六年级应用题 多次相遇和追及问题

合集下载

小学数学行程专题 多次相遇与追及问题 PPT+课后作业 带答案

小学数学行程专题 多次相遇与追及问题   PPT+课后作业  带答案
小东比小芳多走:10-6=4(个) 小东追上小芳的次数:4÷2=2(次) 答:小东从后面追上小芳2次。
Байду номын сангаас题4
小芳和小俞老师分别从一段长200米的马路的两端同时相向出发,做往返运动。小芳每分 钟走40米,小俞老师每分钟走60米。20分钟后,两人停止运动。 (1)在这期间,小芳和小俞老师迎面相遇多少次? (2)在这期间,小俞老师从后面追上小芳多少次? (3)在这期间,小俞老师和小芳迎面相遇和追及相遇一共多少次?
从后面追上

同向追上
A
B

迎面相遇可不算哦!
甲、乙两人同时从A、B两地出发,在A、B两地之间来回散步。 (1)当甲第一次从后面追上乙时,甲比乙多走__1___个全程。 (2)甲从第一次从后面追上到第二次从后面追上乙时,甲比乙又多走__2___个 全程。 (3)甲从第二次从后面追上到第三次从后面追上乙时,甲比乙又多走__2___个 全程。
答:经过2个小时,甲车第一次从后面追上乙车。 (2)路程差:2个全程
追及时间:35×2÷(75-40)=2(小时) 答:再经过2个小时,甲车第二次从后面追上乙车。
例题3
甲、乙两车分别从 A、B 两地同时出发,相向而行,在 A、B 两地之间不停往返行驶。当 甲车行驶了12 个全程时, 乙车行驶了 4 个全程,那么甲车从后面追上乙车多少次?
(1)从开始出发到第一次从后面追上,路程差为1个全程 追及时间:200÷(120-70)=4(小时) 答:经过4小时,小汽车第一次从后面追上大巴。
(2)从第一次追上到第二次从后面追上,路程差为2个全程 追及时间:200×2÷(120-70)=8(小时) 答:再经过8小时,小汽车第二次从后面追上大巴。
相邻两次同向追及之间,两者的路程差都是2个全程; 从出发到第1次同向追及,两者的路程差是2个全程; 从出发到第2次同向追及,两者的路程差是4个全程; 从出发到第3次同向追及,两者的路程差是6个全程; 从出发到第n次同向追及,两者的路程差是2n个全程。

五、六年级行程:多次相遇、追及试题及详解5

五、六年级行程:多次相遇、追及试题及详解5

五、六年级行程:多次相遇、追及试题及详解5
1、五年级行程问题:多次相遇、追及问题
难度:高难度
小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次?
2、六年级行程问题:多次相遇、追及问题
难度:高难度
3、六年级行程问题:多次相遇、追及问题
难度:高难度
甲、乙两人分别从、两地同时出发相向而行,乙的速度是甲的,二人相遇后继续行进,甲到地、乙到地后立即返回.已知两人第二次相遇的地点距第三次相遇的地点是100千米,那么,、两地相距千米.
4、五年级行程问题:多次相遇、追及问题
难度:中难度
小王、小李二人往返于甲、乙两地,小王从甲地、小李从乙地同时出发,相向而行,两人第一次在距甲地3千米处相遇,第二次在距甲地6千米处相遇(追上也算作相遇),则甲、乙两地的距离为千米.
5、六年级行程问题:多次相遇、追及问题
难度:高难度
A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A 地出发后第一次和第二次相遇都在途中P地。

那么到两车第三次相遇为止,乙车共走了多少千米?。

专题19行程问题(相遇追击多次相遇问题)(原卷)2

专题19行程问题(相遇追击多次相遇问题)(原卷)2

20222023学年小学六年级思维拓展举一反三精编讲义专题19 行程问题(相遇、追击、多次相遇问题)行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行 程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

【典例分析01】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。

甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。

甲车行完全程用了多少小时? 解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。

这句话的实质就是:“乙48分钟行了24千米”。

可以 先求乙的速度,然后根据路程求时间。

也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时) 解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。

【典例分析02】两辆汽车同时从东、西两站相向开出。

第一次在离东站60千米的地方相知识精讲典例分析遇。

之后,两车继续以原来的速度前进。

各自到达对方车站后都立即返回,又在距中点西侧30千米处相遇。

两站相距多少千米?从两辆汽车同时从东、西两站相对开出到第二次相遇共行了三个全程。

多次相遇和追及问题详解

多次相遇和追及问题详解

多次相遇和追及问题教学目标1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题知识精讲板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.例1】(难度等级※)甲、乙两名同学在周长为300 米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4 米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?解析】从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10 倍,为300 10 3000米,因为甲的速度为每秒钟跑 3.5 米,乙的速度为每秒钟跑 4 米,所以这段时间内甲共行了3.53000 3.5 1400米,也就是甲最后一次离开出发点继续行了200 米,可知甲还需行 3.5 4300 200 100米才能回到出发点.巩固】(难度等级※)甲乙两人在相距90 米的直路上来回跑步,甲的速度是每秒 3 米,乙的速度是每秒2 米.如果他们同时分别从直路两端出发,10 分钟内共相遇几次?解析】17巩固】(难度等级※)甲、乙两人从400米的环形跑道上一点 A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1 米,那么两人第五次相遇的地点与点 A 沿跑道上的最短路程是多少米?解析】176、运用倍比关系解多次相遇问题例2】(难度等级※※)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家 4 千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8 千米,这时是几点几分?解析】画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是4+8 =12(千米)这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12 ÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8 ×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16 (千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分),爸爸骑行16 千米需要16分钟. 8+8+16=32.所以这时是8 点32 分。

六年级相遇和追及问题(含答案)

六年级相遇和追及问题(含答案)

一、 相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间 =(甲的速度+乙的速度)×相遇时间=速度和×相遇时间. 一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=tS V 和和二、 追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间 =(甲的速度-乙的速度)×追及时间 =速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=tS V 差差三、 在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同 (2)在整个运行过程中,2个物体所走的是同一路径。

⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩n n n n n n n nn n n n n n n n nn n 路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及知识框架相遇和追及问题重难点能够解决行程中复杂的相遇与追及问题能够画出多人相遇和追及的示意图并将问题转化多个简单相遇和追及环节进行解题能够利用柳卡图、比例解决多次相遇和追及问题例题精讲一、相遇和追及【例 1】在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车刹车突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距多少米?【巩固】乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?【例 2】甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。

多次追及问题公式和相遇问题公式

多次追及问题公式和相遇问题公式

多次追及问题公式和相遇问题公式在我们学习数学的旅程中,多次追及问题和相遇问题就像是两个调皮的小精灵,时不时地跳出来给我们一些挑战。

今天咱们就来好好聊聊这两个让人又爱又恨的小家伙。

先来说说多次追及问题公式。

多次追及问题啊,简单说就是两个或多个物体在不同的起点,按照不同的速度运动,然后一个追着另一个跑,跑了好几次。

这时候就需要用到专门的公式来计算它们什么时候能追上。

比如说,有甲、乙两个人,甲在前面跑,速度是V1,乙在后面追,速度是 V2。

他们一开始相距 S 米。

第一次追上的时候,所用的时间 t1 就可以用公式 t1 = S / (V2 - V1) 来计算。

那如果是多次追及呢?假设第一次追上之后,又出现新的情况,比如甲、乙到达某个地点后又重新出发,这时候就要根据新的初始条件和速度来计算下一次追上的时间。

我记得有一次,我在公园里散步,看到两个小朋友在玩追逐游戏。

小男孩跑在前面,小女孩在后面紧追不舍。

小男孩跑得挺快,速度大概每秒 3 米,小女孩速度每秒 4 米。

一开始小男孩领先小女孩 5 米。

小女孩一边跑一边喊:“等等我,我马上就追上你!”这场景就像我们数学里的追及问题。

我在旁边看着,心里默默计算,按照这个速度和距离,小女孩大概 5 秒钟就能追上小男孩。

果不其然,没一会儿小女孩就得意地抓住了小男孩的衣角,开心地笑了起来。

再讲讲相遇问题公式。

相遇问题就是两个物体从不同的地方出发,朝着对方前进,然后在途中相遇。

假设甲从 A 地出发,速度是 V3,乙从 B 地出发,速度是 V4,两地相距 L 米。

那么他们相遇所用的时间 t 可以用公式 t = L / (V3 + V4) 来计算。

就像有一次我坐火车,火车在途中会经过一些小站。

我从车窗往外看,看到一辆汽车在平行的公路上行驶。

火车的速度我大概能感觉到,汽车的速度通过它和路边树木的相对移动也能估算个大概。

我就在想,如果火车和汽车一直这样开下去,它们在某个点会不会相遇呢?这其实就是一个相遇问题。

六年级相遇和追及问题(含答案)

六年级相遇和追及问题(含答案)

一、 相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间 =(甲的速度+乙的速度)×相遇时间=速度和×相遇时间. 一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=tS V 和和二、 追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间 =(甲的速度-乙的速度)×追及时间 =速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=tS V 差差三、 在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同 (2)在整个运行过程中,2个物体所走的是同一路径。

⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及知识框架相遇和追及问题重难点能够解决行程中复杂的相遇与追及问题能够画出多人相遇和追及的示意图并将问题转化多个简单相遇和追及环节进行解题能够利用柳卡图、比例解决多次相遇和追及问题例题精讲一、相遇和追及【例 1】在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车刹车突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距多少米?【巩固】乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?【例 2】甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。

多次相遇和追及问题

多次相遇和追及问题

多次相遇和追及问题
多次相遇和追及问题是行程问题中的一种类型,通常涉及两个或多个物体在不同时间或速度下的相对运动。

以下是一道多次相遇和追及问题的示例:
甲乙两人同时从$A$地出发前往$B$地,甲的速度为$6$米每秒,乙的速度为$4$米每秒。

当甲到达$B$地时,乙距离$B$地还有$20$米。

请问甲到达$B$地后,甲还要多久才能追上乙?
解析:
已知甲的速度为$6$米每秒,乙的速度为$4$米每秒,则甲到达$B$地时,乙距离$B$地还有$20$米,此时甲和乙相距的距离为$20$米。

甲的速度比乙的速度快,因此甲追乙,根据$\underline{路程=速度×时间}$,可得到甲追上乙所需的时间为:
$20\div(6-4)=20\div2=10$(秒)
因此,甲到达$B$地后,甲还要$10$秒才能追上乙。

多次相遇和追及问题含答案

多次相遇和追及问题含答案

多次相遇与追及问题知识框架一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了 3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【答案】100米【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【考点】行程问题【难度】☆☆ 【题型】解答【解析】 17【答案】17【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。

应用题第28讲_多人多次相遇与追及

应用题第28讲_多人多次相遇与追及

应用题第28讲_多人多次相遇与追及1.多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题.所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.2.从不同的角度想问题,同一段路程通过不同的角度去分析,会有不同的发现.3.两人的运动时间相同时,他们的路程倍数关系就等于速度倍数关系.重难点:多人多次相遇与追及问题.题模一:速度已知求时间例1.1.1有冰冰、雪雪、霜霜三个人,冰冰每分钟走4米,雪雪每分钟走5米,霜霜每分冲走6米,A 、B 两地相距990米,雪雪从A 地,霜霜、冰冰从B 地网前出发相向而行.请问,雪雪与霜霜相遇之后多少分钟又与冰冰相遇.例1.1.2老贺、老郭和老刘同时出发,分别以每小时1千米、3千米、1千米的速度前进.其中老贺从A出发往B走,另外两人则从B出发往A走.已知A、B两地相距36千米,那么在出发后________小时,老郭正好在老贺与老刘的中点.例1.1.3高高城堡和思思城堡相距48千米,小高、大高从高高城堡,中思从思思城堡同时出发,同向而行.中思在前,小高、大高在后.小高的速度是每小时8千米,大高的速度是每小时6千米,中思的速度是每小时4千米.请问:出发多长时间后,小高正好在大高和中思的中点?例1.1.4甲、乙两地相距60千米.小王骑车以每小时行10千米的速度上午8点钟从甲地出发去乙地.过了一会儿,小李骑车以每小时15千米的速度也从甲地去乙地,小李在途中M 地追上小王,通知小王立即返回甲地.小李继续骑车去乙地.各自分别到达甲、乙两地后都马上返回.两人再次见面时,恰好还在M地.问小李是什么时刻出发的?例1.1.5上午8时8分,小明骑自行车从家里出发.8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立刻回家,到家后又立刻回头去追小明,在追上他的时候,离家恰是8千米.请问:这时是_______时_______分.题模二:时间已知求速度例1.2.1琳琳和穆穆从A,燕燕从B,三人同时出发相向而行.琳琳的速度为7千米/小时,燕燕速度为5千米/小时.出发4小时后,琳琳与燕燕相遇.又过了2小时,穆穆也与燕燕相遇.那么穆穆的速度为_______千米/小时.例1.2.2甲、乙、丙三辆车同时从A地出发到B地,甲、乙两车的速度分别为每小时60千米和48千米,有一辆迎面开来的卡车分别在出发后的5小时、6小时、4小时与甲、乙、丙三辆车相遇.如果卡车的速度保持不变,则丙车的速度为__________千米/每小时.例1.2.3刘备、关羽、张飞三人,刘备每分钟走40米,关羽每分钟走60米,张飞每分钟走50米.如果刘备从A地,关羽和张飞从B地同时出发相向而行,刘备和关羽相遇后,过了10分钟又与张飞相遇,求AB两地间的距离为多少米.例1.2.4快、中、慢3辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人.这3辆车分别用6分钟、10分钟、12分钟追上骑车人.现在知道快车每小时走24千米,中车每小时走20千米,那么,慢车每小时走_______千米?例1.2.5甲、乙、丙三辆车先后从A地开往B地,乙比丙晚出发5分,出发后45分追上丙;甲比乙晚出发15分,出发后1时追上乙.甲和丙的速度比是____:________?随练1.1有甲、乙、丙三个人,甲每分钟走60米,乙每分钟走40米,丙每分钟走30米.A、B两地相距2700米.甲从A地,乙、丙从B地同时出发相向而行.请问,甲在与乙相遇之后多少分钟又与丙相遇?随练1.2叮叮、咚咚两人从A地,铛铛则从B地同时出发,相向而行.A、B两地相距140千米.叮叮的速度为每小时5千米,咚咚的速度为每小时2千米,铛铛的速度为每小时5千米.那么叮叮和铛铛相遇后,又过_______小时,咚咚和铛铛相遇.随练1.3A、B两城相距50千米,甲、乙、丙三人分别以每小时4千米、2千米、2千米的速度行走.甲、乙两人从A城,丙从B城同时出发,相向而行.请问出发多长时间后,甲正好在乙和丙的中点.随练1.4早上6:00,甲、乙两人分别从相距240千米的A、B两城同时出发同向而行,甲在前,乙在后.甲每小时行40千米,乙每小时行60千米.如果丙想要以每小时72千米的速度前进,同时追上甲、乙两人,丙应当在_____点从B城出发.A.7:45B.8:00C.8:15D.8:30随练1.5甲、乙两人同时从A骑车出发前往B地,其中甲每秒钟走12米,乙每秒钟走8米.出发后10分钟,甲遇到了迎面走来的丙,又过了2分40秒,乙也遇到了丙.那么丙的速度是__________米/秒.随练1.6甲、乙、丙三人走路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米,如果甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求AB两地间的距离为多少米.随练1.7甲、乙两辆汽车的速度分别为每小时60米和每小时45千米、两车同时从A地出发到B地去,出发7小时后,甲车遇到一辆迎面开来的卡车、又过了1小时,乙车也遇到了这辆卡车,请问这辆卡车的速度是多少.随练1.8甲、乙、丙三车同时从A地沿同一公路开往B地,途中有个骑摩托车的人也在同方向行进,这三辆车分别用7分钟、8分钟、14分钟追上骑摩托车人.已知甲车每分钟行1000米,丙车每分钟行800米,求乙车的速度是多少?作业1甲、乙、丙三人从同一地点A地前往B地,甲、乙二人早上8点一起从A地出发,甲每小时走6千米,乙每小时走4千米,丙上午11点才从A地出发.晚上8点,甲、丙同时到达B地.求:丙在几点钟追上了乙?作业2有甲、乙、丙三个人,甲每分钟走100米,乙每分钟走80米,丙每分钟走60米.A、B两地相距5760米.甲从A地,乙、丙从B地同时出发相向而行.请问,甲在与乙相遇之后多少分钟又与丙相遇?作业3有甲、乙、丙三个人,甲每分钟走50米,乙每分钟走40米,丙每分钟走30米.A、B两地相距3600米.甲从A地,乙、丙从B地同时出发相向而行.请问,甲在与乙相遇之后多少分钟又与丙相遇?作业4甲、乙、丙三人同时同向骑车,各自的速度都保持不变,乙在甲、丙的正中间.甲20分钟追上乙,又过10分钟追上丙,再过__________分钟乙追上丙.作业5乒乒、乓乓两人骑车从A地,球球则骑车从B地同时出发,相向而行.乒乒骑车的速度为每小时6千米,球球骑车的速度为每小时4千米.出发4小时后,乒乒与球球相遇.又过了1小时,乓乓也与球球相遇.那么乓乓骑车的速度是__________千米/时.作业6东、西两城相距80千米,笨笨、呆呆从东城,傻傻从西城同时出发,相向而行.笨笨的速度是每小时8千米,傻傻的速度是每小时2千米.笨笨和傻傻相遇后,又过了2小时,呆呆也与傻傻相遇.请问:呆呆的速度是多少?作业7快、中、慢三辆车同时从甲地出发追赶前方的骑车人,分别用2小时、4小时、10小时追上,已知快车每小时行24千米,中车每小时行20千米,求慢车时速.作业8甲、乙、丙三车同时从A地沿同一公路开往B地,途中有个骑摩托车的人也在同方向行进,这三辆车分别用7分钟、8分钟、14分钟追上骑摩托车人.已知甲车每分钟行1000米,丙车每分钟行800米,求乙速车的速度是多少?。

(小学奥数)多次相遇和追及问题

(小学奥数)多次相遇和追及问题

1. 學會畫圖解行程題2. 能夠利用柳卡圖解決多次相遇和追及問題3. 能夠利用比例解多人相遇和追及問題板塊一、由簡單行程問題拓展出的多次相遇問題所有行程問題都是圍繞“=⨯路程速度时间”這一條基本關係式展開的,多人相遇與追及問題雖然較複雜,但只要抓住這個公式,逐步表徵題目中所涉及的數量,問題即可迎刃而解.【例 1】 甲、乙兩名同學在周長為300米圓形跑道上從同一地點同時背向練習跑步,甲每秒鐘跑3.5米,乙每秒鐘跑4米,問:他們第十次相遇時,甲還需跑多少米才能回到出發點?【巩固】 甲乙兩人在相距90米的直路上來回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他們同時分別從直路兩端出發,10分鐘內共相遇幾次?知識精講 教學目標3-1-4多次相遇和追及問題【巩固】甲、乙兩人從400米的環形跑道上一點A背向同時出發,8分鐘後兩人第五次相遇,已知每秒鐘甲比乙多走0.1米,那麼兩人第五次相遇的地點與點A沿跑道上的最短路程是多少米?【例 2】甲、乙二人從相距60千米的兩地同時相向而行,6時後相遇。

如果二人的速度各增加1千米/時,那麼相遇地點距前一次相遇地點1千米。

問:甲、乙二人的速度各是多少?板塊二、運用倍比關係解多次相遇問題【例 3】上午8點8分,小明騎自行車從家裏出發,8分鐘後,爸爸騎摩托車去追他,在離家4千米的地方追上了他.然後爸爸立即回家,到家後又立刻回頭去追小明,再追上小明的時候,離家恰好是8千米,這時是幾點幾分?【例 4】甲、乙兩車同時從A地出發,不停的往返行駛於A,B兩地之間。

已知甲車的速度比乙車快,並且兩車出發後第一次和第二次相遇都在途中C地。

問:甲車的速度是乙車的多少倍?【例 5】如圖,甲和乙兩人分別從一圓形場地的直徑兩端點同時開始以勻速按相反的方向繞此圓形路線運動,當乙走了100米以後,他們第一次相遇,在甲走完一周前60米處又第二次相遇.求此圓形場地的周長.【巩固】A、B是圓的直徑的兩端,甲在A點,乙在B點同時出發反向而行,兩人在C點第一次相遇,在D點第二次相遇.已知C離A有75米,D離B有55米,求這個圓的周長是多少米?【巩固】如右圖,A,B是圓的直徑的兩端,甲在A點,乙在B點同時出發反向而行,兩人在C點第一次相遇,在D點第二次相遇。

六年级数学专题思维训练—相遇、追击问题(含答案及解析)

六年级数学专题思维训练—相遇、追击问题(含答案及解析)

六年级数学专题思维训练—相遇、追击问题1.哥哥沿着向上移动的自动扶梯从顶向下走到底,共走了80级。

在相同的时间里,妹妹沿着自动扶梯从底向上走到底,共走了40级。

如果哥哥单位时间内走的级数是妹妹的2倍,那么当自动扶梯静止时,自动扶梯能看到的部分有级。

2.全天里每个整点钟(例如6:00、7:00)由A地发出一辆巴士到B地;全天里每个半点钟(例如6:30、7:30)由B地发出一辆车子到A地。

每辆巴士都行驶在同一条道路上,由A地行使至B地及由B地行使至A地各需时5小时。

请问从A地行使至B地的巴士在途中会与多少辆由B地发出的巴士相遇(不包括在车站内相遇的巴士)?3.有一路电车的起点站和终点站分别是甲站和乙站。

每隔5分钟有一辆巴士从甲站出发开往乙站,全程要走15分钟。

有一个人从乙站出发沿电车路线骑车前往甲站。

他出发的时候,恰好有一辆电车到达乙站。

在路上他又遇到了10辆迎面开来的电车,才到达甲站。

这时候,恰好又有一辆电车从甲站开出。

问他从乙站到甲站用了多少分钟?4.某条道路上,每隔900米有一个红绿灯。

所有的红绿灯都按绿灯30秒、黄灯5秒、红灯25秒的时间周期同时重复变换。

一辆汽车通过第一个红绿灯后,最快可以用每小时千米的速度行驶,可以在所有的红绿灯路口都遇到绿灯。

5.忠犬小八每天都从家中跑到车站去迎接它的主人,并准时于下午5时到达车站见到它的主人后立即跑回家,它的主人搭乘的电车通常也都准时于下午五时抵达。

但是有一天,它的主人提早下班于下午四时就抵达车站,他直接由车站步行回家。

在半途中他见到正从家中朝车站方向跑的小八,两者相遇后,小八立即以与平常相同的速度跑回家。

当小八到家时比平常到家时间提早10分钟。

请问小八跑步的速度是他主人步行速度的几倍?6.自动扶梯匀速向上运行,甲、乙两人都从顶部逆行走到底部。

甲每秒走3级,用100秒;乙每秒走2级,用200秒。

如果甲仍用原来的速度从底部走到顶部,需要秒。

7.小淘气乘正在下降的自动扶梯下楼,如果他一级一级地走下去,从扶梯的上端走到下端需要走36级。

应用题板块-行程问题之多人多次相遇追及(小学奥数六年级)

应用题板块-行程问题之多人多次相遇追及(小学奥数六年级)

应用题板块-行程问题之多人多次相遇追及(小学奥数六年级)考试中,数量关系一直是比较难的一类题目,尤其是其中的行程问题,更是让广大考生头疼,他的特点是考察的小题型特别多,需要分类总结规律。

今天我们分享的是多人多次相遇追及问题,有一定复杂度,但只要分解成多个两人的相遇追及问题,就能找到突破口解题。

如果你对前一篇基础内容“相遇及追及”还想再巩一遍,欢迎翻看。

【一、题型要领】1. 多人多次相遇【基本概念】通常有3个或更多的人,他们的出发地可能一样,也可能不一样,他们有同向而行,也有反向而行,中间就会产生多人多次相遇或追及的情况,需根据题意画出示例图进行理解【基本公式】解决这类题目,要抓住最基本的公式,即路程= 速度* 时间当相遇时,路程和= 速度和* 相遇时间当追及时,路程差= 速度差* 追及时间【解题关键】根据题意能够画出多人相遇和追及的示意图,将复杂的多人相遇问题转化为多个简单的相遇和追及问题。

【二、重点例题】例题1【题目】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米。

现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。

那么,东西两村之间的距离是多少米?【分析】分析整个过程可以得到下图,蓝色部分是甲和乙相遇时三人的情形,甲和乙在A点,丙在C点。

绿色部分是甲和丙相遇时三人的情形,甲和丙在B 点。

路程AC有两个含义,一是甲和丙在6分钟内相向而行共同行走的路程,二是在甲和乙相遇时的乙和丙的路程差,通过这层转化即可计算东西两村的距离【解】AC的距离= (100 + 75)* 6 = 1050(米)甲和乙相遇时花费的时间= 1050 ÷ (80 - 75)= 210(分钟)东西两村的距离= (100 + 80)* 210 = 37800(米)【答】东西两村相距37800米例题2【题目】甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。

小学奥数3-1-4多次相遇和追及问题.教师版

小学奥数3-1-4多次相遇和追及问题.教师版

小学奥数3-1-4多次相遇和追及问题.教师版3-1-4多次相遇和追及问题教学目标1.学会画图解行程题2.能够利用柳卡图解决多次相遇和追及问题3.能够利用比例解多人相遇和追及问题知识精讲板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例1】甲、乙两名同学在周长为米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑米,乙每秒钟跑米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【考点】行程问题【难度】1星【题型】解答【解析】从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为米,因为甲的速度为每秒钟跑米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行米才能回到出发点.【答案】米【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【考点】行程问题【难度】1星【题型】解答【解析】【答案】17【巩固】甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?【考点】行程问题【难度】2星【题型】解答【解析】176【答案】176【例2】甲、乙二人从相距60千米的两地同时相向而行,6时后相遇。

如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。

问:甲、乙二人的速度各是多少?【考点】行程问题【难度】3星【题型】解答【解析】甲、乙两人的速度和第一次为60÷6=10(千米/时),第二次为12(千米/时),故第二次出发后5时相遇。

设甲第一次的速度为x千米/时,由两次相遇的地点相距1千米,有6x-5(x+1)=±1,解得x=6或x=4,即甲、乙二人的速度分别为6千米/时和4千米/时。

小学数学 行程问题之多人多次追及与相遇问题 PPT+作业(带答案)

小学数学 行程问题之多人多次追及与相遇问题  PPT+作业(带答案)
若快车追上慢车,则两车的行驶方向是__________。
答案: (1)东边 (2)路程差÷速度差 (3)9
28
作业5:
答案:
10000-100=9900(米) 9900÷5= 1980(米) 10000-1980=8020(米)
29
作业6:
答案:改为丙的速度是100米/分,
已知,甲乙相遇 7 分钟后,甲又与丙相遇,
第一站:两人多次相遇追 及问题
准备题1
设全程为1
甲的速度为 1
10
乙的速度为 1
15
路程差: 1 ×3= 1
15
5
1÷( 1 − 1 )=6(小时)
5
10 15
答:甲6小时后可以追上乙车
3
准备题2
(1)2个全程 (2)4个全程 (3)2个全程
4
例1
(1)900×2÷(25-20)=360(小时) 答:出发360小时后,甲车第一次从后面追上乙车。 (2)900×2÷(25-20)=360(小时) 答:又经过360小时后,甲车第二次从后面追上乙车。 总结:从同一地点出发,从后面追上总是快车比慢车多走两个全程。 5
10
练习3
14
(1)1000×(1+2)÷(30-25)=600(小时) 答:出发600小时后,甲车第二次从后面追上乙车。 (2)1000÷(30-25)=200(小时) 答:又经过200小时后,甲车第三次从后面追上乙车。
11
练习4
第一次相遇小新走了半个全程+200米,第一次追上小东,
14 小新共走1.5个全程+600米,是第一次相遇时候所走路
程的3倍,则小东共走的路程也是第一次相遇时候的3倍, 那么小东第一次相遇时走了:(200+600)÷(3-1) =400米,AB相距:(400+200)×2=1200米 答:AB两地相距1200米。

奥数——行程、多次相遇和追及问题

奥数——行程、多次相遇和追及问题

一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N 米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程多人相遇追及的解题关键 路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求知识框架多次相遇与追及问题数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。

问:甲车的速度是乙车的多少倍?例题精讲【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

六年级应用题 多次相遇和追及问题

六年级应用题 多次相遇和追及问题

多次相遇与追及问题一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差路程和速度和相遇时间;=⨯路程差速度差追及时间;=⨯多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【答案】37800米【巩固】一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?【答案】2分钟【例 2】在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少千米?【答案】1950千米【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【答案】16500米【例 3】小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【答案】3小时15分【巩固】甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米?【答案】3510米【例 4】甲、乙、丙三人行路,甲每分钟走80米,乙每分钟走90米,丙每分钟走100米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过5分钟与甲相遇,求东西两镇间的路程有多少米?【答案】17100米【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【答案】12小时【例 5】甲、乙两车的速度分别为 52 千米/时和 40 千米/时,它们同时从A地出发到B地去,出发后 6 时,甲车遇到一辆迎面开来的卡车,1 时后乙车也遇到了这辆卡车。

多次相遇和追及问题含答案

多次相遇和追及问题含答案

多次相遇与追及问题知识框架一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了 3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【答案】100米【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【考点】行程问题【难度】☆☆ 【题型】解答【解析】 17【答案】17【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。

小学数学行程问题之多人多次相遇和追及问题含答案

小学数学行程问题之多人多次相遇和追及问题含答案

多次相遇和追及问题知识框架一、多人相遇追及问题多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:路程和速度和相遇时间;=⨯路程差速度差追及时间;=⨯多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇追及问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

例题精讲【例 1】A 、B 两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分。

如果甲、乙从A ,丙从B 地同时出发相向而行,那么,在__________分钟或________分钟后,丙与乙的距离是丙与甲的距离的2倍。

行程问题之多次相遇与追及问题 非常完整版题型训练+答案解析

行程问题之多次相遇与追及问题 非常完整版题型训练+答案解析

行程问题之多次相遇与追及问题非常完整版题型训练+答案解析本文介绍了行程体系中多次相遇和追及的问题。

其中,对于两地相向出发的情况,第N次相遇共走2N-1个全程;对于同地同向出发的情况,第N次相遇共走2N个全程。

在多人多次相遇追及的解题过程中,需要注意路程差和几个全程的关键。

例1中,甲、乙两车分别从A、B两地相对开出,第一次在离A地95千米处相遇,第二次在离B地25千米处相遇。

根据题意可知,A、B两地间的距离为260千米。

例2中,甲和乙两人在一圆形场地上按相反的方向绕圆形路线运动,第一次相遇时甲乙共走完0.5圈的路程,第二次相遇时甲乙共走完1.5圈的路程。

根据题意可得,此圆形场地的周长为480米。

例3中,甲、乙两人从环形跑道上一点A背向同时出发,8分钟后第五次相遇。

已知甲比乙每秒钟多走0.1米,求第五次相遇的地点与点A沿跑道上的最短路程。

根据题意可得,第五次相遇时共合走5个全程,相遇点与点A沿跑道上的最短路程为2000米。

甲和乙的速度分别为250米/分和122米/分,他们在周长为300米的圆形跑道上背向而行。

甲每秒钟跑3.5米,乙每秒钟跑4米。

他们第十次相遇时,甲还需跑100米才能回到出发点。

___和爸爸在上午8点8分开始在家门口的100米直线跑道上跑步。

___的速度为6米/秒,爸爸的速度为4米/秒。

爸爸在8分钟后追上___,然后回家,再次追上___时离家12千米,此时是8点32分。

___和___在长100米的直线跑道上来回跑步,___的速度为6米/秒,___的速度为4米/秒。

他们同时从跑道两端出发,连续跑了12分钟。

在这段时间内,他们迎面相遇了5次。

甲、乙两人从A、B两地同时出发,相向而行。

已知乙的速度是甲的速度的2倍。

解答:由于甲、乙的速度比是1:2,所以在相同的时间内,两人所走的路程之比也是1:2.第一次相遇时,两人共走完了AB的长度,可以把AB的长度看作3份,甲、乙各走了1份和2份。

第100次相遇时,甲、乙共走了199个AB,甲走了1×199=199份。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多次相遇与追及问题
一、由简单行程问题拓展出的多次相遇问题
所有行程问题都是围绕“=⨯
路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.
二、多次相遇与全程的关系
1. 两地相向出发:
第1次相遇,共走1个全程;
第2次相遇,共走3个全程;
第3次相遇,共走5个全程;
…………,………………;
第N次相遇,共走2N-1个全程;
注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:
第1次相遇,共走2个全程;
第2次相遇,共走4个全程;
第3次相遇,共走6个全程;
…………,………………;
第N次相遇,共走2N个全程;
3、多人多次相遇追及的解题关键
多次相遇追及的解题关键几个全程
多人相遇追及的解题关键路程差
路程和速度和相遇时间;
=⨯
路程差速度差追及时间;
=⨯
多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.
【例 1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【答案】37800米
【巩固】一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?【答案】2分钟
【例 2】在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少千米?【答案】1950千米
【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【答案】16500米
【例 3】小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.
小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【答案】3小时15分
【巩固】甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米?【答案】3510米
【例 4】甲、乙、丙三人行路,甲每分钟走80米,乙每分钟走90米,丙每分钟走100米,甲乙从东镇去
西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过5分钟与甲相遇,求东西两镇间的路程有多少米?【答案】17100米
【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【答案】12小时
【例 5】甲、乙两车的速度分别为 52 千米/时和 40 千米/时,它们同时从A地出发到B地去,出发后 6 时,甲车遇到一辆迎面开来的卡车,1 时后乙车也遇到了这辆卡车。

求这辆卡车的速度。

【答案】卡车速度为32 千米/时
【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.【答案】18900

【例 6】张、李、赵3人都从甲地到乙地.上午6时,张、李两人一起从甲地出发,张每小时走5千米,李每小时走4千米.赵上午8时从甲地出发.傍晚6时,赵、张同时达到乙地.那么赵追上李的时间是几时?【答案】中午12时
【巩固】甲、乙、丙三辆车同时从A地出发到B地去,出发后6分甲车超过了一名长跑运动员,2分后乙车也超过去了,又过了2分丙车也超了过去。

已知甲车每分走1000米,乙车每分走800米,丙车每分钟走多少米?【答案】680米/分
【附加】甲乙两车同时从AB两地相对开出。

第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。

二次相遇时离B地的距离是AB全程的1/5。

已知甲车在第一次相遇时行了120千米.AB两地相距多少千米?
【分析】根据题意可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,
一共行了3个AB的路程,可以得出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。

甲一共行120×3=360千米,从分率来看,一共行了全程的(1+1/5)。

【解答】
120×3÷(1+1/5)
=360÷6/5
=360×5/6
=300(千米)
答:AB两地相距300千米。

从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米.如果二人分别至B地,A地后都立即折回.第二次相遇点第一次相遇点之间有
(2)把AB的路程看作单位“1”,可以求出甲乙两人的相遇时间,在距离中点2千米处相遇,相遇时甲比乙多行了2×2=4千米,相遇时,甲比乙多行了这条路的2.4×(1/4+1/6)=1/5 ,可以求出AB的距离;人分别至B地,A地后都立即折回,相遇时两人共行了三个全程,可以求出两次相遇时距B地的距离,然后再进一步解答即可.
(2)根据题意可知:
甲要4小时,每小时行这条路的:1÷4=1/4;
乙要6小时,每小时行这条路的:1÷6=1/6;
两人相遇时间:1÷(1/4+1/6))=2.4(小时)
在距离中点2千米处相遇,相遇时甲比乙多行了:2×2=4(千米);
这条路长:4÷[2.4×(1/4+1/6)=20(千米)
二人分别至B地,A地后都立即折回,相遇时两人共行了三个全程,甲行了:
20×1/4×2.4×3=36(千米)
第二次相遇点距B地:36-20=16(千米);
第一次相遇点距B地:20-(20÷2+2)=8(千米);
第二次相遇点与第一次相遇点之间有:16-8=8(千米)。

答:第二次相遇点与第一次相遇点之间有8千米。

【巩固】
甲、乙二人分别驾车从A,B两地同时相向而行,第一次相遇时甲行了全程的3/5,相遇后两人继续前进,甲和乙分别到达B,A两地后立即又以原速返回,第二次相遇地点和第一次相遇点相距120千米。

AB两地相距多少千米?
【解析】第二次相遇时,两车共行了3个全程,甲行了3/5×3=9/5=1+4/5 ,
第二次相遇地点距离起点:1-4/5 =1/5,根据第一次相遇时甲行了全程的3/5可知:
第二次相遇地点距离第一次相遇点:3/5 -1/5 =2/5
AB两地相距:120 ÷2/5=300(千米)。

相关文档
最新文档