钢的热处理——钢的冷却转变要点
钢的热处理——加热和冷却的组织变化课件
淬火工艺与应用
总结词
淬火是一种通过快速冷却来提高金属硬度和耐磨性的 热处理工艺。
详细描述
淬火是将加热到奥氏体化温度的金属迅速冷却至室温的 过程。淬火的目的是使金属保持其奥氏体状态,从而提 高其硬度和耐磨性。淬火过程中,金属内部的原子或分 子的运动速度非常快,导致原子之间的平均距离变小, 从而使金属的晶格结构变得更加紧密和稳定。淬火工艺 广泛应用于各种工具钢、结构钢、不锈钢等金属材料。 通过选择不同的淬火介质和冷却方式,可以获得不同硬 度和组织结构的金属材料。
加热到一定温度并保温一段时间,以消除内应力并稳定组织。
不锈钢的热处理案例
总结词
不锈钢是一种具有优良耐腐蚀性能的钢材,其组织稳 定性较高。通过适当的热处理,可以进一步提高不锈 钢的性能。
详细描述
不锈钢在加热时,奥氏体晶粒会逐渐长大并发生相变。 为了获得最佳的耐腐蚀性能和组织稳定性,通常采用固 溶处理,即将钢材加热到奥氏体状态并保温一段时间, 使碳化物充分溶解到奥氏体中,然后快速冷却,使碳化 物来不及析出。此外,为了提高不锈钢的硬度、耐磨性 和韧性,可以采用时效处理,即将钢材加热到一定温度 并保温一段时间,使金属间化合物得以析出并均匀分布。
总结词
退火是热处理的一种基本工艺,主要用于消除金属材 料的内应力、降低硬度并改善切削加工性能。
详细描述
退火是将金属加热到适当温度,保持一段时间,然后缓 慢冷却的过程。其主要目的是改变金属的晶格结构,使 其变得更加均匀和稳定。退火可以细化金属的晶粒,提 高其塑性和韧性,从而改善金属的机械性能。在退火过 程中,金属内部的原子或分子的运动速度会增加,导致 原子之间的平均距离变大,从而使金属的晶格结构变得 更加稳定。退火工艺广泛应用于各种金属材料,如钢铁、 铝合金、铜合金等。
t10钢的热处理工艺,加热温度,冷却方式
T10钢的热处理工艺通常包括正火、淬火和回火三个步骤。
1. 正火处理:加热T10钢到适当的温度(比如850~880℃),保温一段时间后(比如1~2小时),然后以适当的速度冷却。
在这个过程中,通过控制相变的热力学和动力学来改变奥氏体向珠光体转变的模式,从传统的片层转变机制改变为“离异共析”的转变形式。
正火处理可以提高T10钢的硬度和强度,同时也会增强其耐磨性能。
2. 淬火处理:将正火后的T10钢加热到适当的温度(比如780~820℃),然后迅速冷却。
淬火介质通常选择水、油或空气。
淬火处理是T10钢热处理过程中必不可少的一步,它可以使材料获得高硬度和强度。
3. 回火处理:在淬火处理后进行,加热T10钢到适当的温度(比如150~250℃),保温一段时间(比如1~2小时),然后冷却。
回火处理是为了调整淬火处理后的硬度,使材料获得更好的韧性和韧度。
总的来说,T10钢的热处理工艺是一个复杂的过程,需要精确控制加热温度、冷却速度和保温时间等参数,以获得理想的材料性能。
第三章 钢冷却时的转变
奥氏体化是钢的热处理重要的第一步。
在此基础上,在后续的冷却过程中可以通过控制过冷奥氏体分解,从而获得不同的组织。
钢从奥氏体状态的冷却过程是热处理的关键工序。
在热处理生产中,钢制奥氏体化后通常有两种冷却方式:等温冷却方式和连续冷却方式。
过冷奥氏体——在临界点以下存在且不稳定的、将要发生转变的奥氏体。
第三章钢在冷却时的转变(过冷奥氏体分解)冷却条件的不同,过冷奥氏体可通过不同机制进行转变而获得完全不同的组织。
三种转变:珠光体、贝氏体、马氏体转变(1)珠光体转变:以缓慢速度冷却时,发生分解的过冷度很小,过冷奥氏体在高温下有足够的时间进行扩散分解,转变为近于平衡的珠光体型的组织。
扩散型相变这种冷却速度相当于炉冷或空冷的冷却方式,热处理生产上成为退火或正火。
(2)贝氏体转变——当冷却速度很快时,可以把奥氏体过冷至较低温度,此时碳原子尚可进行扩散,但铁原子不能进行扩散,奥氏体只能转变为贝氏体。
半扩散型相变(3)马氏体转变——当采用更快的冷却速度时,奥氏体迅速过冷至不能进行扩散分解的低温M S点以下,此时只能得到马氏体。
非扩散型相变。
这种冷却方式相当于水冷方式,生产上叫淬火。
过冷奥氏体分解同样是一个点阵重构和碳的扩散过程,也是一个形核和长大的过程。
§3.1 过冷奥氏体等温转变图§3.2 过冷奥氏体连续冷却转变图及应用§3.1 过冷奥氏体等温转变图一、过冷奥氏体等温转变图的建立将奥氏体迅速冷至临界温度以下的一定温度,并在此温度下进行等温,在等温过程中所发生的相变称为过冷奥氏体等温转变。
测定过冷奥氏体等温转变图的方法有金相法、膨胀法、磁性法、热分析法等。
将若干共析碳钢小试样加热到奥氏体状态,保温一定时间后迅速冷却到A1点以下不同温度,例如700℃、650℃、600℃等,随后在各温度下保温,每经过一定时间取出一个试样立即淬入盐水中,使未转变的奥氏体转变为马氏体。
其中马氏体为白色,分解产物为黑色。
钢的热处理及组织转变
二、钢在加热及冷却时的组织转变
② 贝氏体型转变 :
一、钢的热处理
钢的退火:
⑴ 退火的定义 将钢加热到一定温度,保温一定时间,然后缓慢冷却下 来,获得接近平衡状态的组织的热处理工艺,称为退火。 ⑵ 退火的目的
① 降低硬度,提高塑性和韧性;
② 消除残余内应力,减轻变形和防止开裂; ③ 均匀成分,细化晶粒,为最终热处理作准备; ④ 改善或消除铸造、轧制、焊接等加工中的组织缺陷。
降低钢的硬度和耐磨性。
温度过低,在淬火组织中出现铁素体,使淬火组织出现软 点,降低钢的强度和硬度。
一、钢的热处理
钢的淬火:
理想的淬火冷却曲线 应该是:在650~550 0 C范围要快冷,其它 温度区间不需快冷, 尤其在Ms点以下更不 需快冷,以免引起工 作变形或开裂。
一、钢的热处理
钢的淬火:
保持适当时间,缓慢冷却,重新形成均匀的晶粒,以消除
形变强化效应和残余应力的退火工艺。
目的:
温度 再结晶温度
消除加工硬化
提高塑性
改善切削加工性能
时间
一、钢的热处理
钢的正火:
⑴ 定义:将钢加热到 AC3 或 Accm 以上 30~50℃,保温一定
时间,出炉后在空气中冷却的热处理工艺,称为钢的正火。
上贝氏体 (羽毛状)
500
下贝氏体 (针叶状)
二、钢在加热及冷却时的组织转变
② 贝氏体型转变 :
性能上看上贝氏体的脆性较大,无实用价值;而下贝 氏体则是韧性较好的组织,是热处理时(如采用等温淬火) 常要求获得的组织。
原因:上贝氏体中的碳 化物呈较粗的片状,分
布在铁素体板条间,且
不均匀,使板条容易发 生脆废;
获得的球化效果较好,在大件和大批量生产中难以实现,
钢的热处理原理(冷却1)
钢的热处理原理(冷却1)上⼀篇⽂章⾥谈了⼀下对于热处理原理加热保温部分的学习,我们都知道绝⼤部分的零件都是在室温下进⾏⼯作的,所以这⼀篇⽂章我想说说对于冷却部分的学习。
通过对加热保温部分的学习,我们知道了主要是为了得到组织均匀、晶粒细化的奥⽒体,那么在冷却过程中,奥⽒体会发⽣哪些转变呢。
当奥⽒体在转变临界温度以下时,从热⼒学⾓度看,是不稳定的,会发⽣分解,这时的奥⽒体叫做过冷奥⽒体,我们可以通过不同的过冷度使奥⽒体冷却,从⽽得到不同的组织结构。
当过冷奥⽒体在转变临界温度以下较⾼温度缓慢冷却时,由于过冷度⼩,温度较⾼,原⼦扩散充分,可以得到组织均匀的珠光体;当冷却速度较快,奥⽒体在较⼤的过冷度下冷却时,碳原⼦可以扩散,但铁原⼦不能扩散,这时得到的是贝⽒体(相当于炉冷或空冷);当以很快的冷却速度对奥⽒体进⾏冷却,奥⽒体迅速的过冷到不能进⾏扩散的温度以下,得到的是马⽒体(相当于淬⽕)。
我们以共析钢为例,说明⼀下钢在等温条件下的冷却。
钢在冷却时的转变与加热时的转变有相似处,就是转变不是温度低于转变临界温度就马上开始转变,⽽是在经过⼀定时间的孕育后才开始,这段时间称为孕育期。
介绍奥⽒体冷却转变我们引⼊c-曲线图加以说明c-曲线图的横坐标为时间,纵坐标为温度,坐标系中有两条c形曲线,左边的⼀条为转变开始温度时间曲线,是由奥⽒体在转变临界温度下不同温度时的开始转变时间连线⽽成,右边⼀条是由奥⽒体在转变临界温度下不同温度时的转变结束时间连线⽽成,两条曲线间的任意⽔平连线表⽰奥⽒体在该温度时的等温转变时间。
对,我们⾸先要说的就是等温转变。
先继续把这个图的各个区域介绍完,A1⽔平线为转变临界温度727℃,Ms⽔平线为奥⽒体向马⽒体转变开始温度Mf⽔平线为奥⽒体向马⽒体转变结束温度。
处于A1以下,Ms以上,转变开始温度以左的区域为过冷奥⽒体区,这时的合⾦组织为过冷奥⽒体,两条曲线之间为转变区,转变结束曲线以右为转变终了区。
钢的热处理原理 (2)
钢的热处理原理9-1概述一、热处理的作用热处理是将钢在固态下加热到预定温度,并在该温度下保持一段时间,然后以一定的速度冷却下来的一种热加工工艺。
其目的是改变钢的内部组织结构,以改善钢的性能。
通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。
热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省材料和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命,做到一个顶几个、顶几十个。
恰当的热处理工艺可以消除铸、锻、焊等热加工工艺造成的各种缺陷,细化晶粒、消除偏析、降低内应力,使钢的组织和性能更加均匀。
++热处理也是机器零件加工工艺过程中的重要工序。
此外,通过热处理还可以使工件表面具有抗磨损、耐腐蚀等特殊物理化学性能。
二、热处理和相图原则上只有在加热或冷却时发生溶解度显著变化或者发生类似纯铁的同素异构转变,即有固态相变发生的合金才能进行热处理。
纯金属、某些单相合金等不能用热处理强化,只能采用加工硬化的方法。
现以Fe- FeC相图为例进3一步说明钢的固态转变。
共析钢加热至Fe- FeC相3图PSK线(A线)以上全部转1 变为奥氏体;亚、过共析钢则必须加热到GS线(A线)和ES3 线(A线)以上才能获得单相cm 奥氏体。
钢从奥氏体状态缓慢冷却至A线以下,将发生共析转1 变,形成珠光体。
而在通过A3线或A线时,则分别从奥氏体cm中析出过剩相铁素体和渗碳体。
但是铁碳相图反映的是热力学上近于平衡时铁碳合金的组织状态与温度及合金成分之间的关系。
A线、A线和A13cm线是钢在缓慢加热和冷却过程中组织转变的临界点。
实际上,钢进行热处理时其组织转变并不按铁碳相图上所示的平衡温、Ac、Ac;而把冷却时的实际临界温度标以字13cm度进行,通常都有不同程度的滞后现象。
即实际转变温度要偏离平衡的临界温度。
加热或冷母“r”,如Ar、Ar、Ar等。
却速度越快,则滞后现象越严重。
图9-3表示钢加热和冷却速度对碳钢临界温度的影响。
钢的热处理要点
1.3钢的热处理钢的热处理是指将钢在固态下进行加热、保温和冷却,以改变其内部组织,从而获得所需要性能的一种工艺方法。
热处理的目的是提高工件的使用性能和寿命。
还可以作为消除毛坯〔如铸件、锻件等〕中缺陷,改善其工艺性能,为后续工序作组织准备。
钢的热处理种类很多,根据加热和冷却方法不同,大致分类如下:钢在加热时的组织转变在Fe-Fe3C相图中,共析钢加热超过PSK线〔A1〕时,其组织完全转变为奥氏体。
亚共析钢和过共析钢必须加热到GS线〔A3〕和ES线〔Acm〕以上才能全部转变为奥氏体。
相图中的平衡临界点A1、A3、Acm是碳钢在极缓慢地加热或冷却情况下测定的。
但在实际生产中,加热和冷却并不是极其缓慢的。
加热转变在平衡临界点以上进行,冷却转变在平衡临界点以下进行。
加热和冷却速度越大,其偏离平衡临界点也越大。
为了区别于平衡临界点,通常将实际加热时各临界点标为Ac1、Ac3、Accm;实际冷却时各临界点标为Ar1、Ar3、Arcm,任何成分的碳钢加热到相变点Ac1以上都会发生珠光体向奥氏体转变,通常把这种转变过程称为奥氏体化。
1.奥氏体的形成共析钢加热到Ac1以上由珠光体全部转变为奥氏体第一阶段是奥氏体的形核与长大,第二阶段是剩余渗碳体的溶解,第三阶段是奥氏体成分均匀化。
亚共析钢和过共析钢的奥氏体形成过程与共析钢根本相同,不同处在于亚共析钢、过共析钢在Ac1稍上温度时,还分别有铁素体、二次渗碳体未变化。
所以,它们的完全奥氏体化温度应分别为Ac3、Accm以上。
2.奥氏体晶粒的长大及影响因素钢在加热时,奥氏体的晶粒大小直接影响到热处理后钢的性能。
加热时奥氏体晶粒细小,冷却后组织也细小;反之,组织那么粗大。
钢材晶粒细化,既能有效地提高强度,又能明显提高塑性和韧性,这是其它强化方法所不及的。
〔1〕奥氏体晶粒度晶粒度是表示晶粒大小的一种量度。
(2〕、影响奥氏体晶粒度的因素1〕加热温度和保温时间:加热温度高、保温时间长,A晶粒粗大。
08讲 钢在加热、冷却时组织的转变
《机械制造技术基础》教案教学内容:钢在加热和冷却时的组织转变教学方式:结合实际,由浅如深讲解教学目的:1.掌握钢在加热时组织转变——钢的奥氏体化;2.明确过冷奥氏体的等温转变;3.掌握冷奥氏体连续冷却转变。
重点、难点:钢的奥氏体化过冷奥氏体的等温转变冷奥氏体连续冷却转变教学过程:1.3 钢的热处理热处理:采用适当的方式对金属材料或工件进行加热、保温和冷却以获得预期的组织结构与性能的工艺。
热处理的分类:1.整体热处理:对工件整体进行穿透加热的热处理,如退火、正火、淬火、回火等。
2.表面热处理:仅对表面进行热处理的工艺,如火焰淬火、感应淬火等。
3.化学热处理:将工件置于适当的活性介质中加热、保温,使一种或几种元素渗入它的表层,以改变其化学成分、组织和性能的热处理,如渗碳等。
钢的热处理过程包括加热、保温和冷却三个阶段。
其主要工艺参数是加热温度、保温时间和冷却速度。
1.3.1 钢在加热和冷却时的组织转变1.3.1.1钢在加热时组织转变Fe-Fe3C相图相变点A1、A3、A cm是碳钢在极缓慢地加热或冷却情况下测定的。
但在实际生产中,加热和冷却并不是极其缓慢的,因此,钢的实际相变点都会偏离平衡相变点。
即:加热转变相变点在平衡相变点以上,而冷却转变相变点在平衡相变点以下。
通常把实际加热温度标为Ac1、Ac3、Ac cm、Ar1、Ar3、Ar cm。
如图6-1所示。
图6-1 钢在加热、冷却时的相变温度钢加热到Ac1点以上时会发生珠光体向奥氏体的转变,加热到Ac3和Ac cm以上时,便全部转变为奥氏体,这种加热转变过程称为钢的奥氏体化。
1.奥氏体的形成珠光体转变为奥氏体是一个从新结晶的过程。
由于珠光体是铁素体和渗碳体的机械混合物,铁素体与渗碳体的晶包类型不同,含碳量差别很大,转变为奥氏体必须进行晶包的改组和铁碳原子的扩散。
下面以共析钢为例说明奥氏体化大致可分为四个过程,如图4-2所示。
1)奥氏体形核奥氏体的晶核上首先在铁素体和渗碳体的相界面上形成的。
钢的热处理
• 无论是上贝氏体还是下贝氏体,其中的铁素体与 母相奥氏体之间的晶体学位向关系均遵循K-S关 系。上贝氏体中铁素体的惯习面为{111}γ;下贝 氏体中铁素体的惯习面为{225}γ。
片状珠光体的片层间距和珠光体团的示意图
a) 珠光体的片层间距;b) 珠光体团
片状珠光体形核与长大过程示意图 珠光体团直径和片层间距越小,强度、硬度越高,塑性也越好。
根据片层间距的大小,可将片状珠光体细分为以下三类: (1) 珠光体:在A1~650℃范围内形成,层片较粗,片层间 距平均大于0.3μm,在放大400倍以上的光学显微镜下便可分 辨出层片,硬度10~20HRC;
2. 不完全退火
将亚共析钢在 Ac1~Ac3 之间或过共析钢在 Ac1~Accm之间 两相区加热,保温足够时间后缓慢冷却的热处理工艺,称 为不完全退火。 不完全退火的目的是:改善珠光体组织,消除内应力, 降低硬度以便切削加工。 亚共析钢不完全退火的温度一般为740~780℃,其优点 是加热温度低,操作条件好,节省燃料和时间。 3. 球化退火
针片状马氏体的立体形态呈凸透镜状,显微组织常呈片 状或针状。针片状马氏体之间交错成一定角度。最初形成的 马氏体针片往往贯穿整个奥氏体晶粒,较为粗大;后形成的 马氏体针片则逐渐变细、变短。由于针片状马氏体内的亚结 构主要为孪晶,故又称它为孪晶马氏体。
高 碳 马 氏 体 的 形 成 过 程
2、性能特征 高硬度是马氏体的主要特点。马氏体的硬度主要受含碳 量的影响,在含碳量较低时,马氏体硬度随着含碳量的增加 而迅速上升;当含碳量超过0.6%之后,马氏体硬度的变化 趋于平缓。含碳量对马氏体硬度的影响主要是由于过饱和碳 原子与马氏体中的晶体缺陷交互作用引起的固溶强化所造成。 板条马氏体中的位错和针片状马氏体中的孪晶也是强化的重 要因素,尤其是孪晶对针片状马氏体的硬度和强度的贡献更 为显著。 一般认为马氏体的塑性和韧性都很差,实际只有针片状 马氏体是硬而脆的,而板条马氏体则具有较好的强度和韧性。
钢在加热及冷却时的组织转变
2.奥氏体的形成
钢在加热时的组织转变,主要包括奥氏体的形成和晶粒长大两个过程。
物元素(如铌、钒、钛等),会形成难熔的碳化物和氮化物颗粒,弥散分布于奥氏体晶界上,阻碍奥氏体晶粒的长大。
因此,大多数合金钢、本质细晶粒钢加热时奥氏体的晶粒一般较细。
原始组织:钢的原始晶粒越细,热处理加热后的奥氏体的晶粒越细。
二、钢在冷却时的组织转变
冷却方式是决定热处理组织和性能的主要因素。
热处理冷却方式分为等温冷却和连续冷却。
等温转变产物及性能:用等温转变图可分析钢在A
线以下不同温度进行等温转变
1
所获的产物。
根据等温温度不同,其转变产物有珠光体型和贝氏体型两种。
~550℃ ,获片状珠光体型(F+P)组织。
[ 高温转变]:转变温度范围为A
1
依转变温度由高到低,转变产物分别为珠光体、索氏体、托氏体,片层间距由粗到细。
其力学性能与片层间距大小有关,片层间距越小,则塑性变形抗力越大,强度
炉冷V
:比较缓慢,相当于随炉冷却(退火的冷却方式),它分别与C曲线的
1
转变开始和转变终了线相交于1、2点,这两点位于C曲线上部珠光体转变区域,估计它的转变产物为珠光体,硬度170~220HBS。
空冷V
:相当于在空气中冷却(正火的冷却方式),它分别与C曲线的转变开
2
始线和转变终了线相交于3、4点,位于C曲线珠光体转变区域中下部分,故可判断。
钢在冷却时的转变
1/1钢在冷却时的组织转变常识钢进行热处理冷却的目的是获得所需要的组织和性能,这需要通过采用不同冷却方式来实现。
冷却方式不同转变的组织也不同,性能差异较大。
奥氏体冷却至A1以下温度时将发生组织转变(A1温度以下还存在的不稳定奥氏体通常称过冷奥氏体)。
钢的冷却方式分为等温冷却和连续冷却。
等温冷却的组织转变形式1.奥氏体的等温转变对过冷奥氏体(即:奥氏体在A1线以上是稳定相,当冷却到A1线以下还未转变的奥氏体)经过一段时间的等温保持后转变为稳定的新相。
这种转变过程就称为奥氏体的等温转变。
2.等温冷却转变钢经奥氏体化后迅速冷却至临界点Ar1或Ar3)线以下,等温保持时过冷奥氏体发生的转变。
等温冷却的组织转变产物与性能1.A1~550℃也称高温转变,获片状珠光体型(F+P)组织,按转变温度由高到低的顺序,转变产物分别为珠光体、索氏体、托氏体;片层间距由粗到细,趋势是:片层间距越小,塑性变形阻力越大,强度和硬度越高1)A1~650℃获粗片状珠光体金相组织2)650~600℃获细片状索氏体金相组织3)600~550℃获极其细片状的托氏体金相组织2.550℃~M S 也称中温转变,获贝氏体型组织(过饱和的铁素体和碳化物组成,有上贝氏体和下贝氏体之分。
)1)550~350℃获羽毛状上贝氏体金相组织2)550℃~M S获黑色针状下贝氏体金相组织(这种组织强度和韧性都较高)3.M S线温度以下连续冷却时,过冷奥氏体发生转变获得马氏体组织,马氏体内的含碳量决定着马氏体的强度和硬度,总的趋势是随着马氏体含碳量的提高,强度与硬度也随之提高;高碳马氏体硬度高、脆性大,而低碳马氏体具有良好的强度和韧性。
连续冷却的组织转变过冷奥氏体在一个温度范围内,随温度连续下降发生组织转变。
连续冷却有炉冷、空冷、油冷、水冷四种最为常用的连续冷却方式1)炉冷冷速约10℃/min,产生新相为珠光体,如退火的冷却2)空冷冷速约10℃/s,产生新相为索氏体,如正火的冷却3)油冷冷速约150℃/s,产生新相为托氏体+马氏体,如油淬4)水冷冷速约600℃/s,产生新相为残余奥氏体+马氏体,如水淬(残余奥氏体的存在降低了淬火钢的硬度和耐磨性,也会因零件在使用过程中残余奥氏体会继续转变为马氏体,从而使工件变形;一些重要精密的零件通常会通过把淬火后的工件冷却到室温以下并继续冷却到-80~-50℃来减少残余奥氏体含量的存在)。
钢在加热和冷却时的转变
第七章钢在加热和冷却时的转变§7.1 钢的热处理概述一、钢的热处理1.热处理的定义钢的热处理是指在固态下,将钢加热到一定的温度、保温一定的时间,然后按照一定的方式冷却到室温的一种热加工工艺。
具体的热处理工艺过程可用热处理工艺曲线表示(图7.1)。
从该曲线可以看出:热处理过程由加热、保温、冷却三阶段组成,影响热处理的因素是温度和时间。
2.热处理的原理钢能进行热处理,是由于钢在固态下具有相变。
通过固态相变,可以改变钢的组织结构,从而改变钢的性能。
钢中固态相变的规律称为热处理原理,它是制定热处理的加热温度、保温时间和冷却方式等工艺参数的理论基础。
热处理原理包括钢的加热转变、冷却转变和回火转变,在冷却转变中又可分为:珠光体转变、贝氏体转变和马氏体转变。
3.热处理的作用1)热处理通过改变钢的组织结构,不仅可以改善钢的工艺性能,而且可以提高其使用性能,从而充分发挥钢材的潜力。
2)热处理还可以部分消除钢中的某些缺陷,细化晶粒,降低内应力,使组织和性能更加均匀。
4.热处理的分类1)根据加热、冷却方式的不同,热处理可分为:普通热处理,表面热处理和特殊热处理。
普通热处理又包括退火、正火、淬火和回火,俗称四把火。
表面热处理又包括:表面淬火和化学热处理。
特殊热处理又包括形变热处理和真空热处理。
2)根据生产流程,热处理可分为:预备热处理和最终热处理。
前者是指为满足工件在加工过程中的工艺性能要求进行的热处理,主要有退火和正火。
而后者是指工件加工成型后,为满足其使用性能要求进行的热处理,主要有淬火和回火。
5. 热处理的重要性热处理在冶金行业和机械制造行业中占有重要的地位。
常用的冷、热加工工艺只能在一定程度上改变工件的性能,而要大幅度提高工件的工艺性能和使用性能,必须进行热处理。
例如,热轧后的合金钢钢材要进行热处理,汽车中70%——80%的零件也要进行热处理。
如果把预备热处理也包括进去,几乎所有的工件和零件都要进行热处理。
shenlong 第七章钢在加热 和冷却时的转变 上海理工大学材料学院 - 本
本质粗晶粒钢:随加热温 度升高,奥氏体晶粒迅 速长大; 本质细晶粒钢:在930℃ 以下随温度升高,奥氏 本质粗晶粒钢 体晶粒长大速度很缓 慢,当超过某一温度 (950~1000℃ )以后, 本质细晶粒钢也可能迅 本质细晶粒钢 速长大,晶粒尺寸甚至 超过本质粗晶粒钢。
图 奥氏体晶粒长大的倾向与 温度的关系
α
→ C%
图 铁碳相图
Fe3C
§ 2 钢在加热时的转变
一 奥氏体形成的机理 1 奥氏体组织结构和性能
① 定义:C 及合金元素固溶于面心立方结构的 γFe 中形成的固溶体。 C溶于γ相八面体间隙中, R间隙 = 0.535 A ﹤ R c=0.77A →γ晶格畸变,并 非所有晶胞均可溶碳, 1148℃ → 2.5个晶胞溶一个C原子。 ② 性能:顺磁性;比容最小; 塑性好;线膨胀系数较大
W18Cr4V钢热处理工艺曲线
温度/℃
预备热处理
最终热处理
时间
6、临界温度与实际转变 温度
铁碳相图中PSK、GS、ES线分 别用A1、A3、Acm表示. 实际加热或冷却时存在着过冷 或过热现象,因此将钢加热时 的实际转变温度分别用Ac1、Ac3、Accm表示;冷却时的实际转变 温度分别用Ar1、Ar3、Arcm表示。 由于加热冷却速度直接影响转变温度,因此一般手册中的数 据是以30-50℃/h 的速度加热或冷却时测得的.
奥氏体有三种不同概念的晶粒度 (1) 初始晶粒度: 奥氏体转变刚结束时的晶粒大小。 ——通常极细小 (2) 实际晶粒度:
具体加热条件下获得的奥氏体晶粒大小 ①与具体热处理工艺有关: 热处理温度↑,时间↑ ,晶粒长大。 ②与晶粒是否容易长大有关
——— 引入本质晶粒度概念
(3)本质晶粒度 指钢在特定的加热条件下,奥氏体晶粒长 大的倾向性,分为本质粗晶粒度和本质细晶 粒度。 测定方法:根据标准试验方法(YB27-64),在 (930±10)℃保温3~8h后测定的奥氏体晶 粒大小,称为本质晶粒度。 若晶粒度为1-4 级:本质粗晶粒度钢, 5-8 级:本质细晶粒度钢。
钢的热处理
第五章钢的热处理热处理——固态下,通过加热、保温、冷却、改变组织得到所需性能的工艺方法。
•特点:在固态下,只改变工件的组织,不改变形状和尺寸•目的:改善材料的使用、工艺性能•基本过程:加热→保温→冷却•分类:1、普通热处理——退火、正火、淬火、回火2、表面热处理——表面淬火、化学热处理第一节钢在加热时的组织转变实际加热和冷却时的相变点:平衡时—— A1 A3 Acm加热时—— Ac1 Ac3 Accm冷却时—— Ar1 Ar3 Arcm一、奥氏体的形成加热工序的目的:得到奥氏体F + Fe3C → A结构体心复杂面心含碳量 0.0218 6.69 0.77共析钢奥氏体形成过程:1、形核(在 F / Fe3C相界面上形核)2、晶核长大(F→ A晶格重构,Fe3C溶解,C→ A中扩散)3、残余Fe3C溶解4、奥氏体均匀化保温工序的目的:得到成分均匀的奥氏体,消除内应力,促进扩散对亚共析钢: P + F → A + F → A对过共析钢: P + Fe3CⅡ→ A + Fe3CⅡ→ A二、奥氏体晶粒长大及其影响因素1、奥氏体晶粒度•晶粒度——晶粒大小的尺度。
•本质粗晶粒钢——长大倾向较大(Al脱氧)•本质粗晶粒钢——长大倾向较小(Mn,Si脱氧)2、影响奥氏体晶粒长大的因素(1)加热温度↑,保温时间↑→ A晶粒长大快(2)加热速度↑→ A晶粒细(3)加入合金元素→ A晶粒细(4)原始组织细→ A晶粒细第二节钢在冷却时的组织转变冷却方式:等温冷却和连续冷却。
45钢加热后,随冷却速度的增加,强度、硬度增加,但塑性、韧性降低。
冷却是热处理的关键,故必须研究奥氏体冷却过程的变化规律。
一、过冷奥氏体等温转变1、共析钢过冷奥氏体等温转变曲线(C曲线或TTT线)的建立•过冷奥氏体:在A1以下,未发生转变的不稳定奥氏体。
•孕育期——表示过冷A 的稳定程度•四个区域——奥氏体稳定区、过冷奥氏体区、转变产物区、转变区•三种转变类型:高温转变(A1~550℃):A → P中温转变(550~230℃):A → B低温转变(230℃以下):A → M2、过冷奥氏体等温转变产物的组织和性能(1)珠光体转变•珠光体组成:F 和 Fe3C 的机械混合物•形成特点:在固态下形核、长大是扩散型相变•形态:A1~650℃:珠光体 P 20HRc 片状650~600℃:索氏体 S(细P)…600~550℃:托氏体 T(极细P又称屈氏体)40HRc 球状—— Fe3C 呈球状•珠光体性能珠光体片越细→ HB↑,σb↑且δ↑,αk↑C%相同时,球状 P 比片状 P 相界面少→HB↓,σb↓,δ↑,αk↑(2)贝氏体转变•贝氏体组成:过饱和F 和碳化物的机械混合物•形成特点:在固态下形核、长大是半扩散型相变•形态:550~350℃:上贝氏体(B上)羽毛状组织塑性差40-45HRc 350℃~ Ms:下贝氏体(B下)针片状组织综合性能好45-50HRc过冷奥氏体在Ms点以下,A→M属连续冷却转变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为什么呈C字形(存在鼻点)?
过冷奥氏体转变速度取决于转变驱动力和 扩散能力,而△T↑, △G ↑ ,D↓。
在A1~ 550℃区间,随过冷度增大,原子扩散较 快,转变速度较快。
550℃以下,随过冷度增大,原子扩散速度越来 越慢,因而转变速度减慢。
(二)非共析钢的过冷A等温转变曲图
对亚共析钢在发生P转变之前有先共析F析出,因 此亚共析钢的过冷A等温转变曲线在左上角有一条先 共析F析出线,且该线随含碳量增加向右下方移动, 直至消失。
温度 (℃)
800 700 600 500
400 300 200 100
0
共析碳钢 TTT 曲线的分析
稳定的奥氏体区
过 冷 奥 氏
+ 产
A
A向产物 转变终止线
产 物 区
体
物
Hale Waihona Puke 区 A向产区Ms 物转变开始线
Mf
A1 A1~550℃;高温转变区; 扩散型转变;P 转变区。
550~230℃;中温转变 区;半扩散型转变;
基本要求
1.过冷A冷却方式、过冷奥氏体转变动力学图类型 2. 过冷A等温转变动力学图、 (1)共析钢的过冷奥氏体等温转变曲图(C曲线)
分析:线、区,过冷A发生的三种转变(P型转变、 M型转变、B型转变);过冷A等温转变动力学图为 何呈“C”字形 (2)非共析钢的过冷A等温转变动力学图与共析钢 的过冷A等温转变动力学图的异同,合金钢的过冷A 等温转变图类型 (3)影响过冷A等温转变动力学图形状的因素 3. 过冷A连续冷却转变图 (1)共析钢CCT图分析:线、区,不同的冷却速 度下A发生的转变,临界冷却速度; (2)非共析钢CCT图与非共析钢CCT图的异同, (3)过冷奥氏体连续转变动力学图的应用
TTT - Temperature Time Transformation
IT-Isothermal Transformation
1、过冷A等温转变动力学图的基本形式
(一)共析钢的C曲线分析 1.线、区的意义
开线始:线纵,坐转标变为终温了度线,。横坐标为时间,临界点A1线,MS线,Mf线,转变 转区变:A产1物以上区为(稳P 、定AB 区),,过M冷形A成区区,(过A冷→AM等)温转、变M区转(变A产→物P、区A(→MB)或, M+Ar) 孕育期最短的部位,即转变开始线的突出部分,称为鼻子。
两组C曲线部分重迭,但2个鼻子时间基本相同(不 常见),如37CrSi.
第二章 钢的冷却转变
2-1过冷奥氏体恒温转变动力学曲线
冷却方式:
1.等温冷却
把加热到A状态的钢,快速 冷却到低于Ar1某一温度, 等温一段时间,使A发生转 变,然后再冷却到室温。
2.连续冷却
把加热到A状态的钢,以不 同的冷却速度(空冷,随炉 冷,油冷,水冷)连续冷却 到室温。
表45钢经840℃加热后,不同条件冷却后的机械性能
对过共析钢在发生P转变之前有先共析渗碳体析出, 因此过共析钢的过冷A等温转变曲线在左上角有一条 先共析渗碳体析出线,且随含碳量增加向左上方移 动,直至消失。
(三)合金钢的过冷A 等温转变曲线
合金钢的过冷A 等温转变曲线由于受碳和合 金元素的影响,图形比较复杂。
常见的C曲线有四种形状: (a) 表示A→P和A→B转变线重叠; (b) 表示转变终了线出现的二个鼻子; (c) 表示转变终了线分开,珠光体转变的鼻尖离
系曲线。
共析碳钢 TTT 曲线建立过程示意图(1)
温度
(℃)
800
A1
700
600
500
400 300 200 100
0
-100 0
1
10
102
103
104 时间(s)
共析碳钢 TTT 曲线建立过程示意图(2)
二 过冷奥氏体恒温转变产物动力学曲线及特点
过冷奥氏体等温转变动力学图(TTT图)
过冷奥氏体等温转变曲线 又称TTT图、IT图或C曲线。 综合反映了过冷奥氏体在 冷却时的等温转变温度、 等温时间和转变量之间的 关系(即反映了过冷奥氏 体在不同的过冷度下等温 转变的转变开始时间、转 变终了时间、转变产物类 型、转变量与等温温度、 等温时间的关系)。
贝氏体( B ) 转变区;
230~ - 50℃;低温转 变区;非扩散型转变; 马氏体 ( M ) 转变区。
-100 0
1
10
102
103
104 时间(s)
2. 转变产物依等温温度不同,大体可分为三个温度区(转变类型):
A(→1)P. ;P型扩转散变型:相高变温区(临界点A1~550℃)、过冷度小,P型组织转变区,
冷却方法
σb,MN/m 2
σs,MN/m 2
δ,%
ψ,%
HRC
随炉冷却 530
280
空气冷却 670~720 340
油中冷却 900
620
水中冷却 1100
720
32.5 15~18 18~20 7~8
49.3 45~50
48 12~14
15~18 18~24 45~60 52~6
一过冷奥氏体恒温转变动力学曲线的建立
纵轴远;
(d) 表示形成了二组独立的C曲线。 综上所述,C曲图为珠光体等温转变、马氏体 连续转变、贝氏体等温转变的综合。需指出的是 珠光体转变和贝氏体转变可能重叠得到珠光体加 贝氏体混合组织。贝氏体转变与M转变也会叠。
三、TTT曲线的类型
第一种:两组C曲线完全重迭,如亚共析碳钢、含 非碳化物形成元素Ni、Cu、Si、<1.5%Mn的合金钢
(2).M型转变:低温区( A→M;非扩散型相变
在MS
以下)、过
冷度大,发生M
转变的区域
,
散(3型).相B型变转变:中温区(550℃~MS),发生B转变的区域,A→B。半扩
需要指出的是,在中部区域P转变区和B转变区可能重叠,得到P和B的混 合组织;在下部区域M转变和B转变可能重叠,得到M和B的混合组织;
过冷奥氏体恒温转变动力学曲线:在各种过冷度下,过冷 奥氏体向其他组织转变的转变量与恒温保温时间的关系曲
线。(TTT)(C曲线) TTT-Temperature Time Transformation
方法:金相-硬度法、膨胀法、磁性法、热分析法等。 步骤: (1)选择一系列试样,将试样加热奥氏体化; (2)将试样在A1点下不同温度保温不同时间; (3)淬水冷却,以保留,固定转变产物; (4)确定各温度、时间下转变产物及转变量; (5)建立转变温度,转变时间与转变产物、转变量的关