2013年高考真题——文科数学(陕西卷)解析版

合集下载

2013年陕西省高考文科数学.doc

2013年陕西省高考文科数学.doc

一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R ,函数()f x =的定义域为M , 则C M R 为( ) (A) (-∞,1) (B) (1, + ∞) (C) (,1]-∞ (D) [1,)+∞2. 已知向量 (1,),(,2)a m b m ==, 若a //b , 则实数m 等于( )(A)(B)(C)(D) 03. 设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是( ) (A) ·log log log a c c b a b = (B) ·log lo log g a a a b a b =(C) ()log ?l g o lo g a a a b c bc =(D) ()log g og o l l a a a b b c c +=+4. 根据下列算法语句, 当输入x 为60时, 输出y 的值为( ) (A) 25 (B) 30 (C) 31(D) 615. 对一批产品的长度(单位:. 根据标准, 产品长度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取一件,则其为二等品的概率为( )(A) 0.09 (B) 0.20 (C) 0.25 (D) 0.456. 设z 是复数, 则下列命题中的假命题是( ) (A) 若20z ≥, 则z 是实数 (B) 若20z <, 则z 是虚数(C) 若z 是虚数, 则20z ≥(D) 若z 是纯虚数, 则20z <7. 若点(x ,y )位于曲线y = |x |与y = 2所围成的封闭区域, 则2x -y 的最小值为( )(A) -6 (B) -2 (C) 0 (D) 28. 已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1与圆O 的位置关系是( )(A) 相切 (B) 相交 (C) 相离 (D) 不确定9. 设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 (A) 直角三角形 (B) 锐角三角形 (C) 钝角三角形 (D) 不确定 10. 设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有( )(A) [-x ] = -[x ] (B) [x +12] = [x ] (C) [2x ] = 2[x ] (D) 1[][][2]2x x x ++= 二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分) 11. 双曲线221169x y -=的离心率为 .12. 某几何体的三视图如图所示, 则其表面积为 . 13. 观察下列等式:23(11)21(21)(22)213(31)(32)(33)2135+=⨯++=⨯⨯+++=⨯⨯⨯…照此规律, 第n 个等式可为 .14. 在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为 (m ).15. (考生请注意:请在下列三题中任选一题作答, 如果多做, 则按所做的第一题计分)A . (不等式选做题) 设a , b ∈R , |a -b |>2, 则关于实数x 的不等式||||2x a x b -+->的解集是 .B . (几何证明选做题) 如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = .C . (坐标系与参数方程选做题) 圆锥曲线22x t y t ⎧=⎨=⎩(t 为参数)的焦点坐标是 .P(Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.17. (本小题满分12分) 设S n 表示数列{}n a 的前n 项和. (Ⅰ) 若{}n a 为等差数列, 推导S n 的计算公式;(Ⅱ) 若11,0a q =≠, 且对所有正整数n , 有11nn q S q-=-. 判断{}n a 是否为等比数列.18. (本小题满分12分)如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD , 1AB AA ==(Ⅰ) 证明: A 1BD // 平面CD 1B 1;(Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积.19. (本小题满分12分)有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, (Ⅰ) 为了调查评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B 组中抽取了6人. 请将其余各组抽取的人数填入下表.分别任选1人, 求这2人都支持1号歌手的概率.20. (本小题满分13分)已知动点M (x ,y )到直线l :x = 4的距离是它到点N (1,0)的距离的2倍. (Ⅰ) 求动点M 的轨迹C 的方程;★(Ⅱ) 过点P (0,3)的直线m 与轨迹C 交于A , B 两点. 若A 是PB 的中点, 求直线m 的斜率.21. (本小题满分14分) 已知函数()e ,x f x x =∈R .(Ⅰ) 求f (x )的反函数的图象上图象上点(1,0)处的切线方程;★(Ⅱ) 证明: 曲线y = f (x) 与曲线2112y x x =++有唯一公共点. ★(Ⅲ) 设a <b , 比较2a b f +⎛⎫⎪⎝⎭与()()f b f a b a --的大小, 并说明理由.1A。

2013年高考真题——文科数学(新课标I卷)精校版

2013年高考真题——文科数学(新课标I卷)精校版

(15)已知H是求O的直径AB上一点,AH:HB=1:2,AB⊥平面a,H为垂足,a截球o所得截面 的面积为π ,则求O的表面积为_______. (16)设当x=θ 时,函数f(x)=sinx-2cosx取得最大值,则cosθ =______. 三.解答题:解答应写出文字说明,证明过程或演算步骤。 (17)(本小题满分12分) 已知等差数列{an}的前n项和Sn满足S3=0,S5=-5. (Ⅰ)求{an}的通项公式; (Ⅱ)求数列{a
a 1
-5-
1 4 5
(D)
1 6
(4)已知双曲线 C:
������ 2
− ������ 2 = 1(a>0,b>0)的离心率为 2 ,则 C 的渐近线方程为
( )
1 3 1 2
(A)y=± x
(D)y=±x ,则下列命题中为真 ( ) (D)¬p∧¬q
(5)已知命题 p: 命题的是: (A) p∧q
(Ⅰ)证明:DB=DC; (Ⅱ)设圆的半径为 1,BC= 3 ,延长 CE 交 AB 于点 F,求△BCF 外接圆的半径。 (23) (本小题 10 分) 选修 4—4: 坐标系与参数方程 已知曲线 C1 的参数方程为 x=4+5cost, y=5+5sint, (t 为参数) ,以坐标原点为极点,x 轴的正半轴为极轴简历极坐标系,曲线 C2 的极坐标方程为ρ =2sinθ 。 (Ⅰ)把 C1 的参数方程化为极坐标方程; (Ⅱ)求 C1 与 C2 交点的极坐标(ρ ≥0,0≤θ <2π ) 。 (24) (本小题满分 10 分)选修 4—5:不等式选讲 已知函数 f(x)= ∣2x-1∣+∣2x+a∣,g(x)=x+3. (Ⅰ)当 a=2 时,求不等式 f(x) <g(x)的解集; (Ⅱ)设 a>-1,且当 x∈[-2, 2)时,f(x) ≤g(x),求 a 的取值范围.

2013年陕西高考数学试题及答案(文科)

2013年陕西高考数学试题及答案(文科)

2013年陕西高考数学试题及答案(文科)一、选择题1. 设全集为R ,函数f(x)=1-x 的定义域为M ,则∁M 为( ) A .(-∞,1) B .(1,+∞) C .(-∞,1] D .[1,+∞)1.B [解析] M ={x|1-x ≥0}={x|x ≤1},故∁M = (1,+∞).2. 已知向量a =(1,m),b =(m ,2),若a ∥b ,则实数m 等于( ) A .- 2 B. 2C .-2或 2D .02.C [解析] 因为a ∥b ,且a =(1,m),b =(m ,2),可得1m =m2,解得m =2或-2.3. 设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c bC .log a (bc)=log a b ·log a cD .log a (b +c)=log a b +log a c 3.B [解析] 利用对数的运算性质可知C ,D 是错误的.再利用对数运算性质log a b ·log c b≠log c a.又因为log a b ·log c a =lg b lg a ×lg a lg c =lg blg c=log c b ,故选B.4. 根据下列算法语句,当输入x 为60时,输出y 的值为( )输入x ;If x ≤50 Then y =0.5*xElsey =25+0.6*(x -50)End If 输出y.A .25B .30C .31D .614.C [解析] 算法语言给出的是分段函数y =⎩⎪⎨⎪⎧0.5x ,x ≤50,25+0.6(x -50),x>50,输入x =60时,y =25+0.6(60-50)=31.5., 对一批产品的长度(单位:毫米)进行抽样检测,图1-1为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )图1-1A .0.09B .0.20C .0.25D .0.455.D [解析] 利用统计图表可知在区间[25,30)上的频率为:1-(0.02+0.04+0.06+0.03)×5=0.25,在区间[15,20)上的频率为:0.04×5=0.2,故所抽产品为二等品的概率为0.25+0.2=0.45.6., 设z 是复数,则下列命题中的假.命题是( ) A .若z 2≥0,则z 是实数 B .若z 2<0,则z 是虚数 C .若z 是虚数,则z 2≥0 D .若z 是纯虚数,则z 2<06.C [解析] 设z =a +bi(a ,b ∈),则z 2=a 2-b 2+2abi ,若z 2≥0,则⎩⎪⎨⎪⎧ab =0,a 2-b 2≥0, 即b =0,故z 是实数,A 正确.若z 2<0,则⎩⎪⎨⎪⎧ab =0,a 2-b 2<0,即⎩⎪⎨⎪⎧a =0,b ≠0, 故B 正确.若z 是虚数,则b ≠0,z 2=a 2-b 2+2abi 无法与0比较大小,故C 是假命题.若z 是纯虚数,则⎩⎪⎨⎪⎧a =0,b ≠0, z2=-b 2<0,故D 正确.7. 若点(x ,y)位于曲线y =|x|与y =2所围成的封闭区域,则2x -y 的最小值是( ) A .-6 B .-2 C .0 D .27.A [解析] 结合题目可以作出y =∣x ∣与y =2所表示的平面区域,令2x -y =z ,即y =2x -z ,作出直线y =2x ,在封闭区域内平移直线y =2x ,当经过点A(-2,2)时,z 取最小值,为2×(-2)-2=-6.8. 已知点M(a ,b)在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A .相切 B .相交 C .相离 D .不确定8.B [解析] 由题意点M(a ,b)在圆x 2+y 2=1外,则满足a 2+b 2>1,圆心到直线的距离d =1a 2+b 2<1,故直线ax +by =1与圆O 相交.9. 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若bcos C +ccos B =asin A ,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定9.A [解析] 结合已知bcos C +ccos B =asin A ,所以由正弦定理可知sin Bcos C +sin Ccos B =sin Asin A ,即sin (B +C)=sin 2A ⇒sin A =sin 2A ⇒sin A =1,故A =90°,故三角形为直角三角形.10. 设[x]表示不大于x 的最大整数,则对任意实数x ,有( )A .[-x]=-[x] B.⎣⎡⎦⎤x +12=[x] C .[2x]=2[x] D .[x]+⎣⎡⎦⎤x +12=[2x] 10.D [解析] 可取特值x =3.5,则[-x]=[-3.5]=-4,-[x]=-[3.5]=-3,故A错.[x +12]=[3.5+0.5]=4,而[x]=[3.5]=3,故B 错. [2x]=[7]=7,2[x]=2[3.5]=6,故C错.[x]+ [x +12]=7,而[2x]=[7]=7,故只有D 正确.11. 双曲线x 216-y 29=1的离心率为________.11.54 [解析] 由双曲线方程中a 2=16, b 2=9,则c 2=a 2+b 2=25,则e =c a =54. 12. 某几何体的三视图如图1-2所示,则其表.面积为________.图1-212.3π [解析] 由三视图得该几何体为半径为1的半个球,则表面积为半球面+底面圆,代入数据计算为S =12×4π×12+π×12=3π.13. 观察下列等式 (1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 ……照此规律,第n 个等式可为______________. 13.(n +1)(n +2)…(n +n)=2n ×1×3×…×(2n -1) [解析] 结合已知所给定的几项的特点,可知式子左边共n 项,且从(n +1)一直到(n +n),右侧第一项为2n ,连乘的第一项为1,最后一项为(2n -1),故所求表达式为:(n +1)(n +2)…(n +n)=2n ×1×3×…×(2n -1).14. 在如图1-3所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为______(m).图1-314.20 [解析] 利用所给的图形关系,由图形关系可知三角形相似,设矩形的另一边长为y ,则x 40=40-y 40,所以y =40-x ,又有xy ≤⎝⎛⎭⎫x +y 22=400,当且仅当x =y 时等号成立,则x =40-x ,即x =20,故矩形面积最大时x 的值为20.15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分) A . (不等式选做题)设a ,b ∈,|a -b|>2,则关于实数x 的不等式|x -a|+|x -b|>2的解集是________.(-∞,+∞) [解析] 利用绝对值不等式的性质可得|x -a|+|x -b|≥|(x -a)-(x -b)|=|b -a|=|a -b|.又由|a -b|>2恒成立,故不等式解集为(-∞,+∞).B . (几何证明选做题)如图1-4所示,AB 与CD 相交于点E ,过E 作BC 的平行线与AD 的延长线交于点P ,已知∠A =∠C ,PD =2DA =2,则PE =________.图1-46 [解析] 利用已知图形关系可得∠BCE =∠PED =∠BAP ,可得△PDE ∽△PEA ,可得PE PA =PDPE,而PD =2DA =2,则PA =3,则PE 2=PA·PD =6,PE = 6. C . (坐标系与参数方程选做题)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t ,(t 为参数)的焦点坐标是________.(1,0) [解析] 由所给的曲线的参数方程化为普通方程为:y 2=4x ,为抛物线,其焦点坐标为(1,0).16., 已知向量=⎝⎛⎭⎫cos x ,-12,=(3sin x ,cos 2x),x ∈,设函数f(x)= (1)求f(x)的最小正周期; (2)求f(x)在⎣⎡⎦⎤0,π2上的最大值和最小值.16.解: f(x)=⎝⎛⎭⎫cos x ,-12·(3sin x ,cos 2x)=3cos xsin x -12cos 2x =32sin 2x -12cos 2x =cos π6sin 2x -sin π6cos 2x =sin ⎝⎛⎭⎫2x -π6.(1)f(x)的最小正周期为T =2πω=2π2=π,即函数f(x)的最小正周期为π.(2)∵0≤x ≤π2,∴-π6≤2x -π6≤5π6.由正弦函数的性质, 当2x -π6=π2,即x =π3时,f(x)取得最大值1.当2x -π6=-π6,即x =0时,f(0)=-12,当2x -π6=56π,即x =π2时,f ⎝⎛⎭⎫π2=12,∴f(x)的最小值为-12.因此,f(x)在[0,π2]上最大值是1,最小值是-12.17. 设S n 表示数列{}a n 的前n 项和.(1)若{}a n 是等差数列,推导S n 的计算公式;(2)若a 1=1,q ≠0,且对所有正整数n ,有S n =1-q n1-q .判断{}a n 是否为等比数列,并证明你的结论.17.解: (1)方法一:设{}a n 的公差为d ,则 S n =a 1+a 2+…+a n=a 1+(a 1+d)+…+[a 1+(n -1)d],又S n =a n +(a n -d)+…+[a n -(n -1)d], ∴2S n =n(a 1+a n ),∴S n =n (a 1+a n )2.方法二:设{}a n 的公差为d ,则S n =a 1+a 2+…+a n=a 1+(a 1+d)+…+[a 1+(n -1)d], 又S n =a n +a n -1+…+a 1=[a 1+(n -1)d]+[a 1+(n -2)d]+…+a 1,∴2S n =[2a 1+(n -1)d]+[2a 1+(n -1)d]+…+[2a 1+(n -1)d] =2na 1+n(n -1)d ,∴S n =na 1+n (n -1)2d.(2){}a n 是等比数列.证明如下:∵S n =1-q n1-q ,∴a n +1=S n +1-S n=1-q n +11-q -1-q n 1-q =q n (1-q )1-q=q n .∵a 1=1,q ≠0,∴当n ≥1时,有 a n +1a n =q n q n -1=q.因此,{a n }是首项为1且公比为q 的等比数列.18., 如图1-5,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心,A 1O ⊥底面ABCD ,AB =AA 1= 2.图1-5(1)证明:平面A 1BD ∥平面CD 1B 1; (2)求三棱柱ABD -A 1B 1D 1的体积.18.解: (1)证明:由题设知,BB 1綊DD 1, ∴四边形BB 1D 1D 是平行四边形, ∴BD ∥B 1D 1. 又BD ⃘平面CD 1B 1,∴BD ∥平面CD 1B 1. ∵A 1D 1綊B 1C 1綊BC ,∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥D 1C. 又A 1B ⃘平面CD 1B 1,∴A 1B ∥平面CD 1B 1. 又∵BD ∩A 1B =B ,∴平面A 1BD ∥平面CD 1B 1. (2)∵A 1O ⊥平面ABCD ,∴A 1O 是三棱柱ABD -A 1B 1D 1的高.又∵AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1,又∵S △ABD =12×2×2=1,∴VABD -A 1B 1D 1=S △ABD ·A 1O =1.19. 有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:组别 ABCDE人数50 100 150 150 50(1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B 组抽取了6人,请将其余各组抽取的人数填入下表;组别 A B C D E 人数 5010015015050抽取人数6(2)在(1)中,若A ,B 两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.19.解: (1)由题设知,分层抽样的抽取比例为6%,所以各组抽取的人数如下表:组别 A B C D E 人数 5010015015050抽取人数3 6 9 9 3(2)记从A 组抽到的3个评委为a 1,a 2,a 3,其中a 1,a 2支持1号歌手;从B 组抽到的6个评委为b 1,b 2,b 3,b 4,b 5,b 6,其中b 1,b 2支持1号歌手.从{}a 1,a 2,a 3和{}b 1,b 2,b 3,b 4,b 5,b 6中各抽取1人的所有结果为:图1-6由以上树状图知所有结果共18种,其中2人都支持1号歌手的有a 1b 1,a 1b 2,a 2b 1,a 2b 2共4种,故所求概率P =418=29.20., 已知动点M(x ,y)到直线l :x =4的距离是它到点N(1,0)的距离的2倍. (1)求动点M 的轨迹C 的方程;(2)过点P(0,3)的直线m 与轨迹C 交于A ,B 两点.若A 是PB 的中点,求直线m 的斜率.20.解: (1)设M 到直线l 的距离为d ,根据题意,d =2|MN|. 由此得|4-x|=2(x -1)2+y 2.化简得x 24+y 23=1,所以,动点M 的轨迹方程为x 24+y 23=1.(2)方法一:由题意,设直线m 的方程为y =kx +3,A(x 1,y 1),B(x 2,y 2).将y =kx +3代入x 24+y 23=1中,有(3+4k 2)x 2+24kx +24=0,其中,Δ=(24k)2-4×24(3+4k 2)=96(2k 2-3)>0.由求根公式得,x 1+x 2=-24k3+4k 2,①x 1x 2=243+4k 2.②又因A 是PB 的中点,故x 2=2x 1.③ 将③代入①,②,得x 1=-8k 3+4k 2,x 21=123+4k 2, 可得⎝ ⎛⎭⎪⎫-8k 3+4k 22=123+4k2,且k 2>32, 解得k =-32或k =32,所以,直线m 的斜率为-32或32.方法二:由题意,设直线m 的方程为y =kx +3,A(x 1,y 1),B(x 2,y 2). ∵A 是PB 的中点,∴x 1=x 22,①y 1=3+y 22.②又x 214+y 213=1,③ x 224+y 223=1,④ 联立①,②,③,④解得⎩⎪⎨⎪⎧x 2=2,y 2=0或⎩⎪⎨⎪⎧x 2=-2,y 2=0,即点B 的坐标为(2,0)或(-2,0),所以,直线m 的斜率为-32或32.21., 已知函数f(x)=e x ,x ∈(1)求f(x)的反函数的图像上点(1,0)处的切线方程;(2)证明:曲线y =f(x)与曲线y =12x 2+x +1有唯一公共点;(3)设a<b ,比较f ⎝⎛⎭⎫a +b 2与f (b )-f (a )b -a 的大小,并说明理由.21.解: (1) f(x)的反函数为g(x)=ln x ,设所求切线的斜率为k ,∵g ′(x)=1x ,∴k =g′(1)=1.于是在点(1,0)处切线方程为y =x -1.(2)方法一:曲线y =e x 与y =12x 2+x +1公共点的个数等于函数φ(x)=e x -12x 2-x -1零点的个数.∵φ(0)=1-1=0,∴φ(x)存在零点x =0.又φ′(x)=e x -x -1,令h(x)=φ′(x)=e x -x -1, 则h′(x)=e x -1.当x<0时,h ′(x)<0,∴φ′(x)在(-∞,0)上单调递减; 当x>0时,h ′(x)>0,∴φ′(x)在(0,+∞)上单调递增.∴φ′(x)在x =0有唯一的极小值φ′(0)=0, 即φ′(x)在上的最小值为φ′(0)=0, ∴φ′(x)≥0(仅当x =0时等号成立), ∴φ(x)在上是单调递增的, ∴φ(x)在上有唯一的零点.故曲线y =f(x)与曲线y =12x 2+x +1有唯一公共点.方法二:∵e x >0,12x 2+x +1>0,∴曲线y =e x 与y =12x 2+x +1公共点的个数等于曲线y =12x 2+x +1e x 与直线y =1公共点的个数.设φ(x)=12x 2+x +1e x,则φ(0)=1,即x =0时,两曲线有公共点.又φ′(x)=(x +1)e x -⎝⎛⎭⎫12x 2+x +1e x e 2x=-12x 2e x ≤0(仅当x =0时等号成立), ∴φ(x)在上单调递减,∴φ(x)与y =1有唯一的公共点,故曲线y =f(x)与y =12x 2+x +1有唯一的公共点.(3)f (b )-f (a )b -a -f ⎝⎛⎭⎫a +b 2=e b-e ab -a -e a +b 2 =e b -e a -be a +b 2+ae a +b 2b -a =ea +b2b -a⎣⎡⎦⎤e b -a 2-e a -b 2-(b -a ).设函数u(x)=e x -1e x -2x(x ≥0),则u′(x)=e x +1e x -2≥2e x ·1ex -2=0.∴u ′(x)≥0(仅当x =0时等号成立),∴u(x)单调递增.当x>0时,u(x)>u(0)=0.令x =b -a 2,则得e b -a 2-e a -b 2-(b -a)>0.∴f (b )-f (a )b -a >f⎝⎛⎭⎫a +b 2.。

2013年高考文科数学陕西卷

2013年高考文科数学陕西卷

数学试卷 第1页(共6页) 数学试卷 第2页(共6页) 数学试卷 第3页(共6页)绝密★启用前2013年普通高等学校招生全国统一考试(陕西卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集为R,函数(f x M ,则M R 为( )A .(-∞,1)B .(1,+∞)C .(-∞,1]D .[1,+∞)2.已知向量(1,)m =a ,)2(,m =b ,若∥a b ,则实数m 等于( )A.BC.D .03.设,,a b c 均为不等于1的正实数,则下列等式中恒成立的是( )A .=a c c log b log b log aB .=a c c log b log a log bC .()=a a a log bc log b log cD .(=)a a a log b c log b log c ++4.根据下列算法语句,当输入x 为60时,输出y 的值为( )A .25B .30C .31D .615.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A .0.09B .0.20C .0.25D .0.45 6.设z 是复数,则下列命题中的假命题是( )A .若20z ≥,则z 是实数B .若20z <,则z 是虚数C .若z 是虚数,则20z ≥D .若z 是纯虚数,则20z <7.若点(),x y 位于曲线=||y x 与=2y 所围成的封闭区域,则2x y -的最小值是( )A .6-B .2-C .0D .28.已知点,()M a b 在圆O :22=1x y +外,则直线=1ax by +与圆O 的位置关系是 ( )A .相切B .相交C .相离D .不确定9.设ABC △的内角,,A B C 所对的边分别为,,a b c ,若=bcosC ccosB asinA +,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定10.设[]x 表示不大于x 的最大整数,则对任意实数x ,有( )A .=[][]x x --B .1=[]2x x ⎡⎤+⎢⎥⎣⎦C .]2[][2x x =D .12[][2]x x x ⎡⎤⎢⎥⎣⎦++=第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11.双曲线221169x y -=的离心率为________.12.某几何体的三视图如图所示,则其表面积为________.13.观察下列等式:()1121⨯+=221222()()13⨯⨯++= 331323()()()32135⨯⨯⨯+++=……照此规律,第n 个等式可为________.14.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________(m).15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题计分)A .(不等式选讲)设,a b ∈R ,||2>a b -,则关于实数x 的不等式||||>2x a x b -+-的解集是________. B .(几何证明选讲)如图,AB 与CD 相交于点E ,过E 作BC 的平行线与AD 的延长线交于点P ,已知=A C ∠∠,=2=2PD DA ,则=PE ________.C .(坐标系与参数方程)圆锥曲线2=,=2x t y t ⎧⎨⎩(t 为参数)的焦点坐标是________.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---------------- 姓名________________ 准考证号_____________数学试卷 第4页(共6页) 数学试卷 第5页(共6页) 数学试卷 第6页(共6页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(x ∈R ,设函数()=f x a b .(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.17.(本小题满分12分)设n S 表示数列{}n a 的前n 项和.(Ⅰ)若{}n a 是等差数列,推导n S 的计算公式;(Ⅱ)若11,0a q ≠=,且对所有正整数n ,有11nn q S q-=-.判断{}n a 是否为等比数列,并证明你的结论.18.(本小题满分12分)如图,四棱柱1111ABCD A B C D -的底面ABCD 是正方形,O 是底面中心,1AO⊥平面ABCD ,1AB AA =(Ⅰ)证明:平面1A BD ∥平面11CD B ; (Ⅱ)求三棱柱111ABD A B D -的体积.19.(本小题满分12分)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:组别 A B C D E 人数5010015015050(Ⅰ)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B 组抽取了6人,请将其余各组抽取的人数填入下表.(Ⅱ)在(Ⅰ)中,若A ,B 两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.20.(本小题满分13分)已知动点(),M x y 到直线1l :=4x 的距离是它到点()1,0N 的距离的2倍. (Ⅰ)求动点M 的轨迹C 的方程;(Ⅱ)过点()0,3P 的直线m 与轨迹C 交于,A B 两点,若A 是PB 的中点,求直线m 的斜率.21.(本小题满分14分) 已知函数()x f x e =,x ∈R .(Ⅰ)求()f x 的反函数的图象上点(1,0)处的切线方程;(Ⅱ)证明:曲线()y f x =与曲线2112y x x =++有唯一公共点;(Ⅲ)设a b <,比较2a b f +⎛⎫⎪⎝⎭与f b f a b a ()-()-的大小,并说明理由.组别 A B C D E 人数 50 100 150 150 50 抽取人数6。

2013年高考真题——文科数学(新课标I卷)解析版

2013年高考真题——文科数学(新课标I卷)解析版

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题。

每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )(A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}(2)212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14 (D )16(4)已知双曲线2222:1x y C a b -=(0,0)a b >>则C 的渐近线方程为( )(A )14y x =±(B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧(C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =,则POF ∆的面积为( )(A )2(B )(C )(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9(C )8(D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+(C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。

2013年陕西高考数学文科试卷带详解

2013年陕西高考数学文科试卷带详解

2013年普通高等学校招生全国统一考试文科数学第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分).1. 设全集为R ,函数()f x =M ,则M R ð为 ( ). A.()1,-∞B.()1,+∞C.(]1,-∞D.[)1,+∞【测量目标】函数的定义域及补集运算.【考查方式】根据函数求出定义域,算出补集. 【参考答案】B【试题解析】函数()f x 的定义域M =(],1-∞,则M R ð=()1,+∞.2. 已知向量()1,m =a ,(),2m =b ,若a ∥b ,则实数m 等于 ( ).A.C.D.0【测量目标】平行向量的坐标运算.【考查方式】利用向量平行的比例关系,直接求出结果. 【参考答案】C【试题解析】由a ∥b ⇒2m =1×2⇒=m ±3. 设,,a b c 均为不等于1的正实数, 则下列等式中恒成立的是 ( ). A.log log log a c c b b a ⨯= B.log log log a c c b a b ⨯=C.log log log a a a bc b c =⨯D.()log log log a a a b c b c +=+【测量目标】对数的化简和求值,换底公式.【考查方式】运用换底公式,真数相加即为乘,真数相除即为减. 【参考答案】B【试题解析】由对数的运算公式log ()log log a a a bc b c =+可判断选项C ,D 错误.(步骤1) 选项A ,由对数的换底公式知,log a b ×log c b =log c a⇒log log log log c a b c ab a b==,等式两边矛盾,此式不恒成立.(步骤2) 应选B ,由对数的换底公式知,lg lg log log lg lg lg b aa c c a cb a b ⋅=⋅=,故恒成立.(步骤3) 4. 根据下列算法语句,当输入x 为60时,输出y 的值为 ( ).A. 25B. 30C. 31D. 61 【测量目标】条件语句,分段函数. 【考查方式】由算法语句(条件语句),写出函数解析式,进而求得y 值. 【参考答案】C【试题解析】由题意,得()0.5,50,250.650,50x x y x x ⎧⎪=⎨+->⎪⎩…,当60x =时,用()250.6605031+⨯-=.所以输出的y 值为31.5. 对一批产品的长度(单位:m m )进行抽样检测,下图喂检测结果的频率分布直方图.根据标准, 产品长度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取1件, 则其为二等品的概率为 ( ).第5题图 A. 0.09 B. 0.20 C. 0.25 D. 0.45 【测量目标】频率分布直方图,随机事件的概率. 【考查方式】分层抽样,逐一求出概率. 【参考答案】D【试题解析】由图可知,抽得一等品的概率为0.3,抽得三等品的概率为0.25,则抽得二等品的概率为1-0.3-0.25=0.45.6. 设z 是复数,则下列命题中的假命题是 ( ). A. 若2z 0…,则z 是实数. B. 若2z 0<,则z 是虚数.C. 若z 是虚数,则2z 0….D. 若z 是纯虚数,则2z 0<.【测量目标】复数的概念及运算性质,真假命题的判断.【考查方式】以判断命题真假的形式考察了复数的概念及运算. 【参考答案】C【试题解析】设i(,),z a b a b =+∈R 选项A ,2222(i)2i 0,z a b a b ab =+=-+…则220,.ab a b =⎧⎨⎩…故0b =,,a b 都为0,即z 为实数,正确;(步骤1)选项B ,2222(i)2i 0,z a b a b ab =+=-+<则220,,ab a b =⎧⎨<⎩则00a b =⎧⎨≠⎩,故z 一定为虚数,正确;(步骤2)选项D,()22222i i <0z b b b ===-恒成立,正确.故选C.(步骤3) 7. 若点()x,y 位于曲线y x =与2y =所围成的封闭区域,则2x y -的最小值为 ( ). A. -6 B. -2 C. 0D. 2【测量目标】二元线性规划求目标函数最值.【考查方式】画出封闭区域,找出最优解,简单的数形结合能力. 【参考答案】A 【试题解析】曲线2y x ,y ==所围成的封闭区域如图阴影部分所示, 当直线l :2y x =向左平移时,()2x y -的值在逐渐变小,当l 通过点A (-2,2)时,min (2) 6.x y -=- 第7题图8. 已知点()M a,b 在圆22:1O x y +=外,则直线1ax by +=与圆O 的位置关系是 ( ). A. 相切 B. 相交 C. 相离 D. 不确定 【测量目标】直线、点与圆的位置关系,点到直线的距离公式.【考查方式】根据点到直线距离公式算出圆心与直线的距离,与半径作比较即可求得答案. 【参考答案】B【试题解析】由题意知,点在圆外,则221,a b +>圆心到直线的距离1,d =<故直线与圆相交.9. 设△ABC 的内角A,B,C 所对的边分别为a,b,c ,若cos cos sin b C c B a A +=,则△ABC 的形状为( ).A. 直角三角形B. 锐角三角形C. 钝角三角形D.不确定 【测量目标】余弦定理,三角形内角和.【考查方式】利用余弦定理的变形将角的余弦值转化为边边关系,进一步化简即可求出三角形形状. 【参考答案】A 【试题解析】22222222222222cos cos sin ,2222b a c c a b b a c c a b a b C c B b c a a A ab ac a a +-+-+-++-+=⋅+⋅====sin 1.A ∴=π(0π),,2A A ∈∴=,即ABC △是直角三角形. 10. 设[]x 表示不大于x 的最大整数,则对任意实数x,y ,有 ( ). A. [][]x x -=-B.[]12x x ⎡⎤+=⎢⎥⎣⎦C. [][]22x x =D.[][]122x x x ⎡⎤++=⎢⎥⎣⎦【测量目标】数学的新定义.【考查方式】运用创新意识求解此题. 【参考答案】D【试题解析】选项A,取 1.5,x =则[][]1.52,x -=-=-[][]1.51,x -=-=-显然[][].x x -≠-(步骤1)选项B ,取 1.5x =,则[][]122 1.512x ⎡⎤+==≠=⎢⎥⎣⎦.(步骤2)选项C ,取 1.5,x =则[]2x =[][]233,x ==[][]221.52,x ==显然[][]22x x ≠.(步骤3)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11. 双曲线221169x y -=的离心率为 .【测量目标】双曲线的几何性质.【考查方式】由双曲线的简单几何性质求解离心率. 【参考答案】54【试题解析】由题意知,216 4.a a =⇒=又29,b =则222169255,c a b c =+=+=⇒=故5.4c e a == 12. 某几何体的三视图如图所示,则其表面积为 .第12题图【测量目标】由三视图求几何体的表面积.【考查方式】观察三视图,了解半个球面面积与截面面积. 【参考答案】3π【试题解析】由三视图可知,该几何体为一个半径为1的半球,其表面积为半个球面面积与截面面积的和,即14ππ3π.2⨯+= 13. 观察下列等式:()1121,+=⨯()()22122213++=⨯⨯,()()()3313233213 5.+++=⨯⨯⨯…照此规律,第n 个等式可为 .【测量目标】合情推理(归纳推理).【考查方式】观察等式,灵活运用归纳推理的方法.【参考答案】()()()()1221321n n n n n n ++⋅⋅⋅+=⨯⨯⨯⋅⋅⋅⨯-【试题解析】从给出的规律可以看出,左边的连乘式中,连乘式个数以及每个连乘式中的第一个加数与右边连乘式中第一个乘数的质数保持一致,其中左边连乘式中第二个加数从1开始,逐渐加1递增,右边连乘式中从第二个乘数开始,组成以1为首项,2为公差的等差数列,项数与第几等式保持一致,则照此规律,第n 个等式可为()()()()1221321n n n n n n ++⋅⋅⋅+=⨯⨯⨯⋅⋅⋅⨯-.14. 在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长为 (m )第14题图 【测量目标】二次函数的模型.【考查方式】利用给定函数模型解决简单的实际应用. 【参考答案】20【试题解析】设矩形花园的宽为y m ,则40,4040x y -=即40,y x =-(步骤1) 矩形花园的面积()()22404020400,S x x x x x =-=-+=--+(步骤2)∴当20x =时,面积最大.(步骤3)15. (考生请注意:请在下列三题中任选一题作答, 如果多做, 则按所做的第一题计分)A .(不等式选做题)设a,b ∈R , 2a b ->,则关于实数x 的不等式2x a x b -+->的解集是 . 【测量目标】绝对值不等式.【考查方式】运用2a b ->,将不等式问题转化为几何进而求解含参数的绝对值不等式. 【参考答案】(),-∞+∞【试题解析】,,a b ∈ R 则2a b ->,其几何意义是数轴上表示数a,b 的两点距离大于2,x a -+x b -的几何意义为数轴上任意一点到a,b 两点的距离之和,当x 处于a,b 之间时x a x b-+-取最小值.距离恰巧为a,b 两点间的距离,由题意知其恒大于2,故原不等式解集为R .B.(几何证明选做题)如图,AB 与CD 相交于点E ,过E 作BC 的平行线与AD 的延长线相交于点P.已知A C ∠=∠,22PD DA == ,则PE = .第15题图 【测量目标】线段成比例定理,三角形的相似判定.【考查方式】利用角相等,线段成比例,判定三角形相似求解.【试题解析】PE ∥BC , .C PED ∴∠=∠(步骤1)又,.C A A PED ∠=∠∴∠=∠ 又,P P PED ∠=∠∴△∽,PAE △则,PD PEPE PA=(步骤2)即2236PE PD PA =⋅=⨯=,故PE =(步骤3)C .(坐标系与参数方程选做题)圆锥曲线22x t y t⎧=⎨=⎩(t 为参数)的焦点坐标是 .【测量目标】含参方程与坐标方程的相互转化.【考查方式】参数方程与直角坐标方程的互化,而后利用抛物线的简单性质求得焦点坐标. 【参考答案】(1,0)【试题解析】将参数方程转化为普通方程为24,y x =表示开口向右,焦点在x 轴正半轴的抛物线,由24p =⇒2p =,则焦点坐标为(1,0).三、解答题:解答应写出文字说明、证明过程及演算步骤(本大题共6小题,共75分) 16.(本小题满分12分)已知向量1cos ,2x ⎛⎫=-⎪⎝⎭a ,=b ),cos 2,x x x ∈R ,设函数()·f x =a b . (Ⅰ)求()f x 的最小正周期. (Ⅱ)求()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值. 【测量目标】平面向量的数量积运算,三角恒等变化,正弦函数.【考查方式】利用向量数量积的运算,两角和的正弦公式、二倍角公式、正弦函数的性质进行求解. 【试题解析】)1()cos,,cos 22f x x x ⎛⎫=-⋅⎪⎝⎭1sin cos 22x x x =-12cos 222x x =-ππcos sin 2sin cos 266x x =-πsin 26x ⎛⎫=- ⎪⎝⎭.(步骤1)(Ⅰ)()f x 最小正周期为2πT =ω2ππ2==,即函数()f x 的最小正周期为π.(步骤2)(Ⅱ)π0,2x ∴ 剟ππ5π2.666x --剟(步骤3) 由正弦的性质得,当ππ262x -=,即π3x =时,()f x 取得最大值1.(步骤4)当ππ266x -=-,即0x =时,(0)f =12-.(步骤5) 当π5π266x -=,即π2x =时,π1()22f =,(步骤6)()f x ∴的最小值为12-.因此,()f x 在π(0,)2上的最大值是1,最小值是12-.(步骤7)17.(本小题满分12分)设n S 表示数列的前n 项和.(Ⅰ)若{}n a 为等差数列,推导n S 的计算公式;(Ⅱ)若11,0a q =≠,且对所有正整数n ,有11nn q S q-=-.判断{}n a 是否为等比数列.【测量目标】等差数列的前n 项和,等比数列的证明.【考查方式】利用等差数列的性质倒序相加求和,由等比数列的性质进行证明. 【试题解析】(Ⅰ)方法一:设{}n a 的公差为d ,则12n n S a a a =++⋅⋅⋅+()()1111a a d a n d =+++⋅⋅⋅++-⎡⎤⎣⎦.又()()1n n n n S a a d a n d =+-+⋅⋅⋅+--⎡⎤⎣⎦,(步骤1) ()12,n n S n a a ∴=+()1.2n n n a a S +∴=(步骤2) 方法二:设{}n a 的公差为d,则12n n S a a a =++⋅⋅⋅+()()1111a a d a n d =+++⋅⋅⋅++-⎡⎤⎣⎦(步骤3)又11n n n S a a a -=++⋅⋅⋅+,()()1122121n S a n d a n d ∴=+-++-+⋅⋅⋅⎡⎤⎡⎤⎣⎦⎣⎦+()()112121,a n d na n n d +-=+-⎡⎤⎣⎦(步骤4)()11.2n n n S na d -∴=+(步骤5) (Ⅱ){}n a 是等比数列,证明如下:1,1n n q S q -=- 11n n n a S S ++∴=-11111n nq q q q+--=---n q =.(步骤1)11,0a q =≠ ,∴当1n …时,有11nn n n a q q a q+-==.(步骤2)因此,{}n a 是首项为1且公比为q ()1q ≠的等比数列.(步骤3)18. (本小题满分12分)如图, 四棱柱1111ABCD A BC D -的底面ABCD 是正方形,O 为底面中心,1AO ⊥平面ABCD ,1AB AA ==(Ⅰ) 证明:平面1A BD ∥平面11CD B ; (Ⅱ)求三棱柱111ABD A B D -的体积.【测量目标】面面平行的判定,三棱柱的几何性质.【考查方式】线面平行得出面面平行,进而求解三棱柱体积. 【试题解析】(Ⅰ)由题设知,1BB 平行且等于1DD ,∴四边形11BB D D 是平行四边形.BD ∥11B D .(步骤1) 第18题图又 BD Ö平面11CD B ,BD ∴∥平面11CD B .(步骤2)11A D 平行且等于11B C 平行且等于BC , 11A BCD ∴是平行四边形. 1A B ∴∥1D C .(步骤3)又1A B Ö平面11CD B ,1A B ∴∥平面11CD B .又1,BD A B B = ∴平面1A BD ∥平面11CD B .(步骤4)(Ⅱ)1AO ⊥平面ABCD ,1AO ∴是三棱柱111ABD A B D -的高.又112AO AC ==,1AA =11AO ∴==.(步骤5)又112ABC S ==△, 11111ABD ABD A B D V S AO -∴=⋅=△三棱柱.(步骤6)19.(本小题满分12分)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为5组,各组的人数如下:(Ⅰ) 为了调查评委对7位歌手的支持状况,现用分层抽样方法从各组中抽取若干评委,其中从B 组中抽取了6人.请将其余各组抽取的人数填入下表.(Ⅱ) 在(Ⅰ)中,若A ,B 两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.【测量目标】分层抽样、树状图法求解古典概型的问题. 【考查方式】古典概型中简单的分析、解决问题.【试题解析】(Ⅰ)由题设知,分层抽样的抽取比例为6%,所以各族抽取的人数如下表:(Ⅱ)计从A 组抽到的3位评委分别为123,,a a a ,其中12,a a 支持1号歌手;从B 组抽到的6位评委分别为123456,,,,,b b b b b b ,其中12,b b 支持1号歌手,从{}123,,a a a 和{}123456,,,,,b b b b b b 中各抽取1人得所有结果图:第19题图由树状图知所有结果共18种,其中2人都支持1号歌手的有111222,,a b a b a b 共4种,故所求概率42189P ==.20.(本小题满分13分)已知动点(),M x y 到直4l :x =的距离是它到点()1,0N 的距离的2倍.(Ⅰ) 求动点M 的轨迹C 的方程;(Ⅱ) 过点()0,3P 的直线m 与轨迹C 交于,A B 两点.若A 是PB 的中点,求直线m 的斜率. 【测量目标】曲线方程的确定及直线与椭圆的综合.【考查方式】椭圆的定义,点点、点线的距离公式,直线与椭圆的位置关系、直线的斜率. 【试题解析】(Ⅰ)如图①,(),Mx y 到直线4x =的距离,是到点()1,0N 的距离的2倍,则134)1(2|4|2222=+⇒+-=-y x y x x .(步骤1) ∴动点M 的轨迹为椭圆,方程为22143x y +=.(步骤2) (Ⅱ)方法一: ()0,3P , 设()()1122,,,,A x y B x y 如图(Ⅱ),由题意知:121220,23x x y y =+=+(步骤3) 第20题图①椭圆的上下顶点坐标分别是(和(0,,经检验直线m 不经过这2点,即直线m 斜率k 存在. 3:+=kx y m 方程为设直线.联立椭圆和直线方程,整理得:()223424240k xkx +++=,(步骤4)其中()()22=2442434k k ∆-⨯+=()29623k ->0,由根与系数的关系,得1222434k x x k +=-+①,1222434x x k=+②,(步骤5) 又A 是PB 的中点,故212x x =③. 将③代入①②中得,21122812,3434k x x k k =-=++,(步骤6) 可得,2228123434k k k -⎛⎫= ⎪++⎝⎭,且2k >32. 解得,32k =或32k =-. ∴直线的斜率为32-或32.(步骤7)方法二:由题意,设直线m 的方程3y kx =+,()()1222,,,A x y B x y ,如图②A 是PB 的中点,212x x ∴=①,2132y y +=②, 又2211143x y +=③,2211143x y +=④. (步骤3) 联立①②③④,解得2220x y =⎧⎨=⎩或2220x y =-⎧⎨=⎩,即点B 的标: ()()2,02,0-或.(步骤4) 第20题图②∴直线m 的斜率为32或32-.(步骤5)21.(本小题满分14分)已知函数()e ,x f x x =∈R .(Ⅰ) 求()f x 的反函数的图象上图象上点(1,0)处的切线方程; (Ⅱ) 证明:曲线()y f x =与曲线2112y x x =++有唯一公共点. (Ⅲ) 设a b <,比较2a b f +⎛⎫⎪⎝⎭与()()f b f a b a --的大小,并说明理由.【测量目标】反函数,导函数的几何意义,函数的基本性质.【考查方式】函数的零点、利用导数研究函数极值及单调性.【试题解析】(Ⅰ)解:()f x 的反函数为()ln g x x =,设所求切线的斜率为k .1(),(1)1g x k g x''=∴== .(步骤1) 于是在点()1,0处的切线方程为1y x =-.(步骤2)(Ⅱ)方法一:曲线e x y =与曲线2112y x x =++公共点的个数等于函数21()e 12x x x x =---ϕ零点的个数, (0)110ϕ=-= ,()x ϕ∴存在零点0x =.(步骤1)又()e 1x x x '=--ϕ,令()()e 1x h x x x ϕ'==--则()e 1x h x '=-.(步骤2)当x >0时,()h x '>0在上单调递增,当x <0时,()h x '<0在上单调递减.(步骤3)()x ϕ'∴在0x =处有唯一的极小值(0)0ϕ'=.即()x ϕ'在R 上的最小值为(0)0ϕ'=.(步骤4) ()0x ϕ'∴…(当且仅当0x =时等号成立)()x ϕ∴在R 是单调递增的.()x ϕ∴在R 上有唯一的零点.故曲线()y f x =与曲线2112y x x =++有唯一的公共点.(步骤5) 方法二:e x >0,2112x x ++>0, ∴曲线e x y =与曲线2112y x x =++公共点的个数等于曲线2112ex x x y ++=与1y =公共点的个数. (步骤1) 设2112()ex x x x ++=ϕ,则(0)1ϕ=,即当0x =时,两曲线有公共点. 又()2211e 1e 2()e x x x x x x x ⎛⎫+-++ ⎪⎝⎭'=ϕ2120e xx -=…(当且仅当0x =时等号成立) ()x ϕ在R 上单调递减.()x ϕ∴与1y =有唯一的公共点.(步骤2)故曲线()y f x =与曲线2112y x =++有唯一的公共点.(步骤3) (Ⅲ)()()()2f b f a a b f b a -+-=-2e e e a b b a b a+--=-22e e e e a b a b b a b a b a ++--+-()222e e e a b b a a b b a b a +--⎡⎤=---⎢⎥-⎣⎦. (步骤1) 设函数()1()e 20e x x u x x x '=--…,则1()e 220e x x u x '=+-=…,(步骤2) ∴()0u x '…(当且仅当0x =时等号成立), ()u x ∴单调递增.(步骤3)当x >0时,()u x >(0)0u = 令2b a x -=,则得,()22e e b a a b b a ----->0,(步骤4) 又2e a bb a +->0,()()f b f a b a -∴->()2a b f +.(步骤5)。

2013年高考真题陕西卷(文科数学)Word版(无答案)

2013年高考真题陕西卷(文科数学)Word版(无答案)

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2) = ( )(A)-1 - i(B)-1 + i(C)1 + i(D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程为()(A)y=±x (B)y=±x (C)y=±x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。

2013年高考真题——文科数学(全国卷大纲版)解析版

2013年高考真题——文科数学(全国卷大纲版)解析版

绝密★启用前2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}{}1,2,3,4,5,1,2,u U A A ===集合则ð(A ){}1,2 (B ){}3,4,5 (C ){}1,2,3,4,5 (D )∅(2)已知a 是第二象限角,5sin ,cos 13a a ==则(A )1213-(B )513-(C )513(D )1213(3)已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则(A )4- (B )3- (C )-2 (D )-1(4)不等式222x -<的解集是(A )()-1,1 (B )()-2,2 (C )()()-1,00,1 (D )()()-2,00,2(5)()862x x +的展开式中的系数是(A )28 (B )56 (C )112 (D )224(6)函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数(A )()1021xx >- (B )()1021xx ≠- (C )()21xx R -∈ (D )()210xx ->(7)已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于(A )()-10-61-3 (B )()-1011-39(C )()-1031-3 (D )()-1031+3(8)已知()()1221,0,1,0,F F C F x -是椭圆的两个焦点过且垂直于轴的直线交于 A B 、两点,且3AB =,则C 的方程为 (A )2212xy += (B )22132xy+= (C )22143xy+= (D )22154xy+=(9)若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 (A )5 (B )4 (C )3 (D )2(10)已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为,(A )9 (B )6 (C )-9 (D )-6(11)已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于(A )23(B (C (D )13(12)已知抛物线()2:82,2,C C y x M k C =-与点过的焦点,且斜率为的直线与交于,0,A B MA MB k ==两点,若则(A )12(B (C (D )2二、填空题:本大题共4小题,每小题5分.(13)设()[)()∈是以为周期的函数,且当时,.f x x f x21,3=(14)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有种.(用数字作答)(15)若x y 、满足约束条件0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩则z x y =-+的最小值为.(16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式;(II )设{}1,.nn n nb b n S na =求数列的前项和18.(本小题满分12分)设()(),,,,,.ABC A B C a b c a b c a b c ac ∆++-+=的内角的对边分别为(I )求;B(II )若sin sin C.A C =求19.(本小题满分12分)如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆中,,与都是边长为2的等边三角形.(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,各局比赛的2结果都相互独立,第1局甲当裁判.(I)求第4局甲当裁判的概率;(II)求前4局中乙恰好当1次裁判概率.21.(本小题满分12分)已知函数()32+++f x x ax x=33 1.(I)求()f;=的单调性;a x(II)若[)()时,求的取值范围∈+∞≥2,0,.x f x a22.(本小题满分12分) 已知双曲线()221222:10,0xy C a b F F a b -=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b ;(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF -证明:22.AF AB BF 、、成等比数列。

2013年高考真题——文科数学(新课标I卷)解析版

2013年高考真题——文科数学(新课标I卷)解析版

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题。

每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )(A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}(2)212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14 (D )16(4)已知双曲线2222:1x y C a b -=(0,0)a b >>则C 的渐近线方程为( )(A )14y x =±(B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧(C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =,则POF ∆的面积为( )(A )2(B )(C )(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9(C )8(D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+(C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。

2013年高考陕西数学(文)试题解析版

2013年高考陕西数学(文)试题解析版

指引考生高考数学复习必须回归课本,回归基本知识的生成过程和基本思维活动经验,摒弃死抱住复习资料不放,盲目搞题海战术。

第五、图表的观察分析能力得到较好考查,体现了新课程的特点,也是当前信息时代信息处理的需要。

统计图,三视图、立体直观图的凸显,增强了试卷的视觉效应,对甄别学生的数学潜能具有良好的作用。

本解析为学科网名师解析团队原创,授权学科网独家使用,如有盗用,依法追责!一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R, 函数()1f x x =-的定义域为M, 则C M R 为 (A) (-∞,1)(B) (1, + ∞)(C) (,1]-∞(D) [1,)+∞2. 已知向量 (1,),(,2)a m b m ==r r, 若a//b, 则实数m 等于(A) 2-2(C) 2-或2 (D) 03. 设a, b, c 均为不等于1的正实数, 则下列等式中恒成立的是 (A) ·log log log a c c b a b = (B) c ·log log log a a b a b = (C) ()log og g l lo a a a b c bc =g(D) ()log g og o l la a ab bc c +=+4. 根据下列算法语句, 当输入x 为60时, 输出y 的值为 (A) 25 (B) 30 (C) 31 (D) 61 【答案】C【解析】:60,250.660-50)31x y =∴=+⨯=Q (,故选择C 。

【学科网考点定位】本题考查算法程序,重点突出对条件语句的考查. 是容易题。

5. 对一批产品的长度(单位: mm)进行抽样检测, 下图为检测结果的频率分布直方图. 根据标准, 产品长度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为(A) 0.09(B) 0.20(C) 0.25(D) 0.45输入xIf x ≤50 Theny =0.5 * x Else y =25+0.6*(x -50) End If 输出y6. 设z 是复数, 则下列命题中的假命题是 (A) 若20z ≥, 则z 是实数 (B) 若20z <, 则z 是虚数 (C) 若z 是虚数, 则20z ≥(D) 若z 是纯虚数, 则20z <7. 若点(x,y)位于曲线y = |x|与y = 2所围成的封闭区域, 则2x -y 的最小值为 (A) -6(B) -2(C) 0(D) 28. 已知点M(a,b)在圆221:O x y +=外, 则直线ax + by = 1与圆O 的位置关系是 (A) 相切 (B) 相交 (C) 相离 (D) 不确定【答案】B【解析】点M(a,b)在圆221:O x y +=外,可知221a b +> ,由点到直线距离公式有222200111a b a ba b⨯+⨯-=<++ ,故直线ax + by = 1与圆O 的位置关系是相交。

2013年高考真题——文科数学(新课标I卷)解析版(1)

2013年高考真题——文科数学(新课标I卷)解析版(1)

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题。

每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )(A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}(2)212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14 (D )16(4)已知双曲线2222:1x y C a b-=(0,0)a b >>,则C 的渐近线方程为( )(A )14y x =±(B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23xx<;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧(C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =则POF ∆的面积为( )(A )2(B )(C )(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9(C )8(D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+ (C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。

2013年高考真题——文科数学(陕西卷)Word版

2013年高考真题——文科数学(陕西卷)Word版

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2) = ( )(A)-1 - i(B)-1 + i(C)1 + i(D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程为()(A)y=±x (B)y=±x (C)y=±x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q (6)设首项为1,公比为的等比数列{a n}的前n项和为S n,则()(A)S n=2a n-1 (B)S n =3a n-2 (C)S n=4-3a n(D)S n =3-2a n(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。

2013年高考真题——文科数学(新课标I卷)解析版(1)

2013年高考真题——文科数学(新课标I卷)解析版(1)

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题。

每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =( )(A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}(2)212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14 (D )16(4)已知双曲线2222:1x y C a b-=(0,0)a b >>的离心率为52,则C 的渐近线方程为( ) (A )14y x =±(B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23xx<;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧(C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:42C y x =的焦点,P 为C 上一点,若||42PF =,则POF ∆的面积为( ) (A )2(B )22(C )23(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9(C )8(D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+ (C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。

2013年高考真题——文科数学(陕西卷)解析版 Word版含答案

2013年高考真题——文科数学(陕西卷)解析版 Word版含答案

2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题,第二部分为非选择题.。

2. 考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.。

3. 所有解答必须填写在答题卡上指定区域内。

考试结束后,将本试卷和答题卡一并交回。

第一部分(共50分)1. 第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R , 函数()f x =M , 则C M R 为(A) (-∞,1)(B) (1, + ∞)(C) (,1]-∞ (D) [1,)+∞【答案】B【解析】),1(],1,(.1,0-1∞=-∞=≤∴≥MR C M x x 即 ,所以选B 2. 已知向量 (1,),(,2)a m b m ==, 若a //b , 则实数m 等于(A) (B)(C) (D) 02. 【答案】C【解析】.221,//),2,(),,1(±=⇒⋅=⋅∴==m m m b a m b m a 且 ,所以选C 3. 设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是 (A) ·log log log a c c b a b = (B) ·log lo log g a a a b a b =(C) ()log ?l g o lo g a a a b c bc =(D) ()log g og o l l a a a b b c c +=+3. 【答案】B【解析】a, b,c ≠1. 考察对数2个公式: abb y x xyc c a a a a log log log ,log log log =+= 对选项A: bab a b bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式不符,所以为假。

2013高考数学陕西卷文科

2013高考数学陕西卷文科

2013年普通高等学校招生全国统一考试(陕西卷)文科数学注意事项:1. 本考卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束后,将本卷和答题卡一并交回。

第一部分1.选择题1. 设全集为R, 函数的定义域为M, 则为(A) (-∞,1) (B) (1, + ∞) (C) (D)2. 已知向量 , 若a//b, 则实数m等于(A) (B) (C) 或 (D) 03. 设a, b, c均为不等于1的正实数, 则下列等式中恒成立的是(A) (B)(C) (D)4. 根据下列算法语句, 当输入x为60时, 输出y的值为(A) 25输入xIf x≤50 Theny = 0.5 * xElsey = 25 + 0.6*(x-50)End If输出y(B) 30(C) 31(D) 615. 对一批产品的长度(单位: mm)进行抽样检测, 下图喂检测结果的频率分布直方图. 根据标准, 产品长度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为(A) 0.09 (B) 0.20 (C) 0.25 (D) 0.456. 设z是复数, 则下列命题中的假命题是(A) 若, 则z是实数 (B) 若, 则z是虚数(C) 若z是虚数, 则 (D) 若z是纯虚数, 则7. 若点(x,y)位于曲线y = |x|与y = 2所围成的封闭区域, 则2x-y的最小值为(A) -6 (B) -2 (C) 0 (D) 28. 已知点M(a,b)在圆外, 则直线ax + by = 1与圆O的位置关系是(A) 相切 (B) 相交 (C) 相离 (D) 不确定9. 设的内角所对的边分别是,若,则的形状是锐角三角形直角三角形钝角三角形不确定10. 设表示不大于的最大整数,则对任意实数,有第二部分(共100分)二、填空题11.双曲线的离心率为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题,第二部分为非选择题.。

2. 考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.。

3. 所有解答必须填写在答题卡上指定区域内。

考试结束后,将本试卷和答题卡一并交回。

第一部分(共50分)1. 第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R , 函数()f x =的定义域为M , 则C M R 为(A) (-∞,1)(B) (1, + ∞)(C) (,1]-∞(D) [1,)+∞【答案】B【解析】),1(],1,(.1,0-1∞=-∞=≤∴≥MR C M x x 即 ,所以选B 2. 已知向量 (1,),(,2)a m b m ==, 若a //b , 则实数m 等于(A) (B)(C)(D) 02. 【答案】C【解析】.221,//),2,(),,1(±=⇒⋅=⋅∴==m m m b a m b m a 且 ,所以选C 3. 设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是 (A) ·log log log a c c b a b = (B) ·log lo log g a a a b a b =(C) ()log g o lo g a a a b c bc =(D) ()log g og o l l a a a b b c c +=+3. 【答案】B【解析】a, b,c ≠1. 考察对数2个公式: abb y x xyc c a a a a log log log ,log log log =+=对选项A: bab a b bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式不符,所以为假。

对选项B: abb b a bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式一致,所以为真。

对选项C: c b bc a a a log log log ⋅=)(,显然与第一个公式不符,所以为假。

对选项D: c b c b a a a log log )log +=+(,同样与第一个公式不符,所以为假。

所以选B4. 根据下列算法语句, 当输入x 为60时, 输出y 的值为 (A) 25 (B) 30 (C) 31 (D) 614. 【答案】C【解析】31)50(6.025,60=-⋅+=∴=x y x ,所以选C5. 对一批产品的长度(单位: mm )进行抽样检测, 下图喂检测结果的频率分布直方图. 根据标准, 产品长度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为(A) 0.09 (B) 0.20(C) 0.25(D) 0.455. 【答案】D【解析】组距为5,二等品的概率为45.05)03.006.002.0(1=⋅++-。

所以,从该批产品中随机抽取1件,则其是二等品的概率为0.45. 所以选D 6. 设z 是复数, 则下列命题中的假命题是 (A) 若20z ≥, 则z 是实数 (B) 若20z <, 则z 是虚数 (C) 若z 是虚数, 则20z ≥(D) 若z 是纯虚数, 则20z <6. 【答案】C【解析】abi b a z R b a bi a z 2,,222+-=⇒∈+=设。

经观察,C 和D 选项可能是互相排斥的,应重点注意。

对选项A: 为实数则若z b z ⇒=≥0,02,所以为实数z 为真。

对选项B: 为纯虚数且则若z b a z ⇒≠=<0,0,02,所以为纯虚数z 为真. 对选项C: 00,0,2<⇒≠=z b a z 且则为纯虚数若,所以02≥z 为假 对选项D: 00,0,2<⇒≠=z b a z 且则为纯虚数若,所以02<z 为真. 所以选C7. 若点(x ,y )位于曲线y = |x |与y = 2所围成的封闭区域, 则2x -y 的最小值为 (A) -6 (B) -2 (C) 0 (D) 27. 【答案】A【解析】2||==y x y 与的图像围成一个三角形区域,3个顶点的坐标分别是 (0,0),(-2,2),(2,2). 且当取点(-2,2)时,2x – y = - 6取最小值。

所以选A8. 已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1与圆O 的位置关系是 (A) 相切 (B) 相交 (C) 相离 (D) 不确定8. 【答案】B【解析】点M(a, b)在圆.112222>+⇒=+b a y x 外111)00(.22<+==+ba d by ax O 距离到直线,圆=圆的半径,故直线与圆相交。

所以选B.9. 设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 直角三角形 (B) 锐角三角形 (C) 钝角三角形 (D) 不确定9. 【答案】A【解析】因为cos cos sin b C c B a A +=,所以A A B C C B sin sin cos sin cos sin =+ 又A C B B C C B sin )sin(cos sin cos sin =+=+。

联立两式得A A A sin sin sin =。

所以2,1sin π==A A 。

选A10. 设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有 (A) [-x ] = -[x ] (B) [x +12] = [x ](C) [2x ] = 2[x ](D) 1[][][2]2x x x ++=10. 【答案】D 【解析】代值法。

对A, 设x = - 1.8, 则[-x] = 1, -[x] = 2, 所以A 选项为假。

对B, 设x = 1.8, 则[x+21] = 2, [x] = 1, 所以B 选项为假。

对C, 设x = - 1.4, [2x] = [-2.8] = - 3, 2[x] = - 4, 所以C 选项为假。

故D 选项为真。

所以选D二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分)11. 双曲线221169x y -=的离心率为 .11. 【答案】45 【解析】。

所以离心率为45,45162516922222=⇒==⇒=e ac e a b 12. 某几何体的三视图如图所示, 则其表面积为.12. 【答案】π3【解析】 综合三视图可知,立体图是一个半径r=1的半个球体。

其表面积 =πππ342122=+⋅r r 13. 观察下列等式: 23(11)21(21)(22)213(31)(32)(33)2135+=⨯++=⨯⨯+++=⨯⨯⨯…照此规律, 第n 个等式可为 .13. 【答案】)12(5312)()3)(2)(1(-⋅⋅⋅⋅=++++n n n n n n n 【解析】考察规律的观察、概况能力,注意项数,开始值和结束值。

第n 个等式可为:)12(5312)()3)(2)(1(-⋅⋅⋅⋅=++++n n n n n n n14. 在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为 (m ).14. 【答案】20【解析】 利用均值不等式解决应用问题。

设矩形高为y, 由三角形相似得:40,40,0,0,404040<<>>-=y x y x y x 且 40020,240取最大值时,矩形的面积仅当xy s y x xy y x ===≥+=⇒.15. (考生请注意:请在下列三题中任选一题作答, 如果多做, 则按所做的第一题计分)A . (不等式选做题) 设a , b ∈R , |a -b |>2, 则关于实数x 的不等式||||2x a x b -+->的解集是 .B . (几何证明选做题) 如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = . C . (坐标系与参数方程选做题) 圆锥曲线22x t y t ⎧=⎨=⎩(t 为参数)的焦点坐标是 .15. A 【答案】R【解析】 考察绝对值不等式的基本知识。

函数||||)(b x a x x f -+-=的值域为:2||)().|,[|>-≥∈∀+∞-b a x f R x b a 时,因此,当.所以,不等式2||||>-+-b x a x 的解集为R 。

B 【答案】.6【解析】 ..//BAD PED BAD BCD PED BCD PE BC ∠=∠⇒∠=∠∠=∠∴且在圆中.6.623∽2==⋅=⋅=⇒=⇒∆∆⇒PE PD PA PE PEPDPA PE APE EPD 所以 C 【答案】 (1, 0) 【解析】)0,1(4.222F x y ty t x 抛物线的焦点⇒=⇒⎩⎨⎧==三、解答题: 解答应写出文字说明、证明过程及演算步骤(本大题共6小题,共75分) 16. (本小题满分12分)已知向量1(cos ,),,cos 2),2x x x x =-=∈a b R , 设函数()·f x =a b .(Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.P16. 【答案】(Ⅰ) π. (Ⅱ) 21,1-.【解析】(Ⅰ)()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x 。

最小正周期ππ==22T 。

所以),62sin()(π-=x x f 最小正周期为π。

(Ⅱ)上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈.]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f .所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-.17. (本小题满分12分) 设S n 表示数列{}n a 的前n 项和. (Ⅰ) 若{}n a 为等差数列, 推导S n 的计算公式;(Ⅱ) 若11,0a q =≠, 且对所有正整数n , 有11nn q S q-=-. 判断{}n a 是否为等比数列.17. 【答案】(Ⅰ) )21(2)(11d n a n a a n S n n -+=+=;(Ⅱ) }{n a 数列是首项11=a ,公比1≠q 的等比数列。

相关文档
最新文档