2014年中考数学压轴题分类汇编:与圆有关【含答案】

合集下载

2014年中考数学二轮专题复习试卷:圆(含答案)

2014年中考数学二轮专题复习试卷:圆(含答案)

2014年中考数学二轮专题复习试卷:圆(含答案)2014年中考数学二轮专题复习试卷:圆(时间:120分钟满分:120分)一、选择题(本大题共15个小题,每小题3分,共45分)1.(2013湖南岳阳)两圆半径分别为3 cm和7 cm,当圆心距d=10 cm时,两圆的位置关系为( )A.外离B.内切C.相交D.外切2.(2013重庆)如图,P是⊙O外一点,PA是⊙O的切线,PO=26 cm,PA=24 cm,则⊙O 的周长为( )A.18πcmB.16πcmC.20πcmD.24πcm(第2题) (第3题) (第4题)3.(2013浙江舟山)如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为( )A.215B.8C.210D.2134.(2013福建厦门)如图所示,在⊙O中,AB AC=,∠A=30°,则∠B=( )A.150°B.75°C.60°D.15°5.(2013贵州遵义)如图,将边长为1 cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为( )33A.cm?B.(2) cm224C.cmD.3 cm3π +ππ(第5题) (第7题)6.(2013浙江义乌)已知圆锥的底面半径为6 cm,高为8 cm,则这个圆锥的母线长为( )A.12 cmB.10 cmC.8 cm10.(2012山东济宁)如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间11.(2013重庆)如图,P是⊙O外一点,PA是⊙O的切线,PO=26 cm,PA=24 cm,则⊙O 的周长为( )A.18πcmB.16πcmC.20πcmD.24π cm12.(2012山东烟台)如图,⊙O1,⊙O,⊙O2的半径均为2 cm,⊙O3,⊙O4的半径均为1 cm,⊙O 与其他4个圆均相外切,图形既关于O1O2所在直线对称,又关于O3O4所在直线对称,则四边形O1O4O2O3的面积为( )A.12 cm2B.24 cm2C.36 cm2D.48 cm2(第12题) (第13题) (第14题)13.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,⊙O 为△ABC 的内切圆,点D 是斜边AB 的中点,则tan ∠ODA 的值为( )33A.B.23C.3D.214.(2012浙江宁波)如图,用邻边长分别为a ,b (a <b )的矩形硬纸板裁出以a 为直径的两个半圆,再裁出与矩形较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a 与b 满足的关系式是( )51A.b 3a B.b a 25C.b a D.b 2a 2+= == = 15.(2013湖北襄阳)如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角 边AC 于点E ,B 、E 是半圆弧的三等分点,弧BE的长为23π,则图中阴影部分的面积为( ) 3A. B.99333332C. D.2223π πππ- -二、填空题(本大题共6个小题,每小题3分,共18分)16.(2012江苏扬州)已知一个圆锥的母线长为10cm ,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是 cm .17.(2013湖南株洲)如图,AB 是⊙O 的直径,∠BAC =42°,点D 是弦AC 的中点,则∠DOC 的度数是 度.18.(2013湖北襄阳)如图,水平放置的圆柱形排水管道的截面直径是1 m,其中水面的宽AB为0.8 m,则排水管内水的深度为m.19.(2013贵州遵义)如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC= °.(第19题) (第20题)20.(2013重庆)如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E,则图中阴影部分的面积为.(结果保留π)21.(2013湖北孝感)用半径为10 cm,圆心角为216°的扇形做成一个圆锥的侧面,则这个圆锥的高为cm.三、解答题(本大题共5个小题,共57分)22.(本小题满分10分)(2013江苏镇江)如图1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,点D在边AB的延长线上,BD=3,过点D作DE⊥AB,与边AC 的延长线相交于点E,以DE为直径作⊙O交AE 于点F.(1)求⊙O的半径及圆心O到弦EF的距离;(2)连接CD,交⊙O于点G(如图2).求证:点G是CD的中点.23.(本小题满分10分)(2013广东梅州)如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.(1)求线段EC的长;(2)求图中阴影部分的面积.24.(本小题满分10分)(2012浙江温州)如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.25.(本小题满分12分)(2013广东)如图所示,⊙O是Rt△ABC 的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.26.(本小题满分15分)(2012浙江杭州)如图,AE切⊙O于点E,AT 交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE33,MN222.==(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(FME是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.参考答案1.D2.C3.D4.B5.C6.B7.A8.C9.B10.A11.C12.B13.D14.D15.D16.4 17.48 18.0.2 19.52 20.10-π21.822.解:(1)∵∠ACB=90°,AB=5,BC=3,由勾股定理得:AC =4, ∵AB =5,BD =3,∴AD =8, ∵∠ACB =90°,DE ⊥AD , ∴∠ACB =∠ADE ,∵∠A =∠A ,∴△ACB ∽△ADE ,BC AC AB,DE AD AE345,DE 8AE ∴==∴==∴DE =6,AE =10, 即⊙O 的半径为3; 过O 作OQ ⊥EF 于Q , 则∠EQO =∠ADE =90°, ∵∠QEO =∠AED , ∴△EQO ∽△EDA ,EO OQ,AE AD 3OQ ,108∴=∴=∴OQ =2.4,即圆心O 到弦EF 的距离是2.4; (2)连接EG , ∵AE =10,AC =4, ∴CE =6, ∴CE =DE =6,∵DE为直径,∴∠EGD=90°,∴EG⊥CD,∴点G为CD的中点.23.解:(1)∵在矩形ABCD中,AB=2DA,DA=2,∴AB=AE=4,DE23∴=,∴EC=CD-DE=423;-(2)∵AD1sin DEAAE2∠==,∴∠DEA=30°,∴∠EAB=30°,∴图中阴影部分的面积为:FAB DAE EAB22S S S904130482232 3.36023603--π⨯π⨯π=-⨯⨯=-扇形扇形24.(1)证明:连接OD.∵∠DOB=2∠DCB,∠A=2∠DCB, ∴∠A=∠DOB.又∵∠A+∠B=90°,∴∠DOB+∠B=90°,∴∠BDO=90°,∴OD⊥AB,∴AB是⊙O的切线. (2)解:过点O作OM⊥CD于点M,∵OD=OE=BE=1BO,2∠BDO=90°,∴∠DBO=30°,∠DOB=60°.∠DOB,∵∠DCO=12∴∠DCO =30°, 又∵OM ⊥CD ,OM =1, ∴OC =2OM =2, ∴OB =4,OD =2, ∴BD =OB ·cos ∠DBO 34 3.2=⨯= ∴BD 的长为23.25.(1)证明:在⊙O 中,∵弦BD =BA ,且圆周角∠BCA 和∠BAD 分别对BA 和BD ,∴∠BCA =∠BAD .(2)解:∵BE ⊥DC ,∴∠E =90°. 又∵∠BAC =∠EDB ,∠ABC =90°, ∴△ABC ∽△DEB , AB AC .DEBD∴= 在Rt △ABC 中,∠ABC =90°,AB =12,BC =5, ∴由勾股定理得:AC =13, 1213144DE .DE1213∴=∴=, (3)证明:如图,连接OB , ∵OA =OB,∴∠OAB =∠OBA .∵BA =BD ,∴∠OBD =∠OBA .又∠BDC=∠OAB=∠OBA,∴∠OBD=∠BDC.∴OB∥DE,∴∠OBE=∠DBE+∠OBD=90°.即BE⊥OB于B,所以BE是⊙O的切线.26.解:(1)∵AE切⊙O于点E,∴AE⊥CE,又OB⊥AT,∴∠AEC=∠CBO=90°,又∠BCO=∠ACE,∴△AEC∽△OBC,又∠A=30°,∴∠COB=∠A=30°.(2)∵AE=33,∠A=30°,∴在Rt△AEC中,ECtan A tan 30,=︒=AE即EC=AE·tan 30°=3.∵OB⊥MN,∴B为MN的中点,又MN=222,∴MB=1MN22.=2连接OM ,在△MOB 中,OM =R,MB =22,22222OB OM MB R 22.COB ,BOC 30,OB 3cos BOC cos 30,OC 23BO OC,2323OC OB R 22.33OC EC OM R,23R 223R,3∴=-=-∠=︒∠=︒==∴=∴==-+==∴-+=在中又整理得:R 2+18R -115=0, 即(R +23)(R -5)=0, 解得:R =-23(舍去)或R =5, ∴⊙O 的半径R 为5.(3)在EF 同一侧,△COB 经过平移、旋转和相似变换后,这样的三角形有6个,如图,每小图2个,顶点在圆上的三角形,如图所示:延长EO 交圆O 于点D ,连接DF ,如图所示,∵EF =5,直径ED =10,可得出∠FDE =30°,∴FD=则C △EFD=51015++=+()((COBEFDCOB2C 3CC15351.=+∴=++=由可得∶∶。

2014年中考数学专项训练《圆》的综合精选与解析

2014年中考数学专项训练《圆》的综合精选与解析

2014年中考数学专项训练《圆》的综合精选与解析一【例题精讲】【例1】已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线;(2)若DE=2,tan C=12,求⊙O的直径.A【思路分析】本题和大兴的那道圆题如出一辙,只不过这两个题的三角形一个是躺着一个是立着,让人怀疑他们是不是串通好了…近年来此类问题特别爱将中点问题放进去一并考察,考生一定要对中点以及中位线所引发的平行等关系非常敏感,尤其不要忘记圆心也是直径的中点这一性质。

对于此题来说,自然连接OD,在△ABC中OD就是中位线,平行于BC。

所以利用垂直传递关系可证OD⊥DE。

至于第二问则重点考察直径所对圆周角是90°这一知识点。

利用垂直平分关系得出△ABC是等腰三角形,从而将求AB转化为求BD,从而将圆问题转化成解直角三角形的问题就可以轻松得解。

【解析】(1)证明:联结OD.∵ D为AC中点, O为AB中点,A∴ OD为△ABC的中位线.∴OD∥BC.∵ DE⊥BC,∴∠DEC=90°.∴∠ODE=∠DEC=90°. ∴OD⊥DE于点D.∴ DE为⊙O的切线.(2)解:联结DB.∵AB为⊙O的直径,∴∠ADB=90°.∴DB⊥AC.∴∠CDB=90°.∵ D为AC中点,∴AB=AC.在Rt△DEC中,∵DE=2 ,tanC=12,∴EC=4tanDEC. (三角函数的意义要记牢)由勾股定理得:DC=.在Rt△DCB 中,BD=tan DC C ⋅= BC=5.∴AB=BC=5. ∴⊙O 的直径为5.【例2】已知:如图,O 为ABC ∆的外接圆,BC 为O 的直径,作射线BF ,使得BA 平分CBF ∠,过点A 作AD BF ⊥于点D . (1)求证:DA 为O 的切线; (2)若1BD =,1tan 2BAD ∠=,求O 的半径.FC【思路分析】本题是一道典型的用角来证切线的题目。

全国各地2014年中考数学试卷解析版分类汇编 圆的有关性质专题

全国各地2014年中考数学试卷解析版分类汇编 圆的有关性质专题

圆的有关性质一、选择题1. (2014•某某潍坊,第6题3分)如图,平行四边形ABCD的顶点A、B、D在⊙0上,顶点C在⊙O直径BE上,连接AE,∠E=36°,则∠ADC的度数是( )A,44° B.54° C.72° D.53°考点:圆周角定理;平行四边形的性质.分析:根据平行四边形的性质得到∠ABC=∠ADC,再根据圆周角定理的推论由BE为⊙O的直径得到∠BAE=90°,然后根据三角形内角和定理可计算出∠ABE的度数.解答:∵BE为⊙O的直径,∴∠BAE=90°,∴∠ABC=90°-∠AEB=54°.∵四边形ABCD为平行四边形,∴∠ADC=∠ABC=54°,故选B.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了平行四边形的性质.2.(2014年某某黔东南6.(4分))如图,已知⊙O的直径CD垂直于弦AB,∠ACD=22.5°,若CD=6cm,则AB的长为()A.4cm B.3cm C.2cm D.2cm考点:圆周角定理;等腰直角三角形;垂径定理.专题:计算题.分析:连结OA,根据圆周角定理得∠AOD=2∠ACD=45°,由于3⊙O的直径CD垂直于弦AB,根据垂径定理得AE=BE,且可判断△OAE为等腰直角三角形,所以AE=OA=,然后利用AB=2AE进行计算.解答:解:连结OA,如图,∵∠ACD=22.5°,∴∠AOD=2∠ACD=45°,∵⊙O的直径CD垂直于弦AB,∴AE=BE,△OAE为等腰直角三角形,∴AE=OA,∵CD=6,∴OA=3,∴AE=,∴AB=2AE=3(cm).故选B.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.3. (2014•某某某某,第9题3分)如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°考点:圆周角定理;平行线的性质.分析:由AC∥OB,∠BAO=25°,可求得∠BAC=∠B=∠BAO=25°,又由圆周角定理,即可求得答案.解答:解:∵OA=OB,∴∠B=∠BAO=25°,∵AC∥OB,∴∠BAC=∠B=25°,∴∠BOC=2∠BAC=50°.故选B.点评:此题考查了圆周角定理以及平行线的性质.此题难度不大,注意掌握数形结合思想的应用.4.(2014•某某凉山州,第12题,4分)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.cm B.cm C.cm或cm D.cm或cm考点:垂径定理;勾股定理.专题:分类讨论.分析:先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.解答:解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.(2014•某某某某,第12题,3分)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.6.(2014•某某内江,第7题,3分)如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A.B.3C.2D.4考点:垂径定理;圆周角定理;解直角三角形.分析:如图,首先证得OA⊥BC;然后由圆周角定理推知∠C=30°,通过解直角△ACD可以求得CD的长度.则BC=2CD.解答:解:如图,设AO与BC交于点D.∵∠AOB=60°,OB=OA,∴△OAB是等边三角形,∴∠BAO=60°,即∠BAD=60°.又∵AB=AC,∴=∴AD⊥BC,∴BD=CD,∴在直角△ABD中,BD=AB•sin60°=2×=,∴BC=2CD=2.故选:C.点评:本题考查了解直角三角形,圆周角定理等知识点.推知△OAB是等边三角形是解题的难点,证得AD⊥BC是解题的关键.7.(2014•某某某某,第13题4分)如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是()A.A E=BE B.=C.O E=DE D.∠DBC=90°考点:垂径定理;圆周角定理.分析:由于CD⊥AB,根据垂径定理有AE=BE,弧AD=弧BD,不能得出OE=DE,直径所对的圆周角等于90°.解答:解:∵CD⊥AB,∴AE=BE,=,∵CD是⊙O的直径,∴∠DBC=90°,不能得出OE=DE.故选C.点评:本题考查了垂径定理.解题的关键是熟练掌握垂径定理的内容.二、填空题1. (2014•某某某某,第17题3分)如图,已知A、B、C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC的度数是.考点:圆周角定理.分析:根据垂直的定义得到∠ADB=90°,再利用互余的定义计算出∠A=90°﹣∠B=35°,然后根据圆周角定理求解.解答:∵AC⊥BO,∴∠ADB=90°,∴∠A=90°﹣∠B=90°﹣55°=35°,∴∠BOC=2∠A=70°.故答案为70°.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.(2014•某某某某,第16题,3分)如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为.考点:垂径定理;等腰梯形的性质.专题:压轴题.分析:A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值解答:解:连接OA,OB,OC,作CH垂直于AB于H.根据垂径定理,得到BE=AB=4,CF=CD=3,∴OE===3,OF===4,∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到BC=7,则PA+PC的最小值为.点评:正确理解BC 的长是PA+PC 的最小值,是解决本题的关键.3. (2014•某某抚州,第13题,3分) 如图,△ABC 内接于⊙O ,∠OAB=20°,则∠C 的度数为----------︒70.解析:∵OA=OB,∴∠OBA=∠OAB=20°,∴∠AOB=140°,∴∠C=12∠AOB=70° 4. (2014•年某某东营,第16题4分)在⊙O 中,AB 是⊙O 的直径,AB=8cm ,==,M 是AB 上一动点,CM+DM 的最小值是8 cm .考点: 轴对称-最短路线问题;勾股定理;垂径定理.分析: 作点C 关于AB 的对称点C′,连接C′D 与AB 相交于点M ,根据轴对称确定最短路线问题,点M 为CM+DM 的最小值时的位置,根据垂径定理可得=,然后求出C′D 为直径,从而得解.解答: 解:如图,作点C 关于AB 的对称点C′,连接C′D 与AB 相交于点M ,此时,点M为CM+DM的最小值时的位置,由垂径定理,=,∴=,∵==,AB为直径,∴C′D为直径,∴CM+DM的最小值是8cm.故答案为:8.点评:本题考查了轴对称确定最短路线问题,垂径定理,熟记定理并作出图形,判断出CM+DM的最小值等于圆的直径的长度是解题的关键.5.(2014•某某某某,第14题,3分)如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是.(结果保留π)分析:设AB于小圆切于点C,连接OC,OB,利用垂径定理即可求得BC的长,根据圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2),以及勾股定理即可求解.解:设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)=π•BC2=16πcm2.故答案是:16π.点评:此题考查了垂径定理,切线的性质,以及勾股定理,解题的关键是正确作出辅助线,注意到圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2),利用勾股定理把圆的半径之间的关系转化为直角三角形的边的关系.6.(2014•某某某某,第18题4分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于.考点:圆周角定理.分析:由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B的度数,又由直径所对的圆周角是直角,即可求得∠ACB=90°,继而求得答案.解答:解:∵∠ABC与∠ADC是所对的圆周角,∴∠ABC=∠ADC=54°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠ABC=90°﹣54°=36°.故答案为:36°.点评:此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等与直径所对的圆周角是直角定理的应用.三、解答题1. (2014•某某,第25题14分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.考点:圆的综合题分析:(1)当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,直接利用勾股定理求出AC进而得出答案;(2)首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;(3)当∠AEG=∠B时,A、E、G重合,只能∠AGE=∠AEG,利用AD∥BC,得出△GAE∽△GBC,进而求出即可.解答:解:(1)如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB•cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;(2)如图2,若AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,则AC⊥EP,∴AM=CM=,由(1)知,AB=AC,则∠ACB=∠B,∴CP=CE==,∴EF=2=;(3)如图3:过点C作⊥AD于点N,∵cosB=45,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∵∠AEG=∠BCG≥∠ACB=∠B,∴当∠AEG=∠B时,A、E、G重合,∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.点评:此题主要考查了相似三角形的判定与性质以及勾股定理以及锐角三角函数关系等知识,利用分类讨论得出△AGE是等腰三角形时只能∠AGE=∠AEG进而求出是解题关键.2. (2014•某某某某,第24题8分)如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD 垂直于弦BC,垂足为点B,点D在PC上.设∠PCB=α,∠POC=β.求证:tanα•tan=.考点:圆的基本性质,相似三角形的判定,锐角三角函数.分析:连接AC先求出△PBD∽△PAC,再求出=,最后得到tanα•tan=.解答:证明:连接AC,则∠A=∠POC=,∵AB是⊙O的直径,∴∠ACB=90°,∴tanα=,BD∥AC,∴∠BPD=∠A,∵∠P=∠P,∴△PBD∽△PAC,∴=,∵PB=0B=OA,∴=,∴tana•tan=•==.点评:本题主要考查了相似三角形的判定与性质及圆周角的知识,本题解题的关键是求出△PBD∽△PAC,再求出tanα•tan=.3.(2014•某某26.(12分))如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圆⊙O交BC于E点,连接DE并延长,交AC于P点,交AB延长线于F.(1)求证:CF=DB;(2)当AD=时,试求E点到CF的距离.考点:圆的综合题专题:综合题.分析:(1)连结AE,由∠ABC=60°,AB=BC可判断△ABC为等边三角形,由AB∥CD,∠DAB=90°得∠ADC=∠DAB=90°,则根据圆周角定理可得到AC为⊙O的直径,则∠AEC=90°,即AE⊥BC,根据等边三角形的性质得BE=CE,再证明△DCE≌△FBE,得到DE=FE,于是可判断四边形BDCF为平行四边形,根据平行四边形的性质得CF=DB;(2)作EH⊥CF于H,由△ABC为等边三角形得∠BAC=60°,则∠DAC=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得DC=AD=1,AC=2CD=2,则AB=AC=2,BF=CD=1,AF=3,然后利用勾股定理计算出BD=,DF=2,所以CF=BD=,EF=DF=,接着根据等边三角形的性质由AE⊥BC得∠CAE=∠BAE=30°,根据圆周角定理得∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,得到∠DPC=90°,在Rt△DPC中,根据含30度的直角三角形三边的关系得PC=DC=,再证明Rt△FHE∽Rt△FPC,利用相似比可计算出EH.解答:(1)证明:连结AE,如图,∵∠ABC=60°,AB=BC,∴△ABC为等边三角形,∵AB∥CD,∠DAB=90°,∴∠ADC=∠DAB=90°,∴AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∴BE=CE,CD∥BF,∴∠DCE=∠FBF,在△DCE和△FBE中,,∴△DCE≌△FBE(ASA),∴DE=FE,∴四边形BDCF为平行四边形,∴CF=DB;(2)解:作EH⊥CF于H,如图,∵△ABC为等边三角形,∴∠BAC=60°,∴∠DAC=30°,在Rt△ADC中,AD=,∴DC=AD=1,AC=2CD=2,∴AB=AC=2,BF=CD=1,∴AF=3,在Rt△ABD中,BD==,在Rt△ADF中,DF==2,∴CF=BD=,EF=DF=,∵AE⊥BC,∴∠CAE=∠BAE=30°,∴∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,∴∠DPC=90°,在Rt△DPC中,DC=1,∠CDP=30°,∴PC=DC=,∵∠HFE=∠PFC,∴Rt△FHE∽Rt△FPC,∴=,即=,∴EH=,即E点到CF的距离为.点评:本题考查了圆的综合题:熟练掌握圆周角定理、等边三角形的性质和平行四边形的判定与性质;会运用三角形全等的知识解决线段相等的问题;会运用勾股定理和相似比进行几何计算.4. (2014年某某某某13.(3分))如图,在扇形OAB中,∠AOB=90°,点C是上的一个动点(不与A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E.若DE=1,则扇形OAB的面积为.考点:三角形中位线定理;垂径定理;扇形面积的计算.分析:连接AB,由OD垂直于BC,OE垂直于AC,利用垂径定理得到D、E分别为BC、AC的中点,即ED为三角形ABC的中位线,即可求出AB的长.利用勾股定理、OA=OB,且∠AOB=90°,可以求得该扇形的半径.解答:解:连接AB,∵OD⊥BC,OE⊥AC,∴D、E分别为BC、AC的中点,∴DE为△ABC的中位线,∴AB=2DE=2.又∵在△OAB中,∠AOB=90°,OA=OB,∴OA=OB=AB=,∴扇形OAB的面积为:=.故答案是:.点评:此题考查了垂径定理,勾股定理,扇形面积的计算以及三角形的中位线定理,熟练掌握定理是解本题的关键.5.(2014•某某某某,第24题,8分)如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB 于点F,交BP于点G,E在CD的延长线上,EP=EG,(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.分析:(1)连接OP,先由EP=EG,证出∠EPG=∠BGF,再由∠BFG=∠BGF+∠OBP=90°,推出∠EPG+∠OPB=90°来求证,(2)连接OG,由BG2=BF•BO,得出△BFG∽△BGO,得出∠BGO=∠BFG=90°得出结论.(3)连接AC、BC、OG,由sinB=,求出r,由(2)得出∠B=∠OGF,求出OF,再求出BF,FA,利用直角三角形来求斜边上的高,再乘以2得出CD长度.(1)证明:连接OP,∵EP=EG,∴∠EPG=∠EGP,又∵∠EPG=∠BGF,∴∠EPG=∠BGF,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠BFG=∠BGF+∠OBP=90°,∴∠EPG+∠OPB=90°,∴直线EP为⊙O的切线;(2)证明:如图,连接OG,∵BG2=BF•BO,∴=,∴△BFG∽△BGO,∴∠BGO=∠BFG=90°,∴BG=PG;(3)解:如图,连接AC、BC、OG,∵sinB=,∴=,∵OB=r=3,∴OG=,由(2)得∠EPG+∠OPB=90°,∠B+∠BGF=∠OGF+∠BGO=90°,∴∠B=∠OGF,∴sin∠OGF==∴OF=1,∴BF=BO﹣OF=3﹣1=2,FA=OF+OA=1+3=4,在RT△BCA中,CF2=BF•FA,∴CF===2.∴CD=2CF=4.点评:本题主要考查了圆的综合题,解题的关键是通过作辅助线,找准角之间的关系,灵活运用直角三角形中的正弦值.6.(2014•某某某某,第20题11分)=,点D为BA延长线上的一点,且∠如图,在△ABC中,∠B=45°,∠ACB=60°,AB32D=∠ACB,⊙O为△ABC的外接圆.(1)求BC的长;(2)求⊙O的半径.+.(2)2.【答案】(1)33【解析】=+.∴BC33(2)由(1)得,在Rt△ACE中,∵∠EAC=30°,EC3AC=23∵∠D=∠ACB,∠B=∠B,∴△BAC∽△BCD. ∴AB ACCB CD=,即3223CD33=+.∴DM=4.∴⊙O的半径为2.考点:1. 锐角三角函数殊角的三角函数值;3.相似三角形的判定和性质;4.圆周角定理;5.圆内接四边形的性质;6.含30度角直角三角形的性质;7.勾股定理.7、(2014•某某,第23题12分)如图6,中,,.(1)动手操作:利用尺规作以为直径的,并标出与的交点,与的交点(保留作图痕迹,不写作法):(2)综合应用:在你所作的圆中,①求证:;②求点到的距离.【考点】(1)尺规作图;(2)①圆周角、圆心角定理;②勾股定理,等面积法【分析】(1)先做出中点,再以为圆心,为半径画圆.(2)①要求,根据圆心角定理,同圆中圆心角相等所对的弧也相等,只需证出即可,再根据等腰三角形中的边角关系转化.②首先根据已知条件可求出,依题意作出高,求高则用勾股定理或面积法,注意到为直径,所以想到连接,构造直角三角形,进而用勾股定理可求出,的长度,那么在中,求其高,就只需用面积法即可求出高.【答案】(1)如图所示,圆为所求(2)①如图连接,设,又则②连接,过作于,过作于cosC=, 又,又为直径设,则,在和中,有即解得:即又即。

2014年中考圆的专题(1)(含答案)

2014年中考圆的专题(1)(含答案)

2014年圆的专题(1)一.选择题(共1小题)1.(2013•安徽)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()二.填空题(共1小题)2.(2012•安徽)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= _________°.三.解答题(共5小题)3.(2010•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.4.(2011•深圳模拟)已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)求证:∠EMD=2∠DAC.5.(2012•沈阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD (1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.6.(2010•贵阳)如图,已知AB是⊙O的弦,半径OA=2cm,∠AOB=120°.(1)求tan∠OAB的值;(2)计算S△AOB;(3)⊙O上一动点P从A点出发,沿逆时针方向运动,当S△POA=S△AOB时,求P点所经过的弧长.(不考虑点P与点B重合的情形)7.(2013•资阳)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.2014年圆的专题(1)参考答案与试题解析一.选择题(共1小题)1.(2013•安徽)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()CBP=二.填空题(共1小题)2.(2012•安徽)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= 60°.三.解答题(共5小题)3.(2010•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.由垂径定理得:)知:4.(2011•深圳模拟)已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)求证:∠EMD=2∠DAC.ME=AB MD=ABME=MD=AB=MA5.(2012•沈阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD (1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.为半径,根据垂径定理,即可得,又由在同圆或等圆中,同弧或等弧所对的圆∴,ABOD=AB6.(2010•贵阳)如图,已知AB是⊙O的弦,半径OA=2cm,∠AOB=120°.(1)求tan∠OAB的值;(2)计算S△AOB;(3)⊙O上一动点P从A点出发,沿逆时针方向运动,当S△POA=S△AOB时,求P点所经过的弧长.(不考虑点P与点B重合的情形)AC=OAB=.,∴AB=2=2AD∴的长度为(∴的长度为(∴=7.(2013•资阳)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.AC OE=的性质得到所对的圆周角减去所对的圆周角,计算即可得AC=×OE=r根据翻折的性质,,。

2014年全国中考数学试题汇编《圆》(01)

2014年全国中考数学试题汇编《圆》(01)

全国中考数学试题汇编《圆》(01)选择题1.(2009•咸宁)如图,在平面直角坐标系中,⊙A 与y 轴相切于原点O ,平行于x 轴的直线交⊙A 于M ,N 两点,若点M 的坐标是(﹣4,﹣2),则点N 的坐标为( )2.(2009•绍兴)如图,在平面直角坐标系中,⊙P 与x 轴相切于原点O ,平行于y 轴的直线交⊙P 于M ,N 两点.若点M 的坐标是(2,﹣1),则点N 的坐标是()3.(2009•兰州)如图,A ,B ,C ,D 为⊙O 的四等分点,动点P 从圆心O 出发,沿O ﹣C ﹣D ﹣O 路线作匀速运动,设运动时间为t (s ).∠APB=y (°),则下列图象中表示y 与t 之间函数关系最恰当的是( ). C D .的圆5.(2009•桂林)如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A ⇒B ⇒C ⇒D ⇒A 滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B ⇒C ⇒D ⇒A ⇒B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( )7.(2009•庆阳)如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()8.(2009•清远)如图,AB是⊙O的直径,弦CD⊥AB于点E,连接OC,若OC=5,CD=8,则tan∠COE=().C D.cm C cm10.(2009•南宁)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD的长为().cm cm11.(2009•恩施州)如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是()cm12.(2009•临夏州)如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()13.(2009•安徽)如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()14.(2009•青岛)一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()15.(2009•兰州)如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为()17.(2009•台湾)如图,圆上有A,B,C,D四点,其中∠BAD=80度.若,的长度分别为7p,11p,则的长度为何()18.(2009•福州)如图,弧是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧上任意一点,若AC=5,则四边形ACBP周长的最大值是()5+19.(2009•遵义)如图,OA是⊙O的半径,弦BC⊥OA,若∠ABC=20°,则∠AOB的度数是()20.(2009•重庆)如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()21.(2009•枣庄)如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于()22.(2011•河池)如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()23.(2009•湘潭)如图,点A、B、C在⊙O上,∠A=50°,则∠BOC的度数为()24.(2009•厦门)如图,AB,BC,CA是⊙O的三条弦,∠OBC=50°,则∠A=()25.(2013•天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD 的值等于()26.(2009•温州)如图,∠AOB是⊙O的圆心角,∠AOB=80°,则弧AB所对圆周角∠ACB的度数是()27.(2009•泰安)如图,⊙O的半径为1,AB是⊙O的一条弦,且AB=,则弦AB所对圆周角的度数为()D.29.(2009•十堰)如图,△ABC内接于⊙O,连接OA、OB,若∠ABO=25°,则∠C的度数为()30.(2009•山西)如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3,则BC的长为().C D.2009年全国中考数学试题汇编《圆》(01)参考答案与试题解析选择题1.(2009•咸宁)如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M,N两点,若点M的坐标是(﹣4,﹣2),则点N的坐标为()2.(2009•绍兴)如图,在平面直角坐标系中,⊙P与x轴相切于原点O,平行于y轴的直线交⊙P于M,N两点.若点M的坐标是(2,﹣1),则点N的坐标是(),OP=PM=,﹣,3.(2009•兰州)如图,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O路线作匀速运动,设运动时间为t(s).∠APB=y(°),则下列图象中表示y与t之间函数关系最恰当的是().C D.上运动时,∠的圆÷;、半径为的圆的面积等于×÷55.(2009•桂林)如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A⇒B⇒C⇒D⇒A滑动到A止,同时点R从点B出发,沿图中所示方向按B⇒C⇒D⇒A⇒B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为()×7.(2009•庆阳)如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()最短为=38.(2009•清远)如图,AB是⊙O的直径,弦CD⊥AB于点E,连接OC,若OC=5,CD=8,则tan∠COE=().C D.CD=4=.cm C cm=3cm10.(2009•南宁)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD的长为().cm cmcm∴CE=cm11.(2009•恩施州)如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是()cmBP=,.12.(2009•临夏州)如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()AB=3=513.(2009•安徽)如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为(),由勾股定理得(或由相交弦定理得(14.(2009•青岛)一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()AB=×15.(2009•兰州)如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为()17.(2009•台湾)如图,圆上有A,B,C,D四点,其中∠BAD=80度.若,的长度分别为7p,11p,则的长度为何(),由于的长度分别为两部分,是优∵,∴的长度为×18.(2009•福州)如图,弧是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧上任意一点,若AC=5,则四边形ACBP周长的最大值是()5+5=15+519.(2009•遵义)如图,OA是⊙O的半径,弦BC⊥OA,若∠ABC=20°,则∠AOB的度数是()=;20.(2009•重庆)如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()A=∠21.(2009•枣庄)如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于()∠22.(2011•河池)如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()23.(2009•湘潭)如图,点A、B、C在⊙O上,∠A=50°,则∠BOC的度数为()24.(2009•厦门)如图,AB,BC,CA是⊙O的三条弦,∠OBC=50°,则∠A=()∠25.(2013•天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD 的值等于()=OM26.(2009•温州)如图,∠AOB是⊙O的圆心角,∠AOB=80°,则弧AB所对圆周角∠ACB的度数是()同对着∠27.(2009•泰安)如图,⊙O的半径为1,AB是⊙O的一条弦,且AB=,则弦AB所对圆周角的度数为();∠D.29.(2009•十堰)如图,△ABC内接于⊙O,连接OA、OB,若∠ABO=25°,则∠C的度数为()∠30.(2009•山西)如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3,则BC的长为().C D.BC=。

2014年全国中考数学试题汇编《圆》(03)

2014年全国中考数学试题汇编《圆》(03)

全国中考数学试题汇编《圆》(03)选择题61.(2009•贵阳)如图,PA是⊙O的切线,切点为A,∠APO=36°,则∠AOP=()62.(2009•防城港)如图,射线PQ是⊙O相切于点A,射线PO与⊙O相交于B,C两点,连接AB,若PB:BC=1:2上,则∠PAB的度数等于()63.(2009•赤峰)如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的度数是()64.(2009•伊春)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是()①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线.65.(2009•乐山)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=().C D66.(2009•安徽)△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的67.(2010•黔南州)已知⊙O1和⊙O2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O1O2的取值.C D.74.(2009•陕西)如图,圆与圆之间不同的位置关系有()76.(2009•泸州)已知⊙O1的半径为5cm,⊙O2的半径为3cm,且圆心距O1O2=7cm,则⊙O1与⊙O2的位置关系是()280.(2009•桂林)如图是一张卡通图,图中两圆的位置关系是()81.(2009•佛山)将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了()86.(2009•内江)在校运动会上,三位同学用绳子将四根同样大小的接力棒分别按横截面如图(1),(2),(3)所示的方式进行捆绑,三个图中的四个圆心的连线(虚线)分别构成菱形、正方形、菱形,如果把三种方式所用绳子的长度分别用x,y,z来表示,则()87.(2009•肇庆)如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于()D.89.(2009•台州)如图,⊙O的内接多边形周长为3,⊙O的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是().C D.90.(2009•来宾)如图,正方形的四个顶点在直径为4的大圆圆周上,四条边与小圆都相切,AB,CD过圆心O,且AB⊥CD,则图中阴影部分的面积是().2009年全国中考数学试题汇编《圆》(03)参考答案与试题解析选择题61.(2009•贵阳)如图,PA是⊙O的切线,切点为A,∠APO=36°,则∠AOP=()62.(2009•防城港)如图,射线PQ是⊙O相切于点A,射线PO与⊙O相交于B,C两点,连接AB,若PB:BC=1:2上,则∠PAB的度数等于()x,63.(2009•赤峰)如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的度数是()C=64.(2009•伊春)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是()①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线.65.(2009•乐山)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=().C DODA=66.(2009•安徽)△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的(∠=67.(2010•黔南州)已知⊙O1和⊙O2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O1O2的取值.C D.74.(2009•陕西)如图,圆与圆之间不同的位置关系有()76.(2009•泸州)已知⊙O1的半径为5cm,⊙O2的半径为3cm,且圆心距O1O2=7cm,则⊙O1与⊙O2的位置关系280.(2009•桂林)如图是一张卡通图,图中两圆的位置关系是()81.(2009•佛山)将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了()86.(2009•内江)在校运动会上,三位同学用绳子将四根同样大小的接力棒分别按横截面如图(1),(2),(3)所示的方式进行捆绑,三个图中的四个圆心的连线(虚线)分别构成菱形、正方形、菱形,如果把三种方式所用绳子的长度分别用x,y,z来表示,则()87.(2009•肇庆)如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于()D.89.(2009•台州)如图,⊙O的内接多边形周长为3,⊙O的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是().C D.<圆的周长<90.(2009•来宾)如图,正方形的四个顶点在直径为4的大圆圆周上,四条边与小圆都相切,AB,CD过圆心O,且AB⊥CD,则图中阴影部分的面积是().。

2014中考数学圆综合题(含答案)

2014中考数学圆综合题(含答案)

一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;A=+;外切(图2)⇒有一个交点⇒d R r-<<+;相交(图3)⇒有两个交点⇒R r d R r=-;内切(图4)⇒有一个交点⇒d R r<-;内含(图5)⇒无交点⇒d R r五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

2014年各地中考数学试卷汇编圆试题

2014年各地中考数学试卷汇编圆试题

2014年各地中考数学试卷解析版分类汇编圆(一)点直线与圆的位置关系一、选择题1. (2014•山东淄博)如图,直线AB 与⊙O 相切于点A ,弦CD ∥AB ,E ,F 为圆上的两点,且∠CDE=∠ADF .若⊙O 的半径为,CD=4,则弦EF 的长为( )A .4B .2C .5D .62. (2014山东济南)如图,O ⊙的半径为1,ABC 是O ⊙的内接等边三角形,点D ,E 在圆上,四边形BCDE 为矩形,这个矩形的面积是( )A .2B .3C .23D .233.(2014•四川宜宾)已知⊙O 的半径r =3,设圆心O 到一条直线的距离为d ,圆上到这条直线的距离为2的点的个数为m ,给出下列命题:①若d >5,则m =0;②若d =5,则m =1;③若1<d <5,则m =3;④若d =1,则m =2;⑤若d <1,则m =4. 其中正确命题的个数是( ) A . 1 B . 2 C . 4 D .5ABCDE.O第13题图4.(2014•四川内江)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A.2.5 B.1.6 C.1.5 D.15.(2014•甘肃白银、临夏)已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断二、填空题1. (2014•江苏苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是.2.(2014•四川宜宾)如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM= .三、解答题1. (2014•四川巴中)如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.(1)求证:△BGD∽△DMA;(2)求证:直线MN是⊙O的切线.2. (2014•山东威海)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.3. (2014•山东枣庄)如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.4. (2014•山东潍坊)如图,在梯形ABCD中,AD∥BC,∠B=900,以AB为直径作⊙O,恰与另一腰CD相切于点E,连接OD、OC、BE.(1)求证:OD∥BE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.5.(2014•江西抚州)如图,在平面直角坐标系中,⊙P经过x轴上一点C,与y轴分别交于A、B两点,连接AP 并延长分别交⊙P、x轴于点D、E,连接DC并延长交y轴于点F,若点F的坐标为(0 ,1),点D的坐标为(6 ,-1).⑴求证:DC FC⑵判断⊙P与x轴的位置关系,并说明理由.⑶求直线AD的解析式.6.(2014山东济南) 如图,AB 与O ⊙相切于C ,B A ∠=∠,O ⊙的半径为6,AB =16,求OA 的长.7.(2014•山东聊城)如图,AB ,AC 分别是半⊙O 的直径和弦,OD ⊥AC 于点D ,过点A 作半⊙O 的切线AP ,AP 与OD 的延长线交于点P .连接PC 并延长与AB 的延长线交于点F . (1)求证:PC 是半⊙O 的切线;(2)若∠CAB=30°,AB=10,求线段BF 的长.9. (2014年贵州黔东南)已知:AB 是⊙O 的直径,直线CP 切⊙O 于点C ,过点B 作BD ⊥CP 于D . (1)求证:△ACB ∽△CDB ;(2)若⊙O 的半径为1,∠BCP=30°,求图中阴影部分的面积.AB CO第23题(2)图10.(2014•遵义)如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圆⊙O交BC于E点,连接DE并延长,交AC于P点,交AB延长线于F.(1)求证:CF=DB;(2)当AD=时,试求E点到CF的距离.11.(2014•十堰)如图1,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.(1)求证:AC平分∠DAB;(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;(3)如图2,连接OD交AC于点G,若=,求sin∠E的值.12.(2014•娄底)如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.13.(2014年湖北咸宁)如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AD⊥CD于点D.(1)求证:AC平分∠DAB;(2)若点E为的中点,AD=,AC=8,求AB和CE的长.14.(2014年河南)如图,CD 是⊙O 的直径,且CD =2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线P A 、PB ,切点分别为点A 、B .(1)连接AC ,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP = cm 时,四边形AOBD 是菱形;②当DP = cm 时,四边形AOBP 是正方形.15. (2014•江苏盐城)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于点D ,且∠D=2∠CAD . (1)求∠D 的度数;(2)若CD=2,求BD 的长.16. (2014•年山东东营)如图,AB 是⊙O 的直径,OD 垂直于弦AC 于点E ,且交⊙O 于点D ,F 是BA 延长线上一点,若∠CDB=BFD .(1)求证:FD 是⊙O 的一条切线; (2)若AB=10,AC=8,求DF 的长.APCO DB17.(2014•山东临沂)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D 作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.18.(2014•四川遂宁)已知:如图,⊙O的直径AB垂直于弦CD,过点C的切线与直径AB的延长线相交于点P,连结PD.(1)求证:PD是⊙O的切线.(2)求证:PD2=PB•P A.(3)若PD=4,tan∠CDB=,求直径AB的长.19.(2014•四川凉山州)已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.20.(2014•四川泸州)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.21.(2014•四川宜宾)如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若CF=5,cos∠A=,求BE的长.22.(2014•甘肃白银)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.23.(2014•甘肃兰州)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.24.(2014•广东梅州)如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C.(1)求证:AB与⊙O相切;(2)若∠AOB=120°,AB=4,求⊙O的面积.。

2014年全国各地中考数学真题分类解析汇编:31-圆的有关性质

2014年全国各地中考数学真题分类解析汇编:31-圆的有关性质

2014年全国各地中考数学真题分类解析汇编:31-圆的有关性质DA . 2∠CB . 4∠BC . 4∠AD . ∠B +∠C考点: 圆周角定理. 分析: 根据圆周角定理,可得∠AOB =2∠C . 解答: 解:如图,由圆周角定理可得:∠AOB =2∠C . 故选A .点评: 此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.4.(2014•毕节地区,第5题3分)下列叙述正确的是( ) A .方差越大,说明数据就越稳定B . 在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变C 不在同一直线上的三点确定一个圆为简单.5.(2014•毕节地区,第6题3分)如图,已知⊙O 的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3考点:垂径定理;勾股定理分析:过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.解答:解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.点评:本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.6.(2014•毕节地区,第15题3分)如图是以△ABC 的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1 B.C.3 D.考点:圆周角定理;解直角三角形分析:由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.易得∠ACD=∠B,又由cos∠ACD=,BC=4,即可求得答案.解答:解:∵AB为直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠B=∠ACD,∵cos∠ACD=,∴cos∠B=,∴tan∠B=,∵BC=4,∴tan∠B===,∴AC=.故选D.点评:此题考查了圆周角定理以及三角函数的性质.此题难度适中,注意掌握数形结合思想的应用.7.(2014•武汉,第10题3分)如图,PA,PB 切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A .B.C.D.考点:切线的性质;相似三角形的判定与性质;锐角三角函数的定义分析:(1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB=.利用Rt△BFP∽RT△OAF得出AF=FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.解答:解:连接OA、OB、OP,延长BO交PA 的延长线于点F.∵PA,PB切⊙O于A、B两点,CD切⊙O于点E∴∠OAP=∠OBP=90°,CA=CE,DB=DE,PA=PB,∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA +PB=3r,∴PA=PB=.在Rt△BFP和Rt△OAF中,,∴Rt△BFP∽RT△OAF.∴===,∴AF=FB,在Rt△FBP中,∵PF2﹣PB2=FB2∴(PA+AF)2﹣PB2=FB2∴(r+BF)2﹣()2=BF2,解得BF=r,∴tan∠APB===,故选:B.点评:本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系.8.(2014·台湾,第10题3分)如图,有一圆通过△ABC的三个顶点,且的中垂线与相交于D 点.若∠B=74°,∠C=46°,则的度数为何?()A.23 B.28 C.30 D.37分析:由有一圆通过△ABC的三个顶点,且的中垂线与相交于D点.若∠B=74°,∠C=46°,可求得与的度数,继而求得答案.解:∵有一圆通过△ABC的三个顶点,且的中垂线与相交于D点,∴=2×∠C=2×46°═92°,=2×∠B=2×74°=148°=+=+=++,∴=12(148﹣92)=28°.故选B.点评:此题考查了圆周角定理以及弧与圆心角的关系.此题难度不大,注意掌握数形结合思想的应用.9.(2014·台湾,第21题3分)如图,G为△ABC 的重心.若圆G分别与AC、BC相切,且与AB 相交于两点,则关于△ABC三边长的大小关系,下列何者正确?()A.BC<AC B.BC>AC C.AB<ACD.AB>AC分析:G为△ABC的重心,则△ABG面积=△BCG面积=△ACG面积,根据三角形的面积公式即可判断.解:∵G为△ABC的重心,∴△ABG面积=△BCG面积=△ACG面积,又∵GH a=GH b>GH c,∴BC=AC<A B.故选D.点评:本题考查了三角形的重心的性质以及三角形的面积公式,理解重心的性质是关键.10.(2014•浙江湖州,第4题3分)如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B 的度数是()A.35°B.45°C.55°D.65°分析:由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠C=90°,又由∠A=35°,即可求得∠B的度数.解:∵AB 是△ABC 外接圆的直径,∴∠C =90°, ∵∠A =35°,∴∠B =90°﹣∠A =55°.故选C .点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.11.(2014•孝感,第10题3分)如图,在半径为6cm 的⊙O 中,点A 是劣弧的中点,点D 是优弧上一点,且∠D =30°,下列四个结论:①OA ⊥BC ;②BC =6;③sin ∠AOB =;④四边形ABOC 是菱形.其中正确结论的序号是( )A .①③B . ①②③④C . ②③④D .①③④ 考点:垂径定理;菱形的判定;圆周角定理;解直角三角形.分析分别根据垂径定理、菱形的判定定理、锐角三角函数的定义对各选项进行逐一判断即:可.解答:解:∵点A 是劣弧的中点,OA过圆心,∴OA⊥BC,故①正确;∵∠D=30°,∴∠ABC=∠D=30°,∴∠AOB=60°,∵点A是点A 是劣弧的中点,∴BC=2CE,∵OA=OB,∴OB=OB=AB=6cm,∴BE=AB•cos30°=6×=3cm,∴BC=2BE =6cm,故B正确;∵∠AOB=60°,∴sin∠AOB=sin60°=,故③正确;∵∠AOB=60°,∴AB=OB,∵点A 是劣弧的中点,∴AC=OC,∴AB=BO=OC=CA,∴四边形ABOC是菱形,故④正确.故选B .点评: 本题考查了垂径定理、菱形的判定、圆周角定理、解直角三角形,综合性较强,是一道好题.12.(2014•呼和浩特,第6题3分)已知⊙O 的面积为2π,则其内接正三角形的面积为( )A . 3B . 3C .D .考点: 垂径定理;等边三角形的性质. 分析: 先求出正三角形的外接圆的半径,再求出正三角形的边长,最后求其面积即可. 解答: 解:如图所示,连接OB 、OC ,过O 作OD ⊥BC 于D , ∵⊙O 的面积为2π∴⊙O 的半径为∵△ABC 为正三角形,∴∠BOC ==120°,∠BOD =∠BOC =60°,OB =,∴BD =OB •sin ∠BOD ==,∴BC =2BD =,∴OD =OB •cos ∠BOD =•cos 60°=,∴△BOC 的面积=•BC •OD =××=,∴△ABC 的面积=3S △BOC =3×=.故选C .点评: 本题考查的是三角形的外接圆与外心,根据题意画出图形,利用数形结合求解是解答此题的关键.二.填空题1.(2014•舟山,第16题4分)如图,点C 在以AB 为直径的半圆上,AB =8,∠CBA =30°,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF ⊥DE 于点D ,并交EC 的延长线于点F .下列结论:①CE =CF ;②线段EF 的最小值为2;③当AD =2时,EF 与半圆相切;④若点F 恰好落在上,则AD =2;⑤当点D 从点A 运动到点B 时,线段EF 扫过的面积是16.其中正确结论的序号是 ①③⑤ .考点: 圆的综合题;垂线段最短;平行线的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;切线的判定;轴对称的性质;相似三角形的判定与性质.专题:推理填空题.分析: (1)由点E 与点D 关于AC 对称可得CE =CD ,再根据DF ⊥DE 即可证到CE =CF .(2)根据“点到直线之间,垂线段最短”可得CD ⊥AB 时CD 最小,由于EF =2CD ,求出CD 的最小值就可求出EF 的最小值.(3)连接OC ,易证△AOC 是等边三角形,AD =OD ,根据等腰三角形的“三线合一”可求出∠ACD ,进而可求出∠ECO =90°,从而得到EF 与半圆相切.(4)利用相似三角形的判定与性质可证到△DBF 是等边三角形,只需求出BF 就可求出DB ,进而求出AD 长.(5)首先根据对称性确定线段EF 扫过的图形,然后探究出该图形与△ABC 的关系,就可求出线段EF 扫过的面积.解答: 解:①连接CD ,如图1所示.∵点E 与点D 关于AC 对称,∴CE =C D .∴∠E =∠CDE .∵DF ⊥DE ,∴∠EDF =90°.∴∠E +∠F =90°,∠CDE +∠CDF =90°.∴∠F =∠CDF .∴CD =CF .∴CE =CD =CF .∴结论“CE =CF ”正确.②当CD ⊥AB 时,如图2所示.∵AB 是半圆的直径,∴∠ACB =90°.∵AB =8,∠CBA =30°,∴∠CAB =60°,AC =4,BC =4.∵CD ⊥AB ,∠CBA =30°,∴CD =BC =2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵CE=CD=CF,∴EF=2C D.∴线段EF的最小值为4.∴结论“线段EF的最小值为2”错误.(3)当AD=2时,连接OC,如图3所示.∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=4,AD=2,∴DO=2.∴AD=DO.∴∠ACD=∠OCD=30°.∵点E与点D关于AC对称,∴∠ECA=∠DC A.∴∠ECA=30°.∴∠ECO=90°.∴OC⊥EF.∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.∴结论“EF与半圆相切”正确.④当点F恰好落在上时,连接FB、AF,如图4所示.∵点E与点D关于AC对称,∴ED⊥A C.∴∠AGD=90°.∴∠AGD=∠AC B.∴ED∥B C.∴△FHC∽△FDE.∴=.∵FC=EF,∴FH=F D.∴FH=DH.∵DE∥BC,∴∠FHC=∠FDE=90°.∴BF=B D.∴∠FBH=∠DBH=30°.∴∠FBD=60°.∵AB是半圆的直径,∴∠AFB=90°.∴∠FAB=30°.∴FB=AB=4.∴DB=4.∴AD=AB﹣DB=4.∴结论“AD=2”错误.⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图5中阴影部分.∴S阴影=2S△ABC=2×AC•BC=AC•BC=4×4=16.∴EF扫过的面积为16.∴结论“EF扫过的面积为16”正确.故答案为:①、③、⑤.点评: 本题考查了等边三角形的判定与性质、平行线的判定与性质、相似三角形的判定与性质、切线的判定、轴对称的性质、含30°角的直角三角形、垂线段最短等知识,综合性强,有一定的难度.2. ( 2014•福建泉州,第17题4分)如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC ,则:(1)AB 的长为 1 米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.考点: 圆锥的计算;圆周角定理 专题: 计算题. 分析: (1)根据圆周角定理由∠BAC =90°得BC为⊙O 的直径,即BC =,根据等腰直角三角形的性质得AB =1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr =,然后解方程即可. 解答: 解:(1)∵∠BAC =90°,∴BC 为⊙O 的直径,即BC =,∴AB =BC =1;(2)设所得圆锥的底面圆的半径为r ,根据题意得2πr =,解得r =.故答案为1,.点评: 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.3. ( 2014•广东,第14题4分)如图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为3 .考点: 垂径定理;勾股定理. 分析:作OC ⊥AB 于C ,连结OA ,根据垂径定理得到AC =BC =AB =3,然后在Rt △AOC 中利用勾股定理计算OC 即可.解答: 解:作OC ⊥AB 于C ,连结OA ,如图, ∵OC ⊥AB ,∴AC =BC =AB =×8=4,在Rt △AOC 中,OA =5,∴OC ===3,即圆心O 到AB 的距离为3.故答案为:3.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.4.(2014•四川自贡,第14题4分)一个边长为4cm 的等边三角形ABC 与⊙O 等高,如图放置,⊙O 与BC 相切于点C ,⊙O 与AC 相交于点E ,则CE的长为 3 cm .考点: 切线的性质;垂径定理;圆周角定理;弦切角定理 分析: 连接OC ,并过点O 作OF ⊥CE 于F ,根据等边三角形的性质,等边三角形的高等于底边高的倍.题目中一个边长为4cm 的等边三角形ABC 与⊙O 等高,说明⊙O 的半径为,即OC =,又∠ACB =60°,故有∠OCF =30°,在Rt △OFC 中,可得出FC 的长,利用垂径定理即可得出CE 的长.解答: 解:连接OC ,并过点O 作OF ⊥CE 于F ,且△ABC 为等边三角形,边长为4,故高为2,即OC =,又∠ACB =60°,故有∠OCF =30°,在Rt △OFC 中,可得FC =,即CE =3.故答案为:3.点评: 本题主要考查了切线的性质和等边三角形的性质和解直角三角形的有关知识.题目不是太难,属于基础性题目. 5. (2014•株洲,第11题,3分)如图,点A 、B 、C 都在圆O 上,如果∠AOB +∠ACB =84°,那么∠ACB 的大小是 28° .(第1题图)考点:圆周角定理.分析:根据圆周角定理即可推出∠AOB=2∠ACB,再代入∠AOB+∠ACB=84°通过计算即可得出结果.解答:解:∵∠AOB=2∠ACB,∠AOB+∠ACB=84°∴3∠ACB=84°∴∠ACB=28°.故答案为:28°.点评:此题主要考查圆周角定理,关键在于找出两个角之间的关系,利用代换的方法结论.6. (2014年江苏南京,第13题,2分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB =2cm,∠BCD=22°30′,则⊙O的半径为cm.(第2题图)考点:垂径定理、圆周角定理.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解答:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.7. (2014•泰州,第15题,3分)如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为y=(x>0).(第3题图)考点:相似三角形的判定与性质;等边三角形的性质;圆周角定理.分析:连接AE,DE,根据同弧所对的圆周角等于圆心角的一半,求得∠AED=120°,然后求得△ABE∽△EC D.根据相似三角形的对应边对应成比例即可表示出x与y的关系,从而不难求解.解答:解:连接AE,DE,∵∠AOD=120°,∴为240°,∴∠AED=120°,∵△BCE为等边三角形,∴∠BEC=60°;∴∠AEB+∠CED=60°;又∵∠EAB+∠AEB=60°,∴∠EAB=∠CED,∵∠ABE=∠ECD=120°;∴=,即=,∴y =(x>0).点评:此题主要考查学生圆周角定理以及对相似三角形的判定与性质及反比例函数的实际运用能力.8.(2014•菏泽,第10题3分)如图,在△ABC 中∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E ,则的度数为50°.考点:圆心角、弧、弦的关系;直角三角形的性质.分析:连接CD,求出∠B=65°,再根据CB=CD,求出∠BCD的度数即可.解答:解:连接CD,∵∠A=25°,∴∠B=65°,∵CB=CD,∴∠B=∠CDB=65°,∴∠BCD=50°,∴的度数为50°.故答案为:50°.点评:此题考查了圆心角、弧之间的关系,用到的知识点是三角形内角和定理、圆心角与弧的关系,关键是做出辅助线求出∠BCD的度数.9.(2014年山东泰安,第23题4分)如图,AB 是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE.设∠BEC=α,则sinα的值为.分析:连结BC,根据圆周角定理由AB是半圆的直径得∠ACB=90°,在Rt△ABC中,根据勾股定理计算出BC=6,再根据垂径定理由OD⊥AC得到AE=CE=AC=4,然后在Rt△BCE中,根据勾股定理计算出BE=2,则可根据正弦的定义求解.解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,AC=8,AB=10,∴BC==6,∵OD⊥AC,∴AE=CE=AC=4,在Rt△BCE中,BE==2,∴sinα===.故答案为.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和圆周角定理.三.解答题1. ( 2014•福建泉州,第26题14分)如图,直线y =﹣x +3与x ,y 轴分别交于点A ,B ,与反比例函数的图象交于点P (2,1).(1)求该反比例函数的关系式;(2)设PC ⊥y 轴于点C ,点A 关于y 轴的对称点为A ′;①求△A ′BC 的周长和sin ∠BA ′C 的值;②对大于1的常数m ,求x 轴上的点M 的坐标,使得sin ∠BMC =.考点:反比例函数综合题;待定系数法求反比例函数解析式;勾股定理;矩形的判定与性质;垂径定理;直线与圆的位置关系;锐角三角函数的定义专题:压轴题;探究型.分析: (1)设反比例函数的关系式y =,然后把点P 的坐标(2,1)代入即可.(2)①先求出直线y =﹣x +3与x 、y 轴交点坐标,然后运用勾股定理即可求出△A ′BC 的周长;过点C 作CD ⊥AB ,垂足为D ,运用面积法可以求出CD 长,从而求出sin ∠BA ′C 的值.②由于BC =2,sin ∠BMC =,因此点M 在以BC 为弦,半径为m 的⊙E 上,因而点M 应是⊙E 与x 轴的交点.然后对⊙E 与x 轴的位置关系进行讨论,只需运用矩形的判定与性质、勾股定理等知识就可求出满足要求的点M 的坐标. 解答:解:(1)设反比例函数的关系式y =.∵点P (2,1)在反比例函数y =的图象上, ∴k =2×1=2.∴反比例函数的关系式y =.(2)①过点C 作CD ⊥AB ,垂足为D ,如图1所示.当x =0时,y =0+3=3,则点B 的坐标为(0,3).OB =3.当y =0时,0=﹣x +3,解得x =3,则点A 的坐标为(3,0),OA =3.∵点A 关于y 轴的对称点为A ′,∴OA ′=OA =3.∵PC⊥y轴,点P(2,1),∴OC=1,PC=2.∴BC=2.∵∠AOB=90°,OA′=OB=3,OC=1,∴A′B=3,A′C=.∴△A′BC的周长为3++2.∵S=BC•A′O=A′B•CD,△ABC∴BC•A′O=A′B•C D.∴2×3=3×C D.∴CD=.∵CD⊥A′B,∴sin∠BA′C===.∴△A′BC的周长为3++2,sin∠BA′C 的值为.②当1<m<2时,作经过点B、C且半径为m的⊙E,连接CE并延长,交⊙E于点P,连接BP,过点E作EG⊥OB,垂足为G,过点E作EH⊥x轴,垂足为H,如图2①所示.∵CP是⊙E的直径,∴∠PBC=90°.∴sin∠BPC===.∵sin∠BMC=,∴∠BMC=∠BP C.∴点M在⊙E上.∵点M在x轴上∴点M是⊙E与x轴的交点.∵EG⊥BC,∴BG=GC=1.∴OG=2.∵∠EHO=∠GOH=∠OGE=90°,∴四边形OGEH是矩形.∴EH=OG=2,EG=OH.∵1<m<2,∴EH>E C.∴⊙E与x轴相离.∴x轴上不存在点M,使得sin∠BMC=.②当m=2时,EH=E C.∴⊙E与x轴相切.Ⅰ.切点在x轴的正半轴上时,如图2②所示.∴点M与点H重合.∵EG⊥OG,GC=1,EC=m,∴EG==.∴OM=OH=EG=.∴点M的坐标为(,0).Ⅱ.切点在x轴的负半轴上时,同理可得:点M的坐标为(﹣,0).③当m>2时,EH<E C.∴⊙E与x轴相交.Ⅰ.交点在x轴的正半轴上时,设交点为M、M′,连接EM,如图2③所示.∵∠EHM=90°,EM=m,EH=2,∴MH===.∵EH⊥MM′,∴MH=M′H.∴M′H═.∵∠EGC=90°,GC=1,EC=m,∴EG===.∴OH=EG=.∴OM=OH﹣MH=﹣,∴OM′=OH+HM′=+,∴M(﹣,0)、M′(+,0).Ⅱ.交点在x轴的负半轴上时,同理可得:M(﹣+,0)、M′(﹣﹣,0).综上所述:当1<m<2时,满足要求的点M不存在;当m=2时,满足要求的点M的坐标为(,0)和(﹣,0);当m>2时,满足要求的点M的坐标为(﹣,0)、(+,0)、(﹣+,0)、(﹣﹣,0).点评:本题考查了用待定系数法求反比例函数的关系式、勾股定理、三角函数的定义、矩形的判定与性质、直线与圆的位置关系、垂径定理等知识,考查了用面积法求三角形的高,考查了通过构造辅助圆解决问题,综合性比较强,难度系数比较大.由BC =2,sin ∠BMC =联想到点M 在以BC 为弦,半径为m 的⊙E 上是解决本题的关键.2.( 2014•安徽省,第19题10分)如图,在⊙O 中,半径OC 与弦AB 垂直,垂足为E ,以OC 为直径的圆与弦AB 的一个交点为F ,D 是CF 延长线与⊙O 的交点.若OE =4,OF =6,求⊙O 的半径和CD 的长.考点: 垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.专题: 计算题.分析:由OE⊥AB得到∠OEF=90°,再根据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相似比可计算出⊙O的半径OC=9;接着在Rt△OCF 中,根据勾股定理可计算出C=3,由于OF⊥CD,根据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.3.(2014年天津市,第21题10分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB 的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.考点:圆周角定理;等边三角形的判定与性质;勾股定理.分析:(Ⅰ)利用圆周角定理可以判定△CAB 和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;(Ⅱ)如图②,连接OB,O D.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.解答:解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=B D.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,O D.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=O D.∵⊙O的直径为10,则OB=5,∴BD=5.点评:本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形.4.(2014•新疆,第21题10分)如图,AB是⊙O 的直径,点F,C是⊙O 上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD =2,求⊙O的半径.切线的判定.考点:专证明题.题:分析:(1)连结OC,由=,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BC,由AB为直径得∠ACB=90°,由==得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得AC=2CD=4,在Rt△ACB中,利用含30度的直角三角形三边的关系得BC=AC=4,AB=2BC=4,所以⊙O的半径为4.解答:(1)证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=4,∴⊙O的半径为4.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和含30度的直角三角形三边的关系.5.(2014年云南省,第23题9分)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.考点: 圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.专题: 综合题;存在型;分类讨论.分析: (1)只需先求出AC 中点P 的坐标,然后用待定系数法即可求出直线DP 的解析式.(2)由于△DOM 与△ABC 相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM 的长,即可求出点M 的坐标.(3)易证S △PED =S △PF D .从而有S 四边形DEPF =2S △PED =DE .由∠DEP =90°得DE 2=DP 2﹣PE 2=DP 2﹣.根据“点到直线之间,垂线段最短”可得:当DP ⊥AC 时,DP 最短,此时DE 也最短,对应的四边形DEPF 的面积最小.借助于三角形相似,即可求出DP ⊥AC 时DP 的值,就可求出四边形DEPF 面积的最小值.解答: 解:(1)过点P 作PH ∥OA ,交OC 于点H ,如图1所示.∵PH ∥OA ,∴△CHP ∽△CO A . ∴==.∵点P 是AC 中点,。

2014中考数学圆汇编

2014中考数学圆汇编

2014年中考数学圆试题汇编一.填空题(共108小题)1.(2014•扬州)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE= 50°.于点F,P为EF上的任意一点,则PA+PC的最小值为.BE=OE===3=BC=7故答案为:OE=4cmCE=CD=4.(2014•江西)如图,△ABC内接于⊙O,A0=2,BC=2,则∠BAC的度数为60°.BD=,在OBD=,则∠BAC=∠BD=BC=2,BD=OBD=,∠5.(2014•宁波)如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积为6cm2.∴=,OC=OC=OA=2ON=AM=2NE=GN=GE==GE=2NE=2,GE AM=22,66.(2014•包头)如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为8.是OD=AC7.(2014•长春)如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为24度.8.(2014•陕西)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是4.AB=OA=2AB AB CE=AB AB×4=4AB=OA=2AB AB CE=AB4=449.(2014•大庆)在半径为2的圆中,弦AC长为1,M为AC中点,过M点最长的弦为BD,则四边形ABCD的面积为2.=BD=10.(2014•黄石)如图,圆O的直径CD=10cm,AB是圆O的弦,且AB⊥CD,垂足为P,AB=8cm,则sin∠OAP=.AP=AB=4cmAP=BP=AB=×CD=5OP=OAP==故答案为:11.(2014•泰安)如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE.设∠BEC=α,则sinα的值为.BE=2BC=AE=CE=BE=,==故答案为:12.(2014•甘孜州)如图,点A,B,C在圆O上,OC⊥AB,垂足为D,若⊙O的半径是10cm,AB=12cm,则CD= 2cm.AD=AB=OD==13.(2014•常德)如图,AB为⊙O的直径,CD⊥AB,若AB=10,CD=8,则圆心O到弦CD的距离为3.OE===314.(2014•南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为2cm.BE=AB=,且BE=AE=AB=2,OB=15.(2014•牡丹江)⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为1或3.BD=BC,点BD=BC=,即()16.(2014•广东)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.AC=BC=AC=BC=AB=×OC==317.(2014•绍兴)把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD 分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为5.于点、劣弧EF=418.(2014•台州)如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为50cm.19.(2014•菏泽)如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为50°.∴20.(2014•吉林)如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB 的度数可以是70°(写出一个即可)∠21.(2014•龙东地区)直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是30°或150°.22.(2014•郴州)如图,已知A、B、C三点都在⊙O上,∠AOB=60°,∠ACB=30°.∠23.(2014•兰州)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于36°.所对的圆周角,24.(2014•抚州)如图,△ABC内接于⊙O,∠OAB=20°,则∠C的度数为70°.∠25.(2014•长沙)如图,A、B、C是⊙O上的三点,∠AOB=100°,则∠ACB=50度.ACB=AOB=×26.(2014•巴中)如图,已知A、B、C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC的度数是70°.27.(2014•黔西南州)如图,AB是⊙O的直径,AB=15,AC=9,则tan∠ADC=.BC=ADC=tanB==,故答案为28.(2014•衡阳)如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为65°.29.(2014•株洲)如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是28°.30.(2014•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=4.,即=OE=2,所以CD=2DE=4.,∴,解得DE=OE=2CD=2DE=431.(2014•盘锦)已知,AB是⊙O直径,半径OC⊥AB,点D在⊙O上,且点D与点C在直径AB的两侧,连结CD,BD.若∠OCD=22°,则∠ABD的度数是23°或67°.∠∠32.(2014•百色)如图,AB是⊙O的直径,点C为⊙O上一点,∠AOC=50°,则∠ABC=25°.∠33.(2014•龙岩)如图,A、B、C是半径为6的⊙O上三个点,若∠BAC=45°,则弦BC=6.BC=.34.(2014•南通)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= 60度.35.(2014•贵阳)如图,AB是⊙O的直径,点D在⊙O上,∠BOD=130°,AC∥OD交⊙O于点C,连接BC,则∠B= 40度.36.(2014•来宾)如图,点A、B、C均在⊙O上,∠C=50°,则∠OAB=40度.=4037.(2014•宁夏)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.故答案为:38.(2014•雅安)在平面直角坐标系中,O为坐标原点,则直线y=x+与以O点为圆心,1为半径的圆的位置关系为相切.y=x+y=y=x+与,,y=x+=1y=x+39.(2014•西宁)⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为4.40.(2014•成都)如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C= 40度.41.(2014•湘潭)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA=4.=442.(2014•重庆)如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接CB.若⊙O的半径为2,∠ABC=60°,则BC=8.43.(2014•天水)如图,PA,PB分别切⊙O于点A、B,点C在⊙O上,且∠ACB=50°,则∠P=80°.44.(2014•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35°.∠45.(2014•宜宾)如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM=.∠AB=1,即,AM=.故答案为:46.(2014•山西)一走廊拐角的横截面积如图,已知AB⊥BC,AB∥DE,BC∥FG,且两组平行墙壁间的走廊宽度都是1m,的圆心为O,半径为1m,且∠EOF=90°,DE、FG分别与⊙O相切于E、F两点.若水平放置的木棒MN 的两个端点M、N分别在AB和BC上,且MN与⊙O相切于点P,P是的中点,则木棒MN的长度为(4﹣2)m.BP=2的中点,OB=2BP=2BP=2﹣47.(2014•自贡)一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为3cm.,根据等边三角形的性质,等边三角形的高等于底边的倍.已知边长的半径为,又∠2=48.(2014•重庆)如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积为4﹣.(结果保留π)OC=OA=2=2AB=2AC=44﹣﹣.﹣49.(2014•广安)如图,在直角梯形ABCD中,∠ABC=90°,上底AD为,以对角线BD为直径的⊙O与CD切于点D,与BC交于点E,且∠ABD为30°.则图中阴影部分的面积为﹣π(不取近似值).,∠AD=BD=2OF=BC=4﹣﹣﹣故答案为:50.(2014•南充)如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是16π.(结果保留π)BC=AC=AB=×51.(2014•荆州)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.∵的长为,∴.故答案为:52.(2014•贵港)如图,在菱形ABCD中,AB=2,∠C=120°,以点C为圆心的与AB,AD分别相切于点G,H,与BC,CD分别相交于点E,F.若用扇形CEF作一个圆锥的侧面,则这个圆锥的高是2.l=r=×r==2.53.(2014•抚顺)如图,⊙O与正方形ABCD的各边分别相切于点E、F、G、H,点P是上的一点,则tan∠EPF 的值是1.54.(2014•玉林)如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=..故答案为:55.(2014•苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是2.=,得出y=x x x﹣(∴∴,y=x﹣﹣(56.(2014•岳阳)如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,切点为C,连接AC,BC,作∠APC的平分线交AC于点D.下列结论正确的是②③④(写出所有正确结论的序号)①△CPD∽△DPA;②若∠A=30°,则PC=BC;③若∠CPA=30°,则PB=OB;④无论点P在AB延长线上的位置如何变化,∠CDP为定值.PB=BC==BC57.(2014•温州)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AD或BC所在的直线与⊙O相切时,AB的长是12或4.EF=EN=EF=,则AB58.(2014•南宁)如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为a.×××OE=OF=∴BH=BH=∴,CD=BC+BD=a+故答案为:59.(2014•黄石)一般地,如果在一次实验中,结果落在区域D中每一个点都是等可能的,用A表示“实验结果落在D中的某个小区域M中”这个事件,那么事件A发生的概率P A=.如图,现在等边△ABC内射入一个点,则该点落在△ABC内切圆中的概率是π.,故(,x××x=x内切圆中的概率是:故答案为:60.(2014•张家界)已知⊙O1与⊙2外切,圆心距为7cm,若⊙O1的半径为4cm,则⊙O2的半径是3cm.1212置关系是外离.62.(2014•烟台)如图,∠AOB=45°,点O1在OA上,OO1=7,⊙O1的半径为2,点O2在射线OB上运动,且⊙O2始终与OA相切,当⊙O2和⊙O1相切时,⊙O2的半径等于3或15.63.(2014•威海)如图,⊙A与⊙B外切于⊙O的圆心O,⊙O的半径为1,则阴影部分的面积是﹣.DF==××=,﹣﹣故答案为:64.(2014•龙岩)如图,∠AOB=60°,O1,O2,O3…是∠AOB平分线上的点,其中OO1=2,若分别以O1,O2,O3…为圆心作圆,使得⊙O1,⊙O2,⊙O3…均与∠AOB的两边相切,且相邻两圆相外切,则⊙O2014的面积是92013π(结果保留π)∴65.(2014•绵阳)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)=.故答案为:66.(2014•德阳)半径为1的圆内接正三角形的边心距为.OD=.故答案为:67.(2014•南京)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=72°.××68.(2014•厦门)如图,正六边形ABCDEF的边长为2,延长BA,EF交于点O.以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,则直线DF与直线AE的交点坐标是(2,4).时,其纵坐标即可得出答案.2AO=FO=FA=2EO=FO+EF=4,x+2时,y=2×+2=469.(2014•烟台)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于π.,BD=2BM=4的面积是OM=××,=2=×=π,+4π4π4π故答案为:70.(2014•徐州)如图,以O为圆心的两个同心圆中,大圆与小圆的半径分别为3cm和1cm,若⊙P与这两个圆都相切,则圆P的半径为1或2cm.==71.(2014•西宁)若扇形的圆心角为60°,弧长为2π,则扇形的半径为6.l=,即,l=(72.(2014•杭州)点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=AC,则∠ABC所对的弧长等于πr或r(长度单位).根据相似三角形对应边成比例列式求出∴,BH=∴,ππ故答案为:73.(2014•内江)通过对课本中《硬币滚动中的数学》的学习,我们知道滚动圆滚动的周数取决于滚动圆的圆心运动的路程(如图①).在图②中,有2014个半径为r的圆紧密排列成一条直线,半径为r的动圆C从图示位置绕这2014个圆排成的图形无滑动地滚动一圈回到原位,则动圆C自身转动的周数为1344.74.(2014•河北)如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形.则S扇形=4cm2.××75.(2014•连云港)如图1,折线段AOB将面积为S的⊙O分成两个扇形,大扇形、小扇形的面积分别为S1、S2,若=0.618,则称分成的小扇形为“黄金扇形”.生活中的折扇(如图2)大致是“黄金扇形”,则“黄金扇形”的圆心角约为137.5°.(精确到0.1),得出=0.618=0.61876.(2014•鄂州)如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积16﹣4﹣.OE=AB=﹣﹣﹣×﹣=4[×﹣﹣﹣.4.77.(2014•绥化)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为3π(结果保留π)==78.(2014•徐州)半径为4cm,圆心角为60°的扇形的面积为πcm2.的扇形的面积为:=故答案为:79.(2014•常州)已知扇形的半径为3cm,此扇形的弧长是2πcm,则此扇形的圆心角等于120度,扇形的面积是3πcm2.(结果保留π)=380.(2014•达州)如图,在△ABC中,AB=BC=2,∠ABC=90°,则图中阴影部分的面积是π﹣2.81.(2014•枣庄)如图,将四个圆两两相切拼接在一起,它们的半径均为1cm,则中间阴影部分的面积为4﹣πcm2.82.(2014•德州)如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是﹣.AD==××﹣故答案为:﹣的平方的83.(2014•潍坊)如图,两个半径均为的⊙O1与⊙O2相交于A、B两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为2π﹣3.(结果保留π)。

2014年中考数学与圆有关的题试题汇编

2014年中考数学与圆有关的题试题汇编

2014年中考数学与圆有关的题试题汇编【题7】(2014•宁波26)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.【考点】:圆的综合题【分析】:(1)观察图易知,截圆的直径需不超过长方形长、宽中最短的边,由已知长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)方案二、方案三中求圆的半径是常规的利用勾股定理或三角形相似中对应边长成比例等性质解直角三角形求边长的题目.一般都先设出所求边长,而后利用关系代入表示其他相关边长,方案二中可利用△O1O2E为直角三角形,则满足勾股定理整理方程,方案三可利用△AOM∽△OFN后对应边成比例整理方程,进而可求r的值.(3)①类似(1)截圆的直径需不超过长方形长、宽中最短的边,虽然方案四中新拼的图象不一定为矩形,但直径也不得超过横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC为x,则新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x,则需要先判断大小,而后分别讨论结论.②已有关系表达式,则直接根据不等式性质易得方案四中的最大半径.另与前三方案比较,即得最终结论.【解答】:解:(1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图1,方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为⊙O与AB,BF的切点.方案二:设半径为r,在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB﹣AO1﹣CO2=3﹣2r,∴(2r)2=22+(3﹣2r)2,解得r=.方案三:设半径为r,在△AOM和△OFN中,,∴△AOM∽△OFN,∴,∴,解得r=.比较知,方案三半径较大.(3)方案四:①∵EC=x,∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x.类似(1),所截出圆的直径最大为3﹣x或2+x较小的.1.当3﹣x<2+x时,即当x>时,r=(3﹣x);2.当3﹣x=2+x时,即当x=时,r=(3﹣)=;3.当3﹣x>2+x时,即当x<时,r=(2+x).②当x>时,r=(3﹣x)<(3﹣)=;当x=时,r=(3﹣)=;当x<时,r=(2+x)<(2+)=,∴方案四,当x=时,r最大为.∵1<<<,∴方案四时可取的圆桌面积最大.【点评】:本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.【题8】(2014•苏州28)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O 的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).【考点】:圆的综合题.菁优网版权所有【分析】:(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.【解答】:解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.【点评】:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.【题9】(2014•泰州25题)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D 在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.【考点】:圆的综合题【分析】:(1)连接CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,(2)作OM⊥AB点M,连接OF,利用两条直线垂直相交求出交点M 的坐标,利用勾股定理求出FM2,再求出FG2,再根据式子写出b的范围,(3)当b=5时,直线与圆相切,存在点P,使∠CPE=45°,再利用两条直线垂直相交求出交点P的坐标,【解答】:解:(1)连接CD,EA,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,(2)①如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点M(b,b)∴OM2=(b)2+(b)2,∵OF=4,∴FM2=OF2﹣OM2=42﹣(b)2﹣(b)2,∵FM=FG,∴FG2=4FM2=4×42﹣(b)2﹣(b)2]=64﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,(3)如图,当b=5时,直线与圆相切,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴OP所在的直线为:y=x,又∵AB所在的直线为:y=﹣x+5,∴P(,).【点评】:本题主要考查了圆与一次函数的知识,解题的关键是作出辅助线,明确两条直线垂直时K的关系.【题10】(2014年江苏徐州28)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O 与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质.【分析】:(1)只要证到三个内角等于90°即可.(2)易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S矩形ABCD的范围.根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.【解答】:解:(1)证明:如图1,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,如图2①,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴=()2.∵AD=4,AB=3,∴BD=5,S△CFE=()2•S△DAB=××3×4=.∴S矩形ABCD=2S△CFE=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如图2③所示.S△BCD=BC•CD=BD•CF″′.∴4×3=5×CF″′.∴CF″′=.∴≤CF≤4.∵S矩形ABCD=,∴×()2≤S矩形ABCD≤×42.∴≤S矩形ABCD≤12.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴=.∴=.∴DG″=.∴点G移动路线的长为.【点评】:本题考查了矩形的判定与性质、相似三角形的判定与性质、圆周角定理、直角三角形斜边上的中线等于斜边的一半、垂线段定理等知识,考查了动点的移动的路线长,综合性较强.而发现∠CDG=∠ADB及∠FCE=∠ADB是解决本题的关键.【题11】(2014.连云港25题)为了考察冰川融化的状况,一支科考队在某冰川上设一定一个以大本营O为圆心,半径为4km圆形考察区域,线段P1、P2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为正整数)的关系是.以O为原点,建立如图所示的平面直角坐标系,其中P1、P2的坐标分别是(-4,9)、(-13,-3).(1)求线段P1P2所在的直线对应的函数关系式;(2)求冰川的边界线移动到考察区域所需要的最短时间.。

(完整word版)2014年中考数学专题复习:与圆有关的动点问题(精品含答案)

(完整word版)2014年中考数学专题复习:与圆有关的动点问题(精品含答案)

2014年中考数学专题复习:与圆有关的动点问题1、如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧CBA上一动点(不与A.C重合).(1)求∠APC与∠ACD的度数;(2)当点P移动到CB弧的中点时,求证:四边形OBPC是菱形.(3)P点移动到什么位置时,△APC与△ABC全等,请说明理由.2、如图,在⊙O上位于直径AB的异侧有定点C和动点P,AC=12AB,点P在半圆弧AB上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点.(1)如图1,求证:△PCD∽△ABC;(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由;(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.3、如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.4、如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts.(1)当P异于A.C时,请说明PQ∥BC;(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?5、如图,在菱形ABCD中,AB=2错误!,∠A=60º,以点D为圆心的⊙D与边AB相切于点E.(1)求证:⊙D与边BC也相切;(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,求图中阴影部分的面积(结果保留π);(3)⊙D上一动点M从点F出发,按逆时针方向运动半周,当S△HDF=错误!S△MDF时,求动点M经过的弧长(结果保留π).6、半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.(1)过点B作的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.7、如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P在射线AC上运动,过点P作PH⊥AB,垂足为H.(1)直接写出线段AC、AD及⊙O半径的长;(2)设PH=x,PC=y,求y关于x的函数关系式;(3)当PH与⊙O相切时,求相应的y值.8、如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.(1)求证:OF∥BE;(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;(3)延长DC、FP交于点G,连接OE并延长交直线DC与H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.9、如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.10、如图,在⊙O 中,直径AB⊥CD,垂足为E ,点M 为OC 上动点,AM 的延长线交⊙O 于点G,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N . (1)求证:CF 是⊙O 的切线;(2)点M 在OC 上移动时(点M 不与O 、C 点重合),探究△ACM 与△DCN 之间关系,并证明(3)若点M 移动到CO 的中点时,⊙O 的半径为4,cos∠BOC=41,求BN 的长.11、如图,已知AB 是圆O 的直径,BC 是圆O 的弦,弦ED ⊥AB 于点F,交BC 于点G,过点C 作圆O 的切线与ED 的延长线交于点P . (1)求证:PC =PG;(2)点C 在劣弧AD 上运动时,其他条件不变,若点G 是BC 的中点,试探究CG 、BF 、BO 三者之间的数量关系,并写出证明过程;(3)在满足(2)的条件下,已知圆为O 的半径为5,若点O 到BC 的距离为5时,求弦ED 的长.12、如图1,已知⊙O 的半径长为3,点A 是⊙O 上一定点,点P 为⊙O 上不同于点A 的动点.(1)当1tan A 时,求AP 的长;(3)在(2)的条件下,当4tan3A 时(如图3),存在⊙M与⊙O相内切,同时与⊙Q相外切,且OM⊥OQ,试求⊙M的半径的长.图1 图2 图3答案:1、解:(1)连接AC,如图所示:∵AB=4,∴OA=OB=OC=12AB=2。

2014年中考数学圆的综合题试卷分类汇编

2014年中考数学圆的综合题试卷分类汇编

2014年中考数学圆的综合题试卷分类汇编中考数学圆的综合题试卷分类汇编&nbsp;,主要是汇总了2013年中考数学试题中关于圆的综合题,这类题型主要考查了圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识,牢记这些定理是解决本题的关键。

中考数学圆的综合题试卷分类汇编&nbsp;,供大家下载练习。

1、(2013 温州)在△ABC中,C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是( )&nbsp;考点:圆的认识分析:首先根据AB、AC的长求得S1+S3和S2+S4的值,然后两值相减即可求得结论.解答:解:△AB=4,AC=2,点评:本题考查了圆的认识,解题的关键是正确的表示出S1+S3和S2+S4的值.2、(2013 孝感)下列说法正确的是( )A.平分弦的直径垂直于弦B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.若两个圆有公共点,则这两个圆相交考点:圆与圆的位置关系;垂径定理;圆心角、弧、弦的关系;圆周角定理.分析:利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可解答:解:A、平分弦(不是直径)的直径垂直于弦,故本选项错误;B、半圆或直径所对的圆周角是直角,故本选项正确;C、同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D、两圆有两个公共点,两圆相交,故本选项错误,故选B.点评:本题考查了圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识,牢记这些定理是解决本题的关键.相关推荐2013年中考数学关于函数与四边形的模拟汇编&nbsp;&nbsp;2013年中考模拟数学关于实数运算的试卷分类汇编&nbsp;&nbsp;&nbsp;标签:模拟题汇编。

2014年全国中考数学试题汇编《圆》(13)

2014年全国中考数学试题汇编《圆》(13)

全国中考数学试题汇编《圆》(13)解答题361.(2009•天津)如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).362.(2009•鄂州)如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.363.(2009•淄博)如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD.(1)求BD的长;(2)求∠ABE+2∠D的度数;(3)求的值.364.(2009•聊城)如图,⊙O是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=45度.连接BO 并延长交AC于点G,AB=4,AG=2.(1)求∠A的度数;(2)求⊙O的半径.365.(2009•杭州)如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O 相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;(2)求正六边形T1,T2的面积比S1:S2的值.366.(2009•湛江)如图,点O、A、B的坐标分别为(0,0)、(3,0)、(3,﹣2),将△OAB绕点O按逆时针方向旋转90°得到△OA′B′.(1)画出旋转后的△OA′B′,并求点B′的坐标;(2)求在旋转过程中,点A所经过的路径的长度.(结果保留π)367.(2009•厦门)如图,已知AB是⊙O的直径,点C在⊙O上,P是△OAC的重心,且OP=,∠A=30度.(1)求劣弧的长;(2)若∠ABD=120°,BD=1,求证:CD是⊙O的切线.368.(2009•南宁)已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).369.(2009•河池)如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度.(1)求∠AOC的度数;(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.370.(2009•河北)如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转_________周;若AB=l,则⊙O自转_________周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转_________周;若∠ABC=60°,则⊙O在点B处自转_________周;(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B﹣C滚动到⊙O4的位置,⊙O自转_________周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.371.(2009•佛山)已知,一个圆形电动砂轮的半径是20cm,转轴OA长是40cm.砂轮未工作时停靠在竖直的档板OM上,边缘与档板相切于点B.现在要用砂轮切割水平放置的薄铁片(铁片厚度忽略不计,ON是切痕所在的直线).(1)在图②的坐标系中,求点A与点A1的坐标;(2)求砂轮工作前后,转轴OA旋转的角度和圆心A转过的弧长.注:图①是未工作时的示意图,图②是工作前后的示意图.372.(2009•临夏州)图中的粗线CD表示某条公路的一段,其中AmB是一段圆弧,AC、BD是线段,且AC、BD 分别与圆弧相切于点A、B,线段AB=180m,∠ABD=150度.(1)画出圆弧的圆心O;(2)求A到B这段弧形公路的长.373.(2009•朝阳)在10×10的网格纸上建立平面直角坐标系如图所示,在Rt△ABC中,∠OAB=90°,且点B的坐标为(3,4).(1)画出△OAB向左平移3个单位后的△O1A1B1,写出点B1的坐标;(2)画出△OAB绕点O顺时针旋转90°后的△OA2B2,并求点B旋转到点B2时,点B经过的路线长(结果保留π).374.(2014•凉山州)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.375.(2009•湛江)如图,AB是⊙O的切线,切点为B,AO交⊙O于点C,过点C作DC⊥OA,交AB于点D,(1)求证:∠CDO=∠BDO;(2)若∠A=30°,⊙O的半径为4,求阴影部分的面积.(结果保留π)376.(2012•呼伦贝尔)如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=6.(1)求⊙O的半径;(2)求图中阴影部分的面积.377.(2009•新疆)如图,已知菱形ABCD的边长为1.5cm,B,C两点在扇形AEF的上,求的长度及扇形ABC的面积.378.(2009•泉州)如图,△ABC与△ADE都是等腰直角三角形,∠ACB和∠E都是直角,点C在AD上,把△ABC绕点A按顺时针方向旋转n度后恰好与△ADE重合.(1)请直接写出n的值;(2)若BC=,试求线段BC在上述旋转过程中所扫过部分的面积.379.(2009•庆阳)如图,在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4.(1)画出△OAB绕原点O顺时针旋转90°后得到的三角形;(2)求线段OB在上述旋转过程中所扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积).380.(2009•南宁)如图,PA、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP与弦AB交于点C,与⊙O交于点D.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;(2)求阴影部分的面积(结果保留π).381.(2009•柳州)如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△AB1C1.(1)在正方形网格中,作出△AB1C1;(不要求写作法)(2)设网格小正方形的边长为1cm,用阴影表示出旋转过程中线段BC所扫过的图形,然后求出它的面积.(结果保留π).382.(2009•衡阳)如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.(1)求证:AC=BD;(2)若图中阴影部分的面积是πcm2,OA=2cm,求OC的长.383.(2009•抚顺)如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)384.(2009•青海)如图,一个圆锥的高为cm,侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比;(2)求∠BAC的度数;(3)圆锥的侧面积(结果保留π).385.(2009•贵阳)光明灯具厂生产一批台灯罩,如图的阴影部分为灯罩的侧面展开图.已知半径OA、OC分别为36cm、12cm,∠AOB=135°(1)若要在灯罩的上下边缘镶上花边(花边的宽度忽略不计),需要多长的花边?(2)求灯罩的侧面积(接缝不计).(以上计算结果保留π)386.(2009•济宁)在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB 边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.387.(2009•茂名)如图,在Rt△ABC中,∠BAC=90°,∠C=60°,BC=24,点P是BC边上的动点(点P与点B、C 不重合),过动点P作PD∥BA交AC于点D.(1)若△ABC与△DAP相似,则∠APD是多少度?(2)试问:当PC等于多少时,△APD的面积最大?最大面积是多少?(3)若以线段AC为直径的圆和以线段BP为直径的圆相外切,求线段BP的长.388.(2009•怀化)如图,直线DE经过⊙O上的点C,并且OE=OD,EC=DC,⊙O交直线OD于A、B两点,连接BC,AC,OC.求证:(1)OC⊥DE;(2)△ACD∽△CBD.389.(2009•襄阳)如图,已知:在⊙O中,直径AB=4,点E是OA上任意一点,过E作弦CD⊥AB,点F是上一点,连接AF交CE于H,连接AC、CF、BD、OD.(1)求证:△ACH∽△AFC;(2)猜想:AH•AF与AE•AB的数量关系,并说明你的猜想;(3)探究:当点E位于何处时,S△AEC:S△BOD=1:4,并加以说明.390.(2009•庆阳)如图,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E.(1)∠E=_________度;(2)写出图中现有的一对不全等的相似三角形,并说明理由;(3)求弦DE的长.2009年全国中考数学试题汇编《圆》(13)参考答案与试题解析解答题361.(2009•天津)如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).BAC=,362.(2009•鄂州)如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.时,;时,AP=363.(2009•淄博)如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD.(1)求BD的长;(2)求∠ABE+2∠D的度数;(3)求的值.,可将的值求出.∴364.(2009•聊城)如图,⊙O是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=45度.连接BO 并延长交AC于点G,AB=4,AG=2.(1)求∠A的度数;(2)求⊙O的半径.∴.的半径为.365.(2009•杭州)如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O 相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;(2)求正六边形T1,T2的面积比S1:S2的值.:366.(2009•湛江)如图,点O、A、B的坐标分别为(0,0)、(3,0)、(3,﹣2),将△OAB绕点O按逆时针方向旋转90°得到△OA′B′.(1)画出旋转后的△OA′B′,并求点B′的坐标;(2)求在旋转过程中,点A所经过的路径的长度.(结果保留π)所经过的路径是圆心角为l=π的长度为π367.(2009•厦门)如图,已知AB是⊙O的直径,点C在⊙O上,P是△OAC的重心,且OP=,∠A=30度.(1)求劣弧的长;(2)若∠ABD=120°,BD=1,求证:CD是⊙O的切线.)要求劣弧OP=∴π368.(2009•南宁)已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).369.(2009•河池)如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度.(1)求∠AOC的度数;(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.PO=4∴经过的弧长为∴∴或经过的弧长为370.(2009•河北)如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转2周;若AB=l,则⊙O自转周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转周;若∠ABC=60°,则⊙O在点B处自转周;(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B﹣C滚动到⊙O4的位置,⊙O自转周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.周.在阅读理解的(处自转处自转AB=BC==周,拓展联想:因三角形和五边形的外角和是+1;;..在三边上自转了周.自转了共自转了((371.(2009•佛山)已知,一个圆形电动砂轮的半径是20cm,转轴OA长是40cm.砂轮未工作时停靠在竖直的档板OM上,边缘与档板相切于点B.现在要用砂轮切割水平放置的薄铁片(铁片厚度忽略不计,ON是切痕所在的直线).(1)在图②的坐标系中,求点A与点A1的坐标;(2)求砂轮工作前后,转轴OA旋转的角度和圆心A转过的弧长.注:图①是未工作时的示意图,图②是工作前后的示意图.,再表示点的坐标;OB=20)与(20的长为40=372.(2009•临夏州)图中的粗线CD表示某条公路的一段,其中AmB是一段圆弧,AC、BD是线段,且AC、BD 分别与圆弧相切于点A、B,线段AB=180m,∠ABD=150度.(1)画出圆弧的圆心O;(2)求A到B这段弧形公路的长.都是圆弧的半径,∴373.(2009•朝阳)在10×10的网格纸上建立平面直角坐标系如图所示,在Rt△ABC中,∠OAB=90°,且点B的坐标为(3,4).(1)画出△OAB向左平移3个单位后的△O1A1B1,写出点B1的坐标;(2)画出△OAB绕点O顺时针旋转90°后的△OA2B2,并求点B旋转到点B2时,点B经过的路线长(结果保留π).OB==5374.(2014•凉山州)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.,=375.(2009•湛江)如图,AB是⊙O的切线,切点为B,AO交⊙O于点C,过点C作DC⊥OA,交AB于点D,(1)求证:∠CDO=∠BDO;(2)若∠A=30°,⊙O的半径为4,求阴影部分的面积.(结果保留π)A=××,=376.(2012•呼伦贝尔)如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=6.(1)求⊙O的半径;(2)求图中阴影部分的面积.AC=3AC=BC=AB=×.OC=,πOCπ﹣377.(2009•新疆)如图,已知菱形ABCD的边长为1.5cm,B,C两点在扇形AEF的上,求的长度及扇形ABC的面积.的长度及扇形lR=• 1.5=πl=,扇形的面积lR378.(2009•泉州)如图,△ABC与△ADE都是等腰直角三角形,∠ACB和∠E都是直角,点C在AD上,把△ABC绕点A按顺时针方向旋转n度后恰好与△ADE重合.(1)请直接写出n的值;(2)若BC=,试求线段BC在上述旋转过程中所扫过部分的面积.,由(AB==AC=BC=S=379.(2009•庆阳)如图,在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4.(1)画出△OAB绕原点O顺时针旋转90°后得到的三角形;(2)求线段OB在上述旋转过程中所扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积).OA=2380.(2009•南宁)如图,PA、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP与弦AB 交于点C,与⊙O交于点D.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;(2)求阴影部分的面积(结果保留π).∠×381.(2009•柳州)如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△AB1C1.(1)在正方形网格中,作出△AB1C1;(不要求写作法)(2)设网格小正方形的边长为1cm,用阴影表示出旋转过程中线段BC所扫过的图形,然后求出它的面积.(结果保留π).S=π(382.(2009•衡阳)如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.(1)求证:AC=BD;(2)若图中阴影部分的面积是πcm2,OA=2cm,求OC的长.∵=∴383.(2009•抚顺)如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)DE=EB=BD==∴384.(2009•青海)如图,一个圆锥的高为cm,侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比;(2)求∠BAC的度数;(3)圆锥的侧面积(结果保留π).)圆锥的侧面积是展开图扇形的面积,直接利用公式解题即可,圆锥的侧面积为,h=33圆锥的侧面积为=18385.(2009•贵阳)光明灯具厂生产一批台灯罩,如图的阴影部分为灯罩的侧面展开图.已知半径OA、OC分别为36cm、12cm,∠AOB=135°(1)若要在灯罩的上下边缘镶上花边(花边的宽度忽略不计),需要多长的花边?(2)求灯罩的侧面积(接缝不计).(以上计算结果保留π))=27=9=54386.(2009•济宁)在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB 边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论..CON=(,387.(2009•茂名)如图,在Rt△ABC中,∠BAC=90°,∠C=60°,BC=24,点P是BC边上的动点(点P与点B、C 不重合),过动点P作PD∥BA交AC于点D.(1)若△ABC与△DAP相似,则∠APD是多少度?(2)试问:当PC等于多少时,△APD的面积最大?最大面积是多少?(3)若以线段AC为直径的圆和以线段BP为直径的圆相外切,求线段BP的长.x ﹣x(+1818E=)x﹣=﹣(,18E=)388.(2009•怀化)如图,直线DE经过⊙O上的点C,并且OE=OD,EC=DC,⊙O交直线OD于A、B两点,连接BC,AC,OC.求证:(1)OC⊥DE;(2)△ACD∽△CBD.389.(2009•襄阳)如图,已知:在⊙O中,直径AB=4,点E是OA上任意一点,过E作弦CD⊥AB,点F是上一点,连接AF交CE于H,连接AC、CF、BD、OD.(1)求证:△ACH∽△AFC;(2)猜想:AH•AF与AE•AB的数量关系,并说明你的猜想;(3)探究:当点E位于何处时,S△AEC:S△BOD=1:4,并加以说明.∴∴)解:当OB∴==∴OE=时390.(2009•庆阳)如图,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E.(1)∠E=45度;(2)写出图中现有的一对不全等的相似三角形,并说明理由;(3)求弦DE的长.的相似比∴AP=DE=AP=AD DP=AP DF=DE=。

2014年中考数学压轴题分类汇编:与圆有关【含答案】

2014年中考数学压轴题分类汇编:与圆有关【含答案】

2014年中考数学压轴题分类汇编:与圆有关【含答案】2014年中考数学分类汇编中,与圆相关的考点包括垂径定理、圆周角定理、圆内接四边形的性质、切线性质、锐角三角函数定义、特殊角的三角函数值、相似三角形的判定和性质、勾股定理、特殊四边形性质等。

本文选取了部分省市的2014年中考题,供读者参考。

题目一是2014年江苏南京中考数学26题。

题目给出一个直角三角形ABC,AC=4cm,BC=3cm,且有一个内切圆O。

问题分为两部分:求圆的半径和当点P从点B沿边BA向点A 以1cm/s的速度匀速运动时,若⊙P与⊙O相切,求t的值。

对于第一部分,我们可以通过连接切点和圆心,设出半径,并利用圆的性质和直角三角形性质表示其中关系,得到方程,求解得到半径。

对于第二部分,我们需要分别讨论外切和内切的情况,通过表示边长之间的关系列方程,易得t的值。

解答部分中,对于第一部分,我们设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,得到四边形CEOF是正方形,进而得到半径为1cm。

对于第二部分,我们通过画图得到PG∥AC,从而得到△PBG∽△ABC,进而得到PG=1/5,BG=3/5.然后我们分别讨论外切和内切的情况,列方程解得t=4或2.作点F关于点M的对称点F',连接ME和F'F,经过M、E和F'三点的抛物线的对称轴交x轴于点Q,连接QE。

在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由。

证明:1)如图,连接PM,PN。

因为圆P与x轴和y轴相切于点M和点N,所以PM⊥MF,PN⊥ON且PM=PN。

又因为PE⊥PF,所以∠PMF=∠PNE=90°且∠NPM=90°。

由于∠NPE=∠MPF=90°-∠MPE,在△PMF和△PNE中,∠MPE相等,所以这两个三角形是全等的(ASA),因此PE=PF。

2014年全国中考数学试题汇编《圆》(11)

2014年全国中考数学试题汇编《圆》(11)

全国中考数学试题汇编《圆》(11)解答题301.(2009•宜昌)已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C 重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P.(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);(2)与是否相等?请你说明理由;(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)302.(2009•烟台)如图,AB,BC分别是⊙O的直径和弦,点D为上一点,弦DE交⊙O于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且HC=HG,连接BH,交⊙O于点M,连接MD,ME.求证:(1)DE⊥AB;(2)∠HMD=∠MHE+∠MEH.303.(2009•芜湖)如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.(1)求证:AE⊥DE;(2)计算:AC•AF的值.(1)当BD=3时,求线段DE的长;(2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F.求证:△FAE是等腰三角形.305.(2009•泰安)将一个量角器和一个含30度角的直角三角板如图(1)放置,图(2)是由它抽象出的几何图形,其中点B在半圆O的直径DE的延长线上,AB切半圆O于点F,且BC=OD.(1)求证:DB∥CF;(2)当OD=2时,若以O、B、F为顶点的三角形与△ABC相似,求OB.306.(2009•沈阳)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,∠C=20度.求∠CDA 的大小.307.(2009•上海)在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.(1)求b的值和点D的坐标;(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.308.(2009•清远)如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连接AC.(2)若OB=2,OP=,求BC的长.309.(2009•莆田)已知,如图,BC是以线段AB为直径的⊙O的切线,AC交⊙O于点D,过点D作弦DE⊥AB,垂足为点F,连接BD、BE.(1)仔细观察图形并写出四个不同的正确结论:①_________,②_________,③_________,④_________(不添加其它字母和辅助线,不必证明);(2)∠A=30°,CD=,求⊙O的半径r.310.(2009•宁波)已知:如图,⊙O的直径AB与弦CD相交于E,=,⊙O的切线BF与弦AD的延长线相交于点F.(1)求证:CD∥BF.(2)连接BC,若⊙O的半径为4,cos∠BCD=,求线段AD、CD的长.311.(2009•南充)如图,半圆的直径AB=10,点C在半圆上,BC=6.(1)求弦AC的长;(2)若P为AB的中点,PE⊥AB交AC于点E,求PE的长.312.(2009•梅州)如图,矩形ABCD中,AB=5,AD=3.点E是CD上的动点,以AE为直径的⊙O与AB交于点①tan∠EAB的值为_________;②证明:FG是⊙O的切线;(2)试探究:BE能否与⊙O相切?若能,求出此时DE的长;若不能,请说明理由.313.(2009•龙岩)如图,已知点E在△ABC的边AB上,以AE为直径的⊙O与BC相切于点D,且AD平分∠BAC.求证:AC⊥BC.314.(2009•临沂)如图,AC是⊙O的直径,PA,PB是⊙O的切线,A,B为切点,AB=6,PA=5.求:(1)⊙O的半径;(2)sin∠BAC的值.315.(2009•来宾)如图,AB为⊙O的直径,CD与⊙O相切于点C,且OD⊥BC,垂足为F,OD交⊙O于点E.(1)证明:BE=CE;(2)证明:∠D=∠AEC;(3)若⊙O的半径为5,BC=8,求△CDE的面积.316.(2009•济宁)如图,△ABC中,∠C=90°,AC=4,BC=3.半径为1的圆的圆心P以1个单位/s的速度由点A沿AC方向在AC上移动,设移动时间为t(单位:s).(1)当t为何值时,⊙P与AB相切;(2)作PD⊥AC交AB于点D,如果⊙P和线段BC交于点E,证明:当时,四边形PDBE为平行四边形.317.(2009•济南)(1)已知,如图①,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE=CF;(2)已知,如图②,AB是⊙O的直径,CA与⊙O相切于点A.连接CO交⊙O于点D,CO的延长线交⊙O于点E.连接BE、BD,∠ABD=30°,求∠EBO和∠C的度数.318.(2009•衡阳)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60度.(1)求⊙O的直径;(2)若D是AB延长线上一点,连接CD,当BD长为多少时,CD与⊙O相切;(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0<t<2),连接EF,当t为何值时,△BEF为直角三角形.320.(2009•达州)如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)求证:FC=CE;(3)若弦AD=5cm,AC=8cm,求⊙O的半径.321.(2009•长沙)在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接(2)若BC=6,AD=4,求⊙O的面积.322.(2009•滨州)如图,PA为⊙O的切线,A为切点.直线PO与⊙O交于B、C两点,∠P=30°,连接AO、AB、AC.求证:△ACB≌△APO.323.(2009•安徽)如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,求证:MO∥BC.324.(2010•兰州)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是的中点,CM交AB于点N,若AB=4,求MN•MC的值.325.(2010•大田县)如图,AB为⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于F.(1)求证:DE是⊙O的切线;326.(2009•中山)在平行四边形ABCD中,AB=10,AD=m,∠D=60°,以AB为直径作⊙O.(1)求圆心O到CD的距离(用含m的代数式来表示);(2)当m取何值时,CD与⊙O相切.327.(2009•浙江)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC,弦DF⊥AB于点G.(1)求证:点E是的中点;(2)求证:CD是⊙O的切线;(3)若sin∠BAD=,⊙O的半径为5,求DF的长.329.(2009•营口)如图,已知△ABC中,∠C=∠ABC,以AB为直径作⊙O交BC于D,DE⊥AC,垂足为E.(1)判断DE与⊙O的位置关系,并说明理由;(2)如果BC=10,CE=4,求直径AB的长.330.(2009•孝感)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.(1)求证:PB是⊙O的切线;2009年全国中考数学试题汇编《圆》(11)参考答案与试题解析解答题301.(2009•宜昌)已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C 重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P.(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);(2)与是否相等?请你说明理由;(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)的中点为圆心,以FAN=,在PAD=,可得:,又≠,可得:是不相等;PC与不相等.∴解法二:不相等.FAN=PAD=∴∴≠OJ=(MP=4OJ=(302.(2009•烟台)如图,AB,BC分别是⊙O的直径和弦,点D为上一点,弦DE交⊙O于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且HC=HG,连接BH,交⊙O于点M,连接MD,ME.求证:(1)DE⊥AB;(2)∠HMD=∠MHE+∠MEH.∴303.(2009•芜湖)如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.(1)求证:AE⊥DE;(2)计算:AC•AF的值..BC=6304.(2009•温州)如图,在△ABC中,∠C=90°,AC=3,BC=4.0为BC边上一点,以0为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连接DE.(1)当BD=3时,求线段DE的长;(2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F.求证:△FAE是等腰三角形.∴DE=305.(2009•泰安)将一个量角器和一个含30度角的直角三角板如图(1)放置,图(2)是由它抽象出的几何图形,其中点B在半圆O的直径DE的延长线上,AB切半圆O于点F,且BC=OD.(1)求证:DB∥CF;(2)当OD=2时,若以O、B、F为顶点的三角形与△ABC相似,求OB.OB==的长为306.(2009•沈阳)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,∠C=20度.求∠CDA 的大小.A=307.(2009•上海)在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.(1)求b的值和点D的坐标;(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.OD=∴.∴,.,(D==2.的半径为,,的半径为.308.(2009•清远)如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连接AC.(1)求证:△ABC∽△POA;(2)若OB=2,OP=,求BC的长.∴PO=∴∴BC=309.(2009•莆田)已知,如图,BC是以线段AB为直径的⊙O的切线,AC交⊙O于点D,过点D作弦DE⊥AB,垂足为点F,连接BD、BE.(1)仔细观察图形并写出四个不同的正确结论:①,②,③,④(不添加其它字母和辅助线,不必证明);(2)∠A=30°,CD=,求⊙O的半径r.AB=r∴310.(2009•宁波)已知:如图,⊙O的直径AB与弦CD相交于E,=,⊙O的切线BF与弦AD的延长线相交于点F.(1)求证:CD∥BF.(2)连接BC,若⊙O的半径为4,cos∠BCD=,求线段AD、CD的长.)根据=,BCD=×=6,.×.平分CD=2DE=3.311.(2009•南充)如图,半圆的直径AB=10,点C在半圆上,BC=6.(1)求弦AC的长;(2)若P为AB的中点,PE⊥AB交AC于点E,求PE的长.∴∴312.(2009•梅州)如图,矩形ABCD中,AB=5,AD=3.点E是CD上的动点,以AE为直径的⊙O与AB交于点F,过点F作FG⊥BE于点G.(1)当E是CD的中点时:①tan∠EAB的值为;②证明:FG是⊙O的切线;(2)试探究:BE能否与⊙O相切?若能,求出此时DE的长;若不能,请说明理由.AB=,==∴313.(2009•龙岩)如图,已知点E在△ABC的边AB上,以AE为直径的⊙O与BC相切于点D,且AD平分∠BAC.求证:AC⊥BC.314.(2009•临沂)如图,AC是⊙O的直径,PA,PB是⊙O的切线,A,B为切点,AB=6,PA=5.求:(1)⊙O的半径;(2)sin∠BAC的值.PD=AO===的半径为BAC=.315.(2009•来宾)如图,AB为⊙O的直径,CD与⊙O相切于点C,且OD⊥BC,垂足为F,OD交⊙O于点E.(1)证明:BE=CE;(2)证明:∠D=∠AEC;(3)若⊙O的半径为5,BC=8,求△CDE的面积.OF=∴﹣.×4=316.(2009•济宁)如图,△ABC中,∠C=90°,AC=4,BC=3.半径为1的圆的圆心P以1个单位/s的速度由点A 沿AC方向在AC上移动,设移动时间为t(单位:s).(1)当t为何值时,⊙P与AB相切;(2)作PD⊥AC交AB于点D,如果⊙P和线段BC交于点E,证明:当时,四边形PDBE为平行四边形.∴AB=∴∴AP=,﹣EC=∴∴PD=t=317.(2009•济南)(1)已知,如图①,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE=CF;(2)已知,如图②,AB是⊙O的直径,CA与⊙O相切于点A.连接CO交⊙O于点D,CO的延长线交⊙O于点E.连接BE、BD,∠ABD=30°,求∠EBO和∠C的度数.318.(2009•衡阳)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60度.(1)求⊙O的直径;(2)若D是AB延长线上一点,连接CD,当BD长为多少时,CD与⊙O相切;(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0<t<2),连接EF,当t为何值时,△BEF为直角三角形.×320.(2009•达州)如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)求证:FC=CE;(3)若弦AD=5cm,AC=8cm,求⊙O的半径.r=.,的半径为cm321.(2009•长沙)在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长,与BC的延长线交于点F.(1)求证:BD=BF;(2)若BC=6,AD=4,求⊙O的面积.∴322.(2009•滨州)如图,PA为⊙O的切线,A为切点.直线PO与⊙O交于B、C两点,∠P=30°,连接AO、AB、AC.求证:△ACB≌△APO.∠323.(2009•安徽)如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,求证:MO∥BC.324.(2010•兰州)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是的中点,CM交AB于点N,若AB=4,求MN•MC的值.BC=的中点,∴∴的直径,BM=2.325.(2010•大田县)如图,AB为⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于F.(1)求证:DE是⊙O的切线;(2)若DE=3,⊙O的半径为5.求BF的长.AC==8∴∴.326.(2009•中山)在平行四边形ABCD中,AB=10,AD=m,∠D=60°,以AB为直径作⊙O.(1)求圆心O到CD的距离(用含m的代数式来表示);(2)当m取何值时,CD与⊙O相切.D=.∴AE=OF=AE=为m327.(2009•浙江)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC,弦DF⊥AB于点G.(1)求证:点E是的中点;(2)求证:CD是⊙O的切线;(3)若sin∠BAD=,⊙O的半径为5,求DF的长.=;∠∠∴是sinA=×(329.(2009•营口)如图,已知△ABC中,∠C=∠ABC,以AB为直径作⊙O交BC于D,DE⊥AC,垂足为E.(1)判断DE与⊙O的位置关系,并说明理由;(2)如果BC=10,CE=4,求直径AB的长.BD=CD=BC=5cosC=cosC=,∴AC=,AB=.BD=CD=BC=5cosC=ABD=,∴AB=.CD=BC=5∴CA=;AB=.BD=CD=BC=5∴AB=.330.(2009•孝感)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.(1)求证:PB是⊙O的切线;(2)已知PA=,BC=1,求⊙O的半径.∴BC=,)﹣PO=中,。

2014年全国中考数学试题汇编《圆》(10)

2014年全国中考数学试题汇编《圆》(10)

全国中考数学试题汇编《圆》(10)解答题271.(2009•金华)如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为AB的等腰梯形,上底CD的端点在圆周上,且CD=10cm.(1)求梯形ABCD面积;(2)求图中阴影部分的面积.272.(2009•潍坊)在四边形ABCD中,AB⊥BC,DC⊥BC,AB=a,DC=b,BC=a+b,且a≤b.取AD的中点P,连接PB、PC.(1)试判断三角形PBC的形状;(2)在线段BC上,是否存在点M,使AM⊥MD?若存在,请求出BM的长;若不存在,请说明理由.273.(2009•荆门)如图,半径为2的⊙O内有互相垂直的两条弦AB、CD相交于P点.(1)求证:PA•PB=PC•PD;(2)设BC的中点为F,连接FP并延长交AD于E,求证:EF⊥AD;(3)若AB=8,CD=6,求OP的长.274.(2009•贵阳)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC、BC,若∠BAC=30°,CD=6cm.(1)求∠BCD的度数;(2)求⊙O的直径.275.(2009•防城港)如图,⊙O的半径为2,直径CD经过弦AB的中点G,若的长等于圆周长的.(1)填空:cos∠ACB=_________;(2)求的值.276.(2009•河北)如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=24 m,OE⊥CD于点E.已测得sin∠DOE=.(1)求半径OD;(2)根据需要,水面要以每小时0.5m的速度下降,则经过多长时间才能将水排干?277.(2009•衢州)如图,AD是⊙O的直径.(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是_________°,∠B2的度数是_________°;(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3C3,…,B n C n把圆周2n等分,请你用含n的代数式表示∠B n的度数(只需直接写出答案).278.(2009•哈尔滨)如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.求证:CD=CE.279.(2009•株洲)如图,点A、B、C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB.(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长.280.(2009•宜昌)已知:如图,⊙O的直径AD=2,,∠BAE=90度.(1)求△CAD的面积;(2)如果在这个圆形区域中,随机确定一个点P,那么点P落在四边形ABCD区域的概率是多少?281.(2009•天水)如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)若⊙O的半径为4,∠BAC=60°,求DE的长.282.(2009•宁夏)已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.(1)求∠EBC的度数;(2)求证:BD=CD.283.(2009•内江)如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求证:(1)CD⊥DF;(2)BC=2CD.284.(2009•柳州)如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为3,求BC的长.285.(2009•荆州)如图,AB是半圆O的直径,C为半圆上一点,N是线段BC上一点(不与B﹑C重合),过N 作AB的垂线交AB于M,交AC的延长线于E,过C点作半圆O的切线交EM于F.(1)求证:△ACO∽△NCF;(2)NC:CF=3:2,求sinB的值.286.(2009•吉林)如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.(1)求证:△CBE∽△AFB;(2)当时,求的值.287.(2009•黄冈)如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.求证:BC2=BG•BF.288.(2009•广州)如图,在⊙O中,∠ACB=∠BDC=60°,AC=2cm.(1)求∠BAC的度数;(2)求⊙O的周长.289.(2009•成都)如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连接CD,G是CD的中点,连接OG.(1)判断OG与CD的位置关系,写出你的结论并证明;(2)求证:AE=BF;(3)若OG⋅DE=3(2﹣),求⊙O的面积.290.(2009•常德)如图,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE,△ABE与△ADC 相似吗?请证明你的结论.291.(2009•潍坊)如图所示,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交圆O于点D,连接BD、DC.(1)求证:BD=DC=DI;(2)若圆O的半径为10cm,∠BAC=120°,求△BDC的面积.292.(2009•荆门)如图,在▱ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.(1)求证:A、E、C、F四点共圆;(2)设线段BD与(1)中的圆交于M、N.求证:BM=ND.293.(2009•中山)(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC 于点G,求证:阴影部分四边形OFCG的面积是△ABC的面积的.(2)如图2,若∠DOE保持120°角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的.294.(2009•茂名)已知:如图,直径为OA的⊙M与x轴交于点O、A,点B、C把分为三等份,连接MC并延长交y轴于点D(0,3)(1)求证:△OMD≌△BAO;(2)若直线l:y=kx+b把⊙M的面积分为二等份,求证:k+b=0.295.(2009•三明)如图,在直角梯形ABCD中,AB∥CD,∠B=90°,AB=AD,∠BAD的平分线交BC于E,连接DE.(1)说明点D在△ABE的外接圆上;(2)若∠AED=∠CED,试判断直线CD与△ABE外接圆的位置关系,并说明理由.296.(2009•江苏)如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4).动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒.(1)请用含t的代数式分别表示出点C与点P的坐标;(2)以点C为圆心、t个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B的左侧),连接PA、PB.①当⊙C与射线DE有公共点时,求t的取值范围;②当△PAB为等腰三角形时,求t的值.297.(2010•枣庄)如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,过点D作DF⊥AB于点E,交⊙O于点F,已知OE=1cm,DF=4cm.(1)求⊙O的半径;(2)求切线CD的长.298.(2010•衡阳)如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E.(1)求证:DE=BC;(2)若tanC=,DE=2,求AD的长.299.(2009•资阳)如图1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY切于点B,交射线OX于点C,连接BC,作CD⊥BC,交AY于点D.(1)求证:△ABC∽△ACD;(2)若P是AY上一点,AP=4,且sinA=,①如图2,当点D与点P重合时,求R的值;②当点D与点P不重合时,试求PD的长(用R表示).300.(2009•肇庆)如图,⊙O的直径AB=2,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C.设AD=x,BC=y.(1)求证:AM∥BN;(2)求y关于x的关系式;(3)求四边形ABCD的面积S,并证明:S≥2.2009年全国中考数学试题汇编《圆》(10)参考答案与试题解析解答题271.(2009•金华)如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为AB的等腰梯形,上底CD的端点在圆周上,且CD=10cm.(1)求梯形ABCD面积;(2)求图中阴影部分的面积.OE==5((וCD=25()阴影部分的面积为()272.(2009•潍坊)在四边形ABCD中,AB⊥BC,DC⊥BC,AB=a,DC=b,BC=a+b,且a≤b.取AD的中点P,连接PB、PC.(1)试判断三角形PBC的形状;(2)在线段BC上,是否存在点M,使AM⊥MD?若存在,请求出BM的长;若不存在,请说明理由.PQ=(=代入得:,273.(2009•荆门)如图,半径为2的⊙O内有互相垂直的两条弦AB、CD相交于P点.(1)求证:PA•PB=PC•PD;(2)设BC的中点为F,连接FP并延长交AD于E,求证:EF⊥AD;(3)若AB=8,CD=6,求OP的长.∴2274.(2009•贵阳)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC、BC,若∠BAC=30°,CD=6cm.(1)求∠BCD的度数;(2)求⊙O的直径.)由垂径定理知,CE=∴==4275.(2009•防城港)如图,⊙O的半径为2,直径CD经过弦AB的中点G,若的长等于圆周长的.(1)填空:cos∠ACB=;(2)求的值.的长等于圆周长的=.∵的长等于圆周长的,×.∴﹣∵的长等于圆周长的,×∠OG==(∴﹣276.(2009•河北)如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=24 m,OE⊥CD于点E.已测得sin∠DOE=.(1)求半径OD;ED=DOE====5277.(2009•衢州)如图,AD是⊙O的直径.(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是22.5°,∠B2的度数是67.5°;(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3C3,…,B n C n把圆周2n等分,请你用含n的代数式表示∠B n的度数(只需直接写出答案).等分,则是圆的,同理∴=∴××,AD=中,278.(2009•哈尔滨)如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.求证:CD=CE.中,279.(2009•株洲)如图,点A、B、C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB.(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长.AE=BE=∠×,的长是.280.(2009•宜昌)已知:如图,⊙O的直径AD=2,,∠BAE=90度.(1)求△CAD的面积;(2)如果在这个圆形区域中,随机确定一个点P,那么点P落在四边形ABCD区域的概率是多少?,由AC CD=∵=CD=AF=AC=,AC==CM=281.(2009•天水)如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)若⊙O的半径为4,∠BAC=60°,求DE的长.×=2.282.(2009•宁夏)已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.(1)求∠EBC的度数;(2)求证:BD=CD.283.(2009•内江)如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求证:(1)CD⊥DF;(2)BC=2CD.GFC=CD=GC=BC284.(2009•柳州)如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为3,求BC的长.(舍去负值)BC=2,2EF EF=(BC=285.(2009•荆州)如图,AB是半圆O的直径,C为半圆上一点,N是线段BC上一点(不与B﹑C重合),过N 作AB的垂线交AB于M,交AC的延长线于E,过C点作半圆O的切线交EM于F.(1)求证:△ACO∽△NCF;(2)NC:CF=3:2,求sinB的值.得:.286.(2009•吉林)如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.(1)求证:△CBE∽△AFB;(2)当时,求的值.,可求得∴∴287.(2009•黄冈)如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.求证:BC2=BG•BF.中,∴288.(2009•广州)如图,在⊙O中,∠ACB=∠BDC=60°,AC=2cm.(1)求∠BAC的度数;(2)求⊙O的周长.AC=OA=289.(2009•成都)如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连接CD,G是CD的中点,连接OG.(1)判断OG与CD的位置关系,写出你的结论并证明;(2)求证:AE=BF;(3)若OG⋅DE=3(2﹣),求⊙O的面积.OH=AD∴∴∴AB=AF=AB=,得,解得∴的半径长为290.(2009•常德)如图,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE,△ABE与△ADC 相似吗?请证明你的结论.是同弧所对的圆周角可得∠291.(2009•潍坊)如图所示,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交圆O于点D,连接BD、DC.(1)求证:BD=DC=DI;(2)若圆O的半径为10cm,∠BAC=120°,求△BDC的面积.∴,∴,BE=×=10=10×BD CE=××.292.(2009•荆门)如图,在▱ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.(1)求证:A、E、C、F四点共圆;(2)设线段BD与(1)中的圆交于M、N.求证:BM=ND.293.(2009•中山)(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC 于点G,求证:阴影部分四边形OFCG的面积是△ABC的面积的.(2)如图2,若∠DOE保持120°角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的.=SCF=CG=,=SS294.(2009•茂名)已知:如图,直径为OA的⊙M与x轴交于点O、A,点B、C把分为三等份,连接MC并延长交y轴于点D(0,3)(1)求证:△OMD≌△BAO;(2)若直线l:y=kx+b把⊙M的面积分为二等份,求证:k+b=0.把2=AB=中,∴∴,k+b=0295.(2009•三明)如图,在直角梯形ABCD中,AB∥CD,∠B=90°,AB=AD,∠BAD的平分线交BC于E,连接DE.(1)说明点D在△ABE的外接圆上;(2)若∠AED=∠CED,试判断直线CD与△ABE外接圆的位置关系,并说明理由.AE296.(2009•江苏)如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4).动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒.(1)请用含t的代数式分别表示出点C与点P的坐标;(2)以点C为圆心、t个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B的左侧),连接PA、PB.①当⊙C与射线DE有公共点时,求t的取值范围;②当△PAB为等腰三角形时,求t的值.t,有PQ=DQ=...,解得.的取值范围为=∴∴∴(不合题意,舍去)是等腰三角形时,,或点向左运动的,故或297.(2010•枣庄)如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,过点D作DF⊥AB于点E,交⊙O于点F,已知OE=1cm,DF=4cm.(1)求⊙O的半径;(2)求切线CD的长.DE=OD=CD=2298.(2010•衡阳)如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E.(1)求证:DE=BC;(2)若tanC=,DE=2,求AD的长.BC×=2=6∴∴.299.(2009•资阳)如图1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY切于点B,交射线OX于点C,连接BC,作CD⊥BC,交AY于点D.(1)求证:△ABC∽△ACD;(2)若P是AY上一点,AP=4,且sinA=,①如图2,当点D与点P重合时,求R的值;②当点D与点P不重合时,试求PD的长(用R表示).sinA=,AO=R AB=RAC=R+R=∴∴R∴R=.<R>AP=R)时,R)时,PD=R=PD=|300.(2009•肇庆)如图,⊙O的直径AB=2,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C.设AD=x,BC=y.(1)求证:AM∥BN;(2)求y关于x的关系式;(3)求四边形ABCD的面积S,并证明:S≥2.y=(S=×x+()﹣=﹣x+≥。

2014年全国中考数学试题汇编《圆》(12)

2014年全国中考数学试题汇编《圆》(12)

全国中考数学试题汇编《圆》(12)解答题331.(2009•西宁)已知:如图,AB为⊙O的直径,AB=AC,⊙O交BC于D,DE⊥AC于E.(1)请判断DE与⊙O的位置关系,并证明;(2)连接AD,若⊙O的半径为,AD=3,求DE的长.332.(2009•武汉)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE.(1)求证:直线DE是⊙O的切线;(2)连接OC交DE于点F,若OF=CF,求tan∠ACO的值.333.(2009•乌鲁木齐)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN⊥AC于点N.(1)求证:MN是⊙O的切线;(2)若∠BAC=120°,AB=2,求图中阴影部分的面积.334.(2009•铁岭)如图所示,已知AB是半圆O的直径,弦CD∥AB,AB=10,CD=6,E是AB延长线上一点,BE=.判断直线DE与半圆O的位置关系,并证明你的结论.335.(2009•遂宁)如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF•AC,cos∠ABD=,AD=12.(1)求证:△ANM≌△ENM;(2)求证:FB是⊙O的切线;(3)证明四边形AMEN是菱形,并求该菱形的面积S.336.(2009•随州)如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O与BC交于点D,过点D作AC的垂线,垂足为E.(1)证明:DE是⊙O的切线;(2)若⊙O的直径是5,BC=6,求CE的长.337.(2009•陕西)如图,圆O是△ABC的外接圆,AB=AC,过点A作AP∥BC,交BO的延长线于点P.(1)求证:AP是圆O的切线;(2)若圆O的半径R=5,BC=8,求线段AP的长.338.(2009•钦州)已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB 交于点E,与AC切于点D.(1)求证:BC=CD;(2)求证:∠ADE=∠ABD;(3)设AD=2,AE=1,求⊙O直径的长.339.(2009•黔东南州)如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.340.(2009•攀枝花)如图所示,在Rt△ABC中,∠C=90°,BC=3,CA=4,∠ABC的角平分线BD交AC于点D,点E是线段AB上的一点,以BE为直径的圆O过点D.(1)求证:AC是圆O的切线;(2)求AE的长.341.(2009•南平质检)如图,已知AB是⊙O的直径,弦AC平分∠DAB,CD⊥AD于D.则CD是⊙O的切线吗?请说明理由.342.(2009•泸州)如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.(1)求证:直线DE是⊙O的切线;(2)当AB=5,AC=8时,求cos∠E的值.343.(2009•丽水)如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D.(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);(2)求证:BC是过A,D,C三点的圆的切线;(3)若过A,D,C三点的圆的半径为,则线段BC上是否存在一点P,使得以P,D,B为顶点的三角形与△BCO 相似?若存在,求出DP的长;若不存在,请说明理由.344.(2009•仙桃)如图,AB为⊙O的直径,D是⊙O上的一点,过O点作AB的垂线交AD于点E,交BD的延长线于点C,F为CE上一点,且FD=FE.(1)请探究FD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,BD=,求BC的长.345.(2009•湖州)如图,在平面直角坐标系中,直线l:y=﹣2x﹣8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.346.(2009•呼和浩特)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB 为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s 的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?347.(2009•贺州)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE.(1)求证:DE是⊙O的切线;(2)如果⊙O的半径是cm,ED=2cm,求AB的长.348.(2009•桂林)如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC.(1)求证:MN是半圆的切线.(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.(3)在(2)的条件下,若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.349.(2009•贵港)如图,AB是半圆O的直径,C是半径OA上一点,PC⊥AB,点D是半圆上位于PC右侧的一点,连接AD交线段PC于点E,且PD=PE.(1)求证:PD是⊙O的切线;(2)若⊙O的半径为4,PC=8,设OC=x,PD2=y.①求y关于x的函数关系式;②当x=1时,求tan∠BAD的值.350.(2009•广安)已知:如图,AB是⊙O的直径,AD是弦,OC垂直AD于F交⊙O于E,连接DE、BE,且∠C=∠BED.(1)求证:AC是⊙O的切线;(2)若OA=10,AD=16,求AC的长.351.(2009•恩施州)如图,在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心、OB长为半径的圆交BC于D,DE⊥AC交AC于E.(1)求证:DE是⊙O的切线;(2)若⊙O与AC相切于F,AB=AC=5cm,sinA=,求⊙O的半径的长.352.(2009•鄂尔多斯)如图,已知AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CE=5,求⊙O的半径.353.(2009•大连)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30度.(1)判断直线CD是否是⊙O的切线,并说明理由;(2)若CD=,求BC的长.354.(2009•赤峰)一副斜边相等的直角三角板(∠DAC=45°,∠BAC=30°),按如图所示的方式在平面内拼成一个四边形.(1)A,B,C,D四点在同一个圆上吗?如果在,请写出证明过程;如果不在,请说明理由;(2)过点D作直线l∥AC,求证:l是这个圆的切线.355.(2009•朝阳)如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.求证:CD是⊙O的切线.356.(2009•本溪)如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.(1)判断直线BD和⊙O的位置关系,并给出证明;(2)当AB=10,BC=8时,求BD的长.357.(2009•北京)已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=时,求⊙O的半径.358.(2009•安顺)如图,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)作DG⊥AB交⊙O于G,垂足为F,若∠A=30°,AB=8,求弦DG的长.359.(2009•十堰)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP 上,连接DB,且AD=DB.(1)求证:DB为⊙O的切线.(2)若AD=1,PB=BO,求弦AC的长.360.(2009•兰州)如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;(3)若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积.(结果保留π)2009年全国中考数学试题汇编《圆》(12)参考答案与试题解析解答题331.(2009•西宁)已知:如图,AB为⊙O的直径,AB=AC,⊙O交BC于D,DE⊥AC于E.(1)请判断DE与⊙O的位置关系,并证明;(2)连接AD,若⊙O的半径为,AD=3,求DE的长.的半径为DC=DE=332.(2009•武汉)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE.(1)求证:直线DE是⊙O的切线;(2)连接OC交DE于点F,若OF=CF,求tan∠ACO的值.ACCE=OD=OA=ABACO=333.(2009•乌鲁木齐)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN⊥AC于点N.(1)求证:MN是⊙O的切线;(2)若∠BAC=120°,AB=2,求图中阴影部分的面积..=,,﹣334.(2009•铁岭)如图所示,已知AB是半圆O的直径,弦CD∥AB,AB=10,CD=6,E是AB延长线上一点,BE=.判断直线DE与半圆O的位置关系,并证明你的结论.DF=OE=OB+BE=5+=.∴∴DF=OE=OB+BE=5+∵335.(2009•遂宁)如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF•AC,cos∠ABD=,AD=12.(1)求证:△ANM≌△ENM;(2)求证:FB是⊙O的切线;(3)证明四边形AMEN是菱形,并求该菱形的面积S.∴ABD=∴=4x∴.336.(2009•随州)如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O与BC交于点D,过点D作AC的垂线,垂足为E.(1)证明:DE是⊙O的切线;(2)若⊙O的直径是5,BC=6,求CE的长.337.(2009•陕西)如图,圆O是△ABC的外接圆,AB=AC,过点A作AP∥BC,交BO的延长线于点P.(1)求证:AP是圆O的切线;(2)若圆O的半径R=5,BC=8,求线段AP的长.BE=∴∴∴338.(2009•钦州)已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB 交于点E,与AC切于点D.(1)求证:BC=CD;(2)求证:∠ADE=∠ABD;(3)设AD=2,AE=1,求⊙O直径的长.,进而可得;代入数据计算可得∴.∴.339.(2009•黔东南州)如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.340.(2009•攀枝花)如图所示,在Rt△ABC中,∠C=90°,BC=3,CA=4,∠ABC的角平分线BD交AC于点D,点E是线段AB上的一点,以BE为直径的圆O过点D.(1)求证:AC是圆O的切线;(2)求AE的长.,AE=2x=.341.(2009•南平质检)如图,已知AB是⊙O的直径,弦AC平分∠DAB,CD⊥AD于D.则CD是⊙O的切线吗?请说明理由.342.(2009•泸州)如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.(1)求证:直线DE是⊙O的切线;(2)当AB=5,AC=8时,求cos∠E的值.BD=DH=ODH==,E=.343.(2009•丽水)如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D.(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);(2)求证:BC是过A,D,C三点的圆的切线;(3)若过A,D,C三点的圆的半径为,则线段BC上是否存在一点P,使得以P,D,B为顶点的三角形与△BCO 相似?若存在,求出DP的长;若不存在,请说明理由.BD=,.BO=BD+OD=,D=OC=×=∴.BC=D=OC==344.(2009•仙桃)如图,AB为⊙O的直径,D是⊙O上的一点,过O点作AB的垂线交AD于点E,交BD的延长线于点C,F为CE上一点,且FD=FE.(1)请探究FD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,BD=,求BC的长.∴BC=.345.(2009•湖州)如图,在平面直角坐标系中,直线l:y=﹣2x﹣8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.DE=CD=.∴,即∴,k=﹣346.(2009•呼和浩特)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB 为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s 的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?,当边运动的时间为347.(2009•贺州)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE.(1)求证:DE是⊙O的切线;(2)如果⊙O的半径是cm,ED=2cm,求AB的长.OD=,OE=×348.(2009•桂林)如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC.(1)求证:MN是半圆的切线.(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.(3)在(2)的条件下,若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.4.5=.∴∴.DG×∴(∴(349.(2009•贵港)如图,AB是半圆O的直径,C是半径OA上一点,PC⊥AB,点D是半圆上位于PC右侧的一点,连接AD交线段PC于点E,且PD=PE.(1)求证:PD是⊙O的切线;(2)若⊙O的半径为4,PC=8,设OC=x,PD2=y.①求y关于x的函数关系式;②当x=1时,求tan∠BAD的值..BAD=350.(2009•广安)已知:如图,AB是⊙O的直径,AD是弦,OC垂直AD于F交⊙O于E,连接DE、BE,且∠C=∠BED.(1)求证:AC是⊙O的切线;(2)若OA=10,AD=16,求AC的长.AF==6∴.AC=351.(2009•恩施州)如图,在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心、OB长为半径的圆交BC于D,DE⊥AC交AC于E.(1)求证:DE是⊙O的切线;(2)若⊙O与AC相切于F,AB=AC=5cm,sinA=,求⊙O的半径的长.,OA=OF∴OF=352.(2009•鄂尔多斯)如图,已知AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CE=5,求⊙O的半径.C=B=,的半径为C=B==OB=的半径为353.(2009•大连)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30度.(1)判断直线CD是否是⊙O的切线,并说明理由;(2)若CD=,求BC的长.tanC=tanC=3×=3354.(2009•赤峰)一副斜边相等的直角三角板(∠DAC=45°,∠BAC=30°),按如图所示的方式在平面内拼成一个四边形.(1)A,B,C,D四点在同一个圆上吗?如果在,请写出证明过程;如果不在,请说明理由;(2)过点D作直线l∥AC,求证:l是这个圆的切线.OB=OD=AC=OA=OC355.(2009•朝阳)如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.求证:CD是⊙O的切线.356.(2009•本溪)如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.(1)判断直线BD和⊙O的位置关系,并给出证明;(2)当AB=10,BC=8时,求BD的长.∴∴∴357.(2009•北京)已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=时,求⊙O的半径.BE=cosC=ABC= AB==6∴∴的半径为.358.(2009•安顺)如图,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)作DG⊥AB交⊙O于G,垂足为F,若∠A=30°,AB=8,求弦DG的长..DG=2DF=4.359.(2009•十堰)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP 上,连接DB,且AD=DB.(1)求证:DB为⊙O的切线.(2)若AD=1,PB=BO,求弦AC的长.,360.(2009•兰州)如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;(3)若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积.(结果保留π),。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年中考数学分类汇编——与圆有关的压轴题2014年与圆有关的压轴题,考点涉及:垂径定理;圆周角定理;圆内接四边形的性质;切线性质;锐角三角函数定义;特殊角的三角函数值;相似三角形的判定和性质;勾股定理;特殊四边形性质;等.数学思想涉及:数形结合;分类讨论;化归;方程.现选取部分省市的2014年中考题展示,以飨读者.【题1】(2014年江苏南京,26题)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.【分析】:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.【解】:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.【点评】:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.【题2】(2014•泸州24题)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD 相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.PC=,DF=∴,∴,∴PC=4AC===2∴中有,【题3】(2014•济宁21题)阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=(a+b+c)r.∴r=.(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求的值.易得.++= r===20==66∴==.【题4】(2014.福州20题)如图,在△ABC 中,∠B=45°,∠ACB=60°,AB =D 为BA 延长线上的一点,且∠D=∠ACB ,⊙O 为△ABC 的外接圆.(1)求BC 的长; (2)求⊙O 的半径.【解析】∴BC 3=(2)由(1)得,在R t △ACE 中,∵∠EAC=30°,,∴AC=.∵∠D=∠ACB ,∠B=∠B ,∴△BAC ∽△BCD. ∴AB AC CB CD ==.∴DM=4.∴⊙O的半径为2.【考点】:1.锐角三角函数定义;2.特殊角的三角函数值;3.相似三角形的判定和性质;4.圆周角定理;5.圆内接四边形的性质;6.含30度角直角三角形的性质;7.勾股定理.【题5】(2014.广州25题)如图7,梯形中,,,,,,点为线段上一动点(不与点重合),关于的轴对称图形为,连接,设,的面积为,的面积为.(1)当点落在梯形的中位线上时,求的值;(2)试用表示,并写出的取值范围;(3)当的外接圆与相切时,求的值.【答案】解:(1)如图1,为梯形的中位线,则,过点作于点,则有:在中,有在中,又解得:(2)如图2,交于点,与关于对称,则有:,又又与关于对称,(3)如图3,当的外接圆与相切时,则为切点.的圆心落在的中点,设为则有,过点作,连接,得则又解得:(舍去)①②③【题6】(2014•湖州24题)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t 秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明,(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解,(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t.【解答】:证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),∴PE=PF,(2)解:①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3)如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,解得,t=,(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=t﹣1,由(1)得△PMF≌△PNE ∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,无解,当△OEQ∽△MFP时,∴=,=,解得,t=2±,所以当t=,t=,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.【点评】:本题主要考查了圆的综合题,解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系.【题7】(2014•宁波26)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大...时,(x=r=);时,(>r=)<﹣时,r=(﹣=时,r=(),x=最大为.<<,【题8】(2014•苏州28)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD 沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).cmcmDAC===4=E==2=t=F=+﹣∴﹣(,﹣2+2【题9】(2014•泰州25题)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.利用勾股定理求出P,使∠y=b bb(b﹣(FM=﹣(﹣(b b b与xx+5,)【题10】(2014年江苏徐州28) 如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A 出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质.【分析】:(1)只要证到三个内角等于90°即可.(2)易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S矩形ABCD的范围.根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.【解答】:解:(1)证明:如图1,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,如图2①,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴=()2.∵AD=4,AB=3,∴BD=5,S△CFE=()2•S△DAB=××3×4=.∴S矩形ABCD=2S△CFE=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如图2③所示.S△BCD=BC•CD=BD•CF″′.∴4×3=5×CF″′.∴CF″′=.∴≤CF≤4.∵S矩形ABCD=,∴×()2≤S矩形ABCD≤×42.∴≤S矩形ABCD≤12.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴=.∴=.∴DG″=.∴点G移动路线的长为.【点评】:本题考查了矩形的判定与性质、相似三角形的判定与性质、圆周角定理、直角三角形斜边上的中线等于斜边的一半、垂线段定理等知识,考查了动点的移动的路线长,综合性较强.而发现∠CDG=∠ADB及∠FCE=∠ADB是解决本题的关键.【题11】(2014.连云港25题)为了考察冰川融化的状况,一支科考队在某冰川上设一定一个以大本营O为圆心,半径为4km 圆形考察区域,线段P1、P2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为正整数)的关系是2575092032+-=n n s .以O 为原点,建立如图所示的平面直角坐标系,其中P 1、P 2的坐标分别是(-4,9)、(-13,-3).(1)求线段P 1P 2所在的直线对应的函数关系式;(2)求冰川的边界线移动到考察区域所需要的最短时间.【解答】。

相关文档
最新文档