北京市怀柔区中考数学二模试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市怀柔区中考数学二模试卷
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一
个是符合题意的.
1.(3分)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()
A.﹣4B.﹣2C.0D.4
2.(3分)2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13100000人,创历史新高,将数字13100000用科学记数法表示为()
A.13.1×106B.1.31×107C.1.31×108D.0.131×108 3.(3分)正八边形的内角和等于()
A.720°B.1080°C.1440°D.1880°
4.(3分)下列各式计算正确的是()
A.a2+2a3=3a5B.(a2)3=a5C.a6÷a2=a3D.a•a2=a3 5.(3分)以下问题,不适合用普查方法的是()
A.了解某种酸奶中钙的含量
B.了解某班学生的课外作业时间
C.公司招聘职员,对应聘人员的面试
D.旅客上飞机前的安检
6.(3分)一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外其余都相同,从口袋中随机摸一个球,则摸到红球的概率为()A.B.C.D.
7.(3分)如图所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()
A.15m B.25m C.30m D.20m
8.(3分)在四边形ABCD中,AB∥DC,AD∥BC,如果添加一个条件,即可推出该四边形是矩形,那么这个条件可以是()
A.∠D=90°B.OH=4C.AD=BC D.Rt△AHB 9.(3分)一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1B.m=1C.m<1D.m≤1
10.(3分)小丽早上从家出发骑车去上学,途中想起忘了带昨天晚上完成的数学作业,于是打电话让妈妈马上从家里送来,同时小丽也往回骑,遇到妈妈后停下说了几句话,接着继续骑车去学校.设小丽从家出发后所用时间为t,小丽与学校的距离为S.下面能反映S与t的函数关系的大致图象是()
A.B.
C.D.
二、填空题(本题共18分,每小题3分)
11.(3分)如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有性.
12.(3分)因式分解:x3﹣9x=.
13.(3分)矩形、菱形、正方形都是特殊的四边形,它们具有很多共性,
如:.(填一条即可)
14.(3分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为.
15.(3分)观察下列一组坐标:
(a,b),(a,c),(b,c),(b,a),(c,a),(c,b),(a,b),(a,c)…,它们是按一定规律排列的,那么第9个坐标是,第2015个坐标是.
16.(3分)已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为.
三、解答题(本题共30分,每小题5分)
17.(5分)如图,点C,D在线段BF上,AB∥DE,AB=DF,BC=DE.求证:AC=FE.
18.(5分)计算:.
19.(5分)解不等式组:.
20.(5分)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.
21.(5分)列方程或方程组解应用题:
周末小明和爸爸准备一起去商场购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商场都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价30元,茶杯每只定价5元,且两家都有优惠.甲商场买一送一大酬宾(买一
把茶壶送一只茶杯);乙商场全场九折优惠.小明的爸爸需茶壶5把,茶杯若干只(不少于5只).当去两家商场付款一样时,求需要购买茶杯的数量.22.(5分)大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:
(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);
(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?
四、解答题(本题共20分,每小题5分)
23.(5分)如图,P为等腰△ABC的顶角A的外角平分线上任一点,连接PB,PC.
(1)求证:PB+PC>2AB.
(2)当PC=2,PB=,∠ACP=45°时,求AB的长.
24.(5分)课外阅读是提高学生素养的重要途径.某校为了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间t(小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:
50名学生平均每天课外阅读时间统计表
类时间t(小人数
别时)
A t<0.510
B0.5≤t<120
C1≤t<1.515
D t≥1.5a
(1)本次调查的样本容量为;
(2)求表格中的a的值,并在图中补全条形统计图;
(3)该校现有1200名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?
25.(5分)已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于点D,DE⊥CB的延长线于点E.
(1)求证:DE为⊙O的切线;
(2)若∠A=30°,BE=3,分别求线段DE和的长.
26.(5分)阅读下面材料:小强遇到这样一个问题:
试作一个直角△ABC,使∠C=90°,AB=7,AC+BC=9.
小强是这样思考的:如图1,假定直角△ABC已作出,延长AC到点D,使CD =CB,则AD=9,∠D=45°,因此可先作出一个辅助△ABD,再作BD的
垂直平分线分别交AD于点C,BD于点E,连接BC,所得的△ABC即为所作三角形.具体做法小强是利用图2中1×1正方形网格,通过尺规作图完成的.
(1)请回答:图2中线段AB等于线段.
(2)参考小强的方法,解决问题:请在图3的菱形网格中(菱形最小内角为α,边长为a),画出一个△ABC,使∠C=α,AB=6b,AC+BC=8b.(在图中标明字母,不写作法,保留作图痕迹).
五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)已知:抛物线y=x2+bx+c经过点(2,﹣3)和(4,5).
(1)求抛物线的表达式及顶点坐标;
(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;
(3)在(2)的条件下,当﹣2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.
28.(7分)在△ABC内侧作射线AP,自B,C分别向射线AP引垂线,垂足分别为D,E,M为BC边中点,连接MD,ME.
(1)依题意补全图1;
(2)求证:MD=ME;
(3)如图2,若射线AP平分∠BAC,且AC>AB,求证:MD=(AC﹣AB).
29.(8分)阅读理解:
学习了三角形全等的判定方法:“SAS”,“ASA”,“AAS”,“SSS”和直角三角形全等的判定方法“HL”后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”即“SSA”的情形进行研究.
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠A=∠D.
初步探究:
如图1,已知AC=DF,∠A=∠D,过C作CH⊥射线AM于点H,对△ABC的CB边进行分类,可分为“CB<CH,CB=CH,CH<CB<CA,”三种情况进行探究.
深入探究:
第一种情况,当BC<CH时,不能构成△ABC和△DEF.
第二种情况,(1)如图2,当BC=CH时,在△ABC和△DEF中,AC=DF,BC =EF,∠A=∠D,根据,可以知道Rt△ABC≌Rt△DEF.
第三种情况,(2)当CH<BC<CA时,△ABC和△DEF不一定全等.请你用尺规在图1的两个图形中分别补全△ABC和△DEF,使△DEF和△ABC不全等(表明字母,不写作法,保留作图痕迹).
(3)从上述三种情况发现,只有当BC=CH时,才一定能使△ABC≌△DEF.除了上述三种情况外,BC边还可以满足什么条件,也一定能使△ABC≌△DEF?
写出结论,并利用备用图证明.
北京市怀柔区中考数学二模试卷
参考答案
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一
个是符合题意的.
1.B;2.B;3.B;4.D;5.A;6.C;7.D;8.A;9.D;10.B;
二、填空题(本题共18分,每小题3分)
11.稳定;12.x(x+3)(x﹣3);13.对角线相互平分;14.4;15.(b,c);
(c,a);16.15°或45°或75°;
三、解答题(本题共30分,每小题5分)
17.;18.;19.;20.;21.;22.;
四、解答题(本题共20分,每小题5分)
23.;24.50;25.;26.AF;
五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.;28.;29.HL或AAS;。

相关文档
最新文档