力敏传感器的工作原理与分类ppt课件
第四篇力敏传感器
第四章力敏传感器教学目标:1.了解弹性敏感元件的特性和要求。
2.了解几种常用测力称重传感器的特点、3.掌握电阻应变效应及半导体的压阻效应4.了解电桥电路的作用。
5.掌握单臂、双臂和全桥测量电路的异同点。
6.理解压电式传感器的工作原理。
了解它的特点。
7.了解它们的应用。
力敏传感器是使用很广泛的一种传感器。
它是生产过程中自动化检测的重要部件。
它的种类很多,有直接将力变换为电量的如压电式、压阻式等,有经弹性敏感元件转换后再转换成电量的如电阻式、电容式和电感式等。
它主要用于两个方面:测力和称重。
本章介绍电阻应变式传感器、压阻式和压电式传感器。
§4-1(传感器中的)弹性敏感元件一、弹簧管压力表的组成:(如图4-1)图4-1弹簧管压力表的组成框图弹簧管——弹性敏感元件:将输入压力转换成自身的变形量(应变、位移或转角)。
二、弹性元件的基本特性:1.变形:物体在外力作用下改变原来尺寸或形状的现象。
2.弹性:物体因受外力作用而产生变形,外力去掉后又恢复原状的特性。
3.弹性元件:具有弹性变形特性的物体。
4.弹性变形:弹性元件受外力作用而产生的变形。
5.弹性特性:作用在元件上的外力与相应变形(应变、位移或转角)之间的关系。
(1)刚度:弹性元件产生单位变形所需的力。
(2)灵敏度:在单位力作用下弹性元件产生的变形。
刚度和灵敏度表示了弹性元件的软硬程度。
元件越硬,刚度越大,单位力作用下变形越小,灵敏度越小。
6.线性弹性元件:刚度和灵敏度为常数,作用力F与变形X成线性关系。
三、弹性敏感元件的基本要求及类型:弹性元件在传感器技术中占有极其重要的地位。
它首先把力、力矩或压力转换成相应的应变或位移,然后配合各种形式的传感元件,将被测力、力矩或压力变换成电量。
基本要求:(1)具有良好的机械特性(强度高、抗冲击、韧性好、疲劳强度高等)和良好的机械加工及热处理性能。
(2)良好的弹性特性(弹性极限高、弹性滞后和弹性后效小等)。
(3)弹性模量的温度系数小且稳定,材料的线膨胀系数小且稳定。
传感器PPT课件
阶跃响应
传感器对阶跃输入信号的响应 特性,反映传感器的动态跟踪
能力。
阻尼比
描述传感器动态系统阻尼特性 的参数,影响传感器的动态稳
定性。
固有频率
传感器动态系统的固有振动频 率,反映传感器对动态信号的
响应速度。
环境适应性指标评价
温度稳定性
传感器在不同温度下的输出稳 定性,反映传感器对温度变化
降低传感器制造成本,提高可靠性和 寿命是当前面临的挑战。
未来发展感器研究
探索新型传感材料,提高传感器的灵敏度 和响应速度。
借鉴生物感知机制,研发仿生传感器,拓 展应用领域。
多传感器融合技术
智能化传感器网络
利用多传感器融合技术,提高测量精度和 可靠性。
构建智能化传感器网络,实现传感器之间 的协同工作和自组织能力。
、电阻等。
测量电路对转换元件输出的电信 号进行放大、滤波、转换等处理 ,以便于后续的数据采集、传输
和处理。
信号转换与处理
信号转换
将传感器输出的模拟信号转换为数字信号,以便于计算机等数字设备进行处理。常见的信 号转换方式有A/D转换和V/F转换等。
信号处理
对传感器输出的信号进行放大、滤波、线性化等处理,以提高信号的信噪比和抗干扰能力 。常见的信号处理方式有放大电路、滤波电路和线性化电路等。
分类
根据输入物理量可分为温度传感器、压力传感器、位移传感器、速度传感器、 加速度传感器、光线传感器等。
发展历程及现状
发展历程
传感器的历史可以追溯到20世纪初,当时主要应用于军事领域。随着科技的不断进步,传感器逐渐应 用于民用领域,如工业自动化、环境监测、医疗设备等。近年来,随着物联网、人工智能等技术的快 速发展,传感器技术也取得了巨大的进步。
传感器及其工作原理课件
(2)工作原理: 在E、F间通入恒定的电流I, 同时外加与薄片垂直的 磁场B,则薄片中的载流子就在洛伦兹力的作用下,向 着与电流和磁场都 垂直 的方向漂移,使M、N间出现 了电压,称为霍尔电压UH。
(3)霍尔电压: IB
UH= k d ①其中 d 为 薄片 的厚度,k 为 霍尔 系数,其大小与薄 片的材料有关。
图6-1-4
如图6-1-4(2)所示是测定液面高度h的电容式传感器。 液面高度h发生变化时,引起正对面积发生变化。
如图6-1-4(3)所示是测定压力F的电容式传感器。压 力变化,d发生变化,引起电容的变化。
如图6-1-4(4)所示是测定位移x的电容式传感器。由 图可以看出随着电介质进入极板间长度的变化电容C也变化, 从而推知x的变化情况。
2.光敏电阻 (1)特点:在被光照时 电阻 发生变化。 (2)原因:无光照时,载流子少,导电性能不好;随着 光照的增强,载流子 增多 ,导电性变好。 (3)作用:把 光照强弱 这个光学量转换为 电阻 这 个电学量。
3.热敏电阻和金属热电阻
氧化锰热敏电阻
金属热电阻
电阻率随温度的升高 特点
电阻率随温度的升高而 增大
3.关于光敏电阻,下列说法不. 正确的是
()
A.光敏电阻能够把光照强弱这个光学量转换为电阻
这个电学量
B.硫化镉是一种半导体材料,无光照射时,载流子
极少,导电性能不好
C.硫化镉是一种半导体材料,无光照射时,载流子
较少,导电性能良好
D.半导体材料的硫化镉,随着光照的增强,载流子
增多,导电性能变好
解析:对光敏电阻,光照强度变化时,电阻值随之变化,A 对;对半导体材料的硫化镉,无光照射时载流子极少,导 电性能差,光照增强时,载流子明显增多,导电性能变好, B、D对,C错。 答案: C
传感器与检测技术ppt课件第一章
2024/2/29
16
1.2检测技术理论基础
1.2.2 测量方法
1) 直接测量、间接测量和组合测量 (又称联立 测量)。经过求解联立方程组,才能得到被测物理量的最后
结果,则称这样的测量为组合测量。
2) 偏差式测量、零位式测量与微差式测量
3) 等精度测量与非等精度测量
4) 静态测量与动态测量
2024/2/29
2024/2/29
23
2024/2/29
3
1.1.3 传感器基本特性
当传感器的输入信号是常量,不随时间变化时,其 输入输出关系特性称为静态特性。
传感器的基本特性是指系统的输入与输出关系特性 ,即传感器系统的输出信号y(t)和输入信号(被测 量)x(t)之间的关系,传感器系统示意图如下图所 示。
2024/2/29
4
1.1.3 传感器基本特性
2.传感器的分类
(1)按照其工作原理,传感器可分为电参数式(如电阻式、 电感式和电容式)传感器、压电式传感器、光电式传感器及 热电式传感器等。
(2)按照其被测量对象,传感器可分为力、位移、速度、 加速度传感器等。常见的被测物理量有机械量、声、磁、温 度和光等。
(3)按照其结构,传感器可分为结构型、物性型和复合型 传感器。物性型传感器是依靠敏感元件材料本身物理性质的 变化来实现信号变换,如:水银温度计。结构型传感器是依 靠传感器结构参数的变化实现信号变换,如:电容式传感器。
敏感元件输出的物理量转换成适于传输或测量电信号 的元件。
测量电路(measuring circuit): 将转换
元件输出的电信号进行进一步转换和处理的部分,如 放大、滤波、线性化、补偿等,以获得更好的品质特 性,便于后续电路实现显示、记录、处理及控制等功 能。
电子课件-《传感器技术与应用》-A05-3188 第四章 力敏传感器
第四章 力敏传感器
常见的压电式传感器
第四章 力敏传感器
2.压电材料特点和分类
用于制作压电元件的压电材料一般分为三大类: 一是压电晶体(单晶),它包括石英晶体和其他 压电单晶; 二是压电陶瓷; 三是新型压电材料,其中有压电半导体和有机高 分子压电材料两种。
第四章 力敏传感器
石英晶体薄片
压电陶瓷
第四章 力敏传感器
二、压电材料的主要特性参数
1.压电常数
压电常数是衡量材料压电效应强弱的参数,它直接 关系到压电元件输出的灵敏度。
2.弹性常数
压电材料的弹性常数、刚度决定着压电元件的固有 频率和动态特性。
3.介电常数
对于一定形状、尺寸的压电元件,其固有电容与介 电常数有关;而固有电容又影响着压电传感器的频率 下限。
电阻应变片的工作原理是利用导体或半导体材料 的电阻应变效应,即导体或半导体材料在外力作用下, 会产生机械变形,其电阻值也将随着发生变化的现象。
第四章 力敏传感器
实验表明,在金属丝的弹性变形范围内,当金属 丝受外力作用时,其长度和截面积都会发生变化,当 金属丝受外力作用而伸长时,其长度增加,而截面积 减少,电阻值便会增大。当金属丝受外力作用而压缩 时,长度减小而截面增加,电阻值则会减小。
第四章 力敏传感器
二以使用面积和电阻值表示,如 (3×10)mm2,120Ω。
2.应变片的灵敏系数K 3.应变片允许工作电流 4.应变极限 5.横向效应
第四章 力敏传感器
三、电阻应变片的选用
1.电阻应变片的选择 (1)应变片结构形式的选择
第四章 力敏传感器
名称 丝式 箔式 薄膜式
特点 制造简单、价格便宜、性能稳定、易于粘贴等优点,但蠕 变较大,金属丝易脱胶,逐渐被箔式所取代,多用于大批量、 一次性试验 表面积与截面积之比大,散热条件好,允许通过较大电流, 从而增大输出信号,提高灵敏度;可根据测量需要制成任意 形状,在制造工艺上能保证敏感栅尺寸准确线条均匀;具有 较好的可挠性,有利于粘贴及应变的传递;易加工,适于批 量生产 应变灵敏系数大,允许电流密度大,工作范围广,易实现 工业化生产,但难以控制电阻与温度和时间的变化关系,是 一种很有前途的新型应变片
力敏传感器的分类
2.压阻式传感器
压阻式传感器
是指利用单晶硅材料的压阻效应和集成电路技术制成的传 感器。单晶硅材料在受到力的作用后,电阻率发生变化,通 过测量电路就可得到正比于力变化的电信号输出。
课程内容 Course Contents
3.电感式传感器
3.电感式传感器
电感式传感器
是利用电磁感应把被测的物理量如位移,压力,流量, 振动等转换成线圈的自感系数和互感系数的变化,再由电路 转换为电压或电流的变化量输出,实现非电量到电量的转换。
课程内容 Course Contents
4.电容式传感器
4.电容式传感器
电容式传感器
是把被测的机械量,如位移、压力等转换 为电容量变化的传感器。它的敏感部分就是 具有可变参数的电容器。
课程内容 Course Contents
5.压电式传感器
5.压电式传感器
压电式传感器
是基于压电效应的传感器。是一种自发电式和机电转换式传感器。 它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此 电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受 外力的电量输出。
力敏传感器的分类
课程内容 Course Contents
1.应变式传感器 2.压阻式传感器 3.电感式传感器
4.电容式传感器
5.压电式传感器 6.谐振式传感器
课程内容 Course Contents
1.应变式传感器
1.应变式传感器
应变式传感器
利用电阻应变片将应变转换为电阻变化的传感器。
课程内容 Course Contents
课程内容 Course Contents
6.谐振式传感器
6.谐振式传感器
谐振式传感器
《力传感器》课件
THANKS
感谢观看
详细描述
力传感器是一种能够检测和测量力的装置,它通常由敏感元件和转换电路组成。敏感元件能够将力信号转换为电 信号或数字信号,而转换电路则负责将电信号进一步处理成可用的输出信号。力传感器的种类繁多,根据不同的 应用需求,可以选择不同类型的力传感器。
力传感器的分类
要点一
总结词
根据不同的分类标准,可以将力传感器分为不同的类型。 按测量方式可分为应变式、压阻式、电容式、压电式等; 按输出信号可分为模拟输出和数字输出两种类型。
详细描述
线性范围越宽,表示传感器能够测量的力值范围越大。在实际应用中,为了确 保测量的准确性和可靠性,应选择线性范围与所需测量力值相匹配的传感器。
稳定性
总结词
稳定性是指力传感器在长时间工作或 多次使用后,其性能参数保持不变的 能力。
详细描述
稳定性好的力传感器能够长期保持其 性能参数,确保测量的一致性和准确 性。而稳定性差的传感器则可能出现 性能衰减或漂移,导致测量误差。
压电式力传感器原理
总结词
基于压电效应的力传感器
优点
灵敏度高、响应速度快、结构简单。
详细描述
压电式力传感器利用压电材料的压电效应 原理,当受力时,压电材料产生电荷,通 过测量电荷量可以推算出受力的大小。
应用领域
广泛应用于冲击、振动、压力等测量领域 。
电容式力传感器原理
01 总结词
基于电容原理的力传感器
02
详细描述
电容式力传感器利用电容原理 ,通过测量电容量变化来推算 受力的大小。电容式力传感器 通常由两个平行板组成,当受 力时,平行板间距离发生变化 ,导致电容量的变化。
03
优点
04
《传感器培训》课件ppt精品模板分享(带动画)
单击此处输入你的正文,请阐述观点
传感器的定义和分类
传感器的原理及应用
传感器的性能指标与选型
传感器的组成结构
直接测量:通过传感器直接得到测量结果
单击添加正文,文字是思想的提炼
粗大误差:由于人为因素或环境因素引起的误差
单击添加正文,文字是思想的提炼
传感器的分类:根据不同的应用领域和测量原理,传感器可以分为多种类型,如电阻式传感器、电容式传感器、电感式传感器、磁电式传感器、光电式传感器等。
传感器的应用:传感器在各个领域都有广参数监测,环保领域中的气体、水质监测等。
添加标题
传感器技术的发展趋势:探讨传感器技术的发展趋势,如智能化、微型化、集成化等,以及未来传感器技术的应用前景。
传感器的主要性能指标:包括线性范围、灵敏度、分辨率、精度、稳定性等。
传感器的评价方法:根据实际应用需求,对传感器的各项性能指标进行综合评价,选择最适合的传感器。
不同类型传感器的特点及应用领域:介绍不同类型传感器的特点,如电阻式、电容式、电感式、光电式等,以及它们在不同领域的应用。
明确测量要求:根据实际需求选择合适的传感器类型和量程
考虑环境因素:考虑温度、湿度、压力、腐蚀等环境因素对传感器的影响
考虑精度和稳定性:选择精度高、稳定性好的传感器,以确保测量结果的准确性和可靠性
考虑成本:在满足测量要求的前提下,选择性价比高的传感器
考虑安装和维护方便性:选择易于安装和维护的传感器,以降低使用成本和减少故障率
网络化:传感器与互联网技术相结合,实现远程监控和数据传输 传感器应用领域
传感器应用领域
工业自动化:传感器在生产线上的应用,实现自动化生产和质量控制
力敏传感器的工作原理与分类
图2-5 直流电桥的连接方式
半桥双臂 (b)全桥电路
对于半桥双臂 (2-5) 全桥 (2-6) 即半桥双臂可使电压灵敏度比半桥单臂提高一倍,而全桥电路电压灵敏度又比半桥双臂电压灵敏度提高一倍。可见,利用全桥,并提高供电电压E,可提高灵敏度系数。
(2-3)
一般 ,可忽略,由此可得
可见,输出电压与电阻变化率成线性关系,也即和应变成线性关系,由此即可测出力值,由式(2-3)可得半桥单臂工作输出的电压灵敏度
(2-4)
为了提高输出电压灵敏度,可以采用半桥双臂或全桥电路,如图2-5所示。图2-5(a)为半桥双臂,图2-5(b)为全桥电路。
图2-4 直流电桥
(2-2)
若使此电桥平衡,即 ,只要 。一般我们取 即可实现。现将 换成电阻应变片,即组成半桥单臂电桥,随构件产生应变造成传感器电阻变化时,式(2-2)变成
应变片补偿法分自补偿和互补偿两种。自补偿法的原理是合理选择应变片阻温系数及线膨胀系数,使之与被测构件线膨胀系数匹配,使应变片温度变化时,由热造成的输出值为0。应变片互补偿法的原理是检测用的应变片敏感栅由两种材料组成,在温度变化时,它们的阻值变化量 相同,但符号相反,这样就可抵消由于温度变化而造成传感器误输出。使用中要注意选配敏感栅电阻丝材料。
(1) 温度误差
(2) 温度补偿
一般采用桥路补偿法、应变片补偿法或热敏电阻补偿法。
所谓桥路补偿法,如图2-4所示,当ab间接入应变片传感器,bc间也接入同样的应变片,但bc间接入的应变片不受构件应变力的作用,将它用同样的方法粘贴在与ab间应变片所贴构件材料相同的材料上,并与ab间应变片处于同一温度场中,这样ab、bc间应变片的阻温效应相同,电阻的变化量 也相同,由电桥理论可知,它们起了互相抵消作用,对输出电压没有影响。
传感器技术与应用第3章 力传感器
力是物理基本量之一,因此各种动态、 静态力的大小的测量十分重要。
力的测量需要通过力传感器间接完成, 力传感器是将各种力学量转换为电信号的 器件。
F 力敏感 元件
转换 元件
显示 设备
图3-1 力传感器的测量示意图
弹性敏感元件把力或压力转换成了应 变或位移,然后再由传感器将应变或位移 转换成电信号。
3.3.1 石英晶体的压电效应 石英晶体成正六边形棱柱体。
a—石英晶体结构;b、c、d、e—压电效应示意图
图3-12 石英晶体结构及压电效应
晶体沿轴线切下的薄片称“晶体切 片”。
图3-13所示是垂直于电轴X切割的石 英片,在与X轴垂直的两面覆以金属。
沿X方向施加作用力Fx时,在与电轴 垂直的表面上产生电荷Qxx为
(4)薄壁圆筒 圆筒的壁厚一般小于圆筒直径的二十分之一。 薄壁圆筒弹性敏感元件的灵敏度取决于圆筒的半 径和壁厚,与圆筒长度无关。
图3-6 薄壁圆筒弹性敏感元件的结构
3.2 电阻应变变,以便进 一步电测。电阻应变片的典型结构如图3-7 所示。
图3-2 一些变换力的弹性敏感元件形状
2 .变换压力的弹性敏感元件 (1)弹簧管
图3-3 弹簧管的结构
(2)波纹管 波纹管是有许多同心环状皱纹的薄壁圆管。
图3-4 波纹管的外形
(3)波纹膜片和膜盒 平膜片在压力或力作用下位移量小,因而常把 平膜片加工制成具有环状同心波纹的圆形薄膜。
图3-5 波纹膜片波纹的形状
uo
ui R1 R1 R2
ui R4 R3 R4
0
a-半桥式(单臂工作);b-半桥式(双臂工作);c-全桥式(双臂工 作);d-全桥式(四臂工作)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长江工程职业技术学院自动化教研室
(a)箔式单向应变片
(b)箔式转矩应变片
(c)箔式压力应变片
(d)箔式花状应变片
图2-3 各种箔式应变片
长江工程职业技术学院自动化教研室
2.电阻应变片传感器基本应用电路 将电阻应变片粘贴于待测构 件上,应变片电阻将随构件 应变而改变,将应变片电阻 接入相应的电路中,使其转 化为电流或电压输出,即可 测出力值。通常将应变片接 入电桥来实现电阻至电压或 电流的转换。根据电桥电源 不同,又分直流电桥和交流 电桥。这里主要介绍直流电 桥。图2-4所示为一直流电 桥,计算可知
① 金属丝式电阻应变片。金属丝式电阻应变片 的基本结构图如图2-2所示。由敏感栅1、基底2 和盖层3、引线4和黏结剂几个基本部分组成。
图2-2 金属丝式电阻应变片的基本结构图
长江工程职业技术学院自动化教研室
② 金属箔式应变片。如图2-3所示,它与金属丝式电 阻应变片相比,有如下优点:用光刻技术能制成各 种复杂形状的敏感栅;横向效应小;散热性好,允 许通过较大电流,可提高相匹配的电桥电压,从而 提高输出灵敏度;疲劳寿命长,蠕变小;生产效率 高。 但是,制造箔式应变片的电阻值的分散性要比丝式 应变片的大,有的能相差几十欧姆,需要调整阻值。 金属箔式应变片因其一系列优点而将逐渐取代丝式 应变片,并占主要地位。
长江工程职业技术学院自动化教研室
应变片补偿法分自补偿和互补偿两种。自补偿法的原 理是合理选择应变片阻温系数及线膨胀系数,使之与 被测构件线膨胀系数匹配,使应变片温度变化时,由 热造成的输出值为0。应变片互补偿法的原理是检测 用的应变片敏感栅由两种材料组成,在温度变化时, 它们的阻值变化量 R相同,但符号相反,这样就可抵 消由于温度变化而造成传感器误输出。使用中要注意 选配敏感栅电阻丝材料。
长江工程职业技术学院自动化教研室
1.电阻应变式传感器工作原理
(1)应变效应 由物理学可知,电阻丝的电阻R与电阻丝的电阻 率、导体长度及截面积存在如下关系
(2-1)
图2-1 电阻丝应变效应
长江工程职业技术学院自动化教研室
(2)电阻应变式传感器的结构及特性 金属电阻应变片分为金属丝式和金属箔式两种。
长江工程职业技术学院自动化教研室
热敏电阻补偿法如图2-6所示, 图中R5为分流电阻,Rt为NTC 热敏电阻,使Rt与应变式传感 器处在同一温度场中,适当调 整R5值,可使 与 U/ab 的乘积 R R 不变,热输出为零。
图2-6 热敏电阻补偿法
电阻应变式传感器广泛应用在测力及可以转化为力值 的量(如加速度等)。
长江工程职业技术学院自动化教研室
图2-8 应变式加速度传感器原理图
加速度传感器就是将被测加速度 a 通过一个悬臂梁 将力F ma 转长江工程职业技术学院自动化教研室
二、电阻应变式传感器
电阻应变式传感器是目前工程测力传感器中应 用最普遍的一种传感器,它测量精度高,范围 广,频率响应特性较好,结构简单,尺寸小, 易实现小型化,并能在高温、强磁场等恶劣环 境下使用,并且工艺性好,价格低廉。它主要 应用在力作用下,将材料应变转变为电阻值的 变化,从而实现力值的测量。组成电阻应变片 的材料一般为金属或半导体材料。
长江工程职业技术学院自动化教研室
图2-4 直流电桥
(2-2)
0 若使此电桥平衡,即U 0 ,只要 R1R3 R2 R4 。一般 R1 R1 R2 R3 即可实现。现将 R4 R 我们取 换成电阻 应变片,即组成半桥单臂电桥,随构件产生应变造 成传感器电阻变化时,式(2-2)变成
长江工程职业技术学院自动化教研室
(a)半桥双臂
(b)全桥电路 图2-5 直流电桥的连接方式
长江工程职业技术学院自动化教研室
对于半桥双臂
(2-5)
全桥
(2-6)
即半桥双臂可使电压灵敏度比半桥单臂提高一倍, 而全桥电路电压灵敏度又比半桥双臂电压灵敏度 提高一倍。可见,利用全桥,并提高供电电压E, 可提高灵敏度系数。
长江工程职业技术学院自动化教研室
3.温度误差及其补偿 (1) 温度误差 用作测量应变的金属应变片,希望其阻值仅随应 变变化,而不受其它因素的影响。实际上应变片 的阻值受环境温度(包括被测试件的温度)影响很大。 由于环境温度变化引起的电阻变化与试件应变所 造成的电阻变化几乎有相同的数量级,从而产生 很大的测量误差,称为应变片的温度误差,又称 热输出。因环境温度改变而引起电阻变化的两个 主要因素: 应变片的电阻丝(敏感栅)具有一定温度系数; 电阻丝材料与测试材料的线膨胀系数不同。
长江工程职业技术学院自动化教研室
(2) 温度补偿 一般采用桥路补偿法、应变片补偿法或热敏电阻 补偿法。 所谓桥路补偿法,如图2-4所示,当ab间接入应 变片传感器,bc间也接入同样的应变片,但bc 间接入的应变片不受构件应变力的作用,将它 用同样的方法粘贴在与ab间应变片所贴构件材 料相同的材料上,并与ab间应变片处于同一温 度场中,这样ab、bc间应变片的阻温效应相同, R 电阻的变化量 也相同,由电桥理论可知,它 们起了互相抵消作用,对输出电压没有影响。
力敏传感器的工作原理与分类
一、力敏传感器概述
力敏传感器,顾名思义就是能对各种力或能转 化为力的物理量产生反应,并能将其转变为电 参数的装置或元件。很显然,要成为真正实用 意义上的力敏传感器,这个由力转化为电参数 的过程最好能成线性关系。根据由力至电参数 转变的方式不同,力敏传感器一般有电阻应变 式传感器、电位计式传感器、电感式传感器、 压电式传感器、电容式传感器等,它们也可用 来测量力值。
R U E 4R 2R
一般 R
R ,可忽略,由此可得
(2-3)
长江工程职业技术学院自动化教研室
可见,输出电压与电阻变化率成线性关系,也即和应变 成线性关系,由此即可测出力值,由式(2-3)可得半 桥单臂工作输出的电压灵敏度
(2-4)
为了提高输出电压灵敏度,可以采用半桥双臂或全桥电 路,如图2-5所示。图2-5(a)为半桥双臂,图2-5(b) 为全桥电路。