C语言几种排序方法程序
C语言数组的五种简单排序,选择法排序,冒泡法排序、交换法排序、插入法排序、折半法排序

C语⾔数组的五种简单排序,选择法排序,冒泡法排序、交换法排序、插⼊法排序、折半法排序⽂章⽬录1、选择法排序选择法排序是指每次选择索要排序的数组中的最⼩值(这⾥是由⼩到⼤排序,如果是由⼤到⼩排序则需要选择最⼤值)的数组元素,将这些数组元素的值与前⾯没有进⾏排序的数组元素值进⾏互换代码实现需要注意的是:声明⼀个数组和两个整形变量,数组⽤于存储输⼊的数字,⽽整形变量⽤于存储最⼩的数组元素的数值与该元素的位置,在我的代码中实现为a[] temp position。
代码具体如下#include<stdio.h>int main(){int m,n,k;printf("please input the length of the array:");scanf("%d",&k);int a[k];int temp;int position;printf("please input the number of the array:\n");for(m=0;m<k;m++){printf("a[%d]=",m+1);scanf("%d",&a[m]);}/*从⼩到⼤排序*/for(m=0;m<k-1;m++){temp=a[m]; //设置当前的值为最⼩值position=m; //记录当前的位置for(n=m+1;n<k;n++){if(a[n]<temp){temp=a[n]; //如果找到⽐当前的还要⼩的数值,则更换最⼩的数值与位置position=n;}}a[position]=a[m];a[m]=temp;}for(m=0;m<k;m++){printf("%d\t",a[m]);}return 0;}结果如下2、冒泡法排序冒泡法排序就是值在排序时,每次⽐较数组中相邻的两个数组元素的值,将⽐较⼩的(从⼩到⼤排序算法,如果是从⼤到⼩排序算法就是将较⼤的数排在较⼩的数前⾯)排在⽐较⼤的前⾯在代码实现的过程中:声明⼀个数组与⼀个整型变量,数组⽤于存放数据元素,整型变量⽤于交换时作为中间变量。
c语言中排序的各种方法解析

c语言中排序的各种方法解析一、引言在计算机编程中,排序是一个重要的操作,它按照一定的顺序排列数据元素,使得数据元素按照从小到大的顺序排列。
在C语言中,有多种方法可以实现排序,包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。
这些排序算法都有各自的优缺点,适合不同的应用场景。
二、冒泡排序冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
算法步骤:1. 比较相邻的元素。
如果第一个比第二个大(升序),就交换它们两个。
2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。
这步做完后,最后的元素会是最大的数。
3. 针对所有的元素重复以上的步骤,除了最后一个。
4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
三、选择排序选择排序是一种简单直观的排序算法。
它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。
算法步骤:1. 在未排序序列中找到最小元素,存放到排序序列的起始位置。
2. 再从剩余未排序元素中继续寻找最小元素,然后放到已排序序列的末尾。
3. 以此类推,直到所有元素均排序完毕。
四、插入排序插入排序的工作方式是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
插入排序在实现上通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
五、快速排序快速排序使用了分治的原则,它在每一层划分都比前面方法有所改进和精进,当切分到两边的子序列长度都大于某个值时,或者一个大于一个小于这个值时再进行交换的操作来结束此层的递归过程。
这层的结果又成为下一层的两个子数组来处理,最后就得到递归式的最终结果。
数组排序c语言数组排序方法

数组排序c语言数组排序方法在C语言中,可以使用多种排序算法对数组进行排序。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序等。
下面将详细介绍这些排序算法的原理、实现以及时间复杂度。
1. 冒泡排序(Bubble Sort):冒泡排序是一种简单的排序算法,其基本思想是重复地在相邻的元素之间进行比较和交换,将最大的元素逐渐“浮”到数组的尾部。
具体实现过程如下:cvoid bubbleSort(int arr[], int n) {for (int i = 0; i < n-1; i++) {for (int j = 0; j < n-1-i; j++) {if (arr[j] > arr[j+1]) {交换相邻元素int temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}}冒泡排序的时间复杂度为O(n^2),其中n为数组长度。
2. 选择排序(Selection Sort):选择排序也是一种简单的排序算法,其基本思想是每次从未排序的部分中选取最小(或最大)的元素,放到已排序部分的末尾。
具体实现过程如下:cvoid selectionSort(int arr[], int n) {for (int i = 0; i < n-1; i++) {int minIndex = i;for (int j = i+1; j < n; j++) {if (arr[j] < arr[minIndex]) {minIndex = j;}}将最小元素交换到已排序部分的末尾int temp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = temp;}选择排序的时间复杂度为O(n^2)。
3. 插入排序(Insertion Sort):插入排序的基本思想是将数组分为已排序和未排序两部分,每次从未排序部分选择一个元素,插入到已排序部分的正确位置。
C语言常用算法程序汇总

C语言常用算法程序汇总C语言是一门广泛应用于计算机编程的语言,具有较高的效率和灵活性。
在C语言中,常见的算法程序包括排序算法、查找算法、递归算法等等。
以下是一些常用的C语言算法程序的汇总:1.排序算法:-冒泡排序:通过多次迭代比较相邻元素并交换位置,将最大的元素逐渐移动到正确的位置。
-插入排序:将待排序的元素与已排序的部分依次比较并插入到正确的位置。
-选择排序:每次从待排序的元素中选择最小的元素并与已排序的部分交换位置。
-快速排序:通过选择一个基准元素,将数组划分为两个子数组进行递归排序。
2.查找算法:-顺序查找:逐个比较数组中的元素,直到找到目标元素或到数组末尾。
-二分查找:通过比较目标元素与数组中间元素的大小,逐步缩小范围,直到找到目标元素。
-哈希查找:通过散列函数将目标元素映射到哈希表的索引位置进行查找。
3.递归算法:-阶乘:通过递归调用自身计算一个正整数的阶乘。
-斐波那契数列:通过递归调用自身计算斐波那契数列的第n个数。
-二叉树遍历:通过递归调用自身遍历二叉树的各个节点。
4.图算法:- 最短路径算法:如Dijkstra算法和Floyd算法,用于计算图中两个节点之间的最短路径。
-拓扑排序:通过对有向无环图进行排序,使得所有的边从排在前面的节点指向排在后面的节点。
- 最小生成树:如Prim算法和Kruskal算法,用于找到图中连接所有节点的最小子树。
5.动态规划:-最长公共子序列:通过寻找两个字符串中的最长公共子序列,解决字符串匹配问题。
-背包问题:通过动态规划解决在给定容量下选取物品使得总价值最大的问题。
-最大子序列和:通过动态规划解决一个数组中选取连续子序列使得和最大的问题。
以上只是一些C语言中常用的算法程序的汇总,实际上,还有很多其他的算法,如逆波兰表达式、霍夫曼编码、最小割等等。
通过学习这些算法,可以更好地理解C语言的应用和开发。
C语言常用算法总结

C语言常用算法总结1、冒泡排序算法:冒泡排序是一种简单的排序算法,它重复地遍历要排序的序列,一次比较两个相邻的元素如果他们的顺序错误就把他们交换过来。
时间复杂度为O(n^2)。
2、快速排序算法:快速排序是一种基于分治的排序算法,通过递归的方式将数组划分为两个子数组,然后对子数组进行排序最后将排好序的子数组合并起来。
时间复杂度为O(nlogn)。
3、插入排序算法:插入排序是一种简单直观的排序算法,通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描找到相应位置并插入。
时间复杂度为O(n^2)。
4、选择排序算法:选择排序是一种简单的排序算法,每次循环选择未排序部分的最小元素,并放置在已排序部分的末尾。
时间复杂度为O(n^2)。
5、归并排序算法:归并排序是一种稳定的排序算法,基于分治思想,将数组递归地分为两个子数组,将子数组排序后再进行合并最终得到有序的数组。
时间复杂度为O(nlogn)。
6、堆排序算法:堆排序是一种基于完全二叉堆的排序算法,通过构建最大堆或最小堆,然后依次将堆顶元素与末尾元素交换再调整堆,得到有序的数组。
时间复杂度为O(nlogn)。
7、二分查找算法:二分查找是一种在有序数组中查找目标元素的算法,每次将待查找范围缩小一半,直到找到目标元素或范围为空。
时间复杂度为O(logn)。
8、KMP算法:KMP算法是一种字符串匹配算法,通过利用模式字符串的自重复性,避免不必要的比较提高匹配效率。
时间复杂度为O(m+n),其中m为文本串长度,n为模式串长度。
9、动态规划算法:动态规划是一种通过将问题分解为子问题,并通过组合子问题的解来求解原问题的方法。
动态规划算法通常使用内存空间来存储中间结果,从而避免重复计算。
时间复杂度取决于问题规模。
10、贪心算法:贪心算法是一种通过选择局部最优解来构建全局最优解的算法并以此构建最终解。
时间复杂度取决于问题规模。
11、最短路径算法:最短路径算法用于求解图中两个节点之间的最短路径,常见的算法包括Dijkstra算法和Floyd-Warshall算法。
使用C语言实现12种排序方法

使⽤C语⾔实现12种排序⽅法⽬录1.冒泡排序2.插⼊排序3.折半插⼊排序4.希尔排序5.选择排序6.鸡尾酒排序7.堆排序8.快速排序9.归并排序10.计数排序11.桶排序12.基数排序1.冒泡排序思路:⽐较相邻的两个数字,如果前⼀个数字⼤,那么就交换两个数字,直到有序。
时间复杂度O(n^2),稳定性:这是⼀种稳定的算法。
代码实现:void bubble_sort(int arr[],size_t len){size_t i,j;for(i=0;i<len;i++){bool hasSwap = false; //优化,判断数组是否已经有序,如果有序可以提前退出循环for(j=1;j<len-i;j++){ //这⾥j<len-i是因为最后⾯的肯定都是最⼤的,不需要多进⾏⽐较if(arr[j-1]>arr[j]){ //如果前⼀个⽐后⼀个⼤swap(&arr[j-1],&arr[j]); //交换两个数据hasSwap = true;}}if(!hasSwap){break;}}}2.插⼊排序思路:把⼀个数字插⼊⼀个有序的序列中,使之仍然保持有序,如对于需要我们进⾏排序的数组,我们可以使它的前i个数字有序,然后再插⼊i+1个数字,插⼊到合适的位置使之仍然保持有序,直到所有的数字有序。
时间复杂度:O(n^2) 稳定性:稳定的算法代码实现:void insert_sort(int arr[],int len){int i,j;for(i=1;i<len;i++){int key = arr[i]; //记录当前需要插⼊的数据for(j= i-1;i>=0&&arr[j]>key;j--){ //找到插⼊的位置arr[j+1] = arr[j]; //把需要插⼊的元素后⾯的元素往后移}arr[j+1] = key; //插⼊该元素}}3.折半插⼊排序思路:本质上是插⼊排序,但是通过半分查找法找到插⼊的位置,让效率稍微快⼀点。
C语言八大排序算法

C语⾔⼋⼤排序算法C语⾔⼋⼤排序算法,附动图和详细代码解释!来源:C语⾔与程序设计、⽵⾬听闲等⼀前⾔如果说各种编程语⾔是程序员的招式,那么数据结构和算法就相当于程序员的内功。
想写出精炼、优秀的代码,不通过不断的锤炼,是很难做到的。
⼆⼋⼤排序算法排序算法作为数据结构的重要部分,系统地学习⼀下是很有必要的。
1、排序的概念排序是计算机内经常进⾏的⼀种操作,其⽬的是将⼀组“⽆序”的记录序列调整为“有序”的记录序列。
排序分为内部排序和外部排序。
若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。
反之,若参加排序的记录数量很⼤,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序。
2、排序分类⼋⼤排序算法均属于内部排序。
如果按照策略来分类,⼤致可分为:交换排序、插⼊排序、选择排序、归并排序和基数排序。
如下图所⽰:3、算法分析1.插⼊排序*直接插⼊排序*希尔排序2.选择排序*简单选择排序*堆排序3.交换排序*冒泡排序*快速排序4.归并排序5.基数排序不稳定排序:简单选择排序,快速排序,希尔排序,堆排序稳定排序:冒泡排序,直接插⼊排序,归并排序,奇数排序1、插⼊排序将第⼀个和第⼆个元素排好序,然后将第3个元素插⼊到已经排好序的元素中,依次类推(插⼊排序最好的情况就是数组已经有序了)因为插⼊排序每次只能操作⼀个元素,效率低。
元素个数N,取奇数k=N/2,将下标差值为k的数分为⼀组(⼀组元素个数看总元素个数决定),在组内构成有序序列,再取k=k/2,将下标差值为k的数分为⼀组,构成有序序列,直到k=1,然后再进⾏直接插⼊排序。
3、简单选择排序选出最⼩的数和第⼀个数交换,再在剩余的数中⼜选择最⼩的和第⼆个数交换,依次类推4、堆排序以升序排序为例,利⽤⼩根堆的性质(堆顶元素最⼩)不断输出最⼩元素,直到堆中没有元素1.构建⼩根堆2.输出堆顶元素3.将堆低元素放⼀个到堆顶,再重新构造成⼩根堆,再输出堆顶元素,以此类推5、冒泡排序改进1:如果某次冒泡不存在数据交换,则说明已经排序好了,可以直接退出排序改进2:头尾进⾏冒泡,每次把最⼤的沉底,最⼩的浮上去,两边往中间靠16、快速排序选择⼀个基准元素,⽐基准元素⼩的放基准元素的前⾯,⽐基准元素⼤的放基准元素的后⾯,这种动作叫分区,每次分区都把⼀个数列分成了两部分,每次分区都使得⼀个数字有序,然后将基准元素前⾯部分和后⾯部分继续分区,⼀直分区直到分区的区间中只有⼀个元素的时候,⼀个元素的序列肯定是有序的嘛,所以最后⼀个升序的序列就完成啦。
C语言入门必学—10个经典C语言算法

C语言入门必学—10个经典C语言算法C语言是一种广泛使用的编程语言,具有高效、灵活和易学的特点。
它不仅在软件开发中被广泛应用,也是计算机科学专业的必修课。
在学习C语言的过程中,掌握一些经典的算法是非常重要的。
本文将介绍10个经典C语言算法,帮助读者更好地了解和掌握C语言。
一、冒泡排序算法(Bubble Sort)冒泡排序算法是最简单、也是最经典的排序算法之一。
它通过不断比较相邻的元素并交换位置,将最大(或最小)的元素逐渐“冒泡”到数组的最后(或最前)位置。
二、选择排序算法(Selection Sort)选择排序算法是一种简单但低效的排序算法。
它通过不断选择最小(或最大)的元素,并与未排序部分的第一个元素进行交换,将最小(或最大)的元素逐渐交换到数组的前面(或后面)。
三、插入排序算法(Insertion Sort)插入排序算法是一种简单且高效的排序算法。
它通过将数组分为已排序和未排序两个部分,依次将未排序部分的元素插入到已排序部分的合适位置。
四、快速排序算法(Quick Sort)快速排序算法是一种高效的排序算法。
它采用了分治的思想,通过将数组分为较小和较大两部分,并递归地对两部分进行排序,最终达到整个数组有序的目的。
五、归并排序算法(Merge Sort)归并排序算法是一种高效的排序算法。
它采用了分治的思想,将数组一分为二,递归地对两个子数组进行排序,并将结果合并,最终得到有序的数组。
六、二分查找算法(Binary Search)二分查找算法是一种高效的查找算法。
它通过不断将查找范围折半,根据中间元素与目标值的大小关系,缩小查找范围,最终找到目标值所在的位置。
七、递归算法(Recursive Algorithm)递归算法是一种通过自我调用的方式解决问题的算法。
在C语言中,递归算法常用于解决树的遍历、问题分解等情况。
八、斐波那契数列算法(Fibonacci Sequence)斐波那契数列是一列数字,其中每个数字都是前两个数字的和。
c语言实现简单排序(8种方法)

#include<stdio.h>#include<stdlib.h>//冒泡排序voidbubleSort(int data[], int n);//快速排序voidquickSort(int data[], int low, int high); intfindPos(int data[], int low, int high);//插入排序voidbInsertSort(int data[], int n);//希尔排序voidshellSort(int data[], int n);//选择排序voidselectSort(int data[], int n);//堆排序voidheapSort(int data[], int n);void swap(int data[], inti, int j);voidheapAdjust(int data[], inti, int n);//归并排序voidmergeSort(int data[], int first, int last);void merge(int data[], int low, int mid, int high); //基数排序voidradixSort(int data[], int n);intgetNumPos(intnum, intpos);int main() {int data[10] = {43, 65, 4, 23, 6, 98, 2, 65, 7, 79}; inti;printf("原先数组:");for(i=0;i<10;i++) {printf("%d ", data[i]);}printf("\n");/*printf("冒泡排序:");bubleSort(data, 10);for(i=0;i<10;i++) {printf("%d ", data[i]);}printf("\n");printf("快速排序:");quickSort(data, 0, 9);for(i=0;i<10;i++) {printf("%d ", data[i]);}printf("\n");printf("插入排序:");bInsertSort(data,10);for(i=0;i<10;i++) {printf("%d ", data[i]);}printf("\n");printf("希尔排序:");shellSort(data, 10);for(i=0;i<10;i++) {printf("%d ", data[i]);}printf("\n");printf("选择排序:");selectSort(data, 10);for(i=0;i<10;i++) {printf("%d ", data[i]);}printf("\n");int data[11] = {-1, 43, 65, 4, 23, 6, 98, 2, 65, 7, 79}; inti;printf("原先数组:");int data[11] = {-1, 43, 65, 4, 23, 6, 98, 2, 65, 7, 79}; for(i=1;i<11;i++) {printf("%d ", data[i]);}printf("\n");printf(" 堆排序:");heapSort(data, 10);for(i=1;i<11;i++) {printf("%d ", data[i]);}printf("\n");printf("归并排序:");mergeSort(data, 0, 9);for(i=0;i<10;i++) {printf("%d ", data[i]);}printf("\n");*/printf("基数排序:");radixSort(data, 10);for(i=0;i<10;i++) {printf("%d ", data[i]);}printf("\n");return 0;}/*--------------------冒泡排序---------------------*/ voidbubleSort(int data[], int n) {inti,j,temp;//两个for循环,每次取出一个元素跟数组的其他元素比较//将最大的元素排到最后。
C语言程序设计的常用算法

C语言程序设计的常用算法1.排序算法-冒泡排序:通过多次比较和交换来将最大(小)的数移到最后(前),时间复杂度为O(n^2)。
适用于数据较少、数据基本有序的情况。
- 快速排序:通过一趟排序将待排序序列分隔成独立的两部分,其中一部分的所有元素都比另一部分的所有元素小。
然后递归地对两部分进行排序,时间复杂度为O(nlogn)。
适用于大规模数据的排序。
-插入排序:将待排序序列分为已排序和未排序两部分,每次从未排序部分取一个元素插入到已排序部分的适当位置,时间复杂度为O(n^2)。
适用于数据量较小的排序场景。
- 归并排序:将待排序序列分为若干个子序列,分别进行排序,然后再将排好序的子序列合并成整体有序的序列,时间复杂度为O(nlogn)。
适用于需要稳定排序且对内存空间要求不高的情况。
2.查找算法-顺序查找:从头到尾依次对每个元素进行比较,直到找到目标元素或者遍历完整个序列。
时间复杂度为O(n)。
- 二分查找:对于有序序列,将序列的中间元素与目标元素进行比较,根据比较结果缩小查找范围,直到找到目标元素或者查找范围为空。
时间复杂度为O(logn)。
3.图算法-广度优先(BFS):从给定的起始顶点开始,按照“先访问当前顶点的所有邻接顶点,再依次访问这些邻接顶点的所有未访问过的邻接顶点”的顺序逐层访问图中的所有顶点。
适用于寻找最短路径、连通性等问题。
-深度优先(DFS):从给定的起始顶点开始,按照“先递归访问当前顶点的一个邻接顶点,再递归访问这个邻接顶点的一个邻接顶点,直到无法再继续递归”的方式遍历图中的所有顶点。
适用于寻找路径、判断连通性等问题。
4.动态规划算法-背包问题:给定一个背包容量和一组物品的重量和价值,选择一些物品装入背包,使得装入的物品总重量不超过背包容量,且总价值最大。
利用动态规划的思想可以通过构建二维数组来解决该问题。
-最长公共子序列(LCS):给定两个序列,找出一个最长的子序列,且该子序列在两个原序列中的顺序保持一致。
五个数排序c语言编程

五个数排序c语言编程以五个数排序为题,我们将使用C语言编程来实现。
排序是计算机科学中非常基础且重要的算法之一,它可以将一组数据按照指定的规则进行排列,使得数据更加有序。
在这篇文章中,我们将介绍常见的五个数排序算法,并使用C语言编程来实现它们。
一、冒泡排序冒泡排序是排序算法中最简单的一种,它的原理是通过比较相邻的两个元素,如果它们的顺序不符合规定的规则,则交换它们的位置。
经过一轮的比较和交换,最大(或最小)的元素就像气泡一样逐渐浮到了最后的位置。
重复这个过程,直到所有的元素都排好序。
二、插入排序插入排序的原理是将未排序的元素逐个插入到已排序的序列中。
具体来说,我们从第二个元素开始,逐个比较它与前面的元素的大小,如果顺序不符合规定的规则,则交换它们的位置。
通过不断地插入和交换,最终将所有的元素都按照规定的顺序排列好。
三、选择排序选择排序的原理是通过每一轮的比较,选择出最小(或最大)的元素,并将其放到已排序序列的末尾。
具体来说,我们从未排序序列中选择出最小的元素,然后与未排序序列的第一个元素交换位置。
重复这个过程,直到所有的元素都排好序。
四、快速排序快速排序是一种分治的排序算法,它的原理是通过选择一个基准元素,将待排序序列分成两个子序列,其中一个子序列的所有元素都比基准元素小,另一个子序列的所有元素都比基准元素大。
然后对这两个子序列分别进行递归调用快速排序,最终将所有的元素都排好序。
五、归并排序归并排序是一种采用分治策略的排序算法,它的原理是将待排序序列分成两个子序列,分别对这两个子序列进行递归调用归并排序,得到两个有序的子序列。
然后将这两个有序的子序列合并成一个有序的序列。
通过不断地合并,最终将所有的元素都排好序。
以上就是常见的五个数排序算法的介绍。
接下来,我们将使用C语言编程来实现这些排序算法。
我们定义一个包含五个元素的数组,并初始化它们的值。
然后,按照不同的排序算法,调用相应的排序函数,对数组进行排序。
c语言几种数组排序方法

常用的c语言排序算法主要有三种即冒泡法排序、选择法排序、插入法排序。
一、冒泡排序冒泡排序:是从第一个数开始,依次往后比较,在满足判断条件下进行交换。
代码实现(以降序排序为例)#include<stdio.h>int main(){int array[10] = { 6,9,7,8,5,3,4,0,1,2 };int temp;for (int i = 0; i < 10; i++){//循环次数for (int j = 0; j <10 - i-1; j++){if (array[j] < array[j+1]){//前面一个数比后面的数大时发生交换temp = array[j];array[j] = array[j+1];array[j + 1] = temp;}}} //打印数组for (int i = 0; i < 10; i++) printf("%2d", array[i]); return 0;}}二、选择排序以升序排序为例:就是在指定下标的数组元素往后(指定下标的元素往往是从第一个元素开始,然后依次往后),找出除指定下标元素外的值与指定元素进行对比,满足条件就进行交换。
与冒泡排序的区别可以理解为冒泡排序是相邻的两个值对比,而选择排序是遍历数组,找出数组元素与指定的数组元素进行对比。
(以升序为例)#include<stdio.h>int main(){int array[10] = { 6,9,7,8,5,3,4,0,1,2 };int temp, index;for (int i = 0; i < 9; i++) {index = i;for (int j = i; j < 10; j++){if (array[j] < array[index])index = j;}if(i != index){temp = array[i]; array[i] = array[index]; array[index] = temp; }for(int i=0;i<10:i++) printf("%2d"array[i])return 0;}三、快速排序是通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
c语言各种排序方法及其所耗时间比较程序

c语言各种排序方法及其所耗时间比较程序#include <iostream.h> #include <stdlib.h> #include <iomanip.h>#include <time.h> #include <stdio.h>const int N=1000;//数据量,用于检测算法质量 const int M=1000;//执行次数//冒泡排序(递增)void Bubblesort(int r[],int n){int flag=1;//flag为0停止排序for(int i=1;i<n;i++){flag=0;for(int j=n-1;j>=i;j--)if(r[j]<r[j-1]){int t=r[j];r[j]=r[j-1];r[j-1]=t;flag=1;}if(flag==0)return;}}//快速排序void quicksort(int r[],int left,int right) {int i,j;int swap;i=left;j=right;swap=r[left];while(i<j){while((i<j)&&(swap<r[j]))j--;if(i<j){r[i]=r[j];i++;}while((i<j)&&(swap>r[i]))i++;if(i<j){r[j]=r[i];j--;}}r[i]=swap;if(i>left)quicksort(r,left,i-1);if(i<right)quicksort(r,i+1,right);return;}//堆排序先建立堆void creatheap(int r[],int i,int n) {int j;int t;t=r[i];j=2*i;while(j<n){if((j<n)&&(r[j]<r[j+1]))j++;if(t<r[j]){r[i]=r[j];i=j;j=2*i;}else j=n;r[i]=t;}}//堆排序void heapsort(int r[],int n){int t;for(int i=n/2;i>=0;i--)creatheap(r,i,n);for(i= n-1;i>=0;i--){t=r[0];r[0]=r[i];r[i]=t;creatheap(r,0,i-1);}return;}//二路归并void merge(int r[],int r1[],int low,int mid,int high)//进行二合一的函数 {int i=low,j=mid+1,k=low;while((i<=mid)&&(j<=high)){if(r[i]<=r[j])r1[k++]=r[i++];elser1[k++]=r[j++];}while(i<=mid)r1[k++]=r[i++];while(j<=high)r1[k++]=r[j++];}void mergepass(int r[],int r1[],int length)//用来区分填入merge函数的变量计算式{int i=0,j;while(i+2*length<=N){merge(r,r1,i,i+length-1,i+2*length-1);i=i+2*length;}if(i+length-1<N-1)merge(r,r1,i,i+length-1,N-1);elsefor(j=i;j<N;j++)r1[j]=r[j];}void mergesort(int r[])//二路并归总算法{int length=1;int r1[N+1];while(length<N){mergepass(r,r1,length); length=2*length; mergepass(r1,r,length); length=2*length;}return;}//进行输出void print(int r[],int n) { for(int i=0;i<=n-1;i++) {if(i%10==0){cout<<endl;} cout<<r[i]<<setw(6);}cout<<endl;}//主函数void main(){int i,j,k;int r[N],a[N];clock_t start, finish;double duration;cout<<"请选择排序方式,1、冒泡法;2、快速排序法;3、堆排序法;4、二路并归法"<<endl;cin>>j;srand((unsigned)time(NULL));for(i=0;i<N;i++){a[i]=rand()%10000;}switch(j){case(1):{cout<<"冒泡法";start = clock();for(i=0;i<M;i++){k=N-1;while(k+1){r[k]=a[k];k--;}Bubblesort(r,N);//冒泡法}finish = clock();duration = (double)(finish - start)/1000; print(r,N);printf( "%f seconds\n", duration );}break;case(2):{cout<<"快速排序法";start = clock();for(i=0;i<M;i++){k=N-1;while(k+1){r[k]=a[k];k--;}quicksort(r,0,N-1);//快速排序法}finish = clock();duration = (double)(finish - start)/1000;print(r,N);printf( "%f seconds\n", duration );}break;case(3):{cout<<"堆排序法";start = clock();for(i=0;i<M;i++){k=N-1;while(k+1){r[k]=a[k];k--;}heapsort(r,N);//堆排序法}finish = clock();duration = (double)(finish - start)/1000; print(r,N);printf( "%f seconds\n", duration );}break;case(4):{cout<<"二路并归法";start = clock();for(i=0;i<M;i++){k=N-1;while(k+1){r[k]=a[k];k--;}mergesort(r);//二路并归法}finish = clock();duration = (double)(finish - start)/1000; print(r,N);printf( "%f seconds\n", duration );}break;}}。
c常用算法程序集

c常用算法程序集C常用算法程序集一、排序算法排序算法是计算机科学中最基本、最常用的算法之一,常用于按照一定的规则将一组数据进行有序排列。
常见的排序算法有:冒泡排序、插入排序、选择排序、快速排序、归并排序等。
1. 冒泡排序:通过相邻元素的比较和交换来实现排序。
每一轮将最大的元素逐渐“冒泡”到末尾。
时间复杂度为O(n^2)。
2. 插入排序:将待排序的元素插入已排好序的部分,从而达到排序的目的。
时间复杂度为O(n^2),但在部分有序的情况下表现较好。
3. 选择排序:每一轮从待排序的元素中选出最小(或最大)的元素放到已排序的末尾。
时间复杂度为O(n^2),性能较差。
4. 快速排序:通过一趟排序将待排序的序列分割成两部分,其中一部分的所有元素都比另一部分小。
再分别对两部分进行排序,递归地进行下去。
时间复杂度为O(nlogn),性能较好。
5. 归并排序:将待排序的序列分成若干个子序列,分别进行排序,然后再将排好序的子序列合并。
时间复杂度为O(nlogn),稳定且效率较高。
二、查找算法查找算法是在给定的数据集中寻找特定元素的过程,常用于在大规模数据中快速定位目标元素。
常见的查找算法有:顺序查找、二分查找、哈希查找等。
1. 顺序查找:逐个遍历待查找的元素,直到找到目标元素或遍历完整个数据集。
时间复杂度为O(n),适用于小规模数据集。
2. 二分查找:在有序的数据集中,将目标元素与中间元素进行比较,缩小查找范围,直到找到目标元素或范围为空。
时间复杂度为O(logn),适用于大规模数据集。
3. 哈希查找:利用哈希函数将元素映射到一个确定的位置,通过该位置快速查找目标元素。
时间复杂度为O(1),但需要额外的空间存储哈希表。
三、图算法图算法用于解决图论中的问题,常用于描述事物之间的关系和网络结构。
常见的图算法有:深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(Dijkstra算法、Floyd-Warshall算法)等。
c语言的排序方法

c语言的排序方法C语言的排序方法排序是计算机科学中非常重要的一个基本操作,它用于将一组无序的数据按照一定的规则进行重新排列,以便更方便地进行查找、插入和删除等操作。
C语言作为一种广泛应用的编程语言,提供了多种排序算法的实现方式,本文将介绍几种常用的排序方法及其实现。
一、冒泡排序(Bubble Sort)冒泡排序是最简单的排序算法之一,它的基本思想是重复地比较相邻的两个元素,如果它们的顺序错误就交换位置,直到没有需要交换的元素为止。
冒泡排序的时间复杂度为O(n^2)。
二、选择排序(Selection Sort)选择排序每次从待排序的数据中选择最小(或最大)的元素放到已排序的数据末尾,直到全部元素排序完成。
选择排序的时间复杂度也为O(n^2)。
三、插入排序(Insertion Sort)插入排序的思想是将一个记录插入到已经排好序的有序表中,形成一个新的有序表。
插入排序的时间复杂度为O(n^2),但在实际应用中,插入排序常常比其他排序算法更有效。
四、快速排序(Quick Sort)快速排序是一种基于分治法的排序算法,它通过选择一个基准元素,将待排序的数据分割成两部分,其中一部分的所有元素都比基准元素小,另一部分的所有元素都比基准元素大,然后对这两部分继续进行快速排序。
快速排序的时间复杂度为O(nlogn)。
五、归并排序(Merge Sort)归并排序采用分治法的思想,将待排序的数据分为两个子序列,分别进行排序,然后将两个有序的子序列合并成一个有序的序列。
归并排序的时间复杂度为O(nlogn)。
六、堆排序(Heap Sort)堆排序利用堆这种数据结构进行排序,它将待排序的数据构建成一个大顶堆或小顶堆,然后依次将堆顶元素与最后一个元素交换,并对剩余的元素重新调整堆,重复这个过程直到所有元素都排序完成。
堆排序的时间复杂度为O(nlogn)。
七、希尔排序(Shell Sort)希尔排序是一种改进的插入排序算法,它通过将待排序的数据分组,分组内进行插入排序,然后逐渐缩小分组的间隔,最终完成排序。
C语言三种基本排序方法

C语言三种基本排序方法
一、选择排序法。
选择排序法的第一层循环从起始元素开始选到倒数第二个元素,主要是在每次进入的第二层循环之前,将外层循环的下标赋值给临时变量,接下来的第二层循环中,如果发现有比这个最小位置处的元素更小的元素,则将那个更小的元素的下标赋给临时变量,最后,在二层循环退出后,如果临时变量改变,则说明,有比当前外层循环位置更小的元素,需要将这两个元素交换。
二、冒泡排序法。
冒泡排序算法的运作如下:(从后往前)比较相邻的元素。
如果第一个比第二个大,就交换他们两个。
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。
在这一点,最后的元素应该会是最大的数。
针对所有的元素重复以上的步骤,除了最后一个。
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
三、插入排序法。
所谓插入排序法,就是检查第i个数字,如果在它的左边的数字比它大,进行交换,这个动作一直继续下去,直到这个数字的左边数字比它还要小,就可以停止了。
插入排序法主要的回圈有两个变数:i和j,每一次执行这个回圈,就会将第i个数字放到左边恰当的位置去。
插入排序的基本思想是:每步将一个待排序的纪录,按其关
键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止(分为直接插入法和折半插入法)。
c语言常见算法

c语言常见算法C语言是一种非常流行的编程语言,广泛应用于软件开发和计算机科学领域。
在C语言中,算法是解决问题的关键步骤。
本文将介绍一些常见的C语言算法,包括排序算法、搜索算法和递归算法。
一、排序算法1. 冒泡排序算法冒泡排序是一种简单的排序算法,它重复地遍历要排序的列表,比较相邻的两个元素,并交换它们的位置,直到整个列表排序完成。
2. 插入排序算法插入排序算法通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
3. 快速排序算法快速排序是一种高效的排序算法,它通过选择一个元素作为基准,将列表分为两部分,一部分小于基准,一部分大于基准,然后递归地对两部分进行排序。
二、搜索算法1. 线性搜索算法线性搜索算法逐个地检查列表中的元素,直到找到目标元素或者遍历完整个列表。
2. 二分搜索算法二分搜索算法适用于已排序的列表。
它通过比较目标元素和列表的中间元素,将列表分为两部分,然后在适当的部分继续搜索,直到找到目标元素或者确定目标元素不存在。
三、递归算法递归算法是一种自我调用的算法,它将问题分解成更小的子问题,然后在子问题上递归地调用自身,直到达到基本情况。
对于C语言中的算法来说,递归函数的编写非常重要。
需要确保递归的终止条件,并正确处理递归调用中传递的参数。
四、其他常见算法1. 图算法图算法是解决与图相关的问题的算法。
它可以解决最短路径问题、最小生成树问题等。
2. 动态规划算法动态规划算法是一种通过将问题分解成更小的子问题来解决复杂问题的算法。
它通常用于解决最优化问题。
3. 贪心算法贪心算法通过每一步选择当前最优解来构建问题的解决方案。
它通常不能保证找到全局最优解,但在某些情况下可以得到较好的近似解。
总结C语言常见算法涵盖了排序算法、搜索算法、递归算法以及其他常用的算法。
对于每个算法,我们都介绍了其基本原理和应用场景。
在实际编程中,根据具体的问题,选择合适的算法是非常重要的。
熟悉C语言中的常见算法,可以帮助程序员更好地解决问题,提高代码的效率与质量。
c语言的排序方法

c语言的排序方法C语言的排序方法排序是计算机科学中常见的操作,它的作用是将一组数据按照特定的规则进行重新排列。
在C语言中,有多种排序方法可以实现这个目标。
本文将介绍几种常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。
一、冒泡排序冒泡排序是一种简单但效率较低的排序算法。
它的基本思想是多次遍历待排序的数据,每次比较相邻的两个元素,如果它们的顺序不对就交换它们的位置。
通过多次遍历,最大(或最小)的元素会逐渐“冒泡”到最后。
二、插入排序插入排序是一种稳定且效率较高的排序算法。
它的基本思想是将待排序的数据分为已排序和未排序两部分,每次从未排序部分选择一个元素插入到已排序部分的正确位置。
通过多次插入操作,最终得到完全有序的数据。
三、选择排序选择排序是一种简单但效率较低的排序算法。
它的基本思想是每次从待排序的数据中选择最小(或最大)的元素,然后放到已排序部分的末尾。
通过多次选择操作,最终得到完全有序的数据。
四、快速排序快速排序是一种常用且高效的排序算法。
它的基本思想是通过递归地将待排序的数据分为两部分,一部分小于某个基准值,另一部分大于该基准值。
然后对这两部分分别进行快速排序,直到每个部分只有一个元素或为空。
最后将所有部分合并起来,即得到完全有序的数据。
五、归并排序归并排序是一种稳定且效率较高的排序算法。
它的基本思想是将待排序的数据分成若干个长度相等(或接近)的子序列,然后对每个子序列进行排序。
最后将排好序的子序列两两合并,直到所有子序列合并成一个有序的序列。
不同的排序算法适用于不同的场景。
冒泡排序和选择排序适用于数据量较小的情况,插入排序适用于数据基本有序的情况,快速排序适用于数据量较大且无序的情况,归并排序适用于数据量较大且需要稳定排序的情况。
在C语言中,实现这些排序算法并不复杂。
通过使用循环和条件语句,可以很容易地编写出排序的代码。
同时,为了提高排序算法的效率,还可以使用一些优化技巧,例如设置哨兵、使用递归等。
c语言十大排序算法

c语言十大排序算法C语言是一种广泛应用于计算机领域的编程语言,在数据处理过程中,排序算法是最常用的操作之一。
在C语言中,有许多经典的排序算法,下面将介绍十大排序算法并讨论其特点和适用场景。
1.冒泡排序算法冒泡排序算法是一种简单的排序方法,其基本思想是将要排序的数组分为两部分:已排序部分和未排序部分。
进入排序过程后,每一次排序将未排序部分中的第一个数与第二个数进行比较,若第二个数小于第一个数,则交换它们的位置,依次往后,直到最后一个未排序的数。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1),适用于数据量较小的排序场景。
2.插入排序算法插入排序算法是一种稳定的排序方法,其中以第一个元素作为基准,与后面的元素进行比较,若后面的元素小于前一个元素,则将其插入到合适位置,依次往后,直到最后一个元素。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1),适用于数据量较小的排序场景。
3.选择排序算法选择排序算法是一种简单的排序算法,其基本思想是每次选择一个最小(或最大)的元素,在未排序部分找出最小的元素,并放到已排序部分的最后一个位置。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1),适用于数据量较小的排序场景。
4.归并排序算法归并排序算法是一种稳定的排序算法,其基本思想是将数组分成两半,然后递归地将每个子数组排序,最后将两个排好序的子数组归并到一起。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n),适用于数据量较大的排序场景。
5.快速排序算法快速排序算法是一种常用的排序算法,其基本思想是将待排序的数组分为两个子数组,设置一个基准值,小于基准值的元素放到左边,大于基准值的元素放到右边,然后递归地对左右两个子数组进行排序。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(nlogn),适用于数据量较大的排序场景。
6.计数排序算法计数排序算法是一种稳定的排序算法,其基本思想是先统计序列中每个元素出现的次数,将其存入临时数组中,然后从临时数组中按照顺序取出元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
mid = (begin+end)/2;
x = begin;
y = mid+1;
c = (int *)malloc((end+1)*4);
if(c == NULL)
return 0;
for(i = begin; i<(end+1); i++)
{
if(x != (mid+1) && y != (end+1))
下面是几种排序方法的程序:
1.交换排序
#include <stdio.h>
#include <stdlib.h>
int main(void)
{
int a[10] = {1,4,3,0,7,5,2,8,9,6};
int i = 0, j = 0;
int temp = 0;
for(i = 0; i< 9; i++)
merge(a, begin, end);
retuvoid)
{
int i = 0;
int a[10] = {1,5,2,7,4,9,10,3,0,6};
sort(a,0,9);
for(i = 0; i<10; i++)
{
printf("%d\t",a[i]);
if((i+1)%5 == 0)
}
//printf("\n");
return 0;
}
2.插入排序
#include <stdio.h>
#include <stdlib.h>
int main(void)
{
int a[9] = {5,8,3,9,2,0,4,7,10};
int temp = 0, i = 0, j = 0, z=0;
for(i=0; i<9; i++)
}
}
free(c);
return 0;
}
int sort(int *a, int begin, int end)
{
if(begin >= end)
return 0;
int mid = 0;
mid = (begin+end)/2;
sort(a, begin, mid);
sort(a, mid+1, end);
{
for(j=i+1; j<9; j++)
{
if(a[j] < a[i])
{
temp = a[j];
for(z = j-1; z >= i; z--)
{
a[z+1] = a[z];
}
a[i] = temp;
}
}
}
for(i = 0; i<9; i++)
{
printf("%d\t", a[i]);
if((i+1)%5 == 0)
{
int a[10] = {0,2,5,3,7,1,9,10,6,4};
int temp = 0, flag = 0;
inti = 0, j = 0;
for(i = 0; i<9; i++)
{
temp = a[i];
flag = i;
for(j = i+1; j < 10; j++)
{
if(temp > a[j])
printf("\n");
}
return 0;
}
4.冒泡排序
#include <stdio.h>
#include <stdlib.h>
#define size 9
int main(void)
{
int a[size] = {3, 2, 6, 5, 4, 9, 8, 0, 7};
int i = 0, j = 0, flag = 0, temp = 0;
printf("\n");
}
printf("\n");
return 0;
}
3.归并
#include <stdio.h>
#include <stdlib.h>
int merge(int *a, int begin, int end)
{
int *c = NULL;
int i = 0;
int x = 0, y = 0;
for(i = 0; i<size; i++)
{
for(j = 0; j < (size - i-1); j++)
{
if(a[j] > a[j+1])
{
temp = a[j];
a[j] = a[j+1];
a[j+1] = temp;
flag++;
}
}
if(flag == 0)
break;
flag = 0;
{
temp = a[j];
flag = j;
}
}
a[flag] = a[i];
a[i] = temp;
}
for(i = 0; i<10; i++)
{
printf("%d\t", a[i]);
if((i+1)%5 == 0)
{
printf("\n");
}
}
//printf("\n");
return 0;
{
for(j = i+1; j<10; j++)
{
if(a[i]>a[j])
{
temp = a[i];
a[i] = a[j];
a[j] = temp;
}
}
}
for(i = 0; i<10; i++)
{
printf("%d\t", a[i]);
if((i+1)%5 == 0)
printf("\n");
{
if(a[x] < a[y])
{
c[i] = a[x];
x++;
}
else
{
c[i] = a[y];
y++;
}
}
else if(x != (mid+1))
{
c[i] = a[x];
x++;
}
else
{
c[i] = a[y];
y++;
}
}
for(i = begin; i<end+1; i++)
{
a[i] = c[i];
}
for(i = 0; i<9; i++)
{
printf("%d\t",a[i]);
if((i+1) % 5 == 0)
printf("\n");
}
printf("\n");
return 0;
}
5.选择排序
#include <stdio.h>
#include <stdlib.h>
int main(void)