人教版高中数学知识点总结:新课标人教A版高中数学选修1-2知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学选修1-2知识点总结

第一章 统计案例

1.线性回归方程

①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系

③线性回归方程:a bx y +=∧

(最小二乘法)

其中,1

22

1n

i i i n

i

i x y nx y b x nx a y bx

==⎧

-⎪

⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .

2.相关系数(判定两个变量线性相关性):∑∑∑===----=

n

i n

i i i

n

i i i

y y x x

y y x x

r 1

1

2

21

)()()

)((

注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;

⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线

性相关关系。 3.条件概率

对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率. 记

为P (A |B ) , 其公式为P (A |B )=P (AB )

P (A )

4相互独立事件

(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立. (2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=_ P (A 1)P (A 2)…P (A n ).

(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -

也相互独立.

5.独立性检验(分类变量关系):

(1)2×2列联表

设,A B 为两个变量,每一个变量都可以取两

个值,变量

121:,;A A A A =变量121:,;B B B B =

通过观察得到右表所示数据: 并将形如此表的表格称为2×2列联表.

(2)独立性检验 根据2×2列联表中的数据判断两个变量A ,B 是否独立

的问题叫2×2列联表的独立性检验.

(3) 统计量χ2的计算公式

χ2=n (ad -bc )2

(a +b )(c +d )(a +c )(b +d )

第二章框图

1.流程图

流程图是由一些图形符号和文字说明构成的图示.流程图是表述

工作方式、工艺流程的一种常用手段,它的特点是直观、清晰.

3.结构图

一些事物之间不是先后顺序关系,而是存在某种逻辑关系,像这

样的关系可以用结构图来描述.常用的结构图一般包括层次结构

图,分类结构图及知识结构图等.

第三章推理与证明

1.推理

⑴合情推理:

归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理

由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。归纳推理是由部分到整体,由个别到一般的推理。

②类比推理

由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。类比推理是特殊到特殊的推理。

⑵演绎推理

从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。演绎推理是由一般到特殊的推理。

“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结论---------根据一般原理,对特殊情况得出的判断。

2.证明

(1)直接证明

一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。 ②分析法

一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。 (2)间接证明……反证法

一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

第四章 复数

1.复数的有关概念

(1)把平方等于-1的数用符号i 表示,规定i 2=-1,把i 叫作虚数单位.

(2)形如a +b i 的数叫作复数(a ,b 是实数,i 是虚数单位).通常表示为z =a +b i(a ,b ∈R). (3)对于复数z =a +b i ,a 与b 分别叫作复数z 的______与______,并且分别用Re z 与Im z 表示. 2.数集之间的关系

复数的全体组成的集合叫作_____________,记作C. 3.复数的分类

复数a +b i

(a ,b ∈R )⎩⎨⎧实数(b =0)虚数(b ≠0)⎩⎨

⎧纯虚数(a =0)非纯虚数(a ≠0)

4.两个复数相等的充要条件

设a ,b ,c ,d 都是实数,则a +b i =c +d i ,当且仅当_________ 5.复平面

(1)定义:当用__________________的点来表示复数时,我们称这个直角坐标平面为复平面. (2)实轴:_______称为实轴.虚轴:_________称为虚轴. 6.复数的模

若z =a +b i(a ,b ∈R),则_______________.

相关文档
最新文档