⋃=显然成立。

(3) 当且仅当A B A ⋂=,有A B ⊆答:正确,证明如下:若A B A ⋂=,则对a A ∀∈,因此a A B ∈⋂,则a B ∈,则有A B ⊆。

若A B ⊆,则a A ∀∈,有a B ∈,因此由a A ∈,可以得出a A B ∈⋂,因此A A B ⊆⋂,又A B A ⋂⊆,有A B A ⋂=。

(4) 当且仅当A C ⊆,有()A B C φ⋂-=答:不正确,因为()A B C A B C '⋂-=⋂⋂,因此不一定需要满足A C ⊆,而若A B φ⋂=也可以满足。

例如:{,,}A a b c =,{,}B d e =,{,}C a b =,()A B C φ⋂-=成立,而A C ⊆不成立。

(5) 当且仅当B C ⊆,有()A B C A -⋃=答:不正确,因为若B C ⊆,有()A B C A -⋃=成立,但是反之不成立,反例如下:{1,2,3,4,5}A =,{1,6}B =,{1,2}C =,而{2,3,4,5}A B -=,(){1,2,3,4,5}A B C -⋃=,但是B C ⊆不成立。

14、 设,,,A B C D 是集合,下述哪些论断是正确的?哪些是错误的?说明理由。

(1) 若,A B C D ⊆⊆,则()A C B D ⋃⊆⋃答:正确,证明:对a A C ∀∈⋃,则a A ∈或a C ∈,因为,A B C D ⊆⊆,因此a B ∈或a D ∈,因此a B D ∈⋃,即()A C B D ⋃⊆⋃成立。

(2) 若,A B C D ⊆⊆,则()A C B D ⋂⊆⋂ 答:正确(3)若A B ⊂,C D ⊂,则()A C B D ⋃⊂⋃ 答:正确(4) 若,A B C D ⊂⊂,则()A C B D ⋂⊂⋂答:不正确。

例如若,A B C D ⊂⊂,但是A C φ⋂=,B D φ⋂=,则()A C B D φφ=⋂⊆⋂=。

15、 设,A B 是两个集合,问:(1)如果A B B -=,那么A 和B 有什么关系?答:因为A B B -=,而A B A B B '-=⋂=,即对a B ∀∈有,a A a B '∈∈,因此A B φ==。

(2) 如果A B B A -=-,那么A 和B 有什么关系?答:充要条件是A B =。

证明:因为A B B A -=-的()()A B A B A A -⋃=-⋃,从而有A A B =⋃,即A B ⊆,同理可证明B A ⊆,因此A B =。

16、 设,A B 是任意集合,下述论断哪些是正确的?哪些是错误的?说明理由。

(1) 222A B A B ⋃=⋃答:不正确。

例如{,}A a b =,{,}B b c =,则{,,}A B a b c ⋃=2{,{},{},{},{,},{,},{,},{,,}}A B a b c a b a c b c a b c φ⋃= 2{,{},{},{,}}A a b a b φ=,2{,{},{},{,}}B b c b c φ=显然222A B A B ⋃=⋃不成立。

相关文档
最新文档