深圳市宝安区2019届九年级上期末调研测试数学试题含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019~2019学年第一学期宝安区期末调研测试卷
九年级 数学 一、选择(12*3=36分)
1、一元二次方程12=x 的根是( )
A 、1=x
B 、1-=x
C 、11=x ,02=x
D 、11=x ,12-=x
2、如图
1,该几何体的左视图是( )
3、一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口袋中有红球大约多少只?( ) A 、8只 B 、12只 C 、18只 D 、30只
4、菱形的边长为5,一条对角线长为8,则此菱形的面积是( )
A 、24
B 、 30
C 、40
D 、48
5、若2=x 是关于x 的一元二次方程022=+-ax x 的一个根,则a 的值为( )
A 、3
B 、-3
C 、1
D 、-1
6、如果等腰三角形的面积为10,底边长为x ,底边上的高为y ,则y 与x 的函数关系式为( )
A 、x y 10=
B 、x y 5=
C 、x y 20=
D 、20
x y = 7、下列命题中,正确的是( )
A 、对角线垂直的四边形是菱形
B 、矩形的对角线垂直且相等
C 、对角线相等的矩形是正方形
D 、位似图形一定是相似图形
8、二次函数c bx ax y ++=2(0≠a )的大致图象如图2,关于该二次函数,下列说法错误的是 ( ) A 、函数有最小值 B 、当31<<-x 时,0>y C 、当1 这两年的年均增长率相同,设这个增长率为x ,则列方程为 ( ) A 、2.24)1(203=+x B 、2.24)1(202=-x C 、2.24)1(20202=++x D 、2.24)1(202=+x 10、如图3,每个小正方形的边长均为1,ABC ∆和DEF ∆的 顶点均在“格点”上,则=∆∆周长周长ABC DEC ( ) x y -2-13 2O -111图 2 C A B E D 图3 A 、21 B 、31 C 、41 D 、3 2 11、如图4,在□ABCD 中,对角线AC 、BD 相交于点O ,边点O 与AD 上的一点E 作直线 OE ,交BA 的延长线于点F ,若AD=4,DC=3,AF=2,则AE 的长是( ) A 、87 B 、58 C 、78 D 、2 3 12、如图5,抛物线x x y 42 -=与x 轴交于点O 、A ,顶点B ,连接AB 并延长,交y 轴于点C ,则图中阴影部分的面积和为( ) A 、4 B 、8 C 、16 D 、32 二、填空(4*3=12分) 13、抛物线2)1(22-+-=x y 的顶点从标是 。 14、如图6,小明想测量院子里一棵树的高度,在某一时刻,他站在该树的影子上,前后移动,直到他本身的影子的顶端正好与树影的顶端重叠。此时, 他与该树的水平距离是2cm ,小明身高1.5米,他的影长是1.2m , 那么该树的高度是 米。 15、某水果店销售一种进口水果,其进价为每千克40元,若按 每千克60元出售,平均每天可售出100千克。后经市场调查 发现,单价每降低2元,则平均每天的销售可增加20千克。 水果店想要尽可能让利于顾客,赢得市场,又想要平均每天获利2090元,则该店应降价 元出售这种进口水果。 16、如图7,在边长为32的正方形ABCD 中,点E 为AD 边的中点,将ABE ∆沿BE 翻折, 使点A 落在点'A 处。作射线'EA ,交BC 的延长线于点F 。则 CF= 。 F A'E D A B C 图 7 图6 三、解答题:(17、18每题5分,19、20、21每题8分,22、23每题9分,共52分) 17、计算:o o o o 45cos 45tan 360sin 230sin 2++- 18、解方程:0652=+-x x 19、某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100m 、200m 、1000m (分别用1A 、2A 、3A 表示);田赛项目:跳远、跳高(分别用1T 、2T 表示) (1)该同学从5个项目中任选一个,恰好是田赛项目的概率P 为 ;(2分) (2)该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率1P ,利用列表法或树状图加以说明;(4分) (3)该同学从5个项目中任选两个,则两个项目都是径赛项目的概率2P 为 ;(2分) 20、如图8,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点 A 作A E ∥BD ,过点D 作ED ∥AC ,两线相交于点E 。 (1)求证:四边形AODE 是菱形;(4分) (2)连接BE ,交AC 于点F 。若BE ⊥ED 于点E ,求∠AOD 的度数。(4分) 21、如图9,某校20周年校庆时,需要在操场上利用气球悬挂宣传条幅。EF 为旗杆,气球从A 处起飞,几分钟后便飞达C 处,此时,在AF 延长线上的点B 处测得气球和旗杆EF 的顶点E 在同一直线上。 (1)已知旗杆高为12米,若在点B 处测得旗杆顶点E 的仰角为30°,A 处测得点E 的仰角为45°,试求AB 的长(结果保留根号); (4分) (2)在(1)的条件下,若∠BCA=45°,绳子在空中视为一条线段,试求绳子AC 的长?(结果保留根号)(4分) O F E C A B D 图8 30°45°45°C A F B E 图9