电路分析基础 第10章

合集下载

《电路分析基础》习题参考答案

《电路分析基础》习题参考答案

《电路分析基础》各章习题参考答案第1章习题参考答案1-1 (1) SOW; (2) 300 V、25V,200V、75V; (3) R=12.50, R3=1000, R4=37.5021-2 V =8.S V, V =8.S V, V =0.S V, V =-12V, V =-19V, V =21.S V U =8V, U =12.5,A mB D 'AB B CU =-27.S VDA1-3 Li=204 V, E=205 V1-4 (1) V A=lOO V ,V=99V ,V c=97V ,V0=7V ,V E=S V ,V F=l V ,U A F=99V ,U c E=92V ,U8E=94V,8U BF=98V, u cA=-3 V; (2) V c=90V, V B=92V, V A=93V, V E=-2V, V F=-6V, V G=-7V, U A F=99V, u c E=92V, U B E=94V, U BF=98V, U C A =-3 V1-5 R=806.70, 1=0.27A1-6 1=4A ,11 =llA ,l2=19A1-7 (a) U=6V, (b) U=24 V, (c) R=SO, (d) 1=23.SA1-8 (1) i6=-1A; (2) u4=10V ,u6=3 V; (3) Pl =-2W发出,P2=6W吸收,P3=16W吸收,P4=-lOW发出,PS=-7W发出,PG=-3W发出1-9 l=lA, U5=134V, R=7.801-10 S断开:UAB=-4.SV, UA0=-12V, UB0=-7.2V; S闭合:12 V, 12 V, 0 V1-12 UAB=llV / 12=0.SA / 13=4.SA / R3=2.401-13 R1 =19.88k0, R2=20 kO1-14 RPl=11.110, RP2=1000第2章习题参考答案2-1 2.40, SA2-2 (1) 4V ,2V ,1 V; (2) 40mA ,20mA ,lOmA 2-3 1.50 ,2A ,1/3A2-4 60 I 3602-5 2A, lA2-6 lA2-7 2A2-8 lOA2-9 l1=1.4A, l2=1.6A, l3=0.2A2-10 11=OA I l2=-3A I p l =OW I P2=-l8W2-11 11 =-lA, l2=-2A I E3=10V2-12 11=6A, l2=-3A I l3=3A2-13 11 =2A, l2=1A ,l3=1A ,14 =2A, l5=1A2-14 URL =30V I 11=2.SA I l2=-35A I I L =7.SA2-15 U ab=6V, 11=1.SA, 12=-lA, 13=0.SA2-16 11 =6A, l2=-3A I l3=3A2-17 1=4/SA, l2=-3/4A ,l3=2A ,14=31/20A ,l5=-11/4A12-18 1=0.SA I l2=-0.25A12-19 l=1A32-20 1=-lA52-21 (1) l=0A, U ab=O V; (2) l5=1A, U ab=llV。

电路分析基础第五版第10章

电路分析基础第五版第10章

二、互感消去法(等效去耦法)
消去互感,变为无互感的电路计算,从而简化 电路的计算。
1、受控源替代去耦法
jM
I1
I2
+ +

U1
jL1
jL2

U2

I1
+

jL1
U1


jM I 2

I2
+
jL2


U
2
jM I 1



U1 jL1 I1 jMI2



U2 jL2 I2 jMI1
d2i dt
i 2 u 2
2
相量形式:
1


i1
U1 jL1 I1 jMI2



u1
U2 jL2 I2 jMI1
注意:
i 2 u 2
2
•互感元件的自感恒为正;
•互感元件的互感有正有负,与线圈的具体绕法及 两线圈的相互位置有关。
当每个电感元件中的自感磁链与互感磁链是互相 加强时(自感磁链与互感磁链同向),互感为正; 反之为负。(说法不同,正确理解)
+

U
L反L1L22M
等效电感不能为负值,
因此:L反0, M12(L1L2)
3、并联耦合电感的去耦等效
(1)同侧并联:同名端分别相联。


I
+
jM

U
jL1
jL2
I +

U
j L同
L同

L1L2 M2 L1 L2 2M
因为 L同 0 所以 L1L2M20

电路第10章 二端网络共51页文档

电路第10章 二端网络共51页文档
K:1
第10章 二端口网络
变压器
三晶体极管管
它们的电路都是由四个端子组成的,11 ' 是输入端, 而22 ' 是输出端。
返回
电路分析基础
第10章 二端口网络
1. 端口
端口由一对端子构成,且满 足如下端口条件:从一个端 子流入的电流等于从另一个 端子流出的电流。
一端口
2. 二端口
当一个电路与外部电路通 过两个端口连接时称此电 路为二端口网络。
所谓二端口,是指一个黑盒子,只给出两个口,四 个端子,对黑盒之中的东西全无所知,有的是不可能知 道,也有的是不需要知道,对“二端口”感兴趣的仅仅 是端口的电流和电压。
① 撇开黑盒子的内部结构,只研究口特性,用一组“参 数“来反映研究黑盒子,可以使得对复杂网络的研究 变得简单。
② 在大规模网络广泛使用的今天,这种研究具有现实意 义。
1 j C
1 Z12 j C
Z R1j1C jC
1
jC jL 1
jC
通过Z参数矩阵可见,
Z12 Z21
返回
电路分析基础
第10章 二端口网络
【例10.2】求二端口网络的Z参数矩阵
【解】解法一 ,
根据开路阻抗参数定义求 解Z参数方程 U1 Z11I1 Z12I2 U2 Z21I1 Z22I2
返回
电路分析基础
第10章 二端口网络
10.2 阻抗参数和导纳参数
10.2.1 二端口网络的阻抗参数
返回
电路分析基础
第10章 二端口网络
I1 I2 用独立电源代替
U U 12 ZZ1211I I 11ZZ1222II 22
矩阵形式表示
U U 12Z Z1 21 1 Z Z1 22 2II 12ZII 12

电路分析基础 第10章 拉氏变换及其应用

电路分析基础 第10章 拉氏变换及其应用

达式直接求出
11
11
s (1 esT / 2 ) s (1 es )
f (t) (t) (t 1) (t 2) (t 3)
(1)k (t k)
k0
F(s) L
f (t)
( 1) k e ks
k0
1 s
1 s
1 1 es
等比( es)级数
6. 拉氏逆变换 (Inversion of Laplace Transform)
2. 反变换
f (t ) 1
2 j
j
F
(
s
)e
st
ds
j
简写为:f (t)
L1[F (s)]
对应关系:f (t) F(s)
3.常用函数的拉氏变换
L[eat (t )] 1
sa L[ (t)] 1
s
L[ (t)] = 1
sin(t) (t) s2 2
cos(t) (t)
s
s2 2
uLd




电流的初 Nhomakorabea值
UL (s)
u( 1 L
)
(
0
)
Ls
Ls
UL (s) iL (0 )
Ls
s
时域平移性质 设:L[ f (t)] F (S)
L[ f (t t0 ) (t t0 )] est0 F ( S ) est0为延迟因子
f(t)(t)
f(t-t0)(t-t0)
f(t)(t-t0)
F1 ( S )
例 设周期函数T=2S,求其象函数F(s)。
f(t)
解 方法一 :第一个周期可描述为
1 01 方法二

(完整版)电路分析基础知识点概要(仅供参考)

(完整版)电路分析基础知识点概要(仅供参考)

电路分析基础知识点概要请同学们注意:复习时不需要做很多题,但是在做题时,一定要把相关的知识点联系起来进行整理复习,参看以下内容:1、书上的例题2、课件上的例题3、各章布置的作业题4、测试题第1、2、3章电阻电路分析1、功率P的计算、功率守恒:一个完整电路,电源提供的功率和电阻吸收的功率相等关联参考方向:ui=P-P=;非关联参考方向:ui<P吸收功率0P提供(产生)功率>注意:若计算出功率P=-20W,则可以说,吸收-20W功率,或提供20W功率2、网孔分析法的应用:理论依据---KVL和支路的VCR关系1)标出网孔电流的变量符号和参考方向,且参考方向一致;2)按标准形式列写方程:自电阻为正,互电阻为负;等式右边是顺着网孔方向电压(包括电压源、电流源、受控源提供的电压)升的代数和。

3)特殊情况:①有电流源支路:电流源处于网孔边界:设网孔电流=±电流源值电流源处于网孔之间:增设电流源的端电压u并增补方程②有受控源支路:受控源暂时当独立电源对待,要添加控制量的辅助方程3、节点分析法的应用:理论依据---KCL和支路的伏安关系1)选择参考节点,对其余的独立节点编号;2)按标准形式列写方程:自电导为正,互电导为负;等式右边是流入节点的电流(包括电流源、电压源、受控源提供的电流)的代数和。

3)特殊情况:①与电流源串联的电阻不参与电导的组成;②有电压源支路:位于独立节点与参考节点之间:设节点电压=±电压源值位于两个独立节点之间:增设流过电压源的电流i 并增补方程③有受控源支路:受控源暂时当独立电源对待,要添加控制量的辅助方程4、求取无源单口网络的输入电阻i R (注:含受控源,外施电源法,端口处电压与电流关联参考方向时,iu R i =) 5、叠加原理的应用当一个独立电源单独作用时,其它的独立电源应置零,即:独立电压源用短路代替,独立电流源用开路代替;但受控源要保留。

注意:每个独立源单独作用时,要画出相应的电路图;计算功率时用叠加后的电压或电流变量求取。

电路分析基础教案

电路分析基础教案

电路分析基础教案第一章:电路基本概念1.1 电路的定义与组成介绍电路的定义和基本组成元素(电源、导线、开关、负载)解释电路的作用和重要性1.2 电路的分类区分串联电路和并联电路解释串并联电路的特点和区别1.3 电流、电压和电阻电流的定义和计量单位电压的定义、计量单位和测量方法电阻的定义、计量单位和测量方法第二章:基本电路分析方法2.1 欧姆定律欧姆定律的表述和公式应用欧姆定律计算电流、电压和电阻2.2 串联电路的分析应用欧姆定律分析串联电路中的电流、电压和电阻解释串联电路的特点和计算方法2.3 并联电路的分析应用欧姆定律分析并联电路中的电流、电压和电阻解释并联电路的特点和计算方法第三章:电路元件3.1 电阻元件介绍电阻的种类、特性和应用解释电阻的计算方法和测量方法3.2 电容元件介绍电容的种类、特性和应用解释电容的计算方法和测量方法3.3 电感元件介绍电感的种类、特性和应用解释电感的计算方法和测量方法第四章:电路测量与实验4.1 测量仪器与工具介绍常用的电路测量仪器和工具(如万用表、示波器、电表等)解释各种测量仪器的工作原理和使用方法4.2 电路测量方法介绍电路测量的基本方法和步骤解释如何测量电流、电压和电阻等参数4.3 实验与实践设计简单的电路实验引导学生进行实验操作和数据采集第五章:电路分析进阶5.1 节点和回路分析介绍节点和回路的定义及分析方法解释节点电压法和回路电流法的原理和应用5.2 网孔分析介绍网孔的定义及分析方法解释网孔电流法的原理和应用5.3 等效电路分析介绍等效电路的概念和种类解释等效电路的分析和应用方法第六章:交流电路分析6.1 交流电的基本概念介绍交流电的定义和特点解释交流电的波形和频率6.2 交流电路的电阻、电容和电感分析交流电路中电阻、电容和电感的作用解释串联和并联电阻、电容和电感的计算方法6.3 交流电路的功率介绍交流电路的功率概念(有功功率、无功功率、视在功率)解释功率的计算方法和功率因数的概念第七章:频率响应分析7.1 频率响应的基本概念介绍频率响应的定义和意义解释频率响应的图表表示方法(波特图)7.2 电路元件的频率响应分析电阻、电容和电感的频率响应特性解释频率响应分析在电路设计中的应用7.3 滤波器的设计与分析介绍滤波器的基本原理和类型(低通、高通、带通、带阻)分析滤波器的频率响应特性和设计方法第八章:谐振电路分析8.1 谐振电路的基本概念介绍谐振电路的定义和特点解释谐振的条件和频率8.2 串联谐振电路的分析分析串联谐振电路中的电流、电压和功率解释串联谐振电路的计算方法和应用8.3 并联谐振电路的分析分析并联谐振电路中的电流、电压和功率解释并联谐振电路的计算方法和应用第九章:非线性电路分析9.1 非线性元件的基本概念介绍非线性元件的定义和特点解释非线性元件的伏安特性和应用9.2 非线性电路的分析方法分析非线性电路的特性和工作原理解释非线性电路的解析方法和数值方法9.3 非线性电路的应用介绍非线性电路在实际应用中的例子解释非线性电路在信号处理和控制领域的应用第十章:电路仿真与实验10.1 电路仿真软件的基本操作介绍电路仿真软件(如Multisim、LTspice等)的基本操作和界面解释电路仿真软件的功能和应用范围10.2 电路仿真实例设计并仿真简单的电路例子分析仿真结果并与理论分析进行比较介绍实验报告的基本结构和内容重点解析本文主要介绍了电路分析的基础知识和方法,涵盖了电路的基本概念、电路的分类、电流、电压和电阻、基本电路分析方法、电路元件、电路测量与实验、电路分析进阶、交流电路分析、频率响应分析、谐振电路分析、非线性电路分析以及电路仿真与实验等内容。

《电路分析基础》第2版-习题参考答案

《电路分析基础》第2版-习题参考答案

《电路分析基础》各章习题参考答案《电路分析基础》各章习题参考答案第 1 章 习题参考答案习题参考答案1- 1 (1) 50W ; (2) 300 V 、25V, 200V 、75 V ; (3)2=12.5 QR a =100 Q, R 4=37.5 Q 1- 2 V A =8.5V =8.5V,, V m =6.5V =6.5V,, V B =0.5V =0.5V,, V C =- 12V , V D =-19V =-19V,, V p =-21.5V =-21.5V,, U A B AB =8V =8V,, U B C BC =12.5=12.5,,U DA =-27.5V1-3 电源电源((产生功率产生功率)): A 、 B 元件;负载元件;负载元件;负载((吸收功率吸收功率)): C 、 D 元件;电路满足功率平衡元件;电路满足功率平衡元件;电路满足功率平衡 条件。

1-4 (1) V A =1 00V , V B =99V, V C =97V, V D =7V, V E =5V, V F =1V, U A F AF =99V, U C E CE =92V,U BE =94V, U BF =98V, U CA =- 3 V ; (2) V C =90V, V B =92V , V A =93V, V E =-2V, V F =-6V, V G =- 7V, U AF =99V, U CE =92V, U B E BE =94V, U B F BF =98V, U C A CA =- 3 V1-5 I 〜0.18A ,6 度,度,2.7 2.7 元 1- 6 I=4A , I 1=11A =11A,,I 2=19A 1-7 (a) U=6V , , (b) U=24 V , (c) R=5Q , Q, (d) I=23.5A 1- 8 (1) i 6=-1A ; (2) u 4=10V, u 6=3 V ; (3) P 1=-2W 发出发出, P , P 2 2 =6W 吸收吸收, P , P 3 3 =16W 吸收吸收, ,P 4 =-10W 发出发出, P , P 5 5 =-7W 发出发出, P , P 6 6 =-3W 发出发出1- 9 I=1A, , U s =134V , R ~ 7.8Q 1- 10 S断开:断开:断开:U U AB =- 4.8V , U AO =- 12V , U BO =-7.2V ;S 闭合:闭合:闭合:U U AB = -12V, U A O AO = - 12V , U BO =0V 1- 11支路支路 3 3,节点,节点,节点 2 2,网孔,网孔,网孔 2 2 ,回路,回路,回路 3 3 1- 12节点电流方程:节点电流方程: (A) I (A) I 1 +I 3- I 6=0=0,,(B)I 6- I 5- I 7=0=0,,(C)I 5 +I 4-I 3=0 回路电压方程:① I6 R 6+ U S 5 S5 +I 5 R 5- U S 3 +1 3 3 R 3=0 ,②-15 R 5- U S 5+ I 7R 7- U S 4 =0 ,③-丨3 R 3+ U S3 + U S 4 S4 + I 1 1 R 2+ I 1 1 R 1=01- 13 UA B AB =11V , I 2=0.5A , l 3=4.5A , R 3~ 2.4 Q 1-14 VA =60V V C =140V V D =90V U A C AC =- 80V U AD =- 30V U CD =50V 1- 15 I 1=- 2A I 2=3A I 3=- 5A I 4=7A I 5=2A第 2 章 习题参考答案习题参考答案2- 1 1 2.42.4 Q 5 A 2- 2 (1) 4 V 2 V 1 V; (2) 40 mA 20 mA 10 mA 2-3 1.5 Q 2 A 1/3 A 2-4 6 Q 36 Q 2-5 2 2 A 1 A A 1 A 2-6 1 1 A A2-7 2 2 A A 2- 8 1 1 A A2- 9 I1 1 = -1.4 A I2 = 1.6 A I3 = 0.2 A 2- 10 I1 1 = 0 A I2 = -3 A P 1 = 0 W P 2 = -18 W 2-11 I i = -1 mA , I 2 = - 2 mA , E 3 = 10 V 2- 12 I 1 = 6 A , I 2 = -3 A ,I 3 = 3 A 2- 13 I1 1 =2 A , , I 2 = 1A , , I3 = 1 A , I4 =2 A , , I5 = 1 A 2-14 2-14 V V a = 12 V , I 1 = - 1 A ,I 2 = 2 A 2-15 2-15 V V a = 6 V , I 1= 1.5 A , I 2 = - 1 A ,I 3= 0.5 A 2-16 2-16 V V a = 15 V , , I 1 = - 1 A , , I 2 =2 A , , I 3= 3 A 2-17 2-17 I I 1 = -1 A ,, I 2 = 2 A 2-18 2-18 I I 1 =1.5 A , , I 2 = - 1 A , , I 3= 0.5 A 2-19 2-19 I I 1 =0.8 A , , I 2 = - 0.75 A , , I 3 = 2 A , I 4 = - 2.75 A , I 5 = 1.55 A 2-20 2-20 I I 3= 0.5 A 2-21 U o o = 2 V , R o = 4 Q ,Q, I 00 = 0.1 A 2-22 I 55 = -1 A 2-23 2-23 (1) I (1) I5 5 = 0 A , U ab = 0 V ; (2) I 5 5 = 1 A , U ab = 11 V 2-24 I L = 2 A2-25 I s s =11 A , , R 0 = 2 QQ 2-26 2-26 18 18 Q, - 2 Q ,Q, 12 Q 2-27 U == 5 V 2-28 I =1 A2-29 U == 5 V 2-30 I =1 A2-31 2-31 10 V 10 V ,, 180 Q 2-32 U 0 = 9 V , R 0 = 6 Q ,Q, U=15 V 第3章习题参考答案章习题参考答案3- 1 50Hz, 314rad/s, 0.02s, 141V, 100V, 120° 3-2 200V, 141.4V 3-3 u=14.1si n (314t-60 °V3- 4 (1) ®u1-贏2= 120° (2) ®1 = -90-90° °%= - 210°210°, , %1-屁=120=120° (不变° (不变) 3-5 (1) U^50 .^_90V , U 2 =50 .2.2 - 0 V ; ; (2) U 3=100 2 sin (3t+ 45 °)V , U, U 4=100 ■■ 2 sin ( ®t + 135 °)V 3- 6 (1) i 1=14.1 sin ( 72 °)A ;; (2) U 2=300 sin ( 3—60 °)V3- 7错误:(1),1),⑶,⑶,⑶,(4), (5) (4), (5) 3-8 (1) R ; (2) L ; (3) C; (4) R 3-9 i=2.82 sin (10t-30 °)A , Q~ 40 var , Q~ 40 var 3-10 u =44.9sin (3141-135 °V, Q=3.18 var 3- 11 (1) I=20A ; (2) P=4.4kW3- 12 (1)I ~ 1.4A , I 1.4 - 30 A; (3)Q~ 308 var, P=0W ; (4) i~ 0.98 sin (628t-30 °)A 3- 13 (1)I=9.67A , I =9.67450 A ,i=13.7 sin (314t+150 °) A ; (3)Q=2127.4 var, P=0W; (4) I C =0A3- 14 (1)C=20.3 尸;(2) I L = 0.25A ,l c = 16A第4章习题参考答案章习题参考答案4-1 (a) Z =5. 36.87 J, Y =0.2 / 36.87 S ; (b) ; (b) ZZ =2.5 - 2/ 45 门,Y =0.2.2/45 S 4- 2 Y=(0.06-j0.08) S , , R ~ 16.67 Q, X L =12.5 Q, L ~0.04 H 4-3 U R =6 0^0 V U L =8080//90 V , , U S =100100^^53.13 V 4-4 卩=2 0 £ 3 6.874-5 Z =100 =100 22^45 ;:;: ■,卩=1^0 A , , U R =100100^^0 V , U L =125125//90 V , , U C =2525/ /90 V 4-6 Y =0.25 2^45 S , U =4 “2/0 V ,卩R = .2. 0 A , , I L =0.^ 2 / 90 A , , I C =1.21.2..2/90 A4-7 ll =1 0.=1 0.「2 4 5,A U S =100 乙 90 V 4-8 (a) 30 V ; (b) 2.24 A 4-9 (a) 10 V ; (b) 10 A (b) 10 A 4-10 10 (a) (a) 10 V ; (b) 10 V (b) 10 V 4- 11 U=14.1 V4- 12 UL 1 =15 V , U C 2 =8 V , U S =15.65 V 4-13 4-13 U U X 1 =100 V , U 2 =600 V , , X 1=10Q, X 2=20 Q, X 3=30 Q 4-14 Z =20 .2 45 门,l =2. -45 A , h , h = 2 0 = 2 0 A , .2/-90 A , U ab ab==0V 4- 15 (1)1 =£2 2 A A , Z RC =5、2「,「, Z =5 10 门;门;(2) R (2) R =10 门,门,X X ^1010'J 'J4-16 P = 774.4 W , Q = 580.8 var, S = 968 V A- 4-17 l 1 = 5 A , l 2 = 4 A 4-18 4-18 I I 1 = 1 A , I 2 =2 A , l =.5. 26.565 A , S =44.72. -26.565 V V V A A 4-19 Z=10", I =190A I=190A ,U R2 =5 2 135 V , P =10 W 64-20 a =5X10 rad/s , p = 1000 = 1000 Q ,Q, Q = 100 , l = 2 mA , U R =20 mV , U L = U C = 2 V 4-21 30 =104 rad/s , p = 100 = 100 Q ,Q, Q = 100 , U = 10 V , I R = 1 mA , I L = I C = 100 mA 4-22 L 1 1 = 1 H , L 2 ~ 0.33 H 第5章习题参考答案章习题参考答案5- 3 M = 35.5 mH5- 4 301 =1000 rad/s ,3,302=2236 rad/s5-5 Z 1 = j31.4 Q , Q , Z 2 = j6.28 Q Q 5-6 Z r = 3+7.5 Q Q 5-7 M = 130 mH 5- 8 “2 二-2/45 A5- 9 U1 = 44.8 V 5- 10 M12 12 = 20 mH , 11 = 4 A 5- 11 U 2 = 220 V , I 1 = 4 A5- 12 n = 1.95- 13 N2 = 254 匝,匝,匝,N N3 = 72 匝 5- 14 n = 10 , P 2 = 31.25 mW章习题参考答案章习题参考答案(1) A 相灯泡电压为零,相灯泡电压为零,B B 、C 相各位为220V I L = I p = 4.4 A ,U p = 220 V ,U L = 380 V ,P = 2.3 kW (2) I p = 7.62 A ,I L = 13.2 A A 、C 相各为2.2A 2.2A,,B 相为3.8A U L = 404 VU A N =202202/ -/ -47 47 Vcos $ = 0.961 , Q = 5.75 kvar Z =334 28.4 门(1) I p p = 11.26 A , Z = 19.53 / 42.3 °Q; (2) I p p = I l l = 11.26 A , P = 5.5 kW U l = 391 Vi A =22 2sin(・t —53.13 ) Ai B =22 .2sin(・t —173.13 ) Ai C =22 2 sin(,t 66.87 ) AU V = 160 V(1) 负载以三角形方式接入三相电源负载以三角形方式接入三相电源(2) I — =3.8 T 2 -15 A , 1仁 =3.3.^-2/ ^-2/ 135 A , , 仁 =3.8、「2也105 AI A =3.8、. 6/「45 A , I B =3.8I Q 165 A , , I c =3.8.6. 75 AL = 110 mH , C = 91.9 mF 章习题参考答案章习题参考答案P = 240 W, Q = 360 var P = 10.84 W(1) i(t) 4.7sin( t 100 ) - 3sin3 t A(2) I ~ 3.94 A , U ~ 58.84 V , P ~ 93.02 W 0MU m n o L 1 r~2 ------------- 2u 2(t) msin(,t —-arctan 1)V , R 2 (丄J 2z 2 R '直流电源中有交流,交流电源中无直流直流电源中有交流,交流电源中无直流U 1=54.3 V , , R = 1 Q, L = 11.4 mH ;约为约为 8% 8% , , ( L'= 12.33 mH ) 使总阻抗或总导纳为实数使总阻抗或总导纳为实数((虚部为虚部为 0)0)的条件为的条件为的条件为 尺二尺二& = & = R x = Rx = ■ L/C ■ L/C G =9.39 折,C 2 =75.13 M F L 1 = 1 H , L 2 = 66.7 mHC 1 = 10 M F, C 2 2 = 1.25 M F章习题参考答案章习题参考答案第6 6-1 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 6-12 6-13 6-14 6- 15 第7 7- 1 7-2 7-3 7-4 7-5 7-6 7-7 7-87-9 7- 10 第88- 6 8-78-8i L (0+) = 1.5mA , U L (0+) = - 15V- 15V h (0+) = 4A , i 2(0+) = 1A , U L (0+) = 2V 2V ,i 1(s )= 3A , i 2(^)= 0, U L ()= 0 i 1 1 (0+) = 75mA , i 2(0+) = 75mA , i 3(0+) = 0, U L 1 (0+) = = 0, U L 2(0+) = 2.25V 2.25V6i c (t)二 2訂 A 4t U L (t) =6e _V u C (t) =10(1 _eg )V , i C (t) =56说*人 500t 貝 u C (t) =115e~ sin(866 亠60 ) V10t 10t 山⑴=12e - V , L(t) =2(1 —e — )A 1 1 t t U R (t) =~U s e 下2C V , U R (3 J - -U S e-V (1) T = 0.1s, (2) u c (t) =10e -V , (3) t = 0.1s u C (t) =10 _9e 」° V 10t _ i L (t) =5e 一 A (a)f(t) =1(t —t 。

电路分析基础(俎云霄主编)

电路分析基础(俎云霄主编)

《电路分析基础》(俎云霄主编)◆内容简介本书主要介绍电路的基本概念、基本定律和定理及电路的基本分析方法。

本书共包含3大部分内容——直流电阻电路、直流动态电路和正弦交流稳态电路。

直流电阻电路部分共4章,主要介绍电路的基本变量和几种基本元件,电路的基本分析方法、基本定律和定理,简单非线性电阻电路。

直流动态电路部分有2章,主要介绍电容和电感这两种动态元件,分析由动态元件构成的一阶动态电路和二阶动态电路的瞬态过程。

正弦交流稳态电路部分共6章,主要介绍正弦稳态电路、三相电路、非正弦周期稳态电路和有耦合的电感电路的分析,介绍电路的频率特性和二端口网络。

另外,本书的最后一章介绍了电路仿真软件——Multisim,给出了仿真示例。

◆目录第1章电路模型和电路元件1. 1 电路和电路模型1.2 电路变量1.3 基尔霍夫定律1.4 电阻元件1.5 电压源1.6 电流源1.7 受控源1.8 电阻的等效变换输入电阻1.9 电源的等效变换1.10 工程应用——散热风扇的速度控制本章小结习题第2章电阻电路的基本分析方法2.1 图论的初步知识2.2 支路电流法2.3 完备的独立电路变量2.4 节点电压法2.5 网孔分析法2.6 回路分析法2.7 运算放大器及其外部特性2.8 含运算放大器的电阻电路2.9 工程应用——模数和数模转换电路本章小结习题第3章电路的基本定理3.1 齐性定理3.2 叠加定理3.3 替代定理3.4 戴维南定理和诺顿定理3.5 最大功率传输定理3.6 特勒根定理3.7 互易定理3.8 对偶关系3.9 工程应用——万用表内阻的确定本章小结习题第4章简单非线性电阻电路4.1 非线性电阻电路4.2 图解法4.3 分段线性化法4.4 小信号分析法4.5 工程应用——限幅电路本章小结习题第5章一阶动态电路5.1 电容元件5.2 电感元件5.3 忆阻元件5.4 换路定则及初始值的确定5.5 一阶电路的零输入响应5.6 一阶电路的零状态响应5.7 一阶电路的全响应5.8 一阶电路的三要素法5.9 一阶电路的阶跃响应 5.10 微分电路和积分电路 5.11 工程应用——瞬态分析在数字电路中的应用本章小结习题第6章高阶动态电路6.1 二阶电路的微分方程6.2 RLC并联电路的零输入响应6.3 RLC并联电路的零状态响应和全响应6.4 RLC串联电路6.5 一般二阶电路和高阶动态电路6.6 工程应用——电火花加工电路本章小结习题第7章正弦稳态电路7.1 正弦量7.2 正弦量的相量相量法7.3 基尔霍夫定律和 R、L、C 元件VCR的相量形式 7.4 阻抗和导纳7.5 正弦稳态电路的相量分析7.6 正弦稳态电路的等效7.7 正弦稳态电路的功率7.8 复功率7.9 正弦稳态最大功率传输定理7.10 工程应用——功率因数的提高本章小结习题第8章三相电路8.1 三相电源8.2 对称三相电路的计算8.3 不对称三相电路的概念8.4 三相电路的功率8.5 工程应用——三相电源相序的确定本章小结习题第9章非正弦周期稳态电路9.1 非正弦周期信号有效值平均值 9.2 非正弦周期稳态电路的分析9.3 非正弦周期稳态电路的功率9.4 工程应用——适配器本章小结习题第10章电路的频率特性10.1 网络函数及频率特性10.2 RC电路的频率特性10.3 RLC串联电路的谐振10.4 RLC并联电路的谐振10.5 工程应用——按键式电话系统本章小结习题第11章耦合电感电路11.1互感互感电压11.2耦合电感的电压、电流关系11.3耦合电感的去耦11.4含耦合电感电路的分析11.5线性变压器电路的分析11.6全耦合变压器11.7理想变压器的VCR及其特性11.8 工程应用——全波整流电路本章小结习题第12章二端口网络12.1 二端口网络12.2 二端口网络的VCR及参数12.3 二端口网络各参数间的关系12.4 互易二端口和对称二端口12.5 二端口网络的等效电路12.6 有端接的二端口网络12.7 二端口网络的特性阻抗12.8 二端口网络的互连12.9 工程应用——双极型晶体管的等效电路本章小结习题第13章 Multisim使用指南及仿真应用13.1 一个简单的例子13.2 部分菜单栏简介13.3 工具栏简介13.4 常用仪器仪表的使用13.5 仿真示例本章小结习题附录A 特勒根定理的证明附录B 复数及其运算附录C 常见信号的傅里叶级数展开部分习题参考答案参考文献。

《电路分析基础》第2版-习题参考答案

《电路分析基础》第2版-习题参考答案

《电路分析基础》各章习题参考答案第 1 章习题参考答案1- 1 (1) 50W ; (2) 300 V、25V, 200V、75 V ; (3) 2=12.5 Q R a=100 Q, R4=37.5 Q1- 2 V A=8.5V, V m=6.5V, V B=0.5V, V C=- 12V, V D=-19V, V p=-21.5V, U AB=8V, U BC=12.5,U DA=-27.5V1- 3 电源(产生功率): A 、 B 元件;负载(吸收功率): C、 D 元件;电路满足功率平衡条件。

1- 4 (1) V A=1 00V , V B=99V, V C=97V, V D=7V, V E=5V, V F=1V, U AF=99V, U CE=92V, U BE=94V, U BF=98V, U CA=- 3 V;(2) V C=90V, V B=92V , V A=93V, V E=-2V, V F=-6V, V G=- 7V, U AF=99V, U CE=92V, U BE=94V, U BF=98V, U CA=- 3 V1- 5 I 〜0.18A , 6 度,2.7 元1- 6 I=4A, I1=11A,I2=19A1- 7 (a) U=6V, (b) U=24 V, (c) R=5Q, (d) I=23.5A1- 8 (1) i6=-1A ; (2) u4=10V, u6=3 V; (3) P1=-2W 发出, P2 =6W 吸收, P3 =16W 吸收, P4 =-10W 发出, P5 =-7W 发出, P6 =-3W 发出1- 9 I=1A , U s=134V , R~ 7.8Q1- 10 S 断开:U AB=- 4.8V , U AO=- 12V , U BO=-7.2V ;S 闭合:U AB =-12V, U AO =- 12V , U BO=0V1- 11 支路 3,节点 2,网孔 2 ,回路 31- 12 节点电流方程: (A) I1 +I3- I6=0,(B)I6- I5- I7=0,(C)I5 +I 4-I3=0回路电压方程:① I6 R6+ U S5 +I 5 R5- U S3 +1 3 R3=0 ,②-15 R5- U S5+ I 7R7- U S4 =0 ,③-丨3 R3+ U S3 + U S4 + I 1 R2+ I 1 R1=01- 13 U AB=11V , I2=0.5A , l3=4.5A , R3~ 2.4 Q1-14 V A=60V V C=140V V D=90V U AC=- 80V U AD=- 30V U CD=50V1- 15 I1=- 2A I2=3A I3=- 5A I4=7A I5=2A第 2 章习题参考答案2- 1 2.4 Q 5 A2- 2 (1) 4 V 2 V 1 V; (2) 40 mA 20 mA 10 mA2- 3 1.5 Q 2 A 1/3 A2- 4 6 Q 36 Q2- 5 2 A 1 A2- 6 1 A2- 7 2 A2- 8 1 A2- 9 I1 = -1.4 A I2 = 1.6 A I3 = 0.2 A2- 10 I1 = 0 A I2 = -3 A P1 = 0 W P2 = -18 W2- 11 I i = -1 mA , I2 = - 2 mA , E3 = 10 V2- 12 I1 = 6 A , I2 = -3 A , I3 = 3 A2- 13 I1 =2 A , I2 = 1A , I3 = 1 A , I4 =2 A , I5 = 1 A2-14 V a = 12 V , I1 = - 1 A, I2 = 2 A2-15 V a = 6 V , I1= 1.5 A , I2 = - 1 A ,I3 = 0.5 A2-16 V a = 15 V , I1 = - 1 A , I2 =2 A , I3 = 3 A2-17 I1 = -1 A , I2 = 2 A2-18 I1 =1.5 A , I2 = - 1 A , I3 = 0.5 A2-19 I1 =0.8 A , I2 = - 0.75 A , I3 = 2 A , I4 = - 2.75 A , I5 = 1.55 A2-20 I3 = 0.5 A2-21 U o = 2 V , R o = 4 Q, I0 = 0.1 A2-22 I5 = -1 A2-23 (1) I5 = 0 A , U ab = 0 V ; (2) I5 = 1 A , U ab = 11 V2-24 I L = 2 A2-25 I s =11 A , R0 = 2 Q2-26 18 Q, - 2 Q, 12 Q2-27 U = 5 V2-28 I =1 A2-29 U = 5 V2-30 I =1 A2-31 10 V , 180 Q2-32 U0 = 9 V , R0 = 6 Q, U=15 V第3章习题参考答案3- 1 50Hz, 314rad/s, 0.02s, 141V, 100V, 120 °3- 2 200V, 141.4V3- 3 u=14.1si n (314t-60 °V3- 4 (1) ®u1-贏2= 120°(2) ®1 = -90° %= - 210°, %1-屁=120° (不变)3-5 (1) U^50 .^_90 V , U2 =50 .2 -0 V ;(2) U3=100 2 sin (3t+ 45 °)V , U4=100 ■■ 2 sin ( ®t+ 135 °)V3- 6 (1) i 1=14.1 sin ( 72 °)A ; (2) U2=300 sin ( 3—60 °)V3- 7 错误:(1),⑶,(4), (5)3- 8 (1) R; (2) L ; (3) C; (4) R3- 9 i=2.82 sin (10t-30 °)A , Q~ 40 var3- 10 u=44.9sin (3141-135 °V, Q=3.18 var3- 11 (1) I=20A ; (2) P=4.4kW3- 12 (1)I ~ 1.4A , I 1.4 - 30 A ; (3)Q~ 308 var, P=0W ; (4) i~ 0.98 sin (628t-30 °)A3- 13 (1)I=9.67A , I =9.67450 A , i=13.7 sin (314t+150 °) A ; (3)Q=2127.4 var, P=0W;(4) I C=0A3- 14 (1)C=20.3 尸;(2) I L = 0.25A ,l c = 16A第4章习题参考答案4-1 (a) Z =5. 36.87 J, Y =0.2 /36.87 S; (b) Z =2.5 - 2/45 门,Y =0.2.2/45 S4- 2 Y=(0.06-j0.08) S , R~ 16.67 Q, X L=12.5 Q, L~0.04 H4- 3 U R=6 0^0 V U L=80/90 V , U S=100^53.13 V4- 4 卩=2 0 £ 3 6.874-5 Z =100 2^45 ;:■,卩=1^0 A , U R=100^0 V , U L=125/90 V , U C=25/ 90 V4-6 Y =0.25 2^45 S , U =4 “2/0 V ,卩R = .2. 0 A , I L =0.^ 2 / 90 A , I C=1.2.2/90 A4- 7 ll =1 0.「2 4 5,A U S=100 乙90 V4- 8 (a) 30 V ; (b) 2.24 A4- 9 (a) 10 V ; (b) 10 A4- 10 (a) 10 V ; (b) 10 V4- 11 U=14.1 V4- 12 U L1 =15 V , U C2 =8 V , U S=15.65 V4-13 U X1 =100 V, U2 =600 V, X1=10 Q, X2=20 Q, X3=30 Q4- 14 Z =20 .2 45 门,l =2. -45 A , h = 2 0 A , .2/-90 A , U ab=0V 4- 15 (1)1 =£2 A, Z RC=5、2「,Z =5 10 门;(2) R =10 门,X^10'J4- 16 P = 774.4 W , Q = 580.8 var, S = 968 V A-4- 17 l1 = 5 A , l2 = 4 A4-18 I1 = 1 A , I2 =2 A , l =.5. 26.565 A , S =44.72. -26.565 V A4-19 Z=10", I=190A, U R2 =5 2 135 V , P =10 W64-20 a =5X10 rad/s , p= 1000 Q, Q = 100 , l = 2 mA , U R =20 mV , U L = U C = 2 V4-21 30 =104rad/s , p= 100 Q, Q = 100 , U = 10 V, I R = 1 mA , I L = I C = 100 mA4-22 L1 = 1 H , L2 ~ 0.33 H第5章习题参考答案5- 3 M = 35.5 mH5- 4 301 =1000 rad/s ,302 =2236 rad/s5- 5 Z1 = j31.4 Q , Z2 = j6.28 Q 5- 6 Z r = 3+7.5 Q5- 7 M = 130 mH5- 8 “2 二-2/45 A5- 9 U1 = 44.8 V5- 10 M12 = 20 mH , 11 = 4 A5- 11 U2 = 220 V , I1 = 4 A5- 12 n = 1.95- 13 N2 = 254 匝,N3 = 72 匝5- 14 n = 10 , P2 = 31.25 mW章习题参考答案 (1) A 相灯泡电压为零,B 、C 相各位为220V I L = I p = 4.4 A ,U p = 220 V ,U L = 380 V ,P = 2.3 kW (2) I p = 7.62 A ,I L = 13.2 A A 、C 相各为2.2A ,B 相为3.8A U L = 404 V U A N =202/ -47 V cos $ = 0.961 , Q = 5.75 kvar Z =334 28.4 门 (1) I p = 11.26 A , Z = 19.53 / 42.3 °Q; (2) I p = I l = 11.26 A , P = 5.5 kW U l = 391 V i A =22 2sin(・t —53.13 ) A i B =22 .2sin(・t —173.13 ) A i C =22 2 sin(,t 66.87 ) A U V = 160 V (1) 负载以三角形方式接入三相电源 (2) I — =3.8 T 2 -15 A , 1仁 =3.^-2/ 135 A , 仁 =3.8、「2也105 A I A =3.8、. 6/「45 A , I B =3.8I Q 「165 A , I c =3.8.6. 75 A L = 110 mH , C = 91.9 mF 章习题参考答案 P = 240 W, Q = 360 var P = 10.84 W (1) i(t) 4.7sin( t 100 ) - 3sin3 t A (2)I ~ 3.94 A , U ~ 58.84 V , P ~ 93.02 W 0MU m n o L 1 r~2 ------------- 2 u 2(t) m sin(,t —-arctan 1)V , R 2 (丄J 2 z 2 R ' 直流电源中有交流,交流电源中无直流 U 1=54.3 V , R = 1 Q, L = 11.4 mH ;约为 8% , ( L'= 12.33 mH ) 使总阻抗或总导纳为实数(虚部为 0)的条件为 尺二& = Rx = ■ L/C G =9.39 折,C 2 =75.13 M F L 1 = 1 H , L 2 = 66.7 mH C 1 = 10 M F, C 2 = 1.25 M F 章习题参考答案 第66-16-36-46-56-66-76-86-96-106-116-126-136-146- 15第77- 17-27-37-47-57-67-77-87-97- 10第88- 68-78-8i L(0+) = 1.5mA , U L(0+) = - 15Vh(0+) = 4A, i2(0+) = 1A , U L(0+) = 2V, i1(s)= 3A , i2(^)= 0, U L()= 0 i1 (0+) = 75mA , i2(0+) = 75mA , i3(0+) = 0, U L1 (0+) = 0, U L2(0+) = 2.25V6i c (t)二 2訂 A 4tU L (t) =6e _V u C (t) =10(1 _eg 0t )V , i C (t) =56说*人 500t 貝 u C (t) =115e~ sin(866 亠60 ) V10t 10t 山⑴=12e - V , L(t) =2(1 —e — )A 1 t U R (t) =~U s e 下2C V , U R (3 J - -U S e-V (1) T = 0.1s, (2) u c (t) =10e -0t V , (3) t = 0.1s u C (t) =10 _9e 」°t V 10t _ i L (t) =5e 一 A (a)f(t) =1(t —t 。

第10章 非正弦周期电流电路

第10章 非正弦周期电流电路

P0 P1 P2 ......
平均功率=直流分量的功率+各次谐波的平均功率
平均功率只取决于电阻,与电容和电感无关,又有
P I 2R I02R I12R I22R Ik2R
注意
1. 只有同频率的电压谐波和电流谐波才能构成平均功率。 非同频率的平均功率为零。
10.3 有效值、平均值和平均功率
非正弦周期函数的有效值

若 i(t ) I0 Ikmcos(kω1t ψk )
则有效值:
k 1
I 1 T i2dt
T0
1 T
T

2
0
I0

Ikmcos kω1t
k 1
ψk
dt
I
I
2 0

1 2
10.2 非正弦周期函数分解为傅里叶级数
非正弦周期函数的频谱
由于只要求得各谐波分量的振幅和初相,就可确定一个函数
的傅里叶级数。在电路中为了直观地表示,常用频谱图表示。 频谱——描述各谐波分量振幅和相位随频率变化的图形称为
频谱图或频谱。
1. 幅度频谱:f(t)展开式中Akm与 (=k 1)的关系。反映了各频率成份
2. 电路中产生非 正弦周期波的原 因是什么?试举 例说明。
3. 有人说:“只要 电源是正弦的,电 路中各部分的响应 也一定是正弦波” ,这种说法对吗? 为什么?
4. 试述谐波分析法 的应用范围和应用 步骤。
10.2 非正弦周期函数分解为傅里叶级数
周期函数 f(t) = f(t+kT) (k = 1, 2, 3, …) 若满足狄里赫利条件
非正弦 周期量 (激励)
不同频率 正弦量的和

电路分析基础第10章 含有耦合电感的电路

电路分析基础第10章 含有耦合电感的电路

+
2
线圈彼此耦合的情况:
线圈1中的电流i1产生自感磁通链ψ11和互感 磁通链ψ21, 同样线圈2中的电流i2也产生自感磁通 链ψ22和互感磁通链ψ12 (图中未标出).
L1
N1
L2
N2
11
i1 i1
21
2‘ _
i2
1‘
1
u21
+
2
L1
N1
L2
N2
11
i1 i1
21
2‘ _
i2
1‘
1
u21
22 L2i2
12 M12i2 21 M 21i1 互感磁通链 上式中M12和M21称为互感系数,简称互感。
互感用符号M表示,单位为:亨利H。 由于互感具有互易性质,即M12= M21 , 当只有两个线圈耦合时,可略去下标,统一使用M。
两个耦合线圈的磁通链可表示为:
1 11 12
d 1 di1 di2 u1 L1 M dt dt dt d 2 di1 di2 u2 M L2 dt dt dt
令自感电压 互感电压
di1 u11 L1 dt di2 u12 M dt
u 22
di2 L2 dt
di1 u 21 M dt
di2 u 22 L2 自感电压 dt di1 u 21 M 互感电压 dt 说明 u12是变动电流i2在L1中产生的互感电压,
Z1 R1 j ( L1 M )
u
R1 u1
L1
M
R2
u2
L2
Z 2 R2 j ( L2 M )

Z Z1 Z 2 R1 R2 j ( L1 L2 2M )

电路分析基础知到章节答案智慧树2023年桂林电子科技大学

电路分析基础知到章节答案智慧树2023年桂林电子科技大学

电路分析基础知到章节测试答案智慧树2023年最新桂林电子科技大学绪论单元测试1.同一型号的灯泡,单个灯泡接220V电源与两个灯泡串联接220V电源,灯泡的亮度有什么变化?()参考答案:变暗第一章测试1.下图为连接甲乙两地的输电线路,若甲地工作于800kV,电流为1.8kA,则功率由( )地输送至( )地,其值为 ( )MW。

参考答案:甲,乙,14402.电压电流参考方向如图中所标,有关A、B两部分电路电压电流参考方向是否关联描述正确的是()。

参考答案:A部分电压、电流参考方向非关联;B部分电压、电流参考方向关联。

3.电路如图所示, 其中电阻的值应分别为( ) Ω。

参考答案:100 , 1004.在集总假设条件下,对实际电路元件加以理想化,只能用一个表征该元件主要性质的模型来表示该元件。

参考答案:错5.在非关联的参考方向下,欧姆定律可以写成u=-iR。

其中R表示电阻,u为电阻两端的电压,i为流过电阻两端的电流。

参考答案:对6.电流和电压的参考方向可任意选定,选定后,在电路的分析和计算过程中也能改变。

参考答案:错7.对于集总参数电路中的任一节点,在任一瞬间,流向该节点的电流的代数和恒等于零。

参考答案:对8.独立电源可能产生功率,也可能吸收功率。

参考答案:对9.理想电压源的端电压u与外接电路有关。

参考答案:错10.理想电流源的端电压u由外电路确定。

参考答案:对11.实验中可以把电压源短路。

参考答案:错12.受控源是描述电子器件中某一支路对另一支路控制作用的理想模型,本身不直接起“激励”作用。

参考答案:对13.图示电路中,i1=i2。

参考答案:对14.图中所示电路中电流I等于_____A。

参考答案:null15.试求图中U AC为_____V。

参考答案:null16.图中 R1=500Ω,R3=200Ω, R2为500Ω的电位器。

输入电压为U1=12V , 输出电压U2的变化范围为{ }V~{ }V。

参考答案:null17.电路如图所示,电压US等于_____V 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I
Is
UC 1000
10
2 103 UC 103
UC j4000I
I 0.01 2 3.43 75.96mA 1 j4
UC 13.73 165.96V U UC 3000I 17.16 129 V
PR I 2R (3.43103 )2 3000 35mW
由于电流源电压 U17.16 129V ,电流 Is 10 2 103 A , 且为非关联。 故
能量交换,而且有能量的消耗(或产生)。
图10-2 网络瞬时功率波形
2 工程上,为定量描述网络消耗功率的大小,引入有功功
率。 所谓有功功率,也就是网络的平均功率,即瞬时功率
在一个周期内的平均值,用 P 来表示。 即
P 1
T
p(t)dt
T0
(10-2)
将网络瞬时功率表达式(10-1)代入上式,得网络的有功功
188mW
图10-4 例10-1图
4.
在电工技术中,以U、I的乘积来评定电力设备供电能
力的大小,即设备容量, 称此为视在功率,以S表示,单位
为伏安(VA), 即
S=UI
(10-7)
显然,一般情况下,有功功率小于视在功率。 实际上,
视在功率S是有功功率的最大值。 当网络与外界不存在能量
交换时,即Q=0时,由式(10-6)可知φu-φi=0,此时,有功功
Ps UIs cos(u i ) 17.16 10 2 103 cos(129 0) 152mW
受控源电压 U 17.16 129V ,电流
ID
UC 1000
13.73103 165.96V
,且为非关联。 故受控源
PD UID cos(u i ) 17.16 13.73103 cos(129 (165.96))
衡量这种能量交换的规模大小,引入无功功率用以描述。
无功功率以Q表示,单位为乏(var),其大小为瞬时交换功率
的极值,且定义为
Q=UIsin(φu-φi)
(10-6)
【例10-1】 电路如图10-4(a)所示,已知is(t)=20 cos100 tmA, 求电阻、受控源及独立电源的有功功率。
解 画相量模型,如图10-4(b)所示,
画出的p1(t)和p2(t)的波形分别如图10-3(a)、(b)所示。 注 意,此处假设UIcos(φu-φi)>0; 若UIcos(φu-φi)<0, 则p1(t) 的波形应在ωt轴的下方。
图10-3 瞬时功率的分解
显然,求式(10-5)的p(t)平均功率,即等于p1(t)的平均功 率。 换言之,p2(t)对平均功率无贡献。 在p2(t)>0处,表明 网络对外吸收功率;p2(t)<0处,表明网络释放功率。 在一 个周期内,释放的功率与吸收的功率相等。 也就是说,p2(t) 体现的是网络与外电路功率交换的瞬时状态。 工程上,为
p(t)=UIcos(2ωt+2φi)cos(φu-φi) -UIsin(2ωt+2φi)sin(φu-φi)+UIcos(φu-φi)
=UIcos(φu-φi)[1+cos(2ωt+2φi)] -UIsin(φu-φi)sin(2ωt+2φi)
=p1(t)+p2(t)
(10-5)
其中,p1(t)=UIcos(φu-φi)[1+cos(2ωt+2φi) p2(t)=-UIsin(φu-φi)sin(2ωt+2φi)
由式(10-3)、(10-6)和(10-7)易得有功功率 P 、无功功
率Q和视在功率S的关系为
S2 P 2 Q2
(10-10)
三者的关系可用如图10-5所示的功率三角形来描述。
图10-5 功率三角形
5. 工程上为方便功率计算,引入另一功率参量——复功率。 如图10-6所示的二端网络,设网络端口电压、电流相量分别

P UI cos(u i ) U。I 这S 时网络功率容量S的利
用率最高,全部用于电路消耗。 工程上定义功率因数作为
衡量网络容量S的利用率大小的参量,以λ表示:
P
Q
(10-8)
显然,
λ=cos(φu-φi)
(10-9)
功率有关,而且还要视负载的功率因数λ而定。 为充分利用
设备能源,应当尽量提高功率因数。
第10章 正弦稳态电路的功率
10.1 二端网络的功率 10.2 无源二端网络及元件的功率 10.3 元件的储能及电路的功率守恒 10.4 正弦稳态最大功率传输定理 10.5 正弦稳态功率的叠加
10.1 二端网络的功率
1. 瞬时功率 任意二端网络如图10-1所示,设端电压、电流为关联参 考方向,
u(t)=Umcos(ωt+φu)V i(t)=Imcos(ωt+φi)A
图10-1 任意二端网络
p(t)=u(t)i(t)=UmImcos(ωt+φu)cos(ωt+φi) 根据三角公式 cos cos 1 [cos( ) cos( )] ,
2
p(t)
1 2
U
m
I
m[cos(2t
u
i )
cos(u
i )]
UI cos(2t u i ) UI cos(u i )
(10-1)
可见,二端网络的瞬时功率p(t)由恒定分量UIcos(φu-φi) 和正弦分量UIcos(2ωt+φu+φi)两部分组成,是以2ω为角频率 变化的周期量,波形如图10-2所示(图中假设UIcos(φu-φi)是 大于零的)。 图中,在p(t)>0处,表明网络吸收功率;在 p(t)<0处,表明网络释放功率。 在一个周期内,网络吸收和 释放的功率是不对等的。 这表明网络与外电路之间不仅有
率为
P UI cos(u i )
(10-3)
3 由网络瞬时功率表达式(10-1)
p(t)=UIcos(2ωt+φu+φi)+UIcos(φu-φi) =UIcos[(2ωt+2φi)+(φu-φi)]+UIcos(φu-φi) (10-4)
根据三角公式cos(α+β)=cosαcosβ-sinαsinβ, 将式(10-4)
为 U Uu , I Ii ,则网络(吸收)的复功率定义为
S~ UI
(10-11)
图10-6 二端网络复功率图示
将 U Uu 、 I* I(i ) 代入式(10-11)
S~ UI(u i ) UI cos(u i ) jUI sin(u i ) 即
S~ Байду номын сангаас jQ
相关文档
最新文档