2013年中考数学全真模拟试题(10套附答案)

合集下载

2013年中考数学模拟试题(优质)及答案

2013年中考数学模拟试题(优质)及答案

2 013年中考数学模拟试题(二)时间:100分钟 满分:120分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.一个数的相反数是3,则这个数是( )A .-13 B.13C .-3D .32.下列命题中真命题是( ) A .任意两个等边三角形必相似; B .对角线相等的四边形是矩形; C .以40°角为内角的两个等腰三角形必相似;D .一组对边平行,另一组对边相等的四边形是平行四边形3.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A.15B.13C.58D.385.抛物线y =-(a -8)2+2的顶点坐标是( ) A .(2,8) B .(8,2)C .(-8,2)D .(-8,-2)6.若不等式组841,x x x m +<-⎧⎨>⎩的解集是x >3,则m 的取值范围是( )A .m >3B .m ≥3C .m ≤3D .m <37.在平面内有线段AB 和直线l ,点A ,B 到直线l 的距离分别是4 cm,6 cm.则线段AB 的中点C 到直线l 的距离是( )A .1或5B .3或5C .4D .58.正八边形的每个内角为( ) A .12° B .135° C .140° D .144°9.在Rt △ABC 的直角边AC 边上有一动点P (点P 与点A ,C 不重合),过点P 作直线截得的三角形与△ABC 相似,满足条件的直线最多有( )A .1条B .2条C .3条D .4条 10.如图M2-1,在ΔABC 中,∠C =90°,AC =8,AB =10,点P 在AC 上,AP =2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC 都相切,则⊙O 的半径是( )图M2-1A .1 B.54 C.127 D.94二、填空题(本大题共6个小题,每小题4分,共24分) 11.有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是____________.12.实数范围内分解因式:x 3-2x =______________.13.已知抛物线y =ax 2+bx +c (a ≠0)经过点(1,2)与(-1,4),则a +c 的值是________. 14.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =2 3,那么AP 的长为________.15.已知BD ,CE 是△ABC 的高,直线BD ,CE 相交所成的角中有一个角为50°,则∠BAC 等于________度.16.函数y =12x -4中,自变量x 的取值范围是________.三、解答题(一)(本大题共3小题,每小题5分,共15分) 17.计算:(-2 011)0+-122⎛⎫ ⎪ ⎪⎝⎭+22--2cos60°.18.先化简,再求值:2212442a a a a a a -+⎛⎫- ⎪-+-⎝⎭÷41a ⎛⎫- ⎪⎝⎭,其中a =2- 3.19.已知某开发区有一块四边形的空地ABCD ,如图M2-2所示,现计划在空地上种植草皮,经测量∠A =90°,AB =3 m ,BC =12 m ,CD =13 m ,DA =4 m .若每平方米草皮需要200元,问需要多少投入?图M2-2四、解答题(二)(本大题共3小题,每小题8分,共24分)20.列方程解应用题:A,B两地的距离是80千米,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍.已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.21.在图M2-3的网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C =90°,AC=3,BC=6.(1)试作出△ABC以A为旋转中心、沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-4,5),试建立合适的直角坐标系,并写出A、C两点的坐标;(3)作出与△ABC关于原点对称的图形△A2B2C2,并写出A2,B2,C2三点的坐标.22.如图M2-4,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.为促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案.图M2-5中折线反映了每户居民每月用电电费y(单位:元)与用电量x(单位:度)间的函数关系.(1)根据图象,阶梯电价方案分为三个档次,请填写下表:档次第一档第二档第三档每月用电量x度0<x≤140(2)小明家某月用电120度,需交电费________元;(3)求第二档每月电费y(单位:元)与用电量x(单位:度)之间的函数关系;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,缴纳电费153元,求m的值.图M2-524.已知抛物线y=-x2+2(k-1)x+k+2与x轴交于A,B两点,且点A在x轴的负半轴上,点B在x轴的正半轴上.(1)求实数k的取值范围;(2)设OA,OB的长分别为a,b,且a∶b=1∶5,求抛物线的解析式;(3)在(2)的条件下,以AB为直径的⊙D与y轴的正半轴交于P点,过P点作⊙D的切线交x轴于E点,求点E的坐标.25.已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB,CD,AD,BC于点M,N,E,F,设a=PM·PE,b=PN·PF,解答下列问题:(1)当四边形ABCD是矩形时,见图M2-6,请判断a与b的大小关系,并说明理由.(2)当四边形ABCD是平行四边形,且∠A为锐角时,见图M2-7,(1)中的结论是否成立?并说明理由.(3)在(2)的条件下,设BPPD=k,是否存在这样的实数k,使得S平行四边形PEAMS△ABD=49?若存在,请求出满足条件的所有k的值;若不存在,请说明理由.图M2-6图M2-72013年中考数学模拟试题(二)1.C 2.A 3.B 4.C 5.B 6.C 7.A 8.B 9.D 10.A 11.11 12.x (x +2)(x -2) 13.3 14.2 3或4 3 15.50°或130° 16.x ≠2 17.解:原式=1+2+2-2-1=218.解:原式=⎣⎢⎡⎦⎥⎤a -1(a -2)2-a +2a (a -2)÷4-a a=a (a -1)-(a -2)(a +2)a (a -2)2·a 4-a =1(a -2)2. 当a =2-3时,原式=13.19.解:如图D100,连接BD .图D100∵∠A =90°,AB =3 m ,DA =4 m ,∴BD =5 m. ∵BC =12 m ,CD =13 m ,∴∠DBC =90°.∴S ABCD =12×3×4+12×5×12=36(m 2).∴36×200=7 200(元).20.解:设公共汽车的速度为x 千米/小时,则小汽车的速度是3x 千米/小时.依题意,得80x =803x +3-13. 解得x =20千米/小时,经检验x =20是原方程的解,故符合题意. ∴小汽车的速度=3x =60(千米/小时). 21.(1)作图如图D101:图D101(2)坐标轴如图所示,A (-1,-1),C (-4,-1). (3)A 2(1,1),B 2(4,-5),C 2(4,1). 22.证明:DE ⊥AG ,DE ∥BF , ∴BF ⊥AG .又∵ABCD 是正方形,∴AD =AB ,∠ABF =∠EAD .在△ABF 和△AED 中,∵AD =AB ,∠ABF =∠EAD ,∠AED =∠AFB , ∴△AED ≌△ABF (AAS). ∴BF =AE .∴AF =BF +EF 得证. 23.解:(1)如下表:档次 第一档 第二档 第三档每月用电量x 度 140<x ≤230x >230 (2)54元(3)设y 与x 的关系式为y =kx +b .∵点(140,63)和(230,108)在y =kx +b 上, ∴⎩⎪⎨⎪⎧63=140k +b ,108=230k +b . 解得⎩⎪⎨⎪⎧k =0.5,b =-7.∴y 与x 的关系式为y =0.5x -7.(4)第三档中1度电交电费=(153-108)÷(290-230)=0.75(元), 第二档中1度电交电费=(108-63)÷(230-140)=0.5(元), ∴m =0.75-0.5=0.25.24.解:(1)设点A (x 1,0),B (x 2,0)且满足x 1<0<x 2. 由题意可知x 1·x 2=-(k +2)<0,即k >-2.(2)∵a ∶b =1∶5,设OA =a ,即-x 1=a ,则OB =5a ,即x 2=5a ,a >0. ∴⎩⎪⎨⎪⎧ x 1+x 2=-a +5a =4a ,x 1·x 2=-a ·5a =-5a 2.即⎩⎪⎨⎪⎧2(k -1)=4a ,-(k +2)=-5a 2. ∴k =2a +1,即5a 2-2a -3=0,解得a 1=1,a 2=-35(舍去).∴k =3.∴抛物线的解析式为y =-x 2+4x +5.(3)由(2)可知,当-x 2+4x +5=0时,可得x 1=-1,x 2=5. 即A (-1,0),B (5,0).∴AB =6,则点D 的坐标为(2,0). 当PE 是⊙D 的切线时,PE ⊥PD .由Rt △DPO ∽Rt △DEP 可得PD 2=OD ·DE ,即32=2×DE .∴DE =92,故点E 的坐标为⎝⎛⎭⎫-92,0. 25.解:(1)如图D102,∵ABCD 是矩形,MN ∥AD ,EF ∥CD , ∴四边形PEAM .PNCF 也均为矩形. ∴a =PM ·PE =S 矩形PEAM ,b =PN ·PF =S 矩形PNCF . 又∵BD 是对角线,∴△PMB ≌△BFP ,△PDE ≌△DPN ,△DBA ≌△DBC .∵S 矩形PEAM =S △BDA -S △PMB -S △PDE ,S 矩形PNCF =S △DBC -S △BFP -S △DPN , ∴S 矩形PEAM =S 矩形PNCF .∴a =b . (2)成立.理由如下:∵ABCD 是平行四边形,MN ∥AD ,EF ∥CD , ∴四边形PEAM ,PNCF 也均为平行四边形. 模仿(1)可证S 平行四边形PEAM =S 平行四边形PNCF .图D102(3)由(2)可知,S 平行四边形PEAM =AE ·AM sin A , S 平行四边形ABCD =AD ·AB sin A∴S 平行四边形PEAM S △ABD =2S 平行四边形PEAM 2S △ABD =2S 平行四边形PEAM S 平行四边形ABCD=2AE ·AM sin A AD ·AB sin A =2·AE AD ·AM AB . 又∵BP PD =k ,即BP BD =k k +1,PD BD =1k +1,而AE AD =BP BD =k k +1,AM AB =PD BD =1k +1, ∴2×k k +1×1k +1=49,即2k 2-5k +2=0.∴解得k 1=2,k 2=12.故存在实数k =2或12,使得S 平行四边形PEAM S △ABD=49.。

2013年中考数学模拟题(含答案)

2013年中考数学模拟题(含答案)

2013年中考数学模拟题一、选择题(每小题3分,共15分)1.下列运算正确的是 ( )A. x 2·x 3=x 6B. –2x -2=- 14x 2 C.(-x 2)3=x 5 D.-x 2-2x 2=-3x 2 2.在平面直角坐标系中,点P (-1,-1)关于x 轴的对称点在( ) A.第一象限 B. 第二象限C.第三象限D. 第四象限3.某班5位同学的身高(单位:厘米)分别155,160,160,161,169,这组数据中,下列说法错误的是 ( )A.众数是160B.中位数是160C.平均数是161D.方差是24.如图,PA 切⊙O 于A ,∠P=30°,OP =2,则⊙O 的半径的是 ( )A.21B.1C. 2D.45.已知圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的侧面积为 ( )A. 12πcm 2B. 15πcm 2C. 20πcm 2D. 30πcm 2二、填空题(每小题4分,共20分)6.已知代数式2x 2-x+1的值等于2,则代数式 4x 2-2x+5的值为___________.7.若反比例函数y=- x8的图象经过点(m ,-2m ),则m 的值为___________.8、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是________.9.如图,CD⊥AB,BE⊥AC,请你再添加一个条件:________使ΔABE≌ΔACD。

10.如图,在 RtΔABC中,∠C=90°,AB=4cm,AC=23cm,以B为圆心,以BC为半径作弧交AB于D,则阴影部分的面积是 _____cm2。

三、解答题(每小题6分,共30分)11.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x 的值,其中x=2007”。

甲同学把“x=2007”错抄成“x=2070”,但他的计算结果也是正确的,你说这是怎么回事?12. ,并把解集在数轴上表示出来。

2013年数学中考模拟试题及答案

2013年数学中考模拟试题及答案

2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。

设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。

11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。

2013年中考数学模拟试卷(带答案)

2013年中考数学模拟试卷(带答案)

2013年中考数学模拟试卷(带答案)2013年济南市中考数学模拟试题三一、选择题:本大题共12个小题.每小题4分;共48分.1.的绝对值是()A.B.C.D.2.如图,,点在的延长线上,若,则的度数为()A.B.C.D.3.点关于原点对称的点的坐标是()A.B.C.D.4.同时抛掷两枚均匀的硬币,则两枚硬币正面都向上的概率是()A.B.C.D.15.不等式组的解集用数轴表示为()6.若分式的值为,则的值为(A)A.B.C.D.或7.与如图所示的三视图对应的几何体是()8.如图,与的边分别相交于两点,且.若,则AC等于().A.1B.C.D.29.如图,矩形OABC的边OA在x轴上,O与原点重合,OA=1,OC =2,点D的坐标为(2,0),则直线BD的函数表达式为()A.B.C.D.10.如图,已知AD是△ABC的外接圆的直径,AD=13cm,,则AC的长等于()A.5cmB.6cmC.10cmD.12cm11.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1B.2C.3D.412.已知二次函数的图象如图所示,有下列5个结论:①;②;③;④;⑤,(的实数)其中正确的结论有()A.2个B.3个C.4个D.5二、填空题:本大题共5个小题.每小题3分;共15分.13.分解因式:2x2-18=.14.已知反比例函数的图象在第二、四象限,则取值范围是__________. 15.用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是.宇宙中一块陨石落在地球上,落在陆地的概率是_________16.若,则下列函数①,②,③,④中,的值随的值增大而增大的函数是_______________(填上序号即可)17.如图,已知,点在边上,四边形是矩形.请你只用无刻度的直尺在图中画出的平分线(请保留画图痕迹).三、解答题:7个小题,57分.18.(本小题满分7分)(1)化简(2)解方程:.19.(7分)(1)如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=300,求BC的长。

2013中考数学模拟试卷(含参考答案)

2013中考数学模拟试卷(含参考答案)

2013中考数学模拟试卷(含参考答案)2013年湖州市中考数学模拟卷4考试时间120分钟,满分120分。

姓名一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.32.要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是()A.选取该校一个班级的学生B.选取该校50名男生C.选取该校50名女生D.随机选取该校50名九年级学生3.一个几何体的三视图如图所示,这个几何体是()A.圆柱B.球C.圆锥D.正方体4.下列运算正确的是()A.B.C.D.5.三角形在方格纸中的位置如图所示,则的值是()A.B.C.D.6.据统计,2009年漳州市报名参加中考总人数(含八年级)约为102000人,则102000用科学记数法表示为()A.B.C.D.7.矩形面积为4,它的长与宽之间的函数关系用图象大致可表示为()A.B.C.D.8.如图,要使成为矩形,需添加的条件是()A.B.C.D.9.分式方程的解是()A.1B.C.D.10.如图,绕点逆时针旋转得到,若,,则的度数是()A.30°B.40°C.50°D.60°二、填空题(共6小题,每小题4分,满分24分)11.若分式无意义,则实数的值是____________.12.如图,直线,,则=_______________度.13.若,则的值是_______________.14.已知一次函数,则随的增大而_______________(填“增大”或“减小”).15.如图是第29届北京奥运会上获得金牌总数前六名国家的统计图,则这组金牌数的中位数是____________枚.16.如图,在菱形中,,、分别是、的中点,若,则菱形的边长是_____________.三、解答题(8大题共66分)17.(满分4分)计算:.18.(满分4分)给出三个多项式:,,.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.19.(满分6分)如图,在等腰梯形中,为底的中点,连结、.求证:.20.(满分6分)小红与小刚姐弟俩做掷硬币游戏,他们两人同时各掷一枚壹元硬币.(1)若游戏规则为:当两枚硬币落地后正面朝上时,小红赢,否则小刚赢.请用画树状图或列表的方法,求小刚赢的概率;(2)小红认为上面的游戏规则不公平,于是把规则改为:当两枚硬币正面都朝上时,小红得8分,否则小刚得4分.那么,修改后的游戏规则公平吗?请说明理由;若不公平,请你帮他们再修改游戏规则,使游戏规则公平(不必说明理由).21.(满分8分)如图,点在的直径的延长线上,点在上,,,(1)求证:是的切线;(2)若的半径为3,求的长.(结果保留)22.(满分8分)阅读材料,解答问题.例用图象法解一元二次不等式:.解:设,则是的二次函数.抛物线开口向上.又当时,,解得.由此得抛物线的大致图象如图所示.观察函数图象可知:当或时,.的解集是:或.(1)观察图象,直接写出一元二次不等式:的解集是____________;(2)仿照上例,用图象法解一元二次不等式:.(画大致图象)23.(满分8分)为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?24.(满分10分)几何模型:条件:如下左图,、是直线同旁的两个定点.问题:在直线上确定一点,使的值最小.方法:作点关于直线的对称点,连结交于点,则的值最小(不必证明).模型应用:(1)如图1,正方形的边长为2,为的中点,是上一动点.连结,由正方形对称性可知,与关于直线对称.连结交于,则的最小值是___________;(2)如图2,的半径为2,点在上,,,是上一动点,求的最小值;(3)如图3,,是内一点,,分别是上的动点,求周长的最小值.25.(满分12分)如图1,已知:抛物线与轴交于两点,与轴交于点,经过两点的直线是,连结.(1)两点坐标分别为(_____,_____)、(_____,_____),抛物线的函数关系式为______________;(2)判断的形状,并说明理由;(3)若内部能否截出面积最大的矩形(顶点在各边上)?若能,求出在边上的矩形顶点的坐标;若不能,请说明理由.数学参考答案及评分标准一、选择题(共10题,每题3分,满分30分)题号12345678910答案BDADABBCAC二、填空题(共6小题,每题4分,满分24分)11.212.12013.200914.增大15.2116.4三、解答题(10大题,满分共96分)17.解:原式=6分=0.8分18.解:情况一:2分=5分=.8分情况二:2分=5分=.8分情况三:2分=5分=.8分19.证明:四边形是等腰梯形,.4分为的中点,.6分.8分20.(1)吉.(符合要求就给分)3分(2)有多种画法,只要符合要求就给分.8分21.(1)证明:连结,1分,2分,,3分,.4分是的切线.5分(2),的长=.7分答:的长为.8分22.(1).2分(2)解:设,则是的二次函数.抛物线开口向上.3分又当时,,解得.4分由此得抛物线的大致图象如图所示.6分观察函数图象可知:当或时,.7分的解集是:或.8分23.(1)解法一:设甲种消毒液购买瓶,则乙种消毒液购买瓶.1分依题意,得.解得:.3分(瓶).4分答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.5分解法二:设甲种消毒液购买瓶,乙种消毒液购买瓶.1分依题意,得3分解得:4分答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.5分(2)设再次购买甲种消毒液瓶,刚购买乙种消毒液瓶.6分依题意,得.8分解得:.9分答:甲种消毒液最多再购买50瓶.10分26.(1)(4,0),.2分.4分(2)是直角三角形.5分证明:令,则...6分解法一:.7分.是直角三角形.8分解法二:,.7分.,.即.是直角三角形.8分(3)能.当矩形两个顶点在上时,如图1,交于.,..9分解法一:设,则,,.=.10分当时,最大..,.,.11分解法二:设,则..10分当时,最大..,.,.11分当矩形一个顶点在上时,与重合,如图2,,..解法一:设,,.=.12分当时,最大.,.13分解法二:设,,,,..=12分当时,最大,..13分综上所述:当矩形两个顶点在上时,坐标分别为,(2,0);当矩形一个顶点在上时,坐标为14分。

2013年中考模拟数学试卷数学答案

2013年中考模拟数学试卷数学答案
(2)由全等及三线合一得AO⊥BC,(5分)
∴∠DBC=∠BAO,∵BD是直径,∴∠BCD=∠ABO=90°,
∴△BDC∽△AOB,(6分)∴ , (7分)
22.(1)设A组的频数是x,那么B组的频数为5x,那么x+5x=12,x=2,(2分)
12÷(1-40%-28%-8%)=50(4分)
(2) (7分)(3)(28%+8%)×500=180(户)(9分)
(2)S1=4m-4(m-4)=16,(5分)
S2=S梯形AECD-S△CEEF= =16,∴S1=S2(8分)
(求S2时也可以将两个三角形的面积一一求出,再求差)
.(3)∵△AEG与△FDG面积和为24,差为16,∴△AEG的面积=20(10分)
∴ ,∴AG=10,∵△FDG∽△FCE,∴ ,
m1=12,m2=6(舍去),∴tan∠BAE= (12分)
∴ ,即
∴ 或 .(14分)
19.解:原式= (4分)= (6分)
20. → (2分)→
→ (5分)→经检验,原方程的解是 (7分)
21.解:(1)证明:连结OC,
∵OB=OC,AB=AC,OA=OA,∴△ABO≌△ACO,(2分)
∴∠ABO=∠ACO,∵AC是切线,∴∠ACO=90°,
∴∠ABO=90°,∴AB是⊙O的切线.(4分)
26.(1)第一条抛物线的解析式是 (3分)
(2)第n个三角形的面积是 ,当n=1,2,5时为整数(6分)
(3)设第n条抛物线的解析式为 ,(7分)
又∵过点 ∴ ,设 ,∴
= ,∴
,n=2.(10分)
(4)作第m个三角形和第n个三角形底边上的高AmC和AnD,
∵顶角互补,∴底角互余.即△AmCBm-1∽△AnDBn-1.

2013年武汉市九年级数学中考全真模拟试题及答案

2013年武汉市九年级数学中考全真模拟试题及答案

CA P BD 2013年九年级数学中考全真模拟试题考试时间:120分钟 试卷满分:120分 编辑人:怙恶祝考试顺利!一、选择题(共10小题,每小题3分,共30分)1.检测4袋食盐,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,下列检测结果中,最接近标准质量的是( ).A .+0.7B .+2.1 C.-0.8 D .-3.22x 的取值范围为( ). A.x ≥2 B. x ≤2 C.x ≥-2 D.x ≤-23.等式组21312x x -⎧⎨+⎩≤<的解集表示在数轴上正确的是( ).A. B. C. D.4.“抛一枚均匀硬币,落地后正面朝上”这一事件是( ).A.必然事件B.随机事件C.确定事件D.不可能事件5.已知x 1、x 2是方程x 2-3x-5=0的两根,则x 1·x 2的值是( ). A .-3 B .3 C .5 D .-5 6.如图是由七个相 同的小正方体摆成的几何体,则这个几何体的俯视图是( ).A. B. C. D. 7.观察下列图形,它们是按一定规律排列的,依照此规律,第20个图形共有★ ( ). A .63个 B .57个 C .68个 D .60个8.如图,等腰△ABC 中,AB=AC ,P 为其底角平分线的交点,将△BCP 沿CP 折叠,使B 点恰好落在AC 边上的点D 处,若DA=DP ,则∠A 的度数为( ). A.20° B.30° C.32° D.36°9.为了减轻学生的作业负担,我市教育局规定:初中学段学生每晚的作业总量不超过 1.5小时.利用课余时间,洪涛同学对本班每位同学晚上完成作业的时间进行了一次统计,并根据收集的数据绘制了下面两幅不完整的统计图如图所示,请根据图中提供的信息,该班同学每天完成作业的平均时间为( ). A .0.75小时 B .1小时 C .1.05小时 D .1.15小时 10.如图,正方形ABCD 的边长为25,内部有6个全等的正方形,小正方形的顶点E 、F 、G 、H 分别落在边AD 、AB 、BC 、CD 上,则每个小正方形的边长为( ). A.6 B.5 C.72 D.34二、填空题(共6小题,每小题3分,共18分) 11.计算: cos45°= .12.2013年第八届原创新春祝福短信微博大赛作品充满了对蛇年浓浓的祝福, 主办方共收到原创祝福短信作品414000条,将414000用科学记数法表示应为 . 13.我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的中位数是 .14.有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y (件)与工作时间t (时)的函数图象.图②分别表示甲完成的工作量y 甲(件)、乙完成的工作量y 乙(件)与工作时间t (时)的函数图象,则甲每小时完成 件,乙提高工作效率后,再工作 个小时与甲完成的工作量相等.15.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,反比例函数ky x=(x >0)在第一象限内的图象经过点D ,且与AB 、BC 分别交于E 、F 两点,若四边形BEDF 的面积为1,则k 的值为 .16.已知在矩形ABCD 中,AB=3,BC=4,P 为对角线AC 上一点,过P 作BP 的垂线交直线AD于点Q ,若△APQ 为等腰三角形,则AP 的长度为 或 .三、解答题17.(本题满分6分)解方程:3122x x x -=-+.18.(本题满分6分) 在直角坐标系xoy 中,直线y kx b =+(0k ≠)经过(-2,1)和(2,3)两点,且与x 轴、y 轴分别交于A 、B 两点,求不等式0kx b +≥的解集.19.(本题满分6分)如图,在△ABC 中,∠ABC=90°,BE ⊥AC 于点E ,点F 在线段BE 上,∠1=∠2,点D 在线段EC 上,给出两个条件:①DF ∥BC ;②BF=DF.请你从中选择一个作为条件,证明:△AFD ≌△AFB .21FA B C DE20.(本题满分7分) (1)如图1,一小球从M处投入,通过管道自上而下落到A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的,请通过列表法或画树形图求投一个小球落到A的概率.(2)如图2,有如下四个转盘实验:实验一:先转动转盘①,再转动转盘①;实验二:先转动转盘①,再转动转盘②;实验三:先转动转盘①,再转动转盘③;实验四:先转动转盘①,再转动转盘④其中,两次指针都落在红色区域的概率与(1)中小球落到A的概率相等的实验是.(只需填入实验的序号)21.(本题满分7分)如图,在△ABC中,A(-2,-3),B(-3,-1),C(-1,-2).(1)画图:①画出△ABC关于y轴对称的△A1B1C1;②画出将△ABC向上平移4个单位长度后的△A2B2C2;③画出将△ABC绕原点O旋转180°后的△A3B3C3.(2)填空:①B1的坐标为,B2的坐标为,B3的坐标为;②在△A1B1C1,△A2B2C2,△A3B3C3中:△与△成轴对称,对称轴是.22.(本题满分10分) 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为边AC上一个点(可以包括点C但不包括点A),以P为圆心PA为半径作⊙P交AB于点D,过点D作⊙P的切线交边BC于点E.(1)求证:BE=DE;(2)若PA=1,求BE的长;(3)在P点的运动过程中,请直接写出线段BE长度的取值范围为 .23.(本题满分10分)如图1是王老师休假钓鱼时的一张照片,鱼杆前部分近似呈抛物线的形状,后部分呈直线形.已知抛物线上关于对称轴对称的两点B ,C 之间的距离为2米,顶点O 离水面的高度为223米,人握的鱼杆底端D 离水面113米,离拐点C 的水平距离1米,且仰角为45°,建立如图2所示的平面直角坐标系.(1)试根据上述信息确定抛物线BOC 和CD 所在直线的函数表达式;(2)当继续向上拉鱼使其刚好露出水面时,钓杆的倾斜角增大了15°,直线部分的长度变成了1米(即ED 长为1米),顶点向上增高23米,且右移12米(即顶点变为F,E 点为C 点向右平移12米得到的),假设钓鱼线与人手(点D )的水平距离为124米,那么钓鱼线的长度为多少米?24.(本题满分10分) 如图1,在长方形纸片ABCD 中,AB mAD =,其中m ≥1,将它沿EF 折叠(点E 、F 分别在边AB 、CD 上),使点B 落在AD 边上的点M 处,点C 落在点N处,MN 与CD 相交于点P ,连接EP.设n ADAM=,其中0<n ≤1. (1) 如图2,当1n =(即M 点与D 点重合),m =2时,则BEAE= ; (2)如图3,当12n =(M 为AD 的中点),m 的值发生变化时,求证:EP=AE+DP ; (3) 如图1,当2m =(AB=2AD ),n 的值发生变化时,BE CFAM-的值是否发生变化?说明理由.25.(本题满分12分)如图1,抛物线1C :22y ax bx =++与直线AB :1122y x =+交于x 轴上的一点A ,和另一点B(3,n). (1)求抛物线1C 的解析式;(2)点P 是抛物线1C 上的一个动点(点P 在A ,B 两点之间,但不包括A ,B 两点),PM ⊥AB 于点M ,PN ∥y 轴交AB 于点N ,在点P 的运动过程中,存在某一位置,使得△PMN 的周长最大,求此时P 点的坐标,并求△PMN 周长的最大值;(3)如图2,将抛物线1C 绕顶点旋转180°后,再作适当平移得到抛物线2C ,已知抛物线2C 的顶点E 在第四象限的抛物线1C 上,且抛物线2C 与抛物线1C 交于点D ,过D 点作x 轴的平行线交抛物线2C 于点F ,过E 点作x 轴的平行线交抛物线1C 于点G ,是否存在这样的抛物线2C ,使得四边形DFEG 为菱形?若存在,请求E 点的横坐标;2013年中考数学模拟试题参考答案一.选择题(共10小题,每小题3分,共30分) 1-5 A A B B D 6-10 C D D B D二、填空题(共6小题,每小题3分,共18分) 11、22 12、4.14×10513、29 14、32 15、32 16、3.6或1 三、解答下列各题(共9小题,共72分)17、x=10 18、x ≥-4 19、选①DF//BC.证明略 20、⑴P(A)=41(树形图略) ⑵实验四 21、⑴略,⑵①(3,-1)(-3,3)(3,1)② △A 1B 1C 1. .△A 3B 3C 3 x 轴22、⑴证:连接PD.∵DE 切⊙O 于D.∴PD ⊥DE.∴∠BDE+∠PDA=90°.∵∠C=90°. ∴∠B+∠A=90°.∵PD=PA . ∴∠PDA=∠A.∴∠B=∠BDE.∴BE=DE⑵连PE,设DE=BE=X,则EC=4-X.∵PA=PD=1,AC=3.∴PC=2.∵∠PDE=∠C=90° ∴ED 2+PD 2=EC 2+CP 2=PE 2.∴x 2+1=(4-x)2+22.解得x=819.∴BE=819 ⑶87≤BC<82523、⑴由题得:B(-1,-31)、C (1,-31)、D (2,-131).∴抛物线BOC 的解析式为y= -31x 2直线CD 的解析式为y=-x+32⑵由题意得:E (23,-31)、F (21,32).设此时抛物线解析式为y=a(x-21)2+32.将E (23,-31)代入,得-31=a+32.∴a=-1.∴此时抛物线解析式为y=-(x-21)2+32.令x=-41则y=-169+32=485,∴钓鱼线长为:232+485=24837(米). 24、⑴35⑵延长PM 交EA 延长线于G ,则△PDM ≌△GAM ,△EMP ≌△EMG.∴EP=EG=EA+AG=EA+DP. ⑶设AD=1,AB=2,过E 作EH ⊥CD 于H,∵∠EFP=∠FPN=∠MPD=∠EMA.∴△EFH ∽ΔEMA ∴AEAEEH AMFH AMCF BE 1===- ∵AE 的长度发生变化,∴AMCF BE -的值将发生变化.25、⑴由题意得:A(-1,0)、B(3,2)∴⎩⎨⎧=++=+-22392b a o b a 解得:⎪⎪⎩⎪⎪⎨⎧=-=2321b a ∴抛物线的解析式为y=-21x 2+23x+2⑵设AB 交y 轴于D ,则D (0,21),∴OA=1,OD=21,AD=25,∴AOD C △=253+,∵PN ∥y 轴, ∴∠PNM=∠CDN=∠ADO, ∴Rt △ADO ∽Rt △PNM.∴5AOD C PN PN C AD ==△PNM △.∴C △PNM =552×253+PN=5535+PN.∴当PN 取最大值时, C △PNM 取最大值. 设P(m, -21m 2+23m+2) N(m, 21m+21).则PN=-21m 2+23m+2-(21m+21)=-21m 2+m+23. ∵-1﹤m ﹤3. ∴当m=1时,PN 取最大值. ∴△PNM 周长的最大值为5535+×2=55610+.此时P(1,3). ⑶设E(n,t),由题意得:抛物线1C 为:y=-21(x-23)2+825,2C 为:y=21(x-n)2+t. ∵E 在抛物线1C 上,∴t=-21(n-23)2+825.∵四边形DFEG 为菱形. ∴DF=FE=EG=DG连ED,由抛物线的对称性可知,ED=EF.∴△DEG 与△DEF 均为正三角形.∴D 为抛物线1C 的顶点.∴D(23,825).∵DF ∥x 轴,且D 、F 关于直线x=n 对称.∴DF=2(n-23). ∵DEF 为正三角形.∴825-21325(n )228⎡⎤--+⎢⎥⎣⎦=23×2(n-23).解得:n=2343+. ∴t=-823.∴存在点E ,坐标为E(2343+,-823).。

2013年中考数学模拟试卷及答案

2013年中考数学模拟试卷及答案

2013年中考模拟考试数学试卷一、选择题(共10小题,每小题4分,满分40分)1.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N2.某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分別为:12,13,13,14,12,13,15,13,则他们年龄的众数为()A.12 B.13 C.14 D.153.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A. B. C.D.4.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6) B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6) D.(2,3),(﹣4,6)5. a4b﹣6a3b+9a2b分解因式得正确结果为()A.a2b(a2﹣6a+9)B.a2b(a﹣3)(a+3)C.b(a2﹣3)2 D.a2b(a﹣3)2 6.下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中符合用抽样调查的是()A.①②B.①③C.②④D.②③7. 2012年7月27日国际奥委会的会旗将在伦敦上空升起,会旗上的图案由五个圆环组成.如图,在这个图案中反映出的两圆的位置关系有()A.内切、相交 B.外离、内切 C.外切、外离 D.外离、相交8.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y9.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( ) A .B .C .D .10.已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c <0;④8a+c>0.其中正确的有( ) A .3个 B .2个 C .1个 D .0个二.填空题(共8小题,每题4分,共32分) 11.在函数21-=x y 中,自变量x 的取值范围是 . 12.如图,∠C=900,∠A=300,BD 平分∠ABC ,若AD=8, 则CD=_________.13.已知x+y=﹣5,xy=6,则x 2+y 2= _________ .14.小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为 _________ °.15.如图,直线y=﹣x+3与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 旋转90°后得到△AO′B′,则点B′的坐标是 _________ .第14题图 第15题图 16.已知(a ﹣)<0,若b=2﹣a ,则b 的取值范围是 _________ .BCDA(第12题)17.如果关于x 的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对(a ,b )共有 _________ 个.18.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+42,则图3中线段AB 的长为 .三、解答题(本题有8小题,共78分.解答需写出必要的文字说明、演算步骤或证明过程) 19.(6分)解方程:解方程:22121=--+-xxx . 20.(8分)如图,A 、B 两所学校在一条东西走向公路的同旁,以公路所在直线为x 轴建立如图所示的平面直角坐标系,且点A 的坐标是(2,2),点B 的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C ,使C 点到A 、B 两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P ,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P 的位置,并求出它的坐标. 21.(8分)在3×3的方格纸中,点A 、B 、C 、D 、E 、F 分别位于如图所示的小正方形的顶点上.(1)从A 、D 、E 、F 四个点中任意取一点,以所取的这一点及点B 、C 为顶点画三角形,则所画三角形是等腰三角形的概率是 ________ ;(2)从A 、D 、E 、F 四个点中先后任意取两个不同的点,以所取的这两点及点B 、C 为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解). 22.(10分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A ,在点A 的对岸选取一个参照点C ,测得∠CAD=30°;小丽沿岸向前走30m 选取点B ,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.BA(第18题: 图1 图2 图3)23.(10分)已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.24.(10分)如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.25.(12分)我州某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A 村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为y A元,y B元.(1)请填写下表,并求出y A,y B与x之间的函数关系式;C D 总计A x吨200吨B 300吨总计240吨260吨500吨(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.26.(14分)如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2.(1)求点D的坐标,并直接写出t的取值范围.(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF 的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S 的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?2013年中考模拟考试数学参考答案一、选择题(共10小题,每题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10答案 A B A A D B D D B B二.填空题(共8小题,每题4分,共32分)题号11 12 13 14 15 16 17 18 答案x≠2 4 13 144 (﹣1,﹣2)或(5,2)2﹣<b<2 6 √2+1三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)19. 解:原方程可化为:1-(1-x)=2(x-2) 2分去括号得:1-1+x=2x-4移项并项得:-x=4系数化为1得:x=4 4分经检验:x=4是原方程的根所以:原方程的解是x=4 6分20. 解:(1)存在满足条件的点C;作出图形,如图所示.(4分)(2)作点A关于x轴对称的点A′(2,﹣2),连接A′B,与x轴的交点即为所求的点P.(6分)设A′B所在直线的解析式为:y=kx+b,把(2,2)和(7,3)代入得:,解得:,∴y=x﹣4,当y=0时,x=4,所以交点P为(4,0).(8分)21. 解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P(所画三角形是等腰三角形)=;(2分)(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,(6分)∴所画的四边形是平行四边形的概率P==.(8分)22. 解:过点C作CE⊥AD于点E,由题意得,AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=30°,(2分)即可得AB=BC=30m,(4分)设BE=x,在Rt△BCE中,可得CE=x,又∵BC2=BE2+CE2,即900=x2+3x2,(6分)解得:x=15,即可得CE=15m.(8分)答:小丽自家门前的小河的宽度为15m.23.证明:①∵CN∥AB,∴∠DAC=∠NCA,(1分)在△AMD和△CMN中,∵,∴△AMD≌△CMN(ASA),(2分)∴AD=CN,(3分)又∵AD∥CN,∴四边形ADCN是平行四边形,(4分)∴CD=AN;(5分)②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,(6分)∴MD=MC,(7分)由①知四边形ADCN是平行四边形,∴MD=MN=MA=MC,(8分)∴AC=DN,(9分)∴四边形ADCN是矩形.(10分)24.(1)证明:过O点作OE⊥CD于点E,∵AM切⊙O于点A,∴OA⊥AD,(1分)又∵DO平分∠ADC,∴OE=OA,(2分)∵OA为⊙O的半径,∴OE是⊙O的半径,且OE⊥DC,(3分)∴CD是⊙O的切线.(4分)(2)解:过点D作DF⊥BC于点F,∵AM,BN分别切⊙O于点A,B,∴AB⊥AD,AB⊥BC,(5分)∴四边形ABFD是矩形,∴AD=BF,AB=DF,(6分)又∵AD=4,BC=9,∴FC=9﹣4=5,(7分)∵AM,BN,DC分别切⊙O于点A,B,E,∴DA=DE,CB=CE,(8分)∴DC=AD+BC=4+9=13,(9分)在Rt△DFC中,DC2=DF2+FC2,∴DF==12,∴AB=12,(10分)∴⊙O的半径R是6.25(1)填写如下:每空1分C D 总计A x吨(200﹣x)吨200吨B (240﹣x)吨(60+x)吨300吨总计240吨260吨500吨由题意得:y A=40x+45(200﹣x)=﹣5x+9000;y B=25(240﹣x)+32(60+x)=7x+7920;(2)对于y A=﹣5x+9000(0≤x≤200),∵k=﹣5<0,∴此一次函数为减函数,则当x=200吨时,y A最小,其最小值为﹣5×200+9000=8000(元)(3分)(3)设两村的运费之和为W,则W=y A+y B=﹣5x+9000+7x+7920=2x+16920(0≤x≤200),(8分)∵k=2>0,∴此一次函数为增函数,(10分)则当x=0时,W有最小值,W最小值为16920元.(11分)此时调运方案为:从A村运往C仓库0吨,运往D仓库为200吨,B村应往C仓库运240吨,运往D仓库60吨.(12分)26.(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在Rt△PCQ中,由勾股定理得:PC===4,∴OC=OP+PC=4+4=8,(2分)又∵矩形AOCD,A(0,4),∴D(8,4).点P到达终点所需时间为=4秒,点Q到达终点所需时间为=4秒,由题意可知,t的取值范围为:0<t<4.(4分)(2)结论:△AEF的面积S不变化.∵AOCD是矩形,∴AD∥OE,∴△AQD∽△EQC,(5分)∴,即,解得CE=.由翻折变换的性质可知:DF=DQ=4﹣t,则CF=CD+DF=8﹣t.(6分)S=S梯形AOCF+S△FCE﹣S△AOE=(OA+CF)•OC+CF•CE﹣OA•OE=[4+(8﹣t)]×8+(8﹣t)•﹣×4×(8+)(8分)化简得:S=32为定值.所以△AEF的面积S不变化,S=32.(9分)(3)若四边形APQF是梯形,因为AP与CF不平行,所以只有PQ∥AF.由PQ∥AF可得:△CPQ∽△DAF,(10分)∴,即,化简得t2﹣12t+16=0,(11分)解得:t1=6+2,t2=6﹣2,(13分)由(1)可知,0<t<4,∴t1=6+2不符合题意,舍去.∴当t=(6﹣2)秒时,四边形APQF是梯形.(14分)。

2013年数学中考模拟试题及参考答案

2013年数学中考模拟试题及参考答案

2013年数学中考模拟试题一、选择题:(本大题共12个小题,满分36分).1.方程x(x-2)+ x-2 = 0的解是()A.x=2 B.x=-2或1 C.x=-1 D.x=2或-12.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则CDOC的值为()A.21B.31C.22D.333.如图,⊙O的半径为2,弦AB=23,点C在弦AB上,AC=41AB,则OC的长为()A.2B.3C.332D.274.如果一个扇形的半径是1,弧长是3π,那么此扇形的圆心角的大小为()A.30° B.45° C.60° D.90°5.圆心距为2的两圆相切,其中一个圆的半径为1,则另一个圆的半径为()A.1 B.3 C.1或2 D.1或36.下列事件为必然事件的是()A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球7.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.-1<x<5 B.x<-1或x>5C.x<-1且x>5 D. x>58.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2-4ac与反比例函数y=xcba++在同一坐标系内的图象大致为()A.B.C.D.9.一个钢筋三角架三边长分别为20cm,50cm,60cm,现在要做一个和它相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中的一根为一边,从另一根上截两段(允许有余料)作为另两边,则不同的截法有()A.一种B.两种C.三种D.四种或四种以上10.如图,在△ABC中,EF∥BC,EBAE=21,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.1311.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为()A.(2,0) B.(23,23)C.(2,2)D.(2,2)12.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3 B.311C.310D.4二、填空题:(本大题共5小题,满分20分).13.关于x的两个方程x2-x-2=0与11+x=ax+2有一个解相同,则a= ________________14.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为____________15.如图,将等边△ABC沿BC方向平移得到△A1B1C1.若BC=3,S△PB1C= 3,则BB1=______________16.圆内接正n边形的每个内角都等于135°,则n=________17.如图,点A1、A2、A3、…、An在抛物线y=x2图象上,点B1、B2、B3、…、B n在y轴上,若△A1B0B1、△A2B1B2、…、△A n B n-1B n都为等腰直角三角形(点B0是坐标原点),则△A2013B2012B2013的腰长= _________________三、解答题:(本大题共7小题,共64分).18.(本题满分6分)计算:(-1)2013+(π-3)0+(21)1--2)21(-2题图3题图7题图8题图10题图11题图12题图数学试题第1 页共4 页数学试题 第 2 页 共 4 页19. (本题满分10分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC=∠D=60°. (1)求证:AE 是⊙O 的切线; (2)当BC=4时,求劣弧AC 的长20、(本题满分8分)某学校课程安排中,各班每天下午只安排三节课,初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率; .21.(本题满分10分)如图,二次函数y=ax 2-4x+c 的图象经过坐标原点,与x 轴交于点A (-4,0). (1)求二次函数的解析式;(2)在抛物线上存在点P ,满足S △AOP =8,请直接写出点P 的坐标.22.(本题满分10分)⌒ ⌒如图所示,在⊙O 中,AD= AC ,弦AB 与弦AC 交于点A ,弦CD 与AB 交于点F ,连接BC .(1)求证:AC 2=A B•AF ;(2)若⊙O 的半径长为2cm ,∠B=60°,求图中阴影部分面积.23.(本题满分8分)24. (本题满分12分)如图,一次函数122y x =-+分别交y 轴、x 轴于 A 、B 两点,抛物线2y x bx c =-++过A 、B 两点。

2013 年中考数学模拟试卷参考答案

2013 年中考数学模拟试卷参考答案

1 1 1 1 6( x 2) 2 x x(6 x) x 2 x 6 2 2 2 2 当 4 x 6 时,△EPQ 的面积等于梯形 ABPQ 的面积减去△AEQ 和△BEP 的面积 1 1 1 y 4( x 10 x) 2(10 x) 2 x 10 2 2 2 y
1 2
3 2
15. 4 3 3或4 3 3 三、解答题(本大题共 11 小题,共 88 分) 17(本题 6 分) 解:△= 62 4 7 8
16. 2 2 2或2 - 2 2
x1
6 8 6 8 3 2, x2 3 2 2 2
18(本题 9 分)
2013 年中考数学模拟试卷参考答案
一、选择题(每小题 2 分,共 12 分) 题号 答案 1 B 2 D 3 D 4 B 5 D 6 B
二、填空题(每小题 2 分,共 20 分) 7. 4 11.9.0 8.圆柱体(此题答案不唯一) 12.( 1,3 ) 9. 1或 1 13. 10. 6 14. m 1且m
4x 1 x 解不等式 3 4 x 6 x 6
得 3 x 1 满足条件的整数 a 的值为-2、-1、0、1 但由
a2 1 a 2 2a 1 1 知 a 1 a2 a a
a -1、0、1
所以满足条件的整数 a 的值只有-2
a2 1 a 2 2a 1 1 a 1 a2 a a (a 1) 2 1 (a 1)(a 1) a 1 a (a 1) a (a 1) 1 a 1 a (a 1) a 1 1 a 1 a a a 1 = 当a 2时,原式= 1
y1 950 250 x, y2 300( x 0.5)

2013年中考数学模拟试题和答案

2013年中考数学模拟试题和答案

数 学 试 卷(一)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分) 1.|65-|=( ) A .65+B .65-C .-65-D .56-2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形 3. 下面四个数中,最大的是( )A .35-B .sin88°C .tan46°D .215- 4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( ) A .4 B .5 C .6 D .10 5.二次函数y=(2x-1)2+2的顶点的坐标是( ) A .(1,2) B .(1,-2) C .(21,2) D .(-21,-2)6.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是( ) A .3场 B .4场 C .5场 D .6场 7. 如图,四边形ABCD 的对角线AC 和BD 相交于点E ,如果△CDE 的面积为3,△BCE 的面积为4,△AED 的面积为6,那么△ABE 的面积为( ) A .7 B .8 C .9 D .108. 如图,△ABC 内接于⊙O,AD 为⊙O 的直径,交BC 于点E ,若DE =2,OE =3,则tanC·tanB = ( )A .2B .3C .4D .5 二、填空题(每小题3分,共24分)9.写出一条经过第一、二、四象限,且过点(1-,3)的直线解析式 . 10.一元二次方程x2=5x的解为 .11. 凯恩数据是按照某一规律排列的一组数据,它的前五个数是:269,177,21,53,31,按照这样的规律,这个数列的第8项应该是 . 12.一个四边形中,它的最大的内角不能小于 . 13.二次函数x x y 2212+-=,当x 时,0<y ;且y 随x 的增大而减小.14. 如图,△ABC 中,BD 和CE 是两条高,如果∠A =45°,则BC DE= . 15.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为⊙O 的直径,则∠A +∠B +∠C =__________度. 16.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm. O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线y=ax2经过C 、D 两点,则图中阴影部分 的面积是 cm 2.三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.计算:01)32009(221245cos 4)21(8--⨯÷-︒-+-18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭19.已知:如图,梯形ABCD 中,A B ∥CD ,E 是BC 的中点,直线AE 交DC 的延长线于点F .(1)求证:△ABE ≌△FCE ; (2)若BC ⊥AB ,且BC =16,AB =17,求AF 的长.CA20.观察下面方程的解法x4-13x2+36=0解:原方程可化为(x2-4)(x2-9)=0∴(x+2)(x-2)(x+3)(x-3)=0∴x+2=0或x-2=0或x+3=0或x-3=0∴x1=2,x2=-2,x3=3,x4=-3你能否求出方程x2-3|x|+2=0的解?四、(每小题10分,共20分)21.(1)顺次连接菱形的四条边的中点,得到的四边形是.(2)顺次连接矩形的四条边的中点,得到的四边形是.(3)顺次连接正方形的四条边的中点,得到的四边形是.(4)小青说:顺次连接一个四边形的各边的中点,得到的一个四边形如果是正方形,那么原来的四边形一定是正方形,这句话对吗?请说明理由.22.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用右图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)23.(本题12分)某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?24.(本题12分)甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C 处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离(2)甲轮船后来的速度.25.(本题12分)如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似?(3) 当t 为何值时,△APQ 的面积为524个平方单位?26.(本题14分)如图,直线y= -x+3与x轴,y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴为直线x=2.(1)求A点的坐标;(2)求该抛物线的函数表达式;(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.2009年中考模拟题 数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D; 2.D ; 3.C ;4.C;5.C; 6.C ;7.B;8.C . 二、填空题(每小题3分,共24分)9.y=-x+2等; 10.x1=0,x2=5; 11.133; 12.90°; 13.227; 14.2115.90;16.π49三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.解:原式=222224222⨯⨯-⨯-+ -1 ...............4分 =822222--+ -1=-7 .............................6分18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭解:原式=)1(])1()1)(1(1[2-⨯--++x x x x ).............................4分 xx x x x x 211)1(]111[=++-=-⨯-++................................8分19.(1)证明: ∵E 为BC 的中点 ∴BE =CE ∵AB ∥CD∴∠BAE =∠F ∠B =∠FCE∴△ABE ≌△FCE .............................4分解:由(1)可得:△ABE≌△FCE∴CE=AB=15,CE=BE=8,AE=EF∵∠B=∠BCF=90°根据勾股定理得AE=17∴AF=34.............................8分20.解:原方程可化为|x|2-3|x|+2=0.............................3分∴(|x|-1)(|x|-2)=0∴|x|=1或|x|=2∴x=1,x=-1,x=2,x=-2 .............................10分四.(每小题10分,共20分)21.解:(1)矩形;(2)菱形,(3)正方形.............................6分(4)小青说的不正确如图,四边形ABCD中AC⊥BD,AC=BD,BO≠DO,E、F、G、H分别为AD、AB、BC、CD的中点显然四边形ABCD不是正方形但我们可以证明四边形ABCD是正方形(证明略)所以,小青的说法是错误的..............................10分22.解:(1)10分.............................2分(2)90分.............................4分(3)89分.............................6分(4)89×10%+90×30%+96×60%=93.5李刚的总评分应该是93.5分..............................10分23.小强和小亮的说法是错误的,小明的说法是正确的....................2分不妨设小明首先抽签,由树状图可知,共出现6种等可能的结果,其中小明、小亮、小强抽到A 签的情况都有两种,概率为31,同样,无论谁先抽签,他们三人抽到A 签的概率都是31.所以,小明的说法是正确的..............................12分24.解:(1)作BD ⊥AC 于点D由题意可知:AB =30×1=30,∠BAC =30°,∠BCA =45° 在Rt △ABD 中∵AB =30,∠BAC =30°∴BD =15,AD =ABcos30°=153 在Rt △BCD 中, ∵BD =15,∠BCD =45° ∴CD =15,BC =152 ∴AC =AD +CD =153+15即A 、C 间的距离为(153+15)海里.............................6分 (2)∵AC =153+15轮船乙从A 到C 的时间为1515315 =3+1由B 到C 的时间为3+1-1=3 ∵BC =152∴轮船甲从B 到C 的速度为3215=56(海里/小时)答:轮船甲从B到C的速度为56海里/小时..............................12分七、25.解:(1)老师说,三个同学中,只有一个同学的三句话都是错的,所以丙的第一句话和老师的话相矛盾,因此丙的第一句话是错的,同时也说明甲、乙两人中有一个人是全对的;............................2分(2)如果丙的第二句话是正确的,那么根据抛物线的对称性可知,此抛物线的对称轴是直线x=2,这样甲的第一句和乙的第一句就都错了,这样又和(1)中的判断相矛盾,所以乙的第二句话也是错的;根据老师的意见,丙的第三句也就是错的.也就是说,这条抛物线一定过点(-1,0);.............................6分(3)由甲乙的第一句话可以断定,抛物线的对称轴是直线x=1,抛物线经过(-1,0),那么抛物线与x轴的两个交点间的距离为4,所以乙的第三句话是错的;由上面的判断可知,此抛物线的顶点为(1,-8),且经过点(-1,0)设抛物线的解析式为:y=a(x-1)2-8∵抛物线过点(-1,0)∴0=a(-1-1)2-8解得:a=2∴抛物线的解析式为y=2(x-1)2-8即:y=2x2-4x-6.............................12分八、(本题14分)26.【探究】证明:过点F作GH∥AD,交AB于H,交DC的延长线于点G∵AH∥EF∥DG,AD∥GH∴四边形AHFE和四边形DEFG都是平行四边形∴FH=AE,FG=DE∵AE=DE∴FG=FH∵AB∥DG∴∠G=∠FHB,∠GCF=∠B∴△CFG≌△BFH2013年中考数学模拟试题和答案- 11 - / 11 ∴FC =FB .............................4分【知识应用】过点C 作CM ⊥x轴于点M ,过点A 作AN ⊥x轴于点N ,过点B 作BP ⊥x轴于点P则点P 的坐标为(x2,0),点N 的坐标为(x1,0)由探究的结论可知,MN =MP∴点M 的坐标为(221x x +,0) ∴点C 的横坐标为221x x + 同理可求点C 的纵坐标为221y y + ∴点C 的坐标为(221x x +,221y y +).............................8分 【知识拓展】 当AB 是平行四边形一条边,且点C 在x轴的正半轴时,AD 与BC 互相平分,设点C 的坐标为(a,0),点D 的坐标为(0,y)由上面的结论可知:-6+a=4+0,-1+0=5+b∴a=10,b=-6∴此时点C 的坐标为(10,0),点D 的坐标为(0,-6)同理,当AB 是平行四边形一条边,且点C 在x轴的负半轴时求得点C 的坐标为(-10,0),点D 的坐标为(0,6)当AB 是对角线时点C 的坐标为(-2,0),点D 的坐标为(0,4).............................14分。

2013年历年初三数学中考模拟题及答案

2013年历年初三数学中考模拟题及答案

2013届中考模拟试题数 学一、仔细选一选(本大题有10小题,每小题3分,共30分。

请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分) 1、下列一元二次方程中,没有实数根的是( )A.2210x x +-= B.2x +22x+2=0C.210x += D.220x x -++=2、如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到△A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( )A .120°B .90°C .60°D .30°3、在成都市二环路在某段时间内的车流量为30.6万辆,用科学记数法表示为() A .430.610⨯辆 B .33.0610⨯辆C .43.0610⨯辆D .53.0610⨯辆4、给出下列命题:(1)平行四边形的对角线互相平分; (2)对角线相等的四边形是矩形;(3)菱形的对角线互相垂直平分; (4)对角线互相垂直的四边形是菱形. 其中,真命题的个数是( )A.4 B.3 C.2 D.1 5、下列各函数中,y 随x 增大而增大的是( ) ①1y x =-+. ②3y x=-(x < 0) ③21y x =+. ④23y x =- A .①② B .②③ C .②④ D .①③ 6、在△ABC 中,90C ∠=o,若4BC =,2sin 3A =,则AC 的长是( )A.6B.C.D.7、若点A (-2,y 1)、B (-1,y 2)、C (1,y 3)在反比例函数xy 1-=的图像上,则( )_1_ A _1_ A(第13题图)A. y 1>y 2 >y 3 B.y 3> y 2 >y 1 C.y 2 >y 1 >y 3 D. y 1 >y 3> y 2 8、如图,EF 是圆O 的直径,5cm OE =,弦8cm MN =则E ,F 两点到直线MN 距离的和等于( ) A.12cm B.6cmC.8cm D.3cm9、若抛物线22y x x c =-+与y 轴的交点坐标为(0,3)-,则下列说法不正确的是( ) A.抛物线的开口向上 B.抛物线的对称轴是直线1x = C.当1x =时y 的最大值为4- D.抛物线与x 轴的交点坐标为(1,0)-、(3,0) 10、反比例函数k y x=的图象如左图所示,那么二次函数221y kx k x =--的图象大致为 ( )二、填空题:(每小题4分,共16分)11、2008年8月5日,奥运火炬在成都传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,65,80,70,95,100,则这组数据的中位数是 . 12、方程2(34)34x x -=-的根是 .A .B. C.D .(第8题图)13、如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .14、在Rt △ABC 中,90C ∠=o,D 为BC 上一点,30DAC ∠=o ,2BD =,AB =AC 的长是.三、(第15题每小题6分,第16题6分,共18分) 15、解答下列各题:(1)计算:323+—2)(-+2cos30°—23—(2)解方程:2430x x +-=.17、把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5、)洗匀后正面朝下放在桌面上。

2013年中考数学模拟试题及参考答案

2013年中考数学模拟试题及参考答案

2013年中考数学模拟考试数学试题一、选择题(本大题共有8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.-2的相反数是A.-2B.2C.-21 D.212.已知两圆的半径分别为6和4,圆心距为7,则两圆的位置关系是 A .相交B .内切C .外切D .内含3.下列计算中,正确的是( )A .42232a a a =+ B .()52322x x x -=-⋅ C .()53282a a -=- D .22326x x xm m=÷4.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是A .1个B . 2个C . 3个D . 4个 5.下列说法正确的是A .若甲组数据的方差20.01S =甲,乙组数据的方差20.1S =乙,则乙组数据比甲组数据稳定B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .一个游戏的中奖概率是110,则做10次这样的游戏一定会中奖 6.下面四个几何体中,左视图是四边形的几何体共有A. 1个B. 2个C. 3个D. 4个7.如图所示,在方格纸上建立的平面直角坐标系中,将△ABO 绕点O 按顺时针方向旋转90°,得A B O ''△ ,则点A '的坐标为A .(3,1)B .(3,2)C .(2,3)D .(1,3)y C 2C 1C y 24 3B8.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2011个正方形的面积为 ( ) A .201035()2⨯B .201195()4⨯ C . 200995()4⨯ D .402035()2⨯二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.去年冬季的某一天,学校一室内温度是8℃,室外温度是2-℃,则室内外温度相差 ▲ ℃.10.国家游泳中心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为 ▲ 平方米. 11.五边形的内角和为 ▲ 度.12.已知反比例函数的图象经过点A (6,-1),请你写出该函数的表达式 ▲ . 13.已知二元一次方程组⎩⎨⎧=-=-52832y x y x ,则y x -的值为 ▲ .14.不等式组30210x x -<⎧⎨-⎩≥的解集是 ▲ .15.在如图的甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段能构成三角形的概率为_____▲____.16.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °.17.已知圆锥的底面半径是3cm ,母线长为6cm ,则这个圆锥的侧面积为_ ▲ .cm 2.(结果保留π)B 题)yxO BCA (第18题)OAC(第16题)·(第15题)18.如图,A 、B 是双曲线 y = k x(k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= ▲ .三、解答题(本大题共有10小题,共74分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题6分)计算:(1)200821(1)()162---+; (2)2311()11x x x x--⋅-+. 20.(本题6分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下: 组 别 噪声声级分组 频 数 频 率 1 44.5——59.5 4 0.1 2 59.5——74.5 a 0.2 3 74.5——89.5 10 0.25 4 89.5——104.5 bc 5 104.5——119.56 0.15 合 计401.00根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b =________,c =_________; (2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?21.(本题6分)小晶和小红玩掷骰子游戏,每人将一个各面分别标有1,2,3,4,5,6的正方体骰子掷一次,把两人掷得的点数相加,并约定:点数之和等于6,小晶赢;点数之和等于7.小红赢;点数之和是其它数,两人不分胜负.问他们两人谁获胜的概率大?请你用“画树状图”或“列表”的方法加以分析说明.22.(本题6分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m ?23.(本题8分)如图,点E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE .(第24题)(第22题)蔬菜种植区域前 侧 空 地F EDCBA(第23题)(1)求证:△AFD ≌△CEB(2)四边形ABCD 是平行四边形吗?请说明理由.24.(本题8分)如图15,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50米.现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求缆绳AC 的长(结果精确到0.1m )(参考数据:2 1.41≈,3 1.73≈) 25.(本题8分)如图,A (-1,0)、B (2,-3)两点在二次函数y 1=ax 2+bx -3与一次函数y 2=-x +m 图像上。

2013年数学科中考模拟试题及答案

2013年数学科中考模拟试题及答案

…… 2013年数学科中考模拟试题(考试时间:100分钟 满分:120分)一、选择题(本大题10小题,每小题3分,共30分).1、下列四个数中,其相反数是正整数的是( ) A .3B .13C .2-D .12-2、湛江是个美丽的海滨城市,海岸线长达1556000米,数据1556000用科学记数法表示为( ) A .71.55610⨯ B .80.155610⨯ C .515.5610⨯ D .61.55610⨯3、若分式122--x x 的值为0,则x 的值为( ) A. 1B. -1C. ±1D.24、如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b > B .0k >,0b < C .0k <,0b > D .0k <,0b <5、对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小 6、有五只灯泡,其中两只是次品,从中任取一只恰为合格品的概率为( ) A 、20% B 、40% C 、50% D 、60%7、如图,AB//CD ,∠2是∠1的2倍,则∠1等于( )A 、 60°B 、90°C 、120°D 、30°8、如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是( )A 、 两个相交的圆B 、两个内切的圆C 、两个外切的圆D 、两个外离的圆9、若弧长为6π的弧所对的圆心角为60 0,则该弧所在的圆的半径为( ) A . 6 B .63 C .123 D .1810、如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个矩形的面积为 ( ).班级: 学号: 姓名: .......................................................答…….案……..不……..准……….超………出……..密……..封………线…………………………..21DC B A第7题图 第8题图A B C DE FA 、n 21 B 、n 21 C 、n 221 D 、2n 221- 二、填空题(本大题6小题,每小题4分,共24分).11、分解因式:3269x x x -+= .12、一件衬衣标价是132元,若以9折降价出售,仍可获利10%,则这件衬衣的进价是 元. 13、关于的一元二次方程有两个实数根,则的取值范围是 .14、抛物线3)1(22+-=x y 的开口向 , 对称轴是 的顶点坐标为 .15、如图,在□ABCD 中,E 为AD 的中点,△DEF 的面积为6,则△BCF 的面积为 。

2013年历年初三数学中考模拟试卷及答案

2013年历年初三数学中考模拟试卷及答案

2013年中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共计24分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号涂在答题卡相应位......置.上) 1.51-的绝对值是( ▲ ) A .-5 B .15 C .15- D . 52.下列图形是生活中常见的道路标识,其中不是..轴对称图形的是( ▲ )A .B .C .D .3.下列运算正确的是( ▲ )A .22a a a =+B .4226)3(a a =C .49)23)(23(2-=-+-a a aD .ab ba ab 2=+4.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的主视图是( ▲ )A .两个外离的圆B .两个相交的圆C .两个外切的圆D .两个内切的圆5. 将不等式组x 1x 3≥⎧⎨≤⎩的解集在数轴上表示出来,正确的是( ▲ ) A. B.C. D.6.下列说法中正确的是( ▲ )A .“打开电视,正在播放《新闻联播》”是必然事件B .想了解某种饮料中含色素的情况,宜采用抽样调查C .数据1,1,2,2,3的众数是3D .一组数据的波动越大,方差越小7. 若直线y 3x m =+经过第一、三、四象限,则抛物线2y (x m)1=-+的顶点必在 ( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限8. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( ▲ )二、填空题(本大题共有10小题,每小题3分,共计30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 4的算术平方根为 ▲ .10.若代数式21-+x x 的值为零,则x = ▲ . 11.分解因式:y xy -= ▲ . 12.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m , 其最小直径用科学计数法表示约为 ▲ m .13.如图,过CDF ∠的一边DC 上的点E 作直线AB ∥DF ,若110AEC ∠=o,则CDF ∠的度数为 ▲ o .14. 已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是 ▲ .15.如图,AB 是⊙O 的直径,圆心O 到弦BC 的距离是1,则AC 的长是 ▲ .第13题 第15题 第18题16. 某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ▲ .17.将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面,则所得圆锥的高为 ▲ cm .18. 如图所示,点1A 、2A 、3A 在x 轴上,且11223OA A A A A ==,分别过点1A 、2A 、3A 作y 轴的平行线,与反比例函数()80y x x=>的图象分别交于点1B 、2B 、3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为 ▲ .三、解答题(本大题共有10小题,共计96分.请在答题卡指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤)19. (本题满分8分)(1)计算:()10230sin 3-︒-+-π;(2)化简:2242(1)44a a a a-÷-++.20.(本题满分8分)某班从2名男生和2名女生中随机抽取学生参加学校举行的“我的中国梦”演讲比赛,求下列事件的概率:(1)抽取1名,恰好是男生;(2)抽取2名,恰好是1名女生和1名男生.21(本题满分8分)小敏为了解我市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.如图,点E ,F 在平行四边形ABCD 的对角线AC上,AE =CF .(1)证明:ABE ∆≌CDF ∆;(2)猜想:BE 与DF 平行吗?对你的猜想加以证明.23.(本题满分10分)如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一不明国籍的渔船C ,求此时渔船C 与海监船B 的距离是多少.(结果保留根号)24.(本题满分10分)如图, Rt ABC △中,90ABC ∠=°,以AB 为直径作半圆⊙O 交AC于点D ,点E 为BC 的中点,连结DE .(1)求证:DE 是半圆⊙O 的切线;(2)若︒=∠30BAC ,DE =2,求AD 的长.A B C D E F·先锋岛大润发超市进了一批成本为8元/个的文具盒. 调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?26.(本题满分10分)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O 作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为▲时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到一个新抛物线,试判断新抛物线经过平移变换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.定义:如图1,射线OP 与原点为圆心,半径为1的圆交于点P ,记xOP α∠=,则点P 的横坐标叫做角α的余弦值,记作cos α;点P 的纵坐标叫做角α的正弦值,记作sin α;纵坐标与横坐标的比值叫做角α的正切值,记作tan α.如:当ο45=α时, 点P 的横坐标为ο45cos =22, 纵坐标为ο45sin=22,即P (22,22). 又如:在图2中,α-=∠ο90xOQ (α为锐角), PN ⊥y 轴,QM ⊥x 轴,易证OPN OQM ∆≅∆, 则Q 点的纵坐标)90sin(α-ο等于点P 的横坐标cos α,得)90sin(α-ο= cos α. 解决以下四个问题:(1)当60α=o 时,求点P 的坐标;(2)当α是锐角时,则cos α+sin α ▲ 1(用>或<填空),(sin α)2 + (cos α)2= ▲ ;(3)求证:sin(90)cos αα+=o (α为锐角);(4)求证:1cos tan2sin ααα-=(α为锐角).图1 图2已知,把Rt△ABC和Rt△DEF按图1摆放(点C与E重合),点B,C,E,F始终在同一条直线上,∠ACB=∠EDF=90°,DE=DF,AC=8,BC=6,EF=10.如图2,△DEF从图1位置出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从点A出发,沿AB以每秒1个单位的速度向点B匀速运动,AC与△DEF 的直角边相交于点Q,当E到达终点B时,△DEF与点P同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)当D在AC上时,求t的值;(2)在P点运动过程中,是否存在点P,使△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)连接PE,设四边形APEQ的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围.参考答案1-8 BBDC ABBC9.2 10.-1 11.y(x-1) 12.8×10-8 13.70 14.-1 15.216.204205.0420=--xx 17.24 18.949 19.(1) 1 ; (2)2+a a 20.(1)21; (2)32 21.(1)50; (2)57.6度 (3)29222.(1)证明略; (2)平行,证明略23.21024.(1)证明略;(2)6 25.(1)y=-10x+300 ; (2)设超市每星期销售这种文具可获得利润为w 元,w=y(x-8)=-10(x-19)2+1210, 当x=19时,最高利润为1210元26.(1)-1;(2)①B (2,4)②过点C 作CG ⊥FB 的延长线于点G ,∵∠AOE+∠EAO=90°,∠FBO+∠CBG=90°,∠AOE=∠FBO ,∴∠EAO=∠CBG ,在△AEO 和△BGC 中,,∴△AEO ≌△BGC (AAS ), ∴CG=OE=,BG=AE=.∴x c =2﹣=,y c =4+=,∴点C (,), 设过A (﹣,)、B (2,4)两点的抛物线解析式为y=﹣x 2+bx+c ,由题意得,,解得,∴经过A 、B 两点的抛物线解析式为y=﹣x 2+3x+2,当x=时,y=﹣()2+3×+2=,所以点C 也在此抛物线上,故经过A 、B 、C 三点的抛物线解析式为y=﹣x 2+3x+2=﹣(x ﹣)2+. 平移方案:先将抛物线y=﹣x 2向右平移个单位,再向上平移个单位得到抛物线y=﹣(x。

2013年中考数学模拟试卷及答案

2013年中考数学模拟试卷及答案

2013年中考数学模拟试卷及答案 (总分150分,时间120分钟)一、选择题(本大题共有8小题,每小题3分,共24分)1.51-的相反数是( ) A . 51 B . 51- C . 5 D .5-2.有理数a 、b 在数轴上的位置如图所示,则b a +的值 ( )A .大于0B .小于0C .小于aD .大于b 3.下列运算中正确的是 ( ) A .2325a a a += B .22(2)(2)4a b a b a b +-=- C .23622a a a ⋅= D .222(2)4a b a b +=+4. 两个相似三角形的面积比是9:16,则这两个三角形的相似比是 ( )A .9:16B . 3:4C .9:4D .3:165.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30°6.如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是 ( ) A .32 cm B .3cm C .332 cm D .1cm7.如图是某几何体的三视图及相关数据,则该几何体的侧面积是 ( )A .πab 21 B .πac 21C .πabD .πac 8.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是 ( )A .38B .52C .66D .74 二、填空题(本大题共有10小题,每小题3分,共30分) 0 2 8 4 2 4 6 22 4 6 844 m 6 b主视图 c 左视图 俯视图 a a 0 b10.使2-x 有意义的x 的取值范围是 .11.自上海世博会开幕以来,中国馆以其独特的造型吸引 了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是 . 12.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元.下列所列方程中正确的是13.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图所示.根据图中的信息,小张和小李两人中成绩较稳定的是 .14.若22=-b a ,则b a 486-+= .15.从1-9这九年自然数中任取一个,是2的倍数的概率是 . 16.如图,AB 是⊙O 的直径,CD 是弦,DAB ∠=48︒,则ACD ∠= ︒. 17.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB =33,则下底BC 的长为 __________.18.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为三、解答题(本大题共有10小题,共96分) 19.(本题满分8分)计算:(1)计算:(-1)2012-| -7 |+ 9 ×( 5 -π)0+( 1 5)-160°30°DC B A(2)化简:aa a a a -+-÷--2244)111(20.(本题满分8分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间 1小时的扇形圆心角的度数; (4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少.21.(本题满分8分)有三张背面完全相同的卡片,它们的正面分别写上2、3、12,把它们的背面朝上洗匀后;小丽先从中抽取一张,然后小明从余下..的卡片中再抽取一张.(1)直接写出小丽取出的卡片恰好是3的概率;(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请用画树状图或列表法进行分析说明.22.(本题满分8分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案? 并直接写出其中获利最大的购货方案.D CB AO E 23.(本题满分10分)如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.24.(本题满分10分)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)第25题 F EC B AB'C'25.(本题满分10分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为x =1,且抛物线经过A (—1,0)、C (0,—3)两点,与x 轴交于另一点B . (1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90°的点P 的坐标.26.(本题满分10分)如图,Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC ' 交斜边于点E ,CC ' 的延长线交BB ' 于点F .(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.27.(本题满分12分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图象(线段AB表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)28.(本题满分12分)已知⊙O 1的半径为R ,周长为C .(1)在⊙O 1内任意作三条弦,其长分别是1l 、2l 、3l .求证:1l +2l +3l < C ; (2)如图,在直角坐标系x O y 中,设⊙O 1的圆心为O 1)(R R ,.①当直线l :)0(>+=b b x y 与⊙O 1相切时,求b 的值; ②当反比例函数)0(>=k xky参考答案一、选择题1. D 2.A 3. B 4. B 5. C 6. A 7. B 8.D 二、填空题9.-8 10.x ≥2 11.71049.1⨯. 12.128)% 1(1682=-a 13.小张 14.14 15.9416.42 17.10 18.32 三、解答题19.(1)原式=1-7+3+5=2.(2).解:()()22211442(1)1122a a a a a aa a a a a a --+--÷=⋅=----- 20.(1)调查人数=10÷ 20%=50(人);(2)户外活动时间为1.5小时的人数=50⨯24%=12(人); (3)表示户外活动时间1小时的扇形圆心角的度数=5020⨯360 o =144 o ; (4)户外活动的平均时间=18.150285.1121205.010=⨯+⨯+⨯+⨯(小时). ∵1.18>1 ,∴平均活动时间符合上级要求; 户外活动时间的众数和中位数均为1.21.(1)小丽取出的卡片恰好是3的概率为31(2)画树状图:∴共有6种等可能结果,其中积是有理数的有2种、不是有理数的有4种∴3162(==小丽获胜)P ,3264==(小明获胜)P ∴这个游戏不公平,对小明有利22.(1)设甲种商品应购进x 件,乙种商品应购进y 件.根据题意,得 1605101100.x y x y +=⎧⎨+= 解得:10060.x y =⎧⎨=答:甲种商品购进100件,乙种商品购进60件. (2)设甲种商品购进a 件,则乙种商品购进(160-a )件.根据题意,得1535(160)4300510(160)1260.a a a a +-<⎧⎨+->⎩解不等式组,得 65<a <68 . ∵a 为非负整数,∴a 取66,67. ∴ 160-a 相应取94,93.答:有两种构货方案,方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.23.解:(1)四边形OCED 是菱形.∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形, 又 在矩形ABCD 中,OC =OD ,∴四边形OCED 是菱形. (2)连结OE .由菱形OCED 得:CD ⊥OE , ∴OE ∥BC 又 CE ∥BD ∴四边形BCEO 是平行四边形 ∴OE =BC =8∴S 四边形OCED =11862422OE CD ⋅=⨯⨯= 24.解:设CD = x .在Rt △ACD 中,tan37AD CD ︒=,则34AD x =,∴34AD x =. 在Rt △BCD 中,tan 48° =BD CD ,则1110BD x =,∴1110BD x =.∵AD +BD = AB ,∴31180410x x +=.解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. 25.⑴设抛物线的解析式为y =ax 2+bx +c ,则有:⎪⎪⎩⎪⎪⎨⎧=--==+-1230ab c c b a 解得:⎪⎩⎪⎨⎧-=-==321c b a ,所以抛物线的解析式为y =x 2-2x -3. ⑵令x 2-2x -3=0,解得x 1=-1,x 2=3,所以B 点坐标为(3,0). 设直线BC 的解析式为y =kx +b, 则⎩⎨⎧-==+303b b k ,解得⎩⎨⎧-==31b k ,所以直线解析式是y =x -3.当x =1时,y =-2.所以M 点的坐标为(1,-2). ⑶方法一:要使∠PBC =90°,则直线PC 过点C ,且与BC 垂直, 又直线BC 的解析式为y =x -3,所以直线PC 的解析式为y =-x -3,当x =1时,y =-4, 所以P 点坐标为(1,-4). 方法二:设P 点坐标为(1,y ),则PC 2=12+(-3-y )2,BC 2=32+32;PB 2=22+y 2 由∠PBC =90°可知△PBC 是直角三角形,且PB 为斜边,则有PC 2+BC 2=PB 2.所以P 点坐标为(1,-4).26.(1)证明:∵Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,∴AC =AC ',AB =AB ',∠CAB =∠C 'AB ' ∴∠CAC '=∠BAB '∴∠ACC '=∠ABB ' 又∠AEC =∠FEB ∴△ACE ∽△FBE(2)解:当2βα=时,△ACE ≌△FBE . 在△ACC '中,∵AC =AC ',∴180'180'9022CAC ACC βα︒-∠︒-∠===︒- 在Rt △ABC 中,∠ACC '+∠BCE =90°,即9090BCE α︒-+∠=︒,∴∠BCE =α ∵∠ABC =α, ∴∠ABC =∠BCE ∴CE =BE由(1)知:△ACE ∽△FBE ,∴△ACE ≌△FBE . 27.(1)设乙车所行路程y 与时间x 的函数关系式为11y k x b =+,把(2,0)和(10,480)代入,得11112010480k b k b +=⎧⎨+=⎩,解得1160120k b =⎧⎨=-⎩,y ∴与x 的函数关系式为60120y x =-.(2)由图可得,交点F 表示第二次相遇,F 点横坐标为6,此时606120240y =⨯-=,F ∴点坐标为(6,240), ∴两车在途中第二次相遇时,距出发地的路程为240千米.(3)设线段BC 对应的函数关系式为22y k x b =+,把(6,240)、(8,480)代入,得 222262408480k b k b +=⎧⎨+=⎩,解得22120480k b =⎧⎨=-⎩,∴y 与x 的函数关系式为120480y x =-.∴当 4.5x =时,120 4.548060y =⨯-=.∴点B 的纵坐标为60, AB Q 表示因故停车检修,∴交点P 的纵坐标为60.把60y =代入60120y x =-中,有6060120x =-,解得3x =, ∴交点P 的坐标为(3,60).Q 交点P 表示第一次相遇,∴乙车出发321-=小时,两车在途中第一次相遇.28.(1)证明:R l 21≤Θ,R l 22≤,R l 23≤.1l ∴+2l +3l C R R =⨯<⨯≤223π,因此,1l +2l +3l < C .(2)①如图,根据题意可知⊙O 1与与x 轴、y 轴分别相切,设直线l 与⊙O 1相切于点M ,则O 1M ⊥l ,过点O 1作直线NH ⊥x 轴,与l 交于点N ,与x 轴交于点H ,又∵直线l 与x 轴、y 轴分别交于点E (b -,0)、F (0,b∴OE =OF =b ,∴∠NEO =45o ,∴∠ENO 1=45o , 在Rt △O 1MN 中,O 1N =O 1M ÷sin 45o =R 2,∴点N 的坐标为N (R ,R R +2),把点N 坐标代入b x y +=得:b R R R +=+2,解得:R b 2=,②如图,设经过点O 、O 1的直线交⊙O 1于点A 、D ,则由已知,直线OO 1:x y =是圆与反比例函数图象的对称轴,当反比例函数xk y =的图象与⊙O 1直径AD 相交时(点A 、D 除外), 则反比例函数xk y =的图象与⊙O 1有两个交点. 过点A 作AB ⊥x 轴交x 轴于点B ,过O 1作O 1C ⊥x 轴于点C ,OO 1=O 1C ÷sin 45o =R 2,OA =R R +2,所以OB =AB =⋅OA sin 45o ==⋅+22)2(R R R R 22+, 因此点A 的坐标是A )22,22(R R R R ++,将点A 的坐标 代入k y =,解得:2)223(R k +=. 同理可求得点D 的坐标为D )22,22(R R R R --, 将点D 的坐标代入xk y =,解得: 2)223(R k -= 所以当反比例函数)0(>=k xk y 的图象与⊙O 1有两个交点时,k 的取值范围是:22)223()223(R k R +<<-。

2013年中考数学模拟考试试卷有答案

2013年中考数学模拟考试试卷有答案

2013年中考数学模拟考试试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣的倒数是()A.﹣2 B.2C.D.﹣2.如图是由六个棱长为1的正方体组成的一个几何体,其主视图的面积是()A.3B.4C.5D.63.下列图形中,不是中心对称图形的是()A.平行四边形B.矩形C.菱形D.等边三角形4.如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是()A.∠B=48°B.∠AED=66°C.∠A=84°D.∠B+∠C=96°5.以下事件中,必然发生的是()A.打开电视机,正在播放体育节目B.正五边形的外角和为180°C.通常情况下,水加热到100℃沸腾D.掷一次骰子,向上一面是5点6.(4分)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.A D=AB B.∠BOC=2∠D C.∠D+∠BOC=90°D.∠D=∠B7.今年6月某日南平市各区县的最高气温(℃)如下表:区县延平建瓯建阳武夷山浦城松溪政和顺昌邵武光泽气温(℃) 33 32 32 30 30 29 29 31 30 28则这10个区县该日最高气温的众数和中位数分别是()A.32,32 B.32,30 C.30,30 D.30,328.关于x的一元二次方程x2﹣2x+2+m2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定9.给定一列按规律排列的数:,则这列数的第6个数是()A.B.C.D.10.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B.C.D.二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.(3分)计算:=.12.(3分)甲、乙、丙、丁四位同学在5次数学测验中,他们成绩的平均数相同,方差分别为,,,,则成绩最稳定的同学是.13.(3分)写出一个第二象限内的点的坐标:(,).14.(3分)分解因式:3a2+6a+3=.15.(3分)计算:(a2b)3=.16.(3分)长度分别为3cm,4cm,5cm,9cm的四条线段,任取其中三条能组成三角形的概率是.17.(3分)分式方程的解是.18.(3分)设点P是△ABC内任意一点.现给出如下结论:①过点P至少存在一条直线将△ABC分成周长相等的两部分;②过点P至少存在一条直线将△ABC分成面积相等的两部分;③过点P至多存在一条直线将△ABC分成面积相等的两部分;④△ABC内存在点Q,过点Q有两条直线将其平分成面积相等的四个部分.其中结论正确的是.(写出所有正确结论的序号)三、解答题(本大题共8小题,共86分.请在答题卡的相应位置作答)19.(14分)(1)计算:.(2)化简:.20.(8分)解不等式组:.21.(8分)如图,在▱ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.22.(10分)初中生在数学运算中使用计算器的现象越来越普遍,某校一兴趣小组随机抽查了本校若干名学生使用计算器的情况.以下是根据抽查结果绘制出的不完整的条形统计图和扇形统计图:请根据上述统计图提供的信息,完成下列问题:(1)这次抽查的样本容量是;(2)请补全上述条形统计图和扇形统计图;(3)若从这次接受调查的学生中,随机抽查一名学生恰好是“不常用”计算器的概率是多少?23.(10分)某校为了实施“大课间”活动,计划购买篮球、排球共60个,跳绳120根.已知一个篮球70元,一个排球50元,一根跳绳10元.设购买篮球x个,购买篮球、排球和跳绳的总费用为y元.(1)求y与x之间的函数关系式;(2)若购买上述体育用品的总费用为4 700元,问篮球、排球各买多少个?24.(10分)2013年6月11日,“神舟”十号载人航天飞船发射成功!如图,飞船完成变轨后,就在离地球(⊙O)表面约350km的圆形轨道上运行.当飞船运行到某地(P点)的正上方(F点)时,从飞船上能看到地球表面最远的点Q(FQ是⊙O的切线).已知地球的半径约为6 400km.求:(1)∠QFO的度数;(结果精确到0.01°)(2)地面上P,Q两点间的距离(PQ的长).(π取3.142,结果保留整数)25.(12分)在矩形ABCD中,点E在BC边上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、FG、GB.设=k.(1)证明:△BGF是等腰三角形;(2)当k为何值时,△BGF是等边三角形?(3)我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.事实上,在一个三角形中,较大的边所对的角也较大;反之也成立.利用上述结论,探究:当△BGF分别为锐角、直角、钝角三角形时,k的取值范围.26.(14分)如图,已知点A(0,4),B(2,0).(1)求直线AB的函数解析式;(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+n与线段OA交于点C.①求线段AC的长;(用含m的式子表示)②是否存在某一时刻,使得△ACM与△AMO相似?若存在,求出此时m的值.参考答案一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.A2.B3.D4.B5.C6.B7.C8.C9.A10.D二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.3.12.丁.13.(﹣1,1).14.3(a+1)2.15.a6b3.16.(或0.25).17.x=9.18.①②④.三、解答题(本大题共8小题,共86分.请在答题卡的相应位置作答)19.解:(1)原式=4×5+(π﹣1)﹣3=20+π﹣1﹣3=16+π;(2)原式=+﹣===.20.解:∵由①得:2x<5,,由②得:,,x>﹣3,∴不等式组的解集为.21.证明:在□ABCD中,AD=BC且AD∥BC∵BE=FD,∴AF=CE∴四边形AECF是平行四边形22.解:(1)100÷62.5%=160.即这次抽查的样本容量是160.故答案为160;(2)不常用计算器的人数为:160﹣100﹣20=40;不常用计算器的百分比为:40÷160=25%,不用计算器的百分比为:20÷160=12.5%.条形统计图和扇形统计图补全如下:(3)∵“不常用”计算器的学生数为40,抽查的学生人数为160,∴从这次接受调查的学生中,随机抽查一名学生恰好是“不常用”计算器的概率是:.答:从这次接受调查的学生中,随机抽查一名学生恰好是“不常用”的概率是.23.解:(1)依题意,得y=70x+50(60﹣x)+10×120=20x+4200;(2)当y=4700时,4700=20x+4200(7分)解得:x=25∴排球购买:60﹣25=35(个)答:篮球购买25个、排球购买35个.24.解:(1)∵FQ是⊙O的切线,∴OQ⊥FQ,∴∠OQF=90°,∴在Rt△OQF中,OQ=6400,OF=OP+PF=6400+350=6750,∴sin∠QFO=\frac{OQ}{FQ}=≈0.9481,∴∠QFO≈71.46°;答:∠QFO的度数约为71.46°;(2)∵∠QFO=71.46°,∴∠FOQ=90°﹣71.46°=18.14°,∴{PQ}的长=≈2071,答:地面上PP、Q两点间的距离约为2 071 km.25.解:(1)证明:∵EF⊥AC于点F,∴∠AFE=90°∵在Rt△AEF中,G为斜边AE的中点,∴,在Rt△ABE中,同理可得,∴GF=GB,∴△BGF为等腰三角形;(2)当△BGF为等边三角形时,∠BGF=60°∵GF=GB=AG,∴∠BGE=2∠BAE,∠FGE=2∠CAE∴∠BGF=2∠BAC,∴∠BAC=30°,∴∠ACB=60°,∴,∴当k=时,△BGF为等边三角形;(3)由(1)得△BGF为等腰三角形,由(2)得∠BAC=∠BGF,∴当△BGF为锐角三角形时,∠BGF<90°,∴∠BAC<45°,∴AB>BC,∴k=>1;当△BGF为直角三角形时,∠BGF=90°,∴∠BAC=45°∴AB=BC,∴k==1;当△BGF为钝角三角形时,∠BGF>90°,∴∠BAC>45°∴AB<BC,∴k=<1;∴0<k<1.26.解:(1)设直线AB的函数解析式为:y=kx+b.∵点A坐标为(0,4),点B坐标为(2,0),∴,解得:,即直线AB的函数解析式为y=﹣2x+4;(2)①∵以M为顶点的抛物线为y=(x﹣m)2+n,∴抛物线顶点M的坐标为(m,n).∵点M在线段AB上,∴n=﹣2m+4,∴y=(x﹣m)2﹣2m+4.把x=0代入y=(x﹣m)2﹣2m+4,得y=m2﹣2m+4,即C点坐标为(0,m2﹣2m+4),∴AC=OA﹣OC=4﹣(m2﹣2m+4)=﹣m2+2m;②存在某一时刻,能够使得△ACM与△AMO相似.理由如下:过点M作MD⊥y轴于点D,则D点坐标为(0,﹣2m+4),∴AD=OA﹣OD=4﹣(﹣2m+4)=2m.∵M不与点A、B重合,∴0<m<2,又∵MD=m,∴AM==m.∵在△ACM与△AMO中,∠CAM=∠MAO,∠MCA>∠AOM,∴当△ACM与△AMO相似时,假设△ACM∽△AMO,∴,即,整理,得9m2﹣8m=0,解得m=或m=0(舍去),∴存在一时刻使得△ACM与△AMO相似,且此时m=.。

2013年中考模拟试卷(数学)(含答案)1

2013年中考模拟试卷(数学)(含答案)1

2013年中考模拟试卷数学一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上. 1.-5的绝对值是【▲】A .5B .5C .15D .152.计算23x x -⋅的结果是【▲】A .5x B .5x - C .6x D .6x - 3.一个扇形的圆心角为120°,半径为15㎝,则它的弧长为【▲】 A .5π㎝B .10π㎝C .15π㎝D .20π㎝4.如图,△ABC 是等边三角形,D 为AC 的中点,DE ⊥AB ,垂足为E .则图中和△AED 相似的三角形(不包含△AED ) 有【▲】 A .1个 B .2个 C .3个 D .4个 5.不等式组312840x x ->⎧⎨-,≤的解集在数轴上表示为【▲】6.有一组数据如下:3、a 、4、6、7,它们的平均数是5,那么这组数据的方差是【▲】 A .10B .10C .2D .27.从A 、B 、C 、D 四人中用抽签的方式,选取二人打扫卫生,那么能选中A 、B 的概率为【▲】A .14 B .112C .12D .16 8.在平面直角坐标系中,平行四边形OABC 的顶点为O (0,0)、A (1,2)、B (4,0),则顶点C 的坐标是【▲】A .(-3,2)B .(5,2)C .(-4,2)D .(3,-2) 9.已知关于x 的一次函数y=mx+2m-7在15x -≤≤上的函数值总是正的,则m 的取值范围是【▲】A .7m >B .1m >C .17m ≤≤D .以上都不对第3题A .B .C .D .10.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图象上.若点A 的坐标为(-2,-2),则k 的值为【▲】 A .1B .-3C .4D .1或-3二、填空题:本大题共8小题,每小题3分,共24分.不需 写出解答过程,请把答案直接填写在答题卡相应位置.......上. 11.某市计划2013年新增林地面积253000亩,用科学 记数法表示为 ▲ 亩.12.如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点, 两条直角边分别与CD 交于点F ,与CB 延长线交 于点E .则四边形AECF 的面积是 ▲ . 13.如果关于x 的方程032=+-k kx x 有两个相等的实数根,那么k 的值为 ▲ .14.将点M 向左平移3个单位,再向下平移2个单位得到M ′(—2,—3),则点M 的坐标是 ▲ . 15.如图,正方形ABCD 各顶点均在正方形EFGH 的各边上(GB <BF ),且两正方形面积分别为25和 49,则tan ∠ABF= ▲ .16.如图,是二次函数2y ax bx c =++图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为 A (3,0),则由图象可知,不等式2ax bx c ++<0 的解集是 ▲ . 17.如图,∠BAC =45°,AB =6,当BC 的长度x 满足 ▲ 时,△ABC 惟一确定. 18.如图,直线AB 经过圆O 的圆心,与圆O 交于A 、B 两点,点C 在圆O 上,且∠AOC =300,点P 是 直线AB 上的一个动点(与点O 不重合),直线 PC 与圆O 相交于点Q .如果QP =QO ,则∠OCP 的度数是 ▲ .三、解答题:本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.(第10题)(第18题)(第16题)AF BG CH DE(第15题)A CB45°(第17题)19.(本小题满分10分) (1)计算:201001(3)2sin 3016π-+--+;(2)计算:2211xyx y x y x y⎛⎫+÷⎪-+-⎝⎭. 20.(本小题满分6分)解方程:2111=-+-xx x . 21.(本小题满分8分)如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是圆的切线;(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =32,tan ∠AEC =35,求圆的直径.22.(本小题满分8分)“一方有难,八方支援”.雅安地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援雅安.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果; (2)求恰好选中甲医生和护士A 的概率. 23.(本小题满分8分)已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若12121x x x x +=-,求k 的值.24.(本小题满分10分)为迎接“五一”节的到来,某食品连锁店对某种商品进行了跟踪的函数关系是一次函数:(1)求y 与x 之间的函数解析式;(2)若该种商品成本价是15元/千克,为使“五一”节这天该商品的销售总利润是200元,那么这一天每千克的销售价应定为多少元?(第21题)25.(本小题满分10分)随着科学发展观的深入贯彻落实和环境保护、节能减排以及生态文明建设的全面推进,公众环境意识有了普遍提高.3月的某一天,小明和小刚在本市的A 、B 、C 三个小区,对“低碳生活、节能减排”的态度,进行了一次随机调查.结果如下面的图表:(1)请将图表..补充完整; (2)此次共调查了多少人?(3)用你所学过的统计知识来说明哪个小区的调查结果更能反映老百姓的态度?并请写出一句关于倡导“节能减排”的宣传语. 26.(本小题满分10分)已知二次函数12+++=c bx x y 的图象过点P (2,1). (1)求证:42--=b c ; (2)求bc 的最大值;(3)若二次函数的图象与x 轴交于点A (x 1,0),B (x 2,0),△ABP的面积是34,求b 的值.27.(本小题满分12分)如图,已知在Rt △ABC 中,∠BAC =90°,AB =4,点D 在边AC上,△ABD 沿BD 翻折,点A 与BC 边上的点E 重合,过点B 作BG ∥AC 交AE 的延长线于点G ,交DE 的延长线于点F . (1)当∠ABC =60°时,求CD 的长;(2)如果AC=x ,AD=y ,求y 关于x 的函数解析式,并写出x 的取值范围; (3)连接CG ,如果∠ACB=∠CGB ,求AC 的长.EA D GFBC (第27题)A 、B 、C 三个小区共计28.(本小题满分14分)如图,在平面直角坐标系中,四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O 一C一B相交于点M.当Q、M两点相遇时,P、Q两点停止运动,设点P、Q运动的时间为t秒(t>0).△MPQ的面积为S.(1)点C的坐标为▲,直线l的解析式为▲;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围,并求当t为何值时,S的值最大,及S的最大值;(3)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l 相交于点N.试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.(第28题)(备用图)2013年中考模拟试卷(数学)参考答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上. 1.A 2.B 3.B 4.C 5.A 6.C 7.D 8.D 9.A 10.D 二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上. 11.2.53×105 12.16 13.0或12 14.(1,-1)15.4316.-1<x <3 17.23 或6x ≥ 18.20o 、40 o 或100o 三、解答题:本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 19.(本小题满分10分) (1)解:原式=111242-+-⨯+……………………4分 =3……………………5分(2)解:原式=xy y x yx x 22222-•-…………………3分(改乘法后去括号也得3分) =y2……………………………………………5分 20.(本小题满分6分) 解:去分母,得)1(21-=-x x ……………………………………………………………………3分 解得 1=x ………………………………………………………………………4分 检验:当1=x 时,0111=-=-x ……………………………………………5分∴1=x 不是原方程的解∴原方程无解.……………………………………………………………………6分 21.(本小题满分8分) (1)证明:∵BC 是直径,∴∠BDC =90°,∴∠ABC +∠DCB=90°,……2分∵∠ACD =∠ABC ,∴∠ACD +∠DCB=90°,∴BC ⊥CA ,……3分 ∴CA 是圆的切线.……………………4分(2)解:在Rt △AEC 中,tan ∠AEC=53,∴53AC EC =,35EC AC =;……5分 在Rt △ABC 中,tan ∠ABC=23,∴23AC BC =,32BC AC =;……6分 ∵BC -EC=BE ,BE =6,∴33625AC AC -=,解得AC =203,……7分∴BC=3201023⨯=,即圆的直径为10.………………………………8分 22.(本小题满分8分) 解:(1)∴共有6种可能出现的结果:甲A 、甲B 、乙A 、乙B 、丙A 、丙B …5分 (2)P=61 ∴恰好选中甲医生和护士A 的概率是61…………………………………8分 23.(本小题满分8分)解:(1)依题意,得0≥即22[2(1)]40k k ---≥,解得12k ≤.…………3分 (2)依题意可知122(1)x x k +=-.由(1)可知12k ≤∴2(1)0k -<,即120x x +<…………5分 ∴22(1)1k k --=-解得121,3k k ==-……………………7分 ∵12k ≤,∴ 3.k =-…………………8分 24.(本小题满分10分) 解:(1)设y =kx +b (k ≠0),将(25,30)(24,32)代入得:⎩⎨⎧=+=+32243025b k b k …………………………………2分 医生 护士 甲 A B乙AB丙AB解得: ⎩⎨⎧=-=802b k …………………………………4分∴y =-2x +80. …………………………………5分(2)设这一天每千克的销售价应定为x 元,根据题意得:(x -15)(-2x +80)=200,………………………………7分 x 2-55x +700=0, ∴x 1=20,x 2=35.(其中,x =35不合题意,舍去)……………………………9分 答:这一天每千克的销售价应定为20元.……………10分25.(本小题满分10分) 解:(1)5, 45, 35, 图略…………………………………………………5分 (2)150÷50%=300(人)……………………………………………6分(3)C 小区 ……………………………………………………………7分可以从平均数或中位数等方面说明,说理合理就行.………………9分 宣传语通顺,有环保之意即可.……………………………………10分26.(本小题满分10分) 解:(1)∵12+++=c bx x y 的图象过点P (2,1)∴1241+++=c b∴42--=b c …………3分(2))42(--=b b bc 2)1(2)2(222++-=+-=b b b …………5分当1-=b 时,2-=c此时,=∆)1(42+-c b 0541)12(4)1(2>=+=+---= ∴当1-=b 时,bc 有最大值,最大值为2.…………6分 (3)由根与系数关系可知:b x x -=+21,121+=⋅c x x21x x AB -=212214)(x x x x -+= )1(42+-=c b )142(42+---=b b1282++=b bP ABP y AB S ⋅=∆21431128212=⋅++⋅=b b …………8分 0393242=++b b0)132)(32(=++b b231-=b ,2132-=b ………………………………9分当23-=b 或213-=b 时,0>∆∴ABP ∆的面积是43时,23-=b 或213-=b …………10分27.(本小题满分12分)解:(1)在Rt △ABC 中,∠BAC =90°, ∠ABC =60°,∵AB =4,∴34=AC ……………………………………………………………1分由翻折得∠ABD =30°,得334=AD …………………………………2分 ∴CD =338…………………………………………3分 (2)由翻折得∠BED =∠BAD =90°,∴∠CED =90°,∴∠CED=∠CAB又∵∠DCE =∠DCE ,∴△CED ∽△CAB ………………………………4分∴CBCDAB DE =,∵y AD x AC ==,,∴y x DC -=,∵4=AB 216x BC +=………………………………………………………6分∵DE =AD =y ,2164xyx y +-=…………………………………………7分 ∴)0(161642>-+=x xx y …………………………8分(3)过点C 作CH ⊥BG ,垂足为H∵BG ∥AC ,∴ ∠ACB =∠CBG ,∵∠ACB =∠CGB ,∴∠CBG =∠CGB , ∴CB =CG∴BH =HG=AC=x ,∴BG =2x ,∵AE ⊥BD ,∴∠ADB +∠DAE =∠DAE +∠BAG =90°, ∴∠ADB =∠BAG又∵∠BAC =∠ABG =90°,△ABD ∽△BGA ∴BGABAB AD =………………………………………………………10分∴x y 244=,∴xy 8=……………………………………………11分 ∵xx y 161642-+=,∴xx x 1616482-+=,解得52=x (负值已舍) 即AC=52……………………………………………………12分28.(本小题满分14分)解:(1)(3,4),y = 43x ;………4分(2)根据题意,得OP=t ,AQ=2t .分三种情况讨论:①当0<t≤52 时,如图1,M 点的坐标是(t ,43 t ).过点C 作CD ⊥x 轴于D ,过点Q 作QE ⊥x 轴于E ,可得△AEQ ∽△ODC ,∴ AQ OC = AE OD = QE CD ,∴ 2t 5 = AE 3 = QE4,∴AE =6t 5 ,EQ= 85 t ,∴Q 点的坐标是(8+ 65 t ,85 t ),∴PE=8+65 t -t= 8+15 t ,∴S= 12·MP·PE= 12 ·43 t·(8+15 t )= 215 t 2+ 163t ;………5分②当52<t≤3时,如图2,过点Q 作QF ⊥x 轴于F ,∵BQ=2t ﹣5,∴OF=11﹣(2t ﹣5)=16﹣2t ,∴Q 点的坐标是(16﹣2t ,4),∴PF=16﹣2t ﹣t=16﹣3t ,∴S= 12 ·MP·PF= 12 ·43 t·(16-3t)= -2t 2+323t, ………6分 ③当点Q 与点M 相遇时,16﹣2t=t ,解得t = 163 .当3<t <163时,如图3,MQ=16﹣2t ﹣t=16﹣3t ,MP=4.S= 12 ·MP·PF = 12·4·(16-3t )=﹣6t+32;………7分 ① 当502t <≤时,222162160(20)153153S t t t =+=+-,∵2015a =>,抛物线开口向上,对称轴为直线20t =-, ∴ 当502t <≤时,S 随t 的增大而增大. ∴ 当52t =时,S 有最大值,最大值为856.………8分 ②当532t <≤时,2232812822()339S t t t =-+=--+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年中考数学全真模拟试题一一、选择题(本大题共10个小题,每小题3分)⒈sin30°的值是( ) A.21 B. 23 C. 33 D. 3⒉点P (-1,4)关于x 轴对称的点P ′的坐标是( )A.(-1,-4)B. (-1,4)C. (1,-4)D.(1,4) ⒊方程0442=++x x 的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根⒋如图:若弦BC 经过圆O 的半径OA 的中点P 且PB=3,PC=4,则圆O 的直径为( )A. 7B. 8C. 9D. 10 5.如果一次函数y=kx+b 的图象经过点(0,-4)那么b A.1 B.-1 C.-4 D.46.小明要在一幅长90厘米宽40度相同的纸边,制成一挂图(如图)的54%,设纸边的宽度为X 厘米根据题意所列方程为( ) A.(90+X )(40+X )⨯54%=90⨯40 B.(90+2X )(40+2X )⨯54%=90⨯40 C.(90+X )(40+2X )⨯54%=90⨯40 D.(90+2X )(40+X )⨯54%=90⨯40 7.一个矩形面积为9,则这个矩形的一组邻边长x 与y 的函数关系的大致图象是 ( )A. B. C. D.8.二次函数c bx ax y ++=2图象如图所示,下列关于a 、b 、c 关系判断正确的是( )A.ab <0B.bc <0C.a+b+c >0D.a-b+c <09.如图,A 、B 是圆O 1和圆O 2的公共点,AC 是圆O 2的切线,AD 是圆O 1的切线。

若BC=4,AB=6则BD 的长为( ) A.8 B.9 C.10 D.1210.如图,A 、B 是反比例函数y=xk(k >0)上的两个点,AC ⊥X 轴于点C ,BD ⊥Y 轴交于点D ,连接AD 、BC ,则△ABD 与△ACB 的面积大小关系是( )A.S ADB >S ACBB.S ADB <S ACBC.S ACB =S ADBD.不能确定 第Ⅱ卷(非选择题共90分)二、填空题(本大题共8个小题,共24分) 11.函数y=21 x 的自便量X 的取值范围是12.已知αβ方程x 2+2x-5=0的两根,那么α2+αβ+2α的值是13.已知如图:ABCDE 是圆O 的内接五边形,已知∠B+∠E=2300,则∠CAD= 14.如果反比例函数图象经过点(2,1),那么这个反比例函数的图象在第 象限 15.某宾馆在重修装修后,准备在大听的主楼梯上扑上某种红色地毯,已知这种地毯每平方米售价20元,主楼梯道宽2米,其侧面如图所示,则购买红地毯至少需 元 16.二次函数y=x 2-4x+5的最小值17.如图,PA 、PB 分别切圆O 于A 、B 两点,C 为劣弧AB 上一点,已知∠P=500,则∠ACB= 。

18.在Rt △ABC ,∠A=900 ,AB=6,AC=8,以斜边BC 为中心为旋转中心,把△ABC 逆时针方向旋转90°至△DEF ,则重叠部分的面积是 。

EA三、解答题(本大题共7个小题,共66分) 19.(本题满分6分)用换元法解方程: 06)1(5)1(2=+---x x x x20.(本题满分8分)如图:小虎家住在高80米的公寓AD 内,他家的河对岸新修了一座大厦的高度,小虎在他家的楼底A 测得大厦顶部B 的仰角为60°,爬到楼顶D 处测得大厦顶部B 的仰角为30°.请根据小虎计算出大厦的高BC 。

21.(本题满分8分)已知关于x 的一元二次0)32(22=+-+k x k x 的两个实数根21,x x 且1x +2x =1x 2x ,求k 的值。

22.(本题满分10分)新华商场销售某种冰箱,每台进价为2500元,市场调研表明;当销售价定为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?23.(本题满分10分)下表表示甲、已两名选手在一次自行车越野赛中,路程y (千米)与时间x (分)变化的图象(全程)根据图象完成下列问题:⑴求比赛开始多少分钟,两人第一次相遇;⑵求这次比赛全程是多少千米?⑶求比赛开始多少分钟时,两人第二次相遇?24.(本题满分12分)如图:已知点C 在圆O 上,P 是圆O 外一点;割线PO 交圆O 于点B 、A ,已知AC=PC ,∠COB =2∠PCB ,且PB=2 ⑴求证:PC 是圆O 的切线 ⑵求tan ∠P ;⑶M 是圆O 的下半圆弧上的一动点,当M 点运动到使△ABM 的面积最大时,过CM 的直线交AB 于点N ,求MN ,MC 的值? 25.(本题满分12分)如图:在平面直角坐标系中,矩形ABCD 的顶点A 的坐标为(4,8),D 是OC 上一点,且CD ∶OD =3∶5,连接AD ,过D 点作DE ⊥AD 交OB 于E ,过E 作EF ∥AD ,交AB 于F⑴求经过A 、D 两点的直线解析式; ⑵求EF 的长;⑶在DE 所在的直线上是否存在一点P ,使AP ⊥PE ;若存在,则这样的点P 有几个?并说明理由;若不存在,请说明理由。

中考数学全真模拟试题(一)参考答案一、AABBC BDDBC 二、11.x>2 12.0 13.50° 14.一、三 15.280 16.1 17.115° 18.9三、19.提示(设1-=x x y ,则原方程可化为0652=+-y y )23,221==x x 20.120米 21.k=322. 2750元 23.⑴24分钟 ⑵12千米 ⑶38分钟 24.⑴证略⑵33 ⑶ 8 25.⑴543+=x y ⑵EF =165⑶存在满足题设的点P 有2个2013年中考数学全真模拟试题二班级 姓名 得分一、 填空题(每空2分,共40分) 1、21-的相反数是 ;-2的倒数是 ; 16的算术平方根是 ;-8的立方根是 。

2、不等式组⎩⎨⎧-+2804<>x x 的解集是 。

3、函数y=11-x 自变量x 的取值范围是 。

4、直线y=3x-2一定过(0,-2)和( ,0)两点。

5、样本5,4,3,2,1的方差是 ;标准差是 ;中位数是 。

6、等腰三角形的一个角为︒30,则底角为 。

7、梯形的高为4厘米,中位线长为5厘米,则梯形的面积为 平方厘米。

8、如图PA 切⊙O 于点A ,∠PAB=︒30,∠AOB= ,∠ACB= 。

9、 如图PA 切⊙O 于A 割线PBC 过圆心,交⊙O 于B 、C ,若PA=6;PB=3,则PC= ;⊙O 的半径为 。

10题图9题图ACDB8题图A 11题图B10、如图∆ABC 中,∠C=︒90,点D 在BC 上,BD=6,AD=BC ,cos ∠ADC=53,则DC 的长为 。

11、如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则阴影部分既圆环的面积为 。

12、已知Rt ∆ABC 的两直角边AC 、BC 分别是一元二次方程06x 5-x 2=+的两根,则此Rt ∆的外接圆的面积为 。

二、 选择题(每题4分,共20分)13、如果方程0m x 2x 2=++有两个同号的实数根,m 的取值范围是 ( )A 、m <1B 、0<m ≤1C 、0≤m <1D 、m >014、徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元。

则平均每次降低成本的百分率是 ( )A .8.5% B. 9% C. 9.5% D. 10%15、二次函数c bx ax y 2++=的图像如图所示,则关于此二次函数的下列四个结论①a<0 ②a>0 ③ac 4-b 2>0 ④ab<0中,正确的结论有 ( ) A.1个B.2个C.3个D.4个16题图16、如图:点P 是弦AB 上一点,连OP ,过点P 作PC ⊥OP ,PC 交⊙O ,若AP =4,PB =2,则PC 的长是 ( ) A.2 B. 2 C. 22 D. 317、为了美化城市,建设中的某休闲中心准备用边长相等的正方形和正八边形两种地砖镶嵌地面,在每一个顶点周围,正方形、正八边形地砖的块数分别是( ) A. 1、2 B. 2、1 C. 2、3 D. 3、2 三、 (本题每题5分,共20分)18、计算1303)2(2514-÷-+⎪⎭⎫ ⎝⎛+- 19、计算22)145(sin 230tan 3121-︒+︒--20、计算)+()-(+-ab b a ]a b a b b a a [2÷ 21、解方程11-x 1-1-x 22=四、解答题(每题7分,共28分)22、已知关于x 的一元二次方程0)32(22=+-+m x m x 的两个不相等的实数根α、β满足111=+βα,求m 的值。

23、如图,∆ABC 中,∠ABC =∠BAC =︒45,点P 在AB 上,AD ⊥CP ,BE ⊥CP ,垂足分别为D 、E ,已知DC =2,求BE 的长。

P DE BCA24、在一块长16m ,宽12m 的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半.下面分别是小明和小颖的设计方案.(1)你认为小明的结果对吗?请说明理由.(2)请你帮助小颖求出图中的x(精确到0.1m)(3)你还有其他的设计方案吗?请在图3中画出你所设计的草图,并加以说明.25、如图,1l、2l分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样。

(1)根据图象分别求出1l、2l的函数关系式;(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程)。

五、解答题(10分)26、已知:如图,AB 是⊙O 的一条弦,点C 为的中点,CD 是⊙O 的直径,过C 点的直线l 交AB 所在直线于点E ,交⊙O 于点F 。

(1)判定图中CEB ∠与FDC ∠的数量关系,并写出结论; (2)将直线l 绕C 点旋转(与CD 不重合),在旋转过程中,E 点、F 点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明。

六、解答题(共32分,27、28各10分,29题12分)27、阅读下列材料并填空。

平面上有n 个点(n ≥2)且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…… (2)归纳:考察点的个数和可连成直线的条数n S 发现:如下表(3)推理:平面上有n个点,两点确定一条直线。

相关文档
最新文档