生理学细胞生物电现象

合集下载

执业医师生理学辅导:有关细胞生物电现象

执业医师生理学辅导:有关细胞生物电现象

细胞的⽣物电现象即膜电位,是讲存在于细胞膜两侧的电位差。

注意:是对细胞膜内外两侧电位的⽐较,⽽不是讲的“细胞膜上”的电位。

因为,实验中发现:细胞膜表⾯任何两点间并不存在有电位差。

若将微电极插⼊细胞内,⽤“细胞内测量法”进⾏测量,发现:细胞在未受到刺激的静息状态下,膜内电位低于膜外,呈内负外正的状态(⼜称极化),此时存在于膜两侧的电位差即为“静息电位(RP)”。

它主要与细胞膜对K+有⼀定的通透性,K+顺浓度差外流,⽽膜内带负电荷的⼤分⼦不能外流,从⽽打破了膜内外电中性状态,亦即RP主要是与K+外流⽽达平衡电位有关。

当细胞受到阈或阈上刺激时,细胞膜对Na+通透性增⼤,Na+顺浓度差经通道内流,膜内电位升⾼(指实际情况,⽽⾮指绝对值⼤⼩),当达阈电位时,引发Na+内流⼤量增加,导致膜内电位迅速升⾼,且超过膜外电位近30mv(超射),此为去极化过程;继⽽K+通透性增⼤,K+⼤量外流,膜内电位迅速下降直⾄原先RP的⽔平,是为复极化过程。

这种在刺激作⽤下,在RP基础上发⽣的膜两侧电位的迅速、可逆的倒转,称为“动作电位(AP)”。

AP包括去极化和复极化两个阶段,对应于图像上的上升⽀与下降⽀。

AP有两个特点:可扩布性和“全或⽆”现象。

以上是以神经细胞、⾻骼肌细胞为例讨论的。

可知,膜电位包括RP和AP两种,它们与离⼦跨膜转运有关,这种转运⼜取决于通道膜蛋⽩的状态。

通道具有⼀定的特异性,其备⽤、开放、关闭状态⼜有其化学依从性及电压依从性。

细胞膜上离⼦泵的活动,使Na+外流及K+内流(逆浓度差进⾏),有助于恢复膜内外离⼦的正常分布。

不同细胞其RP、AP的具体情况不⼀。

⽐如⼼室肌细胞的AP分为0、1、2、3、4五个时相。

各期分别与Na+内流、K+外流、K+外流与Ca++内流、K+外流及离⼦泵活动有关。

窦房结细胞、浦肯野⽒细胞等⾃律细胞,则在复极⾄第4期舒张电位后,⼜逐步缓慢地⾃动去极化,因⽽它们没有RP。

因为窦房结细胞膜在第4期存在着恒定的Ca++内流的背景电流,以及随时间⽽递减的K+外流,从⽽膜内电位逐步升⾼,当达阈电位则产⽣AP。

细胞的生物电现象

细胞的生物电现象

细胞的生物电现象细胞的生物电现象概述:生物电现象是指生物体内各种细胞所产生的电现象。

细胞的电现象包括静电现象和动电现象。

静电现象是指细胞膜内外的电位差异,而动电现象是指细胞的离子流动和膜电位的变化。

一、细胞的静电现象细胞的静电现象是指细胞膜内外电位的差异,通常称为细胞膜电位。

细胞膜电位是细胞的基本电现象之一,它的起源主要为静息电位和动作电位。

静息电位是细胞在静态状态下所表现出的电位。

在静息电位下,细胞的内部电位为负,外部电位为正。

细胞膜上的离子通道在细胞静态状态下始终处于开放状态,这使得静息电位维持不变。

动作电位是细胞在受到刺激时所表现出的电位。

在动作电位下,细胞内部电位由负变正,外部电位由正变负。

这种变化主要源于细胞膜上钠离子通道的快速开启和关闭,以及钾离子通道的慢速开启和关闭。

二、细胞的动电现象细胞的动电现象是指离子在细胞内外之间的流动和膜电位的变化。

细胞膜上的离子通道对细胞的动电现象起着重要的调控作用。

主要的离子通道包括钠通道、钾通道和钙通道。

在细胞受刺激时,钠通道迅速开启,随后钾通道开启,同时钠通道关闭。

这使得细胞内部电位迅速升高,形成动作电位。

随着钾离子的流出,细胞内部电位逐渐降低到静息电位。

钙通道参与了很多细胞的生物学过程,如细胞分裂、囊泡的释放和细胞增殖等。

钙离子的流动能够改变细胞内的信号转导和细胞内的酶活性,从而调节细胞的代谢和功能。

总结:细胞的生物电现象被广泛地应用于药物研究、细胞生物学研究和神经科学研究等方面。

通过对细胞的电现象进行研究,人们可以更好地理解细胞的生物学特性和生理学特性,从而开发新的药物、诊断工具和治疗方法。

动物生理学 第三节 细胞的生物电现象1

动物生理学 第三节 细胞的生物电现象1


可兴奋细胞的兴奋性变化

绝对不应期 在兴奋发生的当时以及兴 奋后最初的一段时间,无论施 加多强的刺激都不能使细胞再 次兴奋,这段时期称为…

相对不应期
在绝对不应期之后,细胞的 兴奋性逐渐恢复,受刺激后可发 生兴奋,但刺激强度必须大于原 来的阈强度,这段时期称为…


可兴奋细胞的兴奋性变化
超常期 相对不应期过后,有的细胞 还会出现一个兴奋性轻度高于正 常水平的时期,这段时期称为…
4. 可兴奋细胞及其兴奋性
受刺激后能产生动作电位的细胞,称为可兴奋细胞(excitable cell),
主要包括神经细胞、肌细胞和腺细胞。神经细胞产生的动作电位能沿着细 胞膜传播,从而实现神经冲动的传导;肌细胞兴奋后,可以通过兴奋-收 缩偶联(excitation-contraction coupling)而发生收缩;腺细胞兴奋后,可以 通过兴奋-分泌偶联(excitation-secretion动作电位的传播
无 髓和 神肌 经细 纤胞 维
(4)动作电位的传播
有髓神经纤维
3.电紧张电位和局部反应

电紧张电位(自学) 局部反应 local response
当给予细胞一个阈下刺激时,可能在受刺激的局部细胞膜产 生一个幅度较小的去极化,但尚不能达到阈电位,因而不能触发 动作电位。这种产生于膜的局部、较小的去极化反应称为… 局部反应没有不应期,虽然一次阈下刺激引起的一个局部反 应不能引发动作电位,但如果在同一部位连续给予多个刺激,形 成的多个局部反应会在时间上相叠加,即发生时间总和,或者如 果在相邻部位同时给予多个刺激,形成的多个局部反应会在空间 上相叠加,即发生空间总和,都有可能导致膜去极化到阈电位, 从而爆发动作电位。

医学基础知识重要考点:细胞的生物电现象-生理学

医学基础知识重要考点:细胞的生物电现象-生理学

医学基础知识重要考点:细胞的生物电现象-生理学生理学属于医学基础知识需要掌握的内容,中公卫生人才招聘考试网帮助大家梳理知识-细胞的生物电现象。

1.静息电位的概念:静息电位是指细胞处于安静状态(未受刺激)时,存在于细胞膜内外两侧的电位差,又称跨膜静息电位。

2.静息电位产生机制:细胞膜两侧带电离子的分布和运动是细胞生物电产生的基础。

静息电位也不例外。

1)产生的条件:①细胞内的K+的浓度高于细胞外近30倍。

②在静息状态下,细胞膜对K+的通透性大,对其他离子通透性很小。

2)产生的过程:K+顺浓度差向膜外扩散,膜内C1-因不能透过细胞膜被阻止在膜内。

致使膜外正电荷增多,电位变正,膜内负电荷相对增多,电位变负,这样膜内外便形成一个电位差。

当促使K+外流的浓度差和阻止K+外流的电位差这两种拮抗力量达到平衡时,使膜内外的电位差保持一个稳定状态,即静息电位。

这就是说,细胞内外K+的不均匀分布和安静状态下细胞膜主要对K+有通透性,是使细胞能保持内负外正的极化状态的基础,所以静息电位又称为K+的平衡电位。

3.动作电位的概念:指可兴奋细胞受到刺激时,在静息电位的基础上爆发的一次膜两侧电位的快速可逆的倒转,并可以扩布的电位变化。

4.动作电位的产生机制1)产生的条件:①细胞内外存在着Na+的浓度差,Na+在细胞外的浓度是细胞内的13倍之多。

②当细胞受到一定刺激时,膜对Na+的通透性增加。

2)产生的过程:细胞外的Na+顺浓度梯度流人细胞内→当膜内负电位减小到阈电位时→Na+通道全部开放→Na+顺浓度梯度瞬间大量内流,细胞内正电荷增加→膜内负电位从减小到消失进而出现膜内正电位→膜内正电位增大到足以对抗由浓度差所致的Na+内流→跨膜离子移动和膜两侧电位达到一个新的平衡点,形成锋电位的上升支,该过程主要是Na+内流形成的平衡电位,故称Na+平衡电位。

在去极化的过程中,Na+通道失活而关闭,K+通道被激活而开放,Na+内流停止,膜对K+的通透性增加,K+借助于浓度差和电位差快速外流,使膜内电位迅速下降(负值迅速上升),直至恢复到静息值,由+30mV降至—90mV,形成动作电位的下降支(复极相)。

细胞的生物电现象

细胞的生物电现象
• 动作电位(action potential,AP)是指可兴 奋细胞在受到有效刺激后,在静息电位的 基础上,细胞膜产生的一次快速的可传播 的电位变化。
• 动作电位和静息电位不同,是一个电位连 续变化的过程,动作电位是细胞兴奋的标
(二)动作电位的 形成过程
• 在给神经纤维一 次有效的刺激后, 示波器上会显示 出一个动作电位 的波形,即在受 刺激局部的细胞 膜上产生了一次 快速的,连续的 电位变化。该电 位变化主要由两 部分构成:锋电 位和后电位。
• 当促使Na+内流的浓度差和阻止Na+内流的电位差,这两种拮抗力量相 等时,Na+的净内流停止,此时膜电位达到峰值。
• 因此,可以说动作电位的峰值相当于Na+内流所形成的电-化学平衡电 位。
2.复极化过程 • 当膜电位达到峰值时,细胞膜的Na+通道迅速关闭,而K+通道开放,于
是细胞内的K+顺浓度差向细胞外扩散,导致膜内负电位增大,直至恢复 到静息时的数值。
第三节 细胞的生物电现象
• 在生命活动的过程中,细胞始终存在着电, 我们把这种电现象称为生物电现象。
• 生物电是一切活细胞存在的基本生命现象, 也是生理学重要的基础理论。它主要包括静 息电位和动作电位两部分
一、静息电位及其产生机制
(一)静息电位的概念
• 静息电位(resting potential,RP)是指细胞 处于静息状态下,细胞膜两侧存在的电位 差。它是一切生物电产生或变化的基础。
• 静息电位的大小,主要由细胞内外K+的浓度决定。
– 通常,细胞内的K+浓度变动很小,因此造成细胞内外K+浓度差改变 的主要是细胞外的K+浓度。如细胞外K+增高,会使细胞内外K+浓度 差减小,从而使K+外流的动力减小,K+外流减少,最终导致静息电 位减小。

《细胞生理学》细胞的生物电现象

《细胞生理学》细胞的生物电现象

4.反应及两种形式(兴奋和抑制)
5.阈强度:固定刺激时间及强度时间变率,
刚能引起组织产生反应的刺激强度。简称阈值。
阈值大则兴奋性低,反之亦然 阈上刺激 阈下刺激 阈刺激
(三)细胞兴奋后兴奋性的周期性变化
绝对不应期 相对不应期 超常期 低常
期正常 (图)
生物电记录方法(图)
二、静息电位 RP
概念:指细胞在静息状态时,细胞膜两侧 的电位差。(图) 极性:内负外正,大小用负值表示
大小:神经元:-90mv
几个概念:
极化:静息时,膜两侧的内负外正状态
超极化:膜内电位向负值变大的方向变

去极化:膜内电位向负值减小的方向变

复极化:由去极化或超极化向RP值恢复
局部兴奋(图) பைடு நூலகம்点(图) (1)电位幅度小,呈衰减性传导 (2)等级性,非 “全或无”式 (3)可以总和: 时间总和 空间总和
(三)动作电位的传导:局部电流学说 AP在同一细胞上是以局部电流的形式传导的 局部电流:已兴奋膜与未兴奋膜之间存在 电位差,而发生的电荷移动。 神经纤维AP的传导:神经冲动 (1)无髓神经纤维AP的传导(图) (2)有髓神经纤维AP的传导 在两个相邻的郎飞结间呈跳跃式传导 传导速度快,节能。 影响传导速度的因素: 轴突直径 是否有髓鞘
AP的产生实质上是受刺激后Na+ 、 K+通道 状态改变导致膜对Na+ 、 K+通透性(电导) 改变的结果。 (图) K+通道:是电压依赖式离子通道,有开、关 两种状态 阻断剂:四乙基胺、四氨基吡啶 Na+ 通道:是电压及时间依赖式离子通道,有 开、关、失活三种状态(图) 阻断剂: 河豚毒素、局麻药 后电位 后去极化:快速K+外流堆积,复极化减慢 后超极化:钾通道开放时间长,过多钾外流

细胞—细胞的生物电现象(人体解剖生理学)

细胞—细胞的生物电现象(人体解剖生理学)

(三)动作电位的产生条件:
1.阈电位(TP): 概念:指能触发动作电位的膜电位临界值。 阈电位一般比静息电位的绝对值小10-20mV。而由静息
电位去极化达到阈电位是产生动作电位的必要条件。
细胞兴奋性的高低与细胞的静息电位和阈电位的距离呈 反变关系。
2. 局部兴奋
概念: 指由阈下刺
激引发产生于 膜的局部,较 小的去极化反 应称局部兴奋。 产生的电位称 局部电位。
1.上升支:Na+平衡电位。 既Na+内流所形成的电-化学平衡电位。
2. 下降支:Na+平衡电位转变 为K+平衡电位,主要由细胞内 K+外流而产生。 3.复极后:钠泵激活,使细胞 膜内外的离子分布恢复到安静 时的水平。 膜内Na+↑或膜外K+↑→钠泵 激活→排出Na+、摄入K+
结论 : AP 上升支:由Na+内流形成的平衡电位。 下降支:是K+外 流形成的平衡电位。 (后电位与Na+-K+泵活动有关。)
特点:• ①不具有“全或无”现象。 ②衰减性传导 ③具有总和效应
时间性总和 空间性总和
(四)兴奋在同一细胞上的传导
1.概念:动作电位在同一细胞上的传播过程。在神经纤维传导 的动作电位称神经冲动。 2.传导机制:局部电流学说
3.传导方式: 无髓鞘N纤维的兴奋传导为近距离局部电流; 有髓鞘N纤维的兴奋传导为远距离局部电流(跳跃式)。
实验现象
刺激 2.动作电位的演变过程
局部电位

阈电位

去极化

去极化


零电位

反极化(超射) 下

复极化

(负、正)后电位
复极化 阈电位

细胞膜的基本功能—细胞的生物电活动(生理学课件)

细胞膜的基本功能—细胞的生物电活动(生理学课件)

§静息电位的产生条件 ①静息状态下细胞膜内、外离子分布不均:
细胞膜外的主要是Na+、Cl细胞膜内的主要是K+、 A②静息状态下细胞膜对各种离子的通透性不同: 通透性:K+ > Cl- > Na+ > A-
静息状态下细胞膜主要对K+有通透性。
膜内:
膜外:
静息状态下细胞膜主要对K+有通透性:
促使K+外流的动力:膜两侧[K+]的浓度差, 阻止K+外流的阻力:膜两侧的电位差
反极化(超射): 细胞膜由外正内负的极化状态变为内正外负的 极性反转过程。
复极化: 去极化后再向极化状态恢复的过程。
超极化: RP的绝对值增大(例如由-70 → -90mV)
(二)动作电位的产生机制
(1)动作电位产生的条件 ①膜内外存在[Na+]的浓度差:
[Na+]i<[Na+]O ≈ 1∶10; 即细胞膜外Na+浓度比细胞膜内高10倍左右。 ②膜受到刺激时,对Na+的通透性突然增加:
离子浓度
(mmol/L)
膜内 膜外
膜内与膜 外离子比 例
膜对离 透性
Na+ K+ ClA-
14 155 8 60
142 5 110 15
1:10 31:1 1:14 4:1
通透性 通透性
通透性 无通透
细胞膜对各种离子的通透性不同:
安静时:K+ > Cl- > Na+ > A-
兴奋时:膜对Na+的通透性突然增大
(3)特点:没有“全或无”的现象、衰减性传导、可以 总和。
一、 静息电位:(RP)
(一)静息电位概念 静息电位:

细胞的生物电现象

细胞的生物电现象
第二章 细胞的基本功能
天津中医学院基础医学院生理教研室
E-mail : zhou4715@
第二章 细胞的基本功能
第一节 细胞跨膜物质转运
第二节 细胞跨膜信号转导功能 第三节 细胞生物电现象
第四节 肌细胞的收缩功能
基本要求
掌握: 1、细胞静息电位和动作电位的产生原理 2、动作电位的引起及兴奋在同一细胞上的传导机制

超极化(hyperpolarization):增加、加强
静息电位增大的过程
(二)动作电位( Na+的平衡电位)
1、概念:细胞受刺激后,膜两侧电位发生的一次快速倒转和复 原,动作电位是细胞产生兴奋的标志。 2、组成:锋电位(spike)与后电位
锋电位 后电位
上升支:去极相
下降支:复极相
负后电位 正后电位
2)局部兴奋

概念:细胞受到阈下刺激时,只能在受刺激的局部 出现一个较小的去极化过程,也称局部电位

特点: 受刺激后去极化未达到阈电位水平 不是“全或无”,呈现等级性 可以总合 不是“不衰减性传导”,呈现电紧张性扩布
多个阈下刺激在同 一部位连续给予
多个阈下刺激在相 邻部位同时给予
兴奋性: (Excitability)

活细胞、组织或有机体接受刺激发生反应的能力 可兴奋细胞在受刺激时产生动作电位的能力

可兴奋组织 : 神经、肌肉和腺体 反应 : 兴奋或抑制

兴奋:可兴奋细胞在受刺激时产生动作电位的过程, 兴奋产生的标志就是爆发了一次动作电位
3、刺激(stimulus)


定义:引起机体发生反应的内、外环境的变化
复习思考题
基本概念:

细胞的生物电现象讲解

细胞的生物电现象讲解

原刺激的Na+通道开放正反馈过程。
局部反应及其特性
阈下刺激虽然不能使膜电位达到阈电位,但可引起 少量Na+通道开放,使膜电位发生程度较低的去极化, 这种情况称为局部反应,此时的升高的膜电位称为局 部电位或电紧张电位,又称为电紧张扩布 (electrotonic propagation)。 局部反应的特征: 1. 呈等级性,不是全或无 2. 不能在膜上作远距离传播 3. 可以相互叠加:空间性总和,时间性总和
位是由于膜外蓄积较多的K+所致。
神经干动作电位的记录
神经干动作电位是神经干内许多神经纤维动作电位的 复合 双向和单向动作电位 记录电极:可分为单极记录和双极记录 单极记录:一极接地,一极接触神经干。记录到的电 信号反映电极接触部位与大地的电位差。 双极记录:两极都与神经干接触,记录到的电信号反 映两电极接触部位的电位差。
静息电位产生原理示意图
+ + – – + + + – + + + + + + + + + + – + + + + + + + + + + – + + + + + K + + + + + + + + + ++ + + – + + + + + + + + + – – + + + – – + + + –
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不能外流而留在膜内侧,形成内负外正的跨膜电位差; (2)外流的K+在细胞膜外侧建立起正电场,阻碍K+外流; (3)当促使K+外流的化学驱动力与阻碍K+外流的电场驱动力相
等时, K+跨膜净通量为零,形成稳定的K+-平衡电位(即静 息电位)(可由Nernst公式计算出)。
相关链接: 离子的电-化学平衡电位
或特性。 可兴奋细胞(组织)——受刺激后能爆发动作电位的组织细胞,包
括神经细胞、肌细胞和(一些)腺细胞。
五、组织的兴奋和兴奋性
(二)细胞兴奋过程兴奋性的变化 绝对不应期→相对不应期→超常期→低常期→完全恢复正常。
*绝对不应期(absolute refractory period, ARP) *定义:兴奋性消失或极低,无论受多强刺激,都不能使细胞兴奋。 *产生机制:大多数Na通道处于失活状态。 *意义:绝对不应期大致相当于锋电位发生的时间;使两次锋电 位不会叠加而分离。
*其中锋电位是动作电位的主要部分。
★(单一细胞)动作电位的特征:
(1)“全或无 (all or none) ”特性:动作电位要就不一点发生, 一旦发生即最大幅值。 如:阈下刺激时,AP一点也不产生; 阈(上)刺激时,AP产生,一产生即达最大幅值。
(2)不衰减传导性:AP一旦产生及迅速传播至整个细胞,动作 电位的幅度不会随传导距离增大而衰减。
刺激)时存在于细胞膜两侧的电位差。 细胞静息电位的特征: (1)(动物细胞的静息电位)内负外正; (2)为一稳定的直流电位。
相关链接: 膜电位的记录
直流电位
与膜电位变化相关的生理学术语
(1)极化(polarization)状态 ——细胞静息时细胞膜两侧电荷的分极(内负外正)状态。 (2)去极化 (除极化) (de-) ——膜电位向减小方向变化。 (3)反极化(reverse-) ——膜电位变为内正外负状态。 (4)超极化(hyper-) ——在静息电位基础上,膜电位向增大方向变化。 (5)复极化(re-): ——膜电位发生去极化后,再向静息电位恢复的过程。
(二)静息电位的产生机制 (离子学说)
1.相关基础: (1)细胞膜两侧离子的分布不均(细胞内K+浓度高于细胞外,
细胞外Na+ 浓度高于细胞内)。 (2)细胞膜上钾通道开放,细胞膜对K+具通透性。
相关链接: 细胞内外的主要离子浓度
(二)静息电位的产生机制 (离子学说)
2.静息电位产生的主要机制: (1) K+外流: K+顺浓度梯度经钾通道外流,细胞内有机负离子
动作电位与局部兴奋的主要区别
动作电位
局部兴奋
所受刺激
阈或阈上刺激
阈下刺激
膜去极化程度 达阈电位
不达阈电位
与刺激强度关系 全或无
正比
传播范围
不衰减性, 可远距传导 衰减性扩布局部膜
可否叠加总和 否,总保持分离
可空间/时间总和
五、组织的兴奋和兴奋性
(一)兴奋性和可兴奋组织 兴奋性——可兴奋细胞对刺激发生兴奋 (即产生动作电位)的能力
(3)具有不应期:此期内不会发生新的动作电位,因此动作电 位总是保持彼此分离而不融合。
相关链接: 绝对不应期
(二)动作电位的产生机制
1. 锋电位产生的主要机制 (1)上升支: 细胞膜对Na+通透性(钠电导) 增大,Na+迅速内
流,接近Na+平衡电位值。 相关基础:细胞静息时,Na+具有很强的内向驱动力。 ① 细胞膜两侧Na+的浓度梯度(细胞外K+浓度高于胞质); ② 静息电位时,膜外正电场驱使Na+内流。
细胞静息时的跨膜离子流: ① K+外流(主要离子流):增大电位差; ② 少量的Na+内流(明显小于K+外流): 减小电位差(去极化); ③钠泵的活动: 生电性作用,增大电位差(超极化)。
影响静息电位水平的因素: ① 膜两侧的[K+]差值及由此形成的电化学驱动力 ② 膜对K+和Na+相对通透性; ③ 钠泵的生电性作用增强。

二、动作电位及其产生机制
(一)细胞的动作电位
动作电位(Action Potential, AP)——可兴奋细胞受阈(阈上)刺激 后,在静息电位基础上产生的短暂的、可扩布的膜电位波动。
动作电位是细胞兴奋的过程和标志。
动作电位的过程:
上升支(去极相)
锋电位
动作电位
下降支(复极相)
后电位(包括负后电位和正后电位)
三、阈下刺激与局部兴奋(local excitation)
局部兴奋——阈下刺激引起受刺激局部膜的不达阈电位的微弱 去极化。
局部兴奋的特性: (具电紧张电位的特征) (1)刺激依赖性:非“全或无”,随阈下刺激的增强而增大; (2)电紧张性扩布:仅衰减性波及局部膜; (3)可总和:发生空间总和或时间总和。
阈电位(threshold potential)——能诱发膜去极化和钠通 道开放之间出现再生性循环,导致Na+大量迅速内流而爆发 AP的膜电位临界值。
(三)动作电位的传导
*细胞任一部位膜产生的AP,都将沿细胞膜不衰减地传导至整 个细胞。传导机制为“局部电流(local current)”。
*兴奋传导过程:已兴奋部位膜与未兴奋部位膜之间出现电 位差,引起电荷流动而形成局部电流, 结果造成未兴奋段膜去 极化,当膜去极化达到阈电位水平时,大量激活该处的钠通 道而导致动作电位爆发。这样的过程在膜表面连续进行下去, 导致兴奋在整个细胞的传导。
第三节 细胞的生物电现象
本节学习要求 1.掌握静息电位; 2.掌握动作电位的概念、过程、特性及基本产生机制, 了解膜电导,熟悉动作电位的传导; 3.熟悉局部兴奋(局部电位); 4.熟悉细胞兴奋过程兴奋性的变化。
一、静息电位及其产生机制
(一)细胞的静息电位 静息电位 (Resting Potential,RP)——细胞静息(未受
(2)下降支: K+快速外流, Na+内流停止。 钠通道具有时间依赖性,开放瞬间后即失活关闭; 因去极化而使膜电位变为内正外负,阻碍K+外流的力量
减小,K+外流增强。
相关链接: 细胞内外的主要离子浓度
2.动作电位的产生过程
当刺激强度等于或大于阈强度时,引起细胞膜去极化 达阈电位水平,此时细胞膜上较多钠通道开放,较多Na+内 流,大于同时发生的K+外流而膜去极化,膜的去极化能进 一步加大膜中Na+通道开放的概率,结果使更多Na+通道开 放,更多Na+内流而造成膜进一步去极化,如此反复促进, 出现一个使膜上钠通道开放、Na+快速内流与膜去极化之间 的正反馈过程(Na+内流的再生性循环),直至接近Na+平衡 电位,形成动作电位的上升支。
相关文档
最新文档