【必考题】初三数学下期中一模试题及答案(1)

合集下载

【必考题】九年级数学下期中试题(附答案)(1)

【必考题】九年级数学下期中试题(附答案)(1)

【必考题】九年级数学下期中试题(附答案)(1)一、选择题1.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.B.C.D.2.已知反比例函数y=﹣6x,下列结论中不正确的是()A.函数图象经过点(﹣3,2)B.函数图象分别位于第二、四象限C.若x<﹣2,则0<y<3D.y随x的增大而增大3.如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7B.7.5C.8D.8.54.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12C EAFC CDFVV,那么S EAFS EBCVV的值是()A.12B.13C.14D.195.已知两个相似三角形的面积比为 4:9,则周长的比为 ( ) A.2:3B.4:9 C.3:2D23 6.观察下列每组图形,相似图形是()A .B .C .D .7.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是( )A .1:3B .1:4C .1:6D .1:98.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .1659.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为( )A .33B .5C .233D .25 10.在△ABC 中,若|sinA-32|+(1-tanB)2=0,则∠C 的度数是( ) A .45°B .60°C .75°D .105° 11.在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( ) A . B . C . D .12.如图,河堤横断面迎水坡AB 的坡比是1:3,堤高BC =12m ,则坡面AB 的长度是( )A.15m B.203m C.24m D.103m二、填空题13.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FE⊥AD,EG=15里,HG经过A点,则FH=__里.14.若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.15.如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.16.如图,等腰直角三角形ABC中, AB=4 cm.点是BC边上的动点,以AD为直角边作等腰直角三角形ADE.在点D从点B移动至点C的过程中,点E移动的路线长为________cm.17.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左侧墙上与地面成60°角时,梯子顶端距离地面345°,则小巷的宽度为_____米(结果保留根号).18.如图所示,在Rt △ABC 中,∠C=90°,BC=1,AC=4,把边长分别为1x ,2x ,3x ,…,n x 的n ()1n ≥个正方形依次放入△ABC 中,则第n 个正方形的边长n x =_______________(用含n 的式子表示).19.近视眼镜的度数(y 度)与镜片焦距(x 米)呈反比例,其函数关系式为120.y x =如果近似眼镜镜片的焦距0.3x =米,那么近视眼镜的度数y 为______. 20.如果a c e b d f===k (b+d+f≠0),且a+c+e=3(b+d+f ),那么k=_____. 三、解答题21.如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C . (1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PMx 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.22.在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A 4 2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP =AD .(1)求证:PD=AB.(2)如图(2),若在“完美矩形“ABCD 的边BC 上有一动点E,当BECE的值是多少时,△PDE 的周长最小?(3)如图(3),点Q 是边AB 上的定点,且BQ=BC.已知AD=1,在(2)的条件下连接DE 并延长交AB 的延长线于点F,连接CF,G 为CF 的中点,M、N 分别为线段QF 和CD 上的动点,且始终保持QM=CN,MN 与DF 相交于点H,请问GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.23.如图,AB与CD相交于点O,△OBD∽△OAC,ODOC=35,OB=6,S△AOC=50,求:(1)AO的长;(2)求S△BOD24.如图,在△ABC中,DE∥BC,23ADAB,M为BC上一点,AM交DE于N.(1)若AE=4,求EC的长;(2)若M为BC的中点,S△ABC=36,求S△ADN的值.25.如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.2.D解析:D【解析】【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A、∵当x=﹣3时,y=2,∴此函数图象过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C、∵当x=﹣2时,y=3,∴当x<﹣2时,0<y<3,故本选项正确;D、∵k=﹣6<0,∴在每个象限内,y随着x的增大而增大,故本选项错误;故选:D.【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.3.B解析:B【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【详解】解:∵a∥b∥c,∴AC BD CE DF=,∵AC=4,CE=6,BD=3,∴436DF =,解得:DF=92,∴937.52BF BD DF=+=+=.故选B.考点:平行线分线段成比例.4.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCCVV,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭VV,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方. 5.A解析:A【解析】【分析】由于相似三角形的面积比等于相似比的平方,已知了两个相似三角形的面积比,即可求出它们的相似比;再根据相似三角形的周长比等于相似比即可得解.【详解】∵两个相似三角形的面积之比为4:9,∴两个相似三角形的相似比为2:3,∴这两个相似三角形的周长之比为2:3.故选:A【点睛】本题考查的是相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.6.D解析:D【解析】【分析】根据相似图形的定义,形状相同,可得出答案.【详解】解:A、两图形形状不同,故不是相似图形;B、两图形形状不同,故不是相似图形;C、两图形形状不同,故不是相似图形;D、两图形形状相同,故是相似图形;故选:D.【点睛】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.7.A解析:A【解析】∵两个相似三角形对应边之比是1:3,∴它们的对应中线之比为1:3.故选A.点睛: 本题考查相似三角形的性质,相似三角形的对应边、对应周长,对应高、中线、角平分线的比,都等于相似比,掌握相似三角形的性质及灵活运用它是解题的关键.8.C解析:C【解析】【分析】根据矩形的性质可知:求AD的长就是求BC的长,易得∠BAC=∠ADE,于是可利用三角函数的知识先求出AC,然后在直角△ABC中根据勾股定理即可求出BC,进而可得答案.【详解】解:∵四边形ABCD是矩形,∴∠B=∠BAC=90°,BC=AD,∴∠BAC+∠DAE=90°,∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=,在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==, ∴AD=BC =22222520533AC AB ⎛⎫-=-= ⎪⎝⎭. 故选:C.【点睛】 本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.9.D解析:D【解析】【分析】【详解】过B 点作BD ⊥AC ,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=AD AB =2210=25, 故选D .10.C解析:C【解析】【分析】先根据非负数的性质求出sinA 及tanB 的值,再根据特殊角的三角函数值求出∠A 及∠B 的值,由三角形内角和定理即可得出结论.【详解】∵|sin A −32|+(1−tan B )2=0, ∴3tanB=1, ∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.11.B解析:B【解析】【分析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=4;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=4.故选B.【点睛】主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.12.C解析:C【解析】【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案.【详解】解:Rt△ABC中,BC=12cm,tanA=1∴AC=BC÷tanA=cm,∴AB24cm.故选:C.【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.二、填空题13.05【解析】∵EG⊥ABFH⊥ADHG经过A点∴FA∥EGEA∥FH∴∠HFA=∠AEG=90°∠FHA=∠EAG∴△GEA∽△AFH∴∵AB=9里DA=7里EG=15里∴FA=35里EA=45里∴解析:05【解析】∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴EG EA AF FH=.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴15 4.5 3.5FH=,解得FH=1.05里.故答案为1.05.14.﹣2【解析】∵反比例函数y=-6x的图象过点A(m3)∴3=-6m解得=-2解析:﹣2【解析】∵反比例函数的图象过点A(m,3),∴,解得.15.2【解析】【分析】【详解】如图过A点作AE⊥y轴垂足为E∵点A在双曲线上∴四边形AEOD的面积为1∵点B在双曲线上且AB∥x轴∴四边形BEOC的面积为3∴四边形ABCD为矩形则它的面积为3-1=2解析:2【解析】【分析】【详解】如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线1y=x上,∴四边形AEOD的面积为1∵点B在双曲线3y=x上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD 为矩形,则它的面积为3-1=216.【解析】试题解析:连接CE 如图:∵△ABC 和△ADE 为等腰直角三角形∴AC =ABAE=AD ∠BAC=45°∠DAE=45°即∠1+∠2=45°∠2+∠3=45°∴∠1=∠3∵∴△ACE ∽△ABD ∴∠ 解析:42【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3,∵2AC AE AB AD== ∴△ACE ∽△ABD , ∴∠ACE=∠ABC=90°,∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,22, 当点D 运动到点C 时,2,∴点E 移动的路线长为2cm .17.【解析】【分析】本题需要分段求出巷子被分成的两部分再加起来即可先在直角三角形ABC 中用正切和正弦分别求出BC 和AC (即梯子的长度)然后再在直角三角形DCE 中用∠DCE 的余弦求出DC 然后把BC 和DC 加解析:222+【解析】【分析】本题需要分段求出巷子被分成的两部分,再加起来即可.先在直角三角形ABC 中,用正切和正弦,分别求出BC 和AC (即梯子的长度),然后再在直角三角形DCE 中,用∠DCE 的余弦求出DC ,然后把BC 和DC 加起来即为巷子的宽度.【详解】解:如图所示:3米,∠ACB=60°,∠DCE=45°,AC=CE.则在直角三角形ABC中,ABBC=tan∠ACB=tan60°3AB AC =sin∠ACB=sin60°=32,∴BC3233=2,AC32332=4,∴直角三角形DCE中,CE=AC=4,∴CDCE=cos45°=22,∴CD=CE×22=4×22=2,∴BD=2,故答案为:2【点睛】本题需要综合应用正切、正弦.余弦来求解,注意梯子长度不变,属于中档题.18.【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长同理利用前两个小正方形上方的三角形相似根据相似三角形对应边成比例列出比例式解析:4 () 5n【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA,然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长,同理利用前两个小正方形上方的三角形相似,根据相似三角形对应边成比例列出比例式即可求出前两个小正方形的边长的关系,以此类推,找出规律便可求出第n个正方形的边长.【详解】解:如下图所示,∵四边形DCEF 是正方形,∴DF ∥CE ,∴△BDF ∽△BCA ,∴DF :AC=BD :BC ,即x 1:4=(1-x 1):1解得x 1= 45, 同理,前两个小正方形上方的三角形相似,112121-=-x x x x x 解得x 2=x 12 同理可得,113231,-=-x x x x x 解得:33121==x x x x以此类推,第n 个正方形的边长1n 45=⎛⎫= ⎪⎝⎭nn x x . 故答案为:4()5n 【点睛】 本题考查了正方形的性质,相似三角形的判定与性质,解题的关键是根据相似三角形对应边成比例找出后面正方形的边长与第一个正方形的边长的关系.19.400【解析】分析:把代入即可算出y 的值详解:把代入故答案为400点睛:此题主要考查了反比例函数的定义本题实际上是已知自变量的值求函数值的问题比较简单解析:400【解析】分析:把0.3x =代入120y x =,即可算出y 的值. 详解:把0.3x =代入120x, 400y =,故答案为400.点睛:此题主要考查了反比例函数的定义,本题实际上是已知自变量的值求函数值的问题,比较简单.20.3【解析】∵=k∴a=bkc=dke=fk∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3解析:3【解析】∵a c eb d f===k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案为:3.三、解答题21.(1)抛物线的解析式为y=x2+2x;(2)D1(-1,-1),D2(-3,3),D3(1,3);(3)存在,P(,)或(3,15).【解析】【分析】(1)根据抛物线过A(2,0)及原点可设y=a(x-2)x,然后根据抛物线y=a(x-2)x过B(3,3),求出a的值即可;(2)首先由A的坐标可求出OA的长,再根据四边形AODE是平行四边形,D在对称轴直线x=-1右侧,进而可求出D横坐标为:-1+2=1,代入抛物线解析式即可求出其横坐标;(3)分△PMA∽△COB和△PMA∽△BOC表示出PM和AM,从而表示出点P的坐标,代入求得的抛物线的解析式即可求得t的值,从而确定点P的坐标.【详解】解:(1)根据抛物线过A(-2,0)及原点,可设y=a(x+2)(x-0),又∵抛物线y=a(x+2)x过B(-3,3),∴-3(-3+2)a=3,∴a=1,∴抛物线的解析式为y=(x+2)x=x2+2x;(2)①若OA为对角线,则D点与C点重合,点D的坐标应为D(-1,-1);②若OA为平行四边形的一边,则DE=OA,∵点E在抛物线的对称轴上,∴点E横坐标为-1,∴点D的横坐标为1或-3,代入y=x2+2x得D(1,3)和D(-3,3),综上点D坐标为(-1,-1),(-3,3),(1,3).(3)∵点B(-3,3)C(-1,-1),∴△BOC为直角三角形,∠COB=90°,且OC:OB=1:3,①如图1,若△PMA∽△COB,设PM=t,则AM=3t,∴点P(3t-2,t),代入y=x2+2x得(-2+3t)2+2(-2+3t)=t,解得t1=0(舍),t2=79,∴P(13,79);②如图2,若△PMA∽△BOC,设PM=3t,则AM=t,点P(t-2,3t),代入y=x2+2x得(-2+t)2+2(-2+t)=3t,解得t1=0(舍),t2=5,∴P(3,15)综上所述,点P的坐标为(13,79)或(3,15).考点:二次函数综合题22.(1)证明见解析(2)222(32【解析】【分析】(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;(3)2,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.【详解】(1)在图1中,设AD=BC=a,则有2a,∵四边形ABCD是矩形,∵PA=AD=BC=a ,∴PD=22AD PA +=2a ,∵AB=2a ,∴PD=AB ;(2)如图,作点P 关于BC 的对称点P′, 连接DP′交BC 于点E ,此时△PDE 的周长最小,设AD=PA=BC=a ,则有2,∵BP=AB-PA ,∴2a-a ,∵BP′∥CD ,∴22222BE BP a CE CD a=== ; (3)2,理由为:由(2)可知BF=BP=AB-AP ,∵AP=AD ,∴BF=AB-AD ,∵BQ=BC ,∴AQ=AB-BQ=AB-BC ,∵BC=AD ,∴AQ=AB-AD ,∴BF=AQ ,∴QF=BQ+BF=BQ+AQ=AB ,∵AB=CD ,∴QF=CD ,∵QM=CN ,∴QF-QM=CD-CN ,即MF=DN ,∵MF ∥DN ,∴∠NFH=∠NDH ,在△MFH 和△NDH 中,{MFH NDHMHF NHD MF DN∠∠∠∠=== ,∴△MFH ≌△NDH (AAS ),∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=12CD=12×. 【点睛】 此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.23.(1)10;(2)18.【解析】【分析】(1)根据相似三角形对应边之比相等可得BO AO =DO CO =35,再代入BO =6可得AO 长; (2)根据相似三角形的面积的比等于相似比的平方可得BOD AOC S S V V =925,进而可得S △BOD . 【详解】解:(1)∵△OBD ∽△OAC , ∴BO AO =DO CO =35∵BO =6,∴AO =10; (2)∵△OBD ∽△OAC ,DO CO =35 ∴BOD AOC S S V V =925∵S △AOC =50,∴S △BOD =18.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的面积之比等于相似比的平方.24.(1)2(2)8【解析】【分析】(1)首先根据DE ∥BC 得到△ADE 和△ABC 相似,求出AC 的长度,然后根据CE=AC -AE 求出长度;(2)根据△ABC 的面积求出△ABM 的面积,然后根据相似三角形的面积比等于相似比的平方求出△ADN 的面积.【详解】解:(1)∵DE ∥BC∴△ADE ∽△ABC ∴23AE AD AC AB == ∵AE=4∴AC=6 ∴EC=AC -AE=6-4=2(2)∵△ABC 的面积为36,点M 为BC 的中点∴△ABM 的面积为:36÷2=18 ∵△ADN 和△ABM 的相似比为23∴:4:9ADN ABM S S ∆∆=∴ADN S V =8考点: 相似三角形的判定与性质25.证明见解析.【解析】【分析】由∠BAE=∠CAD 知∠BAE+∠EAC=∠CAD+∠EAC ,即∠BAC=∠EAD ,再根据线段的长得出65AB AC AE AD ==,据此即可得证. 【详解】 ∵∠BAE =∠CAD ,∴∠BAE+∠EAC =∠CAD+∠EAC ,即∠BAC =∠EAD ,∵AB =18,AC =48,AE =15,AD =40, ∴65AB AC AE AD ==, ∴△ABC ∽△AED .【点睛】 本题主要考查相似三角形的判定,解题的关键是掌握两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似.。

【必考题】初三数学下期中试卷带答案(1)

【必考题】初三数学下期中试卷带答案(1)

【必考题】初三数学下期中试卷带答案(1)一、选择题1.如图,△ABC的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O为位似中心,将△ABC 扩大得到△A1B1C1,且△ABC 与△A1B1C1的位似比为1 :3.则下列结论错误的是 ( )A.△ABC∽△A1B1C1B.△A1B1C1的周长为6+32C.△A1B1C1的面积为3D.点B1的坐标可能是(6,6)2.已知线段a、b,求作线段x,使22bxa,正确的作法是()A.B.C.D.3.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)4.如图,河坝横断面迎水坡AB的坡比是1:3(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高3mBC=,则坡面AB的长度是().A.9m B.6m C.63m D.33m5.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12C EAFC CDF=VV,那么S EAFS EBCVV的值是()A.12B.13C.14D.196.观察下列每组图形,相似图形是()A.B.C.D.7.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A .9B .8C .15D .14.58.若反比例函数2y x =-的图象上有两个不同的点关于y 轴的对称点都在一次函数y =-x +m 的图象上,则m 的取值范围是( ) A .22m >B .-22m <C .22-22m m >或<D .-2222m << 9.如图,以点O 为位似中心,将△ABC 放大得到△DEF ,若AD =OA ,则△ABC 与△DEF的面积之比为 ( )A .1:2B .1:4C .1:5D .1:6 10.如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为( )A .6B .7C .8D .911.在平面直角坐标系中,点E (﹣4,2),点F (﹣1,﹣1),以点O 为位似中心,按比例1:2把△EFO 缩小,则点E 的对应点E 的坐标为( )A .(2,﹣1)或(﹣2,1)B .(8,﹣4)或(﹣8,4)C .(2,﹣1)D .(8,﹣4) 12.如图▱ABCD ,F 为BC 中点,延长AD 至E ,使:1:3DE AD =,连结EF 交DC 于点G ,则:DEG CFG S S ∆V =( )A .2:3B .3:2C .9:4D .4:9二、填空题13.51-的矩形称作黄金矩形.那么,现将长度为20cm 的铁丝折成一个黄金矩形,这个黄金矩形较短的边长是_____cm . 14.如图,四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且43OE EA =,则FG BC=______.15.在▱ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC 相交于F ,则AEF CBF S S ∆∆:是_______.16.如图,在2×2的网格中,以顶点O 为圆心,以2个单位长度为半径作圆弧,交图中格线于点A ,则tan ∠ABO 的值为_____.17.如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为_______.18.如果点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项,那么:AP AB 的值为________.19.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm 的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm ),请你帮小华算出圆盘的半径是_____cm .20.已知CD 是Rt △ABC 斜边上的高线,且AB=10,若BC=8,则cos ∠ACD= ______ .三、解答题21.如图,锐角三角形ABC 中,CD ,BE 分别是AB ,AC 边上的高,垂足为D ,E .(1)证明:ACD ABE V V ∽.(2)若将D ,E 连接起来,则AED V 与ABC V 能相似吗?说说你的理由.22.(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC 中,点O 在线段BC 上,∠BAO=30°,∠OAC=75°,AO=33,BO :CO=1:3,求AB 的长.经过社团成员讨论发现,过点B 作BD ∥AC ,交AO 的延长线于点D ,通过构造△ABD 就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥AD ,AO=33,∠ABC=∠ACB=75°,BO :OD=1:3,求DC 的长.23.如图,已知点D 是的边AC 上的一点,连接,,.求证:∽;求线段CD 的长.24.如图,在四边形ABCD 中,AC 平分∠DAB ,AC 2=AB•AD ,∠ADC=90°,点E 为AB 的中点.(1)求证:△ADC ∽△ACB .(2)若AD=2,AB=3,求的值.25.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC∽△A1B1C1,故A正确;B. 由图可知,AB=2-1=1,BC=2-1=1,2,所以△ABC的周长为2,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+32B正确;C. S△ABC=1111=22⨯⨯,由面积比等于位似比的平方,可得△A1B1C1的面积为△ABC周长的9倍,即19=4.52⨯,故C错误;D. 在第一象限内作△A 1B 1C 1时,B 1点的横纵坐标均为B 的3倍,此时B 1的坐标为(6,6),故D 正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.2.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a 、b 和2b ,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x .【详解】 解:由题意,22b x a= ∴2a b b x=, ∵线段x 没法先作出,根据平行线分线段成比例定理,只有C 符合.故选C .3.B解析:B【解析】试题分析:∵以原点O 为位似中心,在第一象限内,将线段CD 放大得到线段AB , ∴B 点与D 点是对应点,则位似比为5:2,∵C (1,2),∴点A 的坐标为:(2.5,5)故选B .考点:位似变换;坐标与图形性质.4.B解析:B【解析】由图可知,:BC AC =tan BAC ∠=, ∴30BAC ∠=︒, ∴36m 1sin 302BC AB ===︒. 故选B .5.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCCVV,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭VV,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.6.D解析:D【解析】【分析】根据相似图形的定义,形状相同,可得出答案.【详解】解:A、两图形形状不同,故不是相似图形;B、两图形形状不同,故不是相似图形;C、两图形形状不同,故不是相似图形;D、两图形形状相同,故是相似图形;故选:D.【点睛】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.7.A解析:A【解析】【分析】由勾股定理可求AM的长,通过证明△ABM∽△EMA,可求AE=10,可得DE=6,由平行线分线段成比例可求DF的长,即可求解.【详解】解:∵AB=4,BM=2,∴AM===,∵四边形ABCD是正方形,∴AD∥BC,∠B=∠C=90°,∴∠EAM=∠AMB,且∠B=∠AME=90°,∴△ABM∽△EMA,∴BM AM AM AE==∴AE=10,∴DE=AE﹣AD=6,∵AD∥BC,即DE∥MC,∴△DEF∽△CMF,∴DE DF MC CF=,∴642DFCF=-=3,∵DF+CF=4,∴DF=3,∴S△DEF=12DE×DF=9,故选:A.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理;熟练掌握相似三角形的性质,并能进行推理计算是解决问题的关键.8.C解析:C【解析】【分析】根据题意可知反比例函数2yx=-的图象上的点关于y轴的对称的点在函数2yx=上,由此可知反比例函数2yx=的图象与一次函数y=-x+m的图象有两个不同的交点,继而可得关于x的一元二次方程,再根据根的判别式即可求得答案.【详解】∵反比例函数2yx=-上有两个不同的点关于y轴对称的点在一次函数y=-x+m图象上,∴反比例函数2y x=与一次函数y =-x +m 有两个不同的交点, 联立得2y x y x m ⎧=⎪⎨⎪=-+⎩,消去y 得:2x m x =-+, 整理得:220x mx -+=,∵有两个不同的交点∴220x mx -+=有两个不相等的实数根,∴△=m 2-8>0,∴m >m <故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,关于x 轴、y 轴对称的点的坐标,熟练掌握相关内容、正确理解题意是解题的关键.9.B解析:B【解析】试题分析:利用位似图形的性质首先得出位似比,进而得出面积比.∵以点O 为位似中心,将△ABC 放大得到△DEF ,AD=OA ,∴OA :OD=1:2,∴△ABC 与△DEF 的面积之比为:1:4.故选B .考点:位似变换.10.C解析:C【解析】【分析】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC =,然后利用比例性质求EC 和AE 的值即可【详解】∵//DE BC , ∴AD AE DB EC =,即932AE =, ∴6AE =,∴628AC AE EC =+=+=.故选:C .【点睛】此题考查平行线分线段成比例,解题关键在于求出AE11.A解析:A【解析】【分析】利用位似比为1:2,可求得点E 的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E (-4,2),位似比为1:2,∴点E 的对应点E′的坐标为(2,-1)或(-2,1).故选A .【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.12.D解析:D【解析】【分析】先设出DE x =,进而得出3AD x =,再用平行四边形的性质得出3BC x =,进而求出CF ,最后用相似三角形的性质即可得出结论.【详解】解:设DE x =,∵:1:3DE AD =,∴3AD x =,∵四边形ABCD 是平行四边形,∴//AD BC ,BC AD 3x ==,∵点F 是BC 的中点, ∴1322CF BC x ==, ∵//AD BC , ∴DEG CFG ∆∆∽, ∴224392DEGCFG S DE x S CF x ⎛⎫ ⎪⎛⎫=== ⎪ ⎪⎝⎭ ⎪⎝⎭V V , 故选:D .【点睛】此题主要考查了相似三角形的判定和性质,平行四边形的性质,中点的定义,表示出CF 是解本题的关键.二、填空题13.【解析】【分析】设这个黄金矩形较长的边长是xcm 根据题意得:解方程可得【详解】设这个黄金矩形较长的边长是xcm 根据题意得:解得:x=则这个黄金矩形较短的边长是cm 故答案为:【点睛】考核知识点:黄金分解析:(15-【解析】【分析】设这个黄金矩形较长的边长是xcm ,根据题意得:220x x ⎛⎫+= ⎪⎝⎭,解方程可得. 【详解】设这个黄金矩形较长的边长是xcm ,根据题意得:12202x x ⎛⎫-+= ⎪⎝⎭,解得:x= 5,则这个黄金矩形较短的边长是15)(152⨯=-cm .故答案为:(15-【点睛】考核知识点:黄金分割点的应用.理解黄金分割的意义是关键. 14.【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案【详解】四边形ABCD 与四边形EFGH 位似其位似中心为点O 且则故答案为:【点睛】本题考查了位似的性质熟练掌握位似的性质是解题的关键 解析:47【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案.【详解】Q 四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且OE 4EA 3=, OE 4OA 7∴=, 则FG OE 4BC OA 7==, 故答案为:47.【点睛】本题考查了位似的性质,熟练掌握位似的性质是解题的关键.15.或【解析】【分析】分两种情况根据相似三角形的性质计算即可【详解】解:①当时∵四边形ABCD 是平行四边形②当时同理可得故答案为:或【点睛】考查的是相似三角形的判定和性质平行四边形的性质掌握相似三角形的 解析:425:或925:【解析】【分析】分2332AE ED AE ED :=:、:=:两种情况,根据相似三角形的性质计算即可.【详解】解:①当23AE ED :=:时,∵四边形ABCD 是平行四边形,//25AD BC AE BC ∴,:=:,AEF CBF ∴∆∆∽,224255AEF CBF S S ∆∆∴:=()=:; ②当32AE ED :=:时,同理可得,239255AEF CBF S S ∆∆:=()=:, 故答案为:425:或925:.【点睛】考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.16.2+3【解析】【分析】连接OA 过点A 作AC⊥OB 于点C 由题意知AC=1OA=OB=2从而得出OC=OA2-AC2=3BC=OB ﹣OC=2﹣3在Rt△ABC 中根据tan∠ABO=ACBC 可得答案【详解解析:2+.【解析】【分析】连接OA ,过点A 作AC⊥OB 于点C ,由题意知AC=1、OA=OB=2,从而得出OC==、BC=OB ﹣OC=2﹣,在Rt△ABC 中,根据tan∠ABO=可得答案. 【详解】如图,连接OA ,过点A 作AC⊥OB 于点C ,则AC=1,OA=OB=2,∵在Rt△AOC中,OC==,∴BC=OB﹣OC=2﹣,∴在Rt△ABC中,tan∠ABO==2+.故答案是:2+.【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO为内角的直角三角形是解题的关键.17.cm【解析】【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股解析:cm.【解析】【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.18.【解析】【分析】根据黄金分割的概念和黄金比是解答即可【详解】∵点把线段分割成和两段()其中是与的比例中项∴点P是线段AB的黄金分割点∴=故填【点睛】此题考察黄金分割是与的比例中项即点P 是线段AB 的黄 解析:51- 【解析】【分析】根据黄金分割的概念和黄金比是512-解答即可. 【详解】∵点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项, ∴点P 是线段AB 的黄金分割点,∴:AP AB =51-, 故填51-. 【点睛】此题考察黄金分割,AP 是AB 与PB 的比例中项即点P 是线段AB 的黄金分割点,即可得到:AP AB =512-. 19.10【解析】【分析】如图先利用垂径定理得BD=6再利用勾股定理建立方程求解即可得出结论【详解】如图记圆的圆心为O 连接OBOC 交AB 于D ∴OC ⊥ABBD=AB 由图知AB=16﹣4=12cmCD=2cm解析:10【解析】【分析】如图,先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【详解】如图,记圆的圆心为O ,连接OB ,OC 交AB 于D ,∴OC ⊥AB ,BD=12AB , 由图知,AB=16﹣4=12cm ,CD=2cm ,∴BD=6,设圆的半径为r ,则OD=r ﹣2,OB=r ,在Rt △BOD 中,根据勾股定理得,OB 2=AD 2+OD 2,∴r 2=36+(r ﹣2)2,∴r=10cm ,故答案为10.【点睛】本题考查了垂径定理的应用,勾股定理,正确添加辅助线构造出直角三角形是解本题的关键.20.【解析】试题分析:根据同角的余角相等得:∠ACD=∠B 利用同角的余弦得结论解:∵CD 是Rt△ABC 斜边上的高线∴CD⊥AB∴∠A+∠ACD=90°∵∠ACB=90°∴∠B+∠A=90°∴∠ACD=∠ 解析:45【解析】试题分析:根据同角的余角相等得:∠ACD =∠B ,利用同角的余弦得结论.解:∵CD 是Rt △ABC 斜边上的高线,∴CD ⊥AB ,∴∠A +∠ACD =90°,∵∠ACB =90°,∴∠B +∠A =90°,∴∠ACD =∠B ,∴cos ∠ACD =cos ∠B =BC AB =810=45, 故答案为:45. 三、解答题21.(1)见解析;(2)能,理由见解析.【解析】【分析】(1)根据已知利用有两个角相等的三角形相似判定即可;(2)根据第一问可得到AD :AE=AC :AB ,有一组公共角∠A ,则可根据两组对应边的比相等且相应的夹角相等的两个三角形相似进行判定.【详解】()1证明:ACD ABE V V ∽.证明:∵CD ,BE 分别是AB ,AC 边上的高,∴90ADC AEB ∠=∠=o .∵A A ∠=∠,∴ACD ABE V V ∽.()2若将D ,E 连接起来,则AED V 与ABC V 能相似吗?说说你的理由.∴::AD AE AC AB =.∴AD:AC=AE:AB∵A A ∠=∠,∴AED ABC V V ∽.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.22.(1)75;43;(2)CD=413.【解析】【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA 可得出△BOD ∽△COA ,利用相似三角形的性质可求出OD 的值,进而可得出AD 的值,由三角形内角和定理可得出∠ABD=75°=∠ADB ,由等角对等边可得出AB=AD=43,此题得解;(2)过点B 作BE ∥AD 交AC 于点E ,同(1)可得出AE=43,在Rt △AEB 中,利用勾股定理可求出BE 的长度,再在Rt △CAD 中,利用勾股定理可求出DC 的长,此题得解.【详解】解:(1)∵BD ∥AC ,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA ,∴△BOD ∽△COA ,∴13OD OB OA OC ==. 又∵AO=33,∴OD=13AO=3, ∴AD=AO+OD=43.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB , ∴AB=AD=43.(2)过点B 作BE ∥AD 交AC 于点E ,如图所示.∵AC ⊥AD ,BE ∥AD ,∵∠AOD=∠EOB,∴△AOD∽△EOB,∴BO EO BE DO AO DA==.∵BO:OD=1:3,∴13 EO BEAO DA==.∵AO=33,∴EO=3,∴AE=43.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(43)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=413.【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.23.(1)参见解析;(2)5.【解析】【分析】(1)利用两角法证得两个三角形相似;(2)利用相似三角形的对应线段成比例求得CD长.【详解】(1)∵∠ABD=∠C,∠A=∠A(公共角),∴△ABD∽△ACB;(2)由(1)知:△ABD∽△ACB,∵相似三角形的对应线段成比例,∴=,即=,解得:CD=5.24.(1)证明见解析;(2).【解析】【分析】(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到 CE=AE,根据等腰三角形的性质、平行线的判定定理证明=,由相似三角形的性质列出比例式,计算即可.【详解】(1)证明:∵AC 平分∠DAB,∴∠DAC=∠CAB,∵AC2=AB•AD,∴=,∴△ADC∽△ACB;(2)∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,∵点 E 为 AB 的中点,∴CE=AE= AB= ,∴∠EAC=∠ECA,∴∠DAC=∠EAC,∴∠DAC=∠ECA,∴CE∥AD;∴==,∴=.【点睛】本题考查的是直角三角形的性质、平行线的判定、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.此时轮船所在的B处与灯塔P的距离是98海里.【解析】【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.【详解】作PC⊥AB于C点,∴∠APC=30°,∠BPC=45°,AP=80(海里),在Rt△APC中,cos∠APC=PC PA,∴PC=PA•cos∠3(海里),在Rt△PCB中,cos∠BPC=PC PB,∴PB=403cosPCBPC=∠6≈98(海里),答:此时轮船所在的B处与灯塔P的距离是98海里.【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.。

【必考题】九年级数学下期中一模试题含答案(1)

【必考题】九年级数学下期中一模试题含答案(1)

【必考题】九年级数学下期中一模试题含答案(1)一、选择题1.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.B.C.D.2.如图,用放大镜看△ABC,若边BC的长度变为原来的2倍,那么下列说法中,不正确的是().A.边AB的长度也变为原来的2倍;B.∠BAC的度数也变为原来的2倍;C.△ABC的周长变为原来的2倍;D.△ABC的面积变为原来的4倍;3.在Rt△ABC中,∠ACB=90°,AB=5,tan∠B=2,则AC的长为()A.1B.2C.5D.254.用放大镜观察一个五边形时,不变的量是()A.各边的长度 B.各内角的度数 C.五边形的周长 D.五边形的面积5.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米6.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A .五丈B .四丈五尺C .一丈D .五尺7.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒8.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP=2,BP=6,∠APC=30°,则CD 的长为( )A .15B .25C .215D .89.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .16510.如图,在平行四边形中,点在边上,与相交于点,且,则与的周长之比为( )A .1 : 2B .1 : 3C .2 : 3D .4 : 911.若△ABC ∽△A′B′C′且34AB A B ='',△ABC 的周长为15cm ,则△A′B′C′的周长为( )cm. A .18B .20C .154D .80312.如图,在△ABC 中,M 是AC 的中点,P ,Q 为BC 边上的点,且BP=PQ=CQ ,BM 与AP,AQ分别交于D,E点,则BD∶DE∶EM等于A.3∶2∶1B.4∶2∶1C.5∶3∶2D.5∶2∶1二、填空题13.如图,在一段坡度为1∶2的山坡上种树,要求株距(即相邻两株树之间的水平距离)为6米,那么斜坡上相邻两株树之间的坡面距离为____米.14.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为________.15.利用标杆CD测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E.若标杆CD的高为1.5米,测得DE=2米,BD=16米,则建筑物的高AB为_____米.16.若△ABC∽△A’B’C’,且△ABC与△A’B’C’的面积之比为1:4,则相似比为____.17.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则点C的坐标为________.18.如图,四边形ABCD、CDEF、EFGH都是正方形,则∠1+∠2= .19.如图,矩形ABCD 的顶点,A C 都在曲线ky x=(常数0k ≥,0x >)上,若顶点D 的坐标为()5,3,则直线BD 的函数表达式是_.20.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.三、解答题21.等腰Rt PAB V 中,90PAB ∠=o ,点C 是AB 上一点(与A B 、不重合),连接PC ,将线段PC 绕点C 顺时针旋转90o ,得到线段DC .连接, PD BD . 探究PBD ∠的度数,以及线段AB 与BD BC 、的数量关系.(1)尝试探究:如图(1)PBD ∠= ;AB BC AC =+= ;(2)类比探索:如图(2),点C 在直线AB 上,且在点B 右侧,还能得出与(1)中同样的结论么?请写出你得到的结论并证明:22.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在它的北偏东60°方向上,在A 的正东200米的B 处,测得海中灯塔P 在它的北偏东30°方向上.问:灯塔P 到环海路的距离PC约等于多少米?(取1.732,结果精确到1米)23.如图,AD是△ABC的中线,tan B=13,cos C=22,AC=2.求:(1)BC的长;(2)sin ∠ADC的值.24.某天上午7:30,小芳在家通过滴滴打车软件打车前往动车站搭乘当天上午8:30的动车.记汽车的行驶时间为t小时,行驶速度为v千米/小时(汽车行驶速度不超过60千米/小时).根据经验,v,t的一组对应值如下表:V(千米/小时)2030405060T(小时)0.60.40.30.250.2(1)根据表中的数据描点,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)若小芳从开始打车到上车用了10分钟,小芳想在动车出发前半小时到达动车站,若汽车的平均速度为32千米/小时,小芳能否在预定的时间内到达动车站?请说明理由;(3)若汽车到达动车站的行驶时间t满足0.3<t<0.5,求平均速度v的取值范围.25.如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.2.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC,若边BC的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB的长度也变为原来的2倍,故A正确;∴∠BAC的度数与原来的角相等,故B错误;∴△ABC的周长变为原来的2倍,故C正确;∴△ABC的面积变为原来的4倍,故D正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.3.B解析:B【解析】【分析】根据正切的定义得到BC=12AC,根据勾股定理列式计算即可.【详解】在Rt△ABC中,∠ACB=90°,tan∠B=2,∴ACBC=2,∴BC=12 AC,由勾股定理得,AB2=AC2+BC2)2=AC2+(12AC)2,解得,AC=2,故选B.【点睛】本题考查的是锐角三角函数的定义、勾股定理,掌握锐角A的对边a与邻边b的比叫做∠A的正切是解题的关键.4.B解析:B【解析】解:∵用一个放大镜去观察一个三角形,∴放大后的三角形与原三角形相似,∵相似三角形的对应边成比例,∴各边长都变大,故此选项错误;∵相似三角形的对应角相等,∴对应角大小不变,故选项B正确;.∵相似三角形的面积比等于相似比的平方,∴C选项错误;∵相似三角形的周长得比等于相似比,∴D选项错误.故选B.点睛:此题考查了相似三角形的性质.注意相似三角形的对应边成比例,相似三角形的对应角相等,相似三角形的面积比等于相似比的平方,相似三角形的周长得比等于相似比.5.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1:3;∴AC=BC÷tanA=53米;故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.6.B解析:B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x,解得x=45(尺),故选B.【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.7.C解析:C【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,【详解】连接CD,如图所示:∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.8.C解析:C【解析】【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA-AP=2,接着在Rt△OPH中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt△OHC中利用勾股定理计算出CH=15,所以CD=2CH=215.【详解】作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴22=15OC OH∴15故选C.【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键9.C解析:C 【解析】 【分析】根据矩形的性质可知:求AD 的长就是求BC 的长,易得∠BAC =∠ADE ,于是可利用三角函数的知识先求出AC ,然后在直角△ABC 中根据勾股定理即可求出BC ,进而可得答案. 【详解】解:∵四边形ABCD 是矩形,∴∠B =∠BAC =90°,BC=AD ,∴∠BAC +∠DAE =90°, ∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=, 在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==,∴AD=BC 203==. 故选:C. 【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.10.C解析:C 【解析】 【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的周长比等于相似比就可得到答案. 【详解】∵四边形ABCD 是平行四边形, ∴DC ∥AB ,CD=AB . ∴△DFE ∽△BFA , ∵DE :EC=1:2, ∴EC :DC=CE :AB=2:3, ∴C △CEF :C △ABF =2:3. 故选C .11.B解析:B 【解析】∵△ABC ∽△A ′B ′C ′,∴34ABC AB A B C A B ''=''='V V 的周长的周长,∵△ABC 的周长为15cm ,∴△A ′B ′C ′的周长为20cm .故选B .12.C解析:C【解析】【分析】过A 作AF ∥BC 交BM 延长线于F ,设BC=3a ,则BP=PQ=QC=a ;根据平行线间的线段对应成比例的性质分别求出BD 、BE 、BM 的长度,再来求BD ,DE ,EM 三条线段的长度,即可求得答案.【详解】过A 作AF ∥BC 交BM 延长线于F ,设3BC a =,则BP PQ QC a ===;∵AM CM =,AF ∥BC , ∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP , ∴133BD BP a DF AF a ===, ∴34DF BF BD ==, ∵AF ∥BQ , ∴2233BE BQ a EF AF a ===, ∴23EF BE =,即25BF BE =, ∵AF ∥BC , ∴313BM BC a MF AF a===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.二、填空题13.3米【解析】【分析】利用垂直距离:水平宽度得到水平距离与斜坡的比把相应的数值代入即可【详解】解:∵坡度为1:2且株距为6米∴株距:坡面距离=2:∴坡面距离=株距×(米)【点睛】本题是将实际问题转化为解析:【解析】【分析】利用垂直距离:水平宽度得到水平距离与斜坡的比,把相应的数值代入即可.【详解】解:∵坡度为1:2=6米,∴株距:坡面距离=2∴坡面距离=株距=【点睛】本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意坡度是坡角的正切函数.14.【解析】已知BC=8AD是中线可得CD=4在△CBA和△CAD中由∠B=∠DAC∠C=∠C可判定△CBA∽△CAD根据相似三角形的性质可得即可得AC2=CD•BC=4×8=32解得AC=4解析:【解析】已知BC=8, AD是中线,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根据相似三角形的性质可得AC CDBC AC=,即可得AC2=CD•BC=4×8=32,解得.15.5【解析】【分析】根据同一时刻同一地点物高与影长成正比列式求得CD 的长即可【详解】解:∵AB∥CD∴△EBA∽△ECD∴即∴AB=135(米)故答案为:135【点睛】此题主要考查相似三角形的性质解题解析:5【解析】【分析】根据同一时刻同一地点物高与影长成正比列式求得CD的长即可.【详解】解:∵AB∥CD,∴△EBA∽△ECD,∴CD ED AB EB =,即1.52216AB =+, ∴AB =13.5(米).故答案为:13.5【点睛】 此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的判定与性质.16.1:2【解析】【分析】由△ABC 相似△A′B′C′面积比为1:4根据相似三角形的面积比等于相似比的平方即可求解【详解】解:∵△ABC 相似△A′B′C′面积比为1:4∴△ABC 与△A′B′C′的相似比解析:1:2【解析】【分析】由△ABC 相似△A ′B ′C ′,面积比为1:4,根据相似三角形的面积比等于相似比的平方,即可求解.【详解】解:∵△ABC 相似△A ′B ′C ′,面积比为1:4,∴△ABC 与△A ′B ′C ′的相似比为:1:2,故答案为: 1:2.【点睛】本题主要考查的是相似三角形的性质,解决本题的关键是要熟知相似三角形面积的比等于相似比的平方.17.【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长进而得出△OAD ∽△OBG 进而得出AO 的长即可得出答案【详解】∵正方形BEFG 的边长是6∴∵两个正方形的相似比为∴∴∵AD ∥BG ∴△OAD解析:(3,2)【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长,进而得出△OAD ∽△OBG ,进而得出AO 的长,即可得出答案.【详解】.∵正方形BEFG 的边长是6,∴6BE EF ==. ∵两个正方形的相似比为13, ∴163CB CB EF ==. ∴2AB BC ==,.∵AD ∥BG ,∴△OAD ∽△OBG ,∴13OA OB =,即213OB OB -=. ∴3OB =.∴点C 的坐标为(3,2). 【点睛】本题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO 的长是解题关键. 18.45°【解析】【分析】首先求出线段ACAFAG 的长度(用a 表示)求出两个三角形对应边的比进而证明△ACF ∽△GCA 问题即可解决【详解】设正方形的边长为a 则AC=∵∴∵∠ACF=∠ACF ∴△ACF ∽△解析:45°.【解析】【分析】首先求出线段AC 、AF 、AG 的长度(用a 表示),求出两个三角形对应边的比,进而证明△ACF ∽△GCA ,问题即可解决.【详解】设正方形的边长为a ,则=,∵ACCF a==CG AC == ∴AC CG CF AC=, ∵∠ACF=∠ACF ,∴△ACF ∽△GCA ,∴∠1=∠CAF ,∵∠CAF+∠2=45°,∴∠1+∠2=45°.点睛:该题以正方形为载体,主要考查了相似三角形的判定及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.19.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3)C (5)所以B ()然后利用待定系数法求直线BD 的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD 的解析式为y=m 解析:35y x =【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3k ,3),C (5,5k ),所以B (3k ,5k ),然后利用待定系数法求直线BD 的解析式. 【详解】 ∵D (5,3),∴A (3k ,3),C (5,5k ), ∴B (3k ,5k ), 设直线BD 的解析式为y=mx+n , 把D (5,3),B (3k ,5k )代入得 5335m n k k m n ==+⎧⎪⎨+⎪⎩,解得350m n ⎧⎪⎨⎪⎩==, ∴直线BD 的解析式为35y x =. 故答案为35y x =. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.20.7【解析】设树的高度为m 由相似可得解得所以树的高度为7m解析:7【解析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 三、解答题21.(1)90o,2BC BD +;(2)结论:90PBD ∠=︒,2AB BD BC =-,理由详见解析【解析】【分析】(1)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,2AC BD =,因此2AC BD =,即可得出结论;(2)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,AC BD =,因此AC =,即可得出结论.【详解】解:(1)PCD QV 为等腰直角三角形,且90PCD ∠=︒, 45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又PA PB =Q ,~PAC PBD ∴∆∆2=,2AC BD ∴=,∴2AC BD =,∴2AB BC AC BC BD =+=+,故答案为90o ,BC +,(2)结论:90PBD ∠=︒; 2AB BD BC =-;理由如下: PCD QV 为等腰直角三角形,且90PCD ∠=︒,45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又PA PC PB PD==Q ,PAC PBD ∴V V ∽2=,90PBD PAC ∴∠=∠=︒,2AC BD =,2AC BD ∴=,2AB AC BC BD BC ∴=-=-. 【点睛】 本题是相似形综合题,主要考查了等腰直角三角形的性质、相似三角形的判定与性质等知识;熟练掌握等腰直角三角形的性质,证明三角形相似是解决问题的关键.22.173米【解析】【分析】由外角的性质可以得到∠PAC=∠APB,从而有PB=AB=200,在Rt△PBC中,由三角函数定义可以求出PC的长.【详解】解:由题意,可得∠PAC=30°,∠PBC=60°.∴∠APB=∠PBC=∠PBC-∠PAC=30°.∴∠PAC=∠APB.∴PB=AB=200.在Rt△PBC中,∠PCB=90°,∠PBC=60°,PB=200,∴PC=PBsin∠PBC=34002003346.42⨯==≈173(米).答:灯塔P到环海路的距离PC约等于173米.考点:解直角三角形的应用-方向角问题.23.(1)BC=4;(2)sin ∠ADC=2 2.【解析】(1)如图,作AE⊥BC,∴CE=AC•cos C=1,∴AE=CE=1,1 tan3B=,∴BE=3AE=3,∴BC=4;(2)∵AD是△ABC的中线,∴DE=1,∴∠ADC=45°,∴2 sin2ADC∠=.24.(1)v=12t;(2)若汽车的平均速度为32千米/小时,小芳不能在预定的时间内到达动车站;(3)平均速度v的取值范围是24<v<40【解析】【分析】(1)根据表格中数据,可知v是t的反比例函数,设v=kt,利用待定系数法求出k即可;(2)根据时间t=13小时,求出速度,即可判断;(3)根据自变量的取值范围,求出函数值的取值范围即可.【详解】(1)根据表格中数据,可知v=kt,∵v=20时,t=0.6,∴k=20×0.6=12,∴v=12t(t≥0.2).(2)∵1﹣16-12=13,∴t=13时,v=1213=36>32,∴若汽车的平均速度为32千米/小时,小芳不能在预定的时间内到达动车站;(3)∵0.3<t<0.5,∴24<v<40,答:平均速度v的取值范围是24<v<40.【点睛】本题考查反比例函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于基础题.25.(1) FD=5; (2)证明见解析.【解析】【分析】(1)利用三角形中位线的性质得出DE∥AB,进而得出∠DEC =∠B,即可得出FD=DE,即可得出答案;(2)利用等腰三角形的性质和平行线的性质得出∠B=∠A=∠CED=∠CDE,即可得出∠CDE=∠F,即可得出△CDE∽△DFE.【详解】解:(1)∵D、E分别是AC、BC的中点,∴DE//AB,DE=12AB=5又∵DE//AB,∴∠DEC= ∠B.而∠F= ∠B,∴∠DEC =∠B,∴FD=DE=5;(2)∵AC=BC,∴∠A=∠B.又∠CDE=∠A,∠CED= ∠B,∴∠CDE=∠B.而∠B=∠F,∴∠CDE=∠F,∠CED=∠DEF,∴△CDE∽△DFE.【点睛】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质和平行线的性质等知识,熟练利用相关性质是解题关键.。

初三数学下期中一模试题(附答案)

初三数学下期中一模试题(附答案)

初三数学下期中一模试题(附答案) 一、选择题1.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数1yx=-的图象上,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y1<y22.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.B.C.D.3.如图,在△ABC中,DE∥BC ,12ADDB=,DE=4,则BC的长是()A.8 B.10 C.11 D.124.对于反比例函数y=1x,下列说法正确的是()A.图象经过点(1,﹣1)B.图象关于y轴对称C.图象位于第二、四象限D.当x<0时,y随x的增大而减小5.在△ABC中,若=0,则∠C的度数是()A.45°B.60°C.75°D.105°6.如图,在正方形ABCD中,N为边AD上一点,连接BN.过点A作AP⊥BN于点P,连接CP,M为边AB上一点,连接PM,∠PMA=∠PCB,连接CM,有以下结论:①△PAM∽△PBC;②PM⊥PC;③M、P、C、B四点共圆;④AN=AM.其中正确的个数为()A.4B.3C.2D.17.观察下列每组图形,相似图形是( )A .B .C .D .8.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP=2,BP=6,∠APC=30°,则CD 的长为( )A .15B .25C .215D .8 9.在平面直角坐标系中,将点(2,l )向右平移3个单位长度,则所得的点的坐标是( )A .(0,5)B .(5,1)C .(2,4)D .(4,2)10.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条边DF =50cm ,EF =30cm ,测得边DF 离地面的高度AC =1.5m ,CD =20m ,则树高AB 为( )A .12mB .13.5mC .15mD .16.5m11.如图,河堤横断面迎水坡AB 的坡比是1:3,堤高BC =12m ,则坡面AB 的长度是( )A .15mB .3C .24mD .10312.如图,ABC △与ADE V 相似,且ADE B ∠=∠,则下列比例式中正确的是( )A .AE AD BE DC =B .AE AB AB AC = C .AD AB AC AE = D .AE DE AC BC= 二、填空题13.如图,在△ABC 中,CD 、BE 分别是△ABC 的边AB 、AC 上的中线,则DF EF BF CF++=________。

2021-2022九年级数学下期中一模试题(附答案)

2021-2022九年级数学下期中一模试题(附答案)

一、选择题1.已知二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则m 的取值范围是( )A .18m >B .18mC .18m >-且0m ≠ D .18m 且0m ≠ 2.如图,Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D 、F 分别在AC 、BC 边上,设CD 的长度为x ,△ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能表示y 与x 之间的函数关系的是( )A .B .C .D .3.对称轴为y 轴的二次函数是( )A .y=(x+1)2B .y=2(x-1)2C .y=2x 2+1D .y=-(x-1)2 4.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax bc =+的图象大致是( )A .B .C .D .5.抛物线221y x =--的顶点坐标是( )A .(2,1)--B .(2,1)C .(0,1)-D .(0,1) 6.已知二次函数2y ax bx c =++的部分图象如图所示,下列关于此函数图象的描述中,正确的个数是( )①对称轴是直线1x =;②当0x <时,函数值y 随x 的增大而增大;③方程20ax bx c ++=的解为11x =-,23x =;④当1x <-或3x >时,20ax bx c ++<.A .1B .2C .3D .47.学校研究性学习小组的同学测量旗杆的高度.如图,在教学楼一楼地面C 处测得旗杆顶部的仰角为60︒,在教学楼三楼地面D 处测得旗杆顶部的仰角为30,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为( )A .7B .8C .9D .108.在Rt ABC ∆中,90C ∠=︒,若5sin 13A =,则cos A 的值为( ) A .512 B .813 C .1312 D .12139.三角形在正方形网格纸中的位置如图所示,则sinα的值是( )A .34B .43 C .35D .45 10.在Rt ABC 中,90,3,2C BC AC ∠=︒==,则sin A 的值为( ) A .32 B .23 C .213 D .313 11.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25012.tan60︒的值为( )A 3B .23C 3D 2二、填空题13.将抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为_____. 14.已知抛物线22y x x n =-+与x 轴只有一个公共点,则n =__________.15.已知二次函数()20y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②30a c +>;③420a b c ++>;④20a b +=;⑤24b ac >.其中正确的结论的有__________________(填正确的序号)16.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表所示,下列说法: x ···3- 2- 1- 0 1 ··· y ··· 6- 0 4 66 ··· ①抛物线与y 轴的交点为()0,6;②抛物线的对称轴是在y 轴右侧;③在对称轴左侧,y 随x 增大而减小;④抛物线一定过点()3,0.上述说法正确的是____(填序号). 17.如图,∠DBC =30°,AB =DB ,利用此图求tan75°= _____ .18.如图,在平面直角坐标系中,点B 在第一象限,BA x ⊥轴于点A ,反比例函数()0k y x x=>的图象与线段AB 相交于点C ,且C 是线段AB 的中点,点C 关于直线y x =的对称点'C 的坐标为()()1,1n n ≠,若OAB 的面积为4.则下列结论:①2n =;②4k =;③不等式k x x <的解集是2x >;④tan 2ABO ,其中正确结论的序号是________.19.如图,点P (m ,1)是反比例函数3y x =图象上的一点,PT ⊥x 轴于点T ,把△PTO 沿直线OP 翻折得到△PT O ',则点T '的坐标为_______________.20.已知等腰ABC ,AB AC =,BH 为腰AC 上的高,3BH =,3tan 3ABH ∠=,则CH 的长为______. 三、解答题21.已知抛物线239y x kx k =-+-.求证:无论k 为何值,该二次函数的图象与x 轴都有交点.22.某跳水运动员在进行跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.已知跳板AB 长为2米,跳板距水面CD 高BC 为3米,训练时跳水曲线在离起跳点水平距离1米时达到距水面最大高度4米,现以CD 为横轴,CB 为纵轴建立直角坐标系.(1)求这条抛物线的解析式;(2)求运动员落水点与点C 的距离.23.喜迎元旦,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.(1)假设设每件商品的售价上涨x 元(x 为正整数),每星期销售该商品的利润为y 元,求y 与x 之间的函数关系式.(2)每件商品的售价上涨多少元时,该商店每星期销售这种商品可获得最大利润?此时,该商品的定价为多少元?获得的最大利润为多少?24.如图,△ABC 中,BD 平分∠ABC ,E 为BC 上一点,∠BDE=∠BAD=90°,(1)求证:BD 2=BA·BE ; (2)若AB=6,BE=8,求CD 的长.25.如图,在平面直角坐标系中,菱形OABC 与菱形ADEF 在第一象限,且边OA ,AD 在x轴上.反比例函y =k x(x >0)的图象经过边OC 的中点M 与边AF 的中点N ,已知菱形OABC 的边长为4,且∠AOC =60°.(1)求反比例函数的解析式;(2)求菱形ADEF 的周长.26.(1)计算:230360245sin tan cos ︒+-︒.(2)已知32a b =,求22a b a b -+的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,可得△=221410m m m -⨯->(+)()且0m ≠求解后即可得出结论.【详解】解:∵原函数是二次函数,∴0m ≠,∵二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则△=240b ac ->,即221410m m m -⨯->(+)(),解得18m >-. ∴m 的取值范围是18m >-且0m ≠. 故选:C .【点睛】本题考查了抛物线与x 轴的交点问题,掌握抛物线与x 轴的交点问题与一元二次方程根之间的关系是解题的关键.2.A解析:A【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到2yx ;当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,利用重叠的面积等于正方形的面积减去△MNE 的面积得到()2221y x x =--,配方得到()222y x =--+,然后根据二次函数的性质对各选项进行分析判断即可.【详解】解:当0<x≤1时,2y x ,当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,如图,CD=x ,则2AD x =-,∵Rt △ABC 中,AC=BC=2,∴△ADM 为等腰直角三角形,∴2DM x =-,∴()222EM x x x =--=-,∴S △ENM ()()22122212x x =-=-, ()()2222214222y x x x x x =--=-+-=--+∴()()()22012212y x x y x x ⎧=≤⎪⎨=--+≤⎪⎩﹤﹤, 故选:A .【点睛】本题考查动点问题的函数图象:通过看图获取信息,考查学生问题分析能力,解题的关键是分两种情况考虑:当0<x≤1和当1<x≤2.3.C解析:C【分析】由已知可知对称轴为x =0,从而确定函数解析式y =ax 2+bx +c 中,b =0,由选项入手即可.【详解】解:二次函数的对称轴为y 轴,则函数对称轴为x =0,即函数解析式y =ax 2+bx +c 中,b =0,故选:C .【点睛】本题考查二次函数的性质;熟练掌握二次函数的图象及性质是解题的关键.4.B解析:B【分析】根据二次函数的图像,确定a ,b ,c 的符号,后根据一次函数k,b 的符号性质确定图像的分布即可.【详解】∵抛物线的开口向下,∴a <0;∵抛物线与y 轴交于正半轴,∴c >0,∵抛物线的对称轴在原点的左边, ∴2b a-<0,且a <0, ∴b <0,∴bc <0;∴y ax bc =+的图像分布在第二,第三,第四象限, 故选B .【点睛】本题考查了二次函数的图像,一次函数的图像,熟练掌握二次函数的图像与各系数之间的关系,一次函数中k ,b 与图像分布之间的关系是解题的关键.5.C解析:C【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标.【详解】解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1),故选:C .【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答. 6.D解析:D【分析】利用拋物线的顶点的横坐标为1可对①进行判断;根据二次函数的性质对②进行判断;利用对称性得到拋物线与x 轴的另一个交点坐标为(3、0),则可对③进行判断;观察函数图象,当抛物线在x 轴下方时,得出其x 的取值范围,则可对④进行判断.【详解】根据函数图像可知,抛物线的对称轴为直线1x =,故①的说法正确;当1x <时,函数y 随x 的增大而增大,故②的说法正确;点(1-、0)关于1x =的对称点为(3、0),则抛物线与x 轴的另一个交点坐标为(3、0),所以方程20ax bx c ++=的解为121,3x x =-=,故③说法正确; 由函数图像可知,当1x <-或3x >时,抛物线在x 的下方,即20ax bx c ++<,所以④的说法正确综上所述①②③④的说法都正确故选:D .【点睛】本题考查了拋物线与x 轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质. 7.C解析:C【分析】过点D 作DE ⊥AB ,垂足为E ,则四边形ACDE 为矩形,AE=CD=6米,AC=DE .设BE=x 米,先解Rt △BDE ,得出米,x 米,再解Rt △ABC ,得出AB=3x 米,然后根据AB-BE=AE ,列出关于x 的方程,解方程即可.【详解】解:过点D 作DE ⊥AB ,垂足为E ,由题意可知,四边形ACDE 为矩形,则AE=CD=6米,AC=DE .设BE=x 米.∵在Rt △BDE 中,∠BED=90°,∠BDE=30°,∴DE=3tan 30BE =︒BE=3x 米, ∴AC=DE=3x 米.∵在Rt △ABC 中,∠BAC=90°,∠ACB=60°,∴AB=tan 603AC AC ︒==3×3x=3x 米,∵AB-BE=AE ,∴3x-x=6,∴x=3,AB=3×3=9(米).即旗杆AB 的高度为9米.故选:C .【点睛】此题考查了解直角三角形的应用-仰角俯角问题,作出辅助线,构造直角三角形是解题的关键. 8.D解析:D【分析】由三角函数的定义可知sin BC A AB=,可设BC=5k ,AB=13k 由勾股定理可求得12AC k =,再利用余弦的定义代入计算即可.【详解】解:如图:在Rt ABC 中,sin BC A AB =,可设BC=5k ,AB=13k . 由勾股定理可求得()()222213512AC AB BC k k k =-=-=. 所以,1212cos =1313AC k A AB k ==. 故选:D . 【点睛】 本题主要考查三角函数的定义,掌握正弦、余弦函数的定义是解题的关键.9.C解析:C【分析】将α∠转换成β∠去计算正弦值.【详解】解:如图,βα∠=∠,4AB =,3BC =,∴5AC =,则3sin sin 5BC AC αβ===. 故选:C .【点睛】本题考查正弦值的求解,解题的关键是掌握网格图中三角函数值的求解.10.D解析:D【分析】根据勾股定理求出斜边AB ,再根据锐角三角函数的意义求出结果即可;【详解】在Rt ABC 中,由勾股定理可得,2213AB AC BC =+=∴313sin 1313BC A AB ===; 故答案选D .本题主要考查了锐角三角函数的定义,准确计算是解题的关键.11.B解析:B【分析】根据正弦的定义求解即可;【详解】由题可知sin 340.56500280AC AB =︒=⨯=(米);故选B .【点睛】本题主要考查了解直角三角形的应用,准确计算是解题的关键.12.C解析:C【分析】根据特殊角的三角函数值解答即可.【详解】tan60°,故选C.【点睛】本题考查了特殊角三角函数值,熟记特殊角的三角函数值是解题关键.二、填空题13.y =3x2+1【分析】根据抛物线平移规律常数项加1即可【详解】解:抛物线y =3x2沿y 轴向上平移1个单位所得的抛物线关系式为y =3x2+1故答案为:y =3x2+1【点睛】本题考查了抛物线平移的变化规解析:y =3x 2+1.【分析】根据抛物线平移规律,常数项加1即可.【详解】解:抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为y =3x 2+1, 故答案为:y =3x 2+1.【点睛】本题考查了抛物线平移的变化规律,解题关键是准确掌握函数平移的规律,左加右减自变量,上加下减常数项.14.【分析】由抛物线与x 轴只有一个公共点可知对应的一元二次方程根的判别式△=b2−4ac =0由此即可得到关于n 的方程解方程即可求得n 的值【详解】解:∵抛物线与x 轴只有一个公共点∴△=4−4×1×n =0解【分析】由抛物线22y x x n =-+与x 轴只有一个公共点可知,对应的一元二次方程220x x n -+=根的判别式△=b 2−4ac =0,由此即可得到关于n 的方程,解方程即可求得n 的值.【详解】解:∵抛物线22y x x n =-+与x 轴只有一个公共点,∴△=4−4×1×n =0,解得n =1.故答案为:1.【点睛】此题主要考查了抛物线与x 轴的交点问题,利用二次函数根的判别式的和抛物线与x 轴的交点个数建立方程是解题的关键.15.①③④⑤【分析】根据函数图象开口向下可以得a <0顶点在y 轴右侧得到b >0与y 轴交于正半轴得c >0从而可以判断①是否正确再根据二次函数图象具有对称性和二次函数的性质可以判断其他各小题是否正确本题得以解 解析:①③④⑤【分析】根据函数图象开口向下可以得a <0,顶点在y 轴右侧得到b >0,与y 轴交于正半轴得c >0,从而可以判断①是否正确,再根据二次函数图象具有对称性和二次函数的性质可以判断其他各小题是否正确,本题得以解决.【详解】解:由图象可得,a <0,b >0,c >0,∴abc <0,故①正确;∵抛物线的对称轴为1x =,即12b a-=, ∴2b a =-,∴20a b +=,故④正确;当1x =-时,0y a b c =-+<,则30a c +<,故②错误;∵抛物线的对称轴为1x =,则2x =和0x =时的函数值相等,故2x =时,420y a b c =++>,故③正确;∵此抛物线与x 轴有两个交点,∴240b ac ->,∴24b ac >,故⑤正确,故答案为:①③④⑤.【点睛】本题考查了二次函数图象与系数的关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质和数形结合的思想解答.16.①②④【分析】由表格中数据x=0时y=6x=1时y=6;可判断抛物线的对称轴是x=05根据函数值的变化判断抛物线开口向下再由抛物线的性质逐一判断【详解】解:由表格中数据可知x=0时y=6x=1时y=解析:①②④.【分析】由表格中数据x=0时,y=6,x=1时,y=6;可判断抛物线的对称轴是x=0.5,根据函数值的变化,判断抛物线开口向下,再由抛物线的性质,逐一判断.【详解】解:由表格中数据可知,x=0时,y=6,x=1时,y=6,①抛物线与y 轴的交点为(0,6),正确;②抛物线的对称轴是x=0.5,对称轴在y 轴的右侧,正确;③由表中数据可知在对称轴左侧,y 随x 增大而增大,错误.④根据对称性可知,抛物线的对称轴是x=0.5,点(-2,0)的对称点为(3,0),即抛物线一定经过点(3,0),正确;正确的有①②④.故答案为①②④.【点睛】主要考查了二次函数的性质.要熟练掌握函数的特殊值对应的特殊点.解题关键是根据表格中数据找到对称性以及数据的特点求出对称轴,图象与x ,y 轴的交点坐标等. 17.【分析】由推出根据三角形的外角等于与它不相邻的两内角和知设表示出进一步表示根据求解【详解】解:设故答案是:【点睛】本题考查了解直角三角形的知识熟悉相关性质是解题的关键解析:2+【分析】由AB BD =推出∠=∠A ADB ,根据三角形的外角等于与它不相邻的两内角和知15A ∠=︒,75ADC ∠=︒.设CD x =,表示出AB 、BD 、BC ,进一步表示AC .根据tan tan 75AC ADCCD 求解. 【详解】解:AB BD =,A ADB ∴∠=∠.302DBC A ,15A ∴∠=︒,75ADC ∠=︒.设CD x =, 21sin 2CDx AB BD x DBC , 222223BC BD CD x x x , (23)AC AB BC x ,tan tan75ADCACCD=23=+.故答案是:23+.【点睛】本题考查了解直角三角形的知识,熟悉相关性质是解题的关键.18.②④【分析】根据对称性求出C点坐标进而得OA与AB的长度再根据已知三角形的面积列出n的方程求得n进而用待定系数法求得k再利用相关性质即可判断【详解】解:∵点C关于直线y=x的对称点C的坐标为(1n)解析:②④【分析】根据对称性求出C点坐标,进而得OA与AB的长度,再根据已知三角形的面积列出n的方程求得n,进而用待定系数法求得k,再利用相关性质即可判断.【详解】解:∵点C关于直线y=x的对称点C'的坐标为(1,n)(n≠1),∴C(n,1),∴OA=n,AC=1,∴AB=2AC=2,∵△OAB的面积为4,∴12n×2=4,解得,n=4,故①不正确;∴C(4,1),B(4,1),∴k=4×1=4,故②正确;解方程组4y xyx=⎧⎪⎨=⎪⎩,得:22xy=⎧⎨=⎩(负值已舍),∴直线y=x反比例函数(0)ky xx=>的图象的交点为(2,2),观察图象,不等式kxx<的解集是02x<<,故③不正确;∵B (4,1),∴OA=4,AB=2, ∴tan ABO 2OA AB ∠==,故④正确; 故答案为:②④.【点睛】 本题是反比例函数图象与一次函数图象的交点问题,主要考查了一次函数与反比例函数的性质,对称性质,正切函数等,关键是根据对称求得C 点坐标及由三角形的面积列出方程.19.【分析】连接过点作于点C 先根据反比例函数解析式求出点P 坐标根据的正切值得到它的度数再根据折叠的性质证明是等边三角形再解直角三角形得到OC 和的长即可求出的坐标【详解】解:如图连接过点作于点C ∵点P(m 解析:33,22⎛⎫ ⎪ ⎪⎝⎭【分析】连接TT ',过点T '作T C OT '⊥于点C ,先根据反比例函数解析式求出点P 坐标,根据POT ∠的正切值得到它的度数,再根据折叠的性质证明TOT '是等边三角形,再解直角三角形得到OC 和CT '的长,即可求出T '的坐标.【详解】解:如图,连接TT ',过点T '作T C OT '⊥于点C ,∵点P (m ,1)是反比例函数3y =图象上的一点, ∴31m=,即3m , ∴3OT =,1PT =,∵3tan 3POT ∠=, ∴30POT ∠=︒,由折叠的性质得:30,3POT POT OT OT ∠=∠=︒='='∴60TOT '∠=︒,又∵OT OT '=,∴TOT '是等边三角形,∵T C OT '⊥, ∴132OC OT ==, 33sin 32CT OT TOT '''=⋅∠=⨯=, ∴33,2T ⎛⎫' ⎪ ⎪⎝⎭. 故答案为:33,2⎛⎫ ⎪ ⎪⎝⎭.【点睛】本题考查反比例函数与几何,解题的关键是掌握反比例函数的性质,利用锐角三角函数值得到特殊角的度数,然后解直角三角形.20.或【分析】如图所示分两种情况利用特殊角的三角函数值求出的度数利用勾股定理求出所求即可【详解】当为钝角时如图所示在中根据勾股定理得:即;当为锐角时如图所示在中设则有根据勾股定理得:解得:则故答案为或【 解析:33或3【分析】如图所示,分两种情况,利用特殊角的三角函数值求出ABH ∠的度数,利用勾股定理求出所求即可.【详解】当BAC ∠为钝角时,如图所示,在Rt ABH 中,3tan 3AH ABH BH ∠==,3BH =, 3AH ∴=根据勾股定理得:22(3)323AB =+=23AC =23333CH CA AH ∴=+==当BAC ∠为锐角时,如图所示,在Rt ABH 中,3tan 3ABH ∠=, 30ABH ∴∠=,1122AH AB AC ∴==, 设AH x =,则有2AB AC x ==, 根据勾股定理得:222(2)3x x =+, 解得:3x = 则3HC AC AH =-= 故答案为333【点睛】此题属于解直角三角形题型,涉及的知识有:等腰三角形的性质,勾股定理,以及特殊角的三角函数值,熟练掌握直角三角形的性质及分类的求解的数学思想是解本题的关键.三、解答题21.证明见详解.【分析】令y=0,构造一元二次方程239=0x kx k -+-,由1,,39a b k c k ==-=-,判别式()22123660k k k ∆=-+=-≥即可.【详解】解:令y=0,239=0x kx k -+-,∵1,,39a b k c k ==-=-, ()()()222=4139123660k k k k k ∴∆--⨯⨯-=-+=-≥,∴二次函数的图象与x 轴都有交点.【点睛】本题考查二次函数与x 轴的交点问题,掌握二次函数与x 轴交点问题转化为y=0时,一元二次方程有实根问题,理解二次函数和一元二次方程之间的关系式解此题的关键,此题是一个比较典型的题目.22.(1)y =﹣(x ﹣3)2+4;(2)5米【分析】(1)建立平面直角坐标系,列出顶点式,代入点A 的坐标,求得a 的值,则可求得抛物线的解析式;(2)令y =0,得关于x 的方程,求得方程的解并根据题意作出取舍即可.【详解】解:(1)如图所示,建立平面直角坐标系,由题意可得抛物线的顶点坐标为(3,4),点A 坐标为(2,3),设抛物线的解析式为y =a (x ﹣3)2+4,将点A 坐标(2,3)代入得:3=a (2﹣3)2+4,解得:a =﹣1,∴这条抛物线的解析式为y =﹣(x ﹣3)2+4;(2)∵y =﹣(x ﹣3)2+4,∴令y =0得:0=﹣(x ﹣3)2+4,解得:x 1=1,x 2=5,∵起跳点A 坐标为(2,3),∴x 1=1,不符合题意,∴x =5,∴运动员落水点与点C 的距离为5米.【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握运用待定系数法求抛物线的解析式是解题的关键.23.(1)2101002000(020)y x x x =-++≤<;(2)每件商品的售价上涨5元时,该商店每星期销售这种商品可获得最大利润,此时,该商品的定价为65元,获得的最大利润为2250元【分析】(1)根据题意,得出每件商品的利润以及商品总的销量,即可得出y 与x 的函数关系式; (2)根据二次函数的性质即可得到结论.【详解】(1)(6050)(20010)y x x =-+-2(10)(20010)101002000(020)x x x x x =+-=-++≤<.(2)2210100200010(52250y x x x =-++=--+)所以,当5x=时,y取得最大值为2250.答:每件商品的售价上涨5元时,该商店每星期销售这种商品可获得最大利润,此时,该商品的定价为65元,获得的最大利润为2250元.【点睛】此题主要考查了根据实际问题列二次函数解析式,根据每天的利润=一件的利润⨯销售量,建立函数关系式,借助二次函数解决实际问题是解题关键.24.(1)见解析;(2)【分析】(1)根据角平分线定义可证得∠ABD=∠EBD,再根据相似三角形的判定证明△BAD∽△BDE,然后根据相似三角形的性质即可证得结论;(2)根据(1)中结论求得BD长,再根据勾股定理求得AD长,进而可求得∠ABD=30°,即∠ABC=60°,利用锐角三角函数求得AC长,即可求得CD长.【详解】解:(1)∵BD平分∠ABC ,∴∠ABD=∠EBD,又∵∠BDE=∠BAD=90°,∴△BAD∽△BDE ,∴BD:BE=BA:BD ,即BD2=BA·BE;(2)∵由(1)可知,BD2=BE·BA,且AB=6,BE=8 ,∴∴AD2=BD2-AB2=12 即AD=,∵sin∠ABD=ADBD=12,∴∠ABD=30°,又∠ABD=∠EBD,∴∠ABC=60°,∴CA=BA×tan60°,∴【点睛】本题考查相似三角形的判定与性质、锐角三角函数、勾股定理、角平分线的定义,熟练掌握相似三角形的判定与性质是解答的关键.25.(1)y=;(2)32【分析】(1)过M点作MP⊥x轴于P点,由题意可直接求出M的坐标,从而求出反比例函数的解析式;(2)过N 点作NQ ⊥x 轴于Q 点,设N 的坐标为3,a ⎛⎫ ⎪ ⎪⎝⎭,分别表示出AQ 与NQ 的长度,根据特殊角的三角函数值求解a ,从而得到AN 的长度,最终求得菱形的周长.【详解】(1)如图所示,过M 点作MP ⊥x 轴于P 点,∵菱形OABC 的边长为4,M 为OC 的中点,∴OM=2,∵∠AOC =60°,∴在Rt △OMP 中,∠OMP=30°,则:1OP =,3PM =,即:点M 的坐标为()13,, ∴代入反比例函数解析式得:3k =, ∴反比例函数的解析式为:3y x=; (2)过N 点作NQ ⊥x 轴于Q 点,由题意可得:∠NAQ=60°,∵N 在反比例函数图象上,∴设N 的坐标为3,a a ⎛⎫ ⎪ ⎪⎝⎭,即:4AQ a =-,3NQ a =, ∵tan tan 60NQ NAQ AQ∠=︒=, ∴334a a =-,解得:25a =+(舍负), 即:25452AQ =+-=-,2254AN AQ ==-,∵N 为AF 的中点,∴2458AF AN ==-,∴菱形ADEF 的周长为416532AF =-.【点睛】本题考查了反比例函数与几何综合问题,理解反比例函数图象上的点的特征以及菱形的性质是解题关键.26.(1)3;(2)47【分析】(1)将这些特殊角的三角函数值代入求解即可;(2)将比例式转换为等积式后得到a 、b 之间的关系,然后求得两个的比值即可.【详解】(1)23060245sin cos ︒+-︒1222=⨯+ 131=+-3=;(2)设32a x b x ==,,则26242347a b x x a b x x --==++. 【点睛】本题考查了特殊角的三角函数值,比例的基本性质以及实数的运算,解题的关键是熟记这些特殊角的三角函数值.。

【浙教版】初三数学下期中一模试卷含答案(1)

【浙教版】初三数学下期中一模试卷含答案(1)

一、选择题1.如图,在Rt ABC 中,90C ∠=︒,7AC =,24BC =,将它绕着BC 中点D 顺时针旋转一定角度后到A B C ''',恰好使//B C AB '',A C ''与边AB 交于点E ,则A E '的长为( )A .72B .4924 C .8425 D .91252.如图,直线////a b c ,直线m 分别交直线a ,b ,c 于点A ,B ,C ,直线n 分别交直线a ,b ,c 于点D ,E ,F ,若23=AB BC ,则DE DF 的值为( )A .13B .23C .25D .353.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =则EF ED ⋅的值为( )A .4B .6C .8D .164.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为30cm ,光源到屏幕的距离为90cm ,且幻灯片中的图形的高度为7cm ,则屏幕上图形的高度为( )A .21cmB .14cmC .6cmD .24cm5.大自然巧夺天工,一片小心树叶也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点(AP >PB ),如果AP 的长度为8cm ,那么AB 的长度是( )A .45-4B .12-45C .12+45D .45+46.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,延长至点G ,连接BG ,过点A 作AF ⊥BG ,垂足为F ,AF 交CD 于点E ,则下列错误的是( )A .AD ACAC AB= B .AD CDCD BD= C .DE CDCD DG= D .EG BDEF BG= 7.如图,已知双曲线()0ky x x=>经过矩形OABC 的边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2.则k =( )A .2B .12C .1D .48.反比例函数y =kx的图象经过点A (﹣2,3),则此图象一定经过下列哪个点( ) A .(3,2)B .(﹣3,﹣2)C .(﹣3,2)D .(﹣2,﹣3)9.如图,反比例函数ky x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是( )A .7.5B .9C .10D .1210.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A .y x =-B .2y x =+C .2y x=D .22y x x =-11.已知二次函数2y ax bx c =++的图象如图,则一次函数y ax bc =+与反比例函数abcy x=在平面直角坐标系中的图象可能是( ).A .B .C .D .12.函数ky x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .二、填空题13.如图,直线////AF BE CD ,直线AC 交BE 于B ,直线FD 交BE 于E ,2AB cm =,1BC cm =, 1.8EF cm =,求DE 的长为______cm .14.贺哲同学的身高1.86米,影子长3米,同一时刻金老师的影子长2.7米,则金老师的身高为________米(结果保留两位小数)。

【浙教版】初三数学下期中一模试题(及答案)

【浙教版】初三数学下期中一模试题(及答案)

一、选择题1.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =-+-与反比例函数a b c y x -+=在同一平面直角坐标系内的图象大致为( )A .B .C .D .2.如图是抛物线y 1=ax 2+bx +c (a≠0)的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点为B (4,0),直线y 2=mx +n (m≠0)与抛物线交于A 、B 两点,结合图象分析下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④当1<x <4时,有y 2<y 1;⑤抛物线与x 轴的另一个交点是(﹣1,0).其中正确的是( )A .①②③B .②④C .①③④D .①③⑤ 3.已知抛物线24y x bx =++的顶点在x 轴上,则b 的值为( )A .2B .4C .-4D .4.抛物线23y x =向左平移5个单位,再向下平移1个单位,所得到的抛物线是( ) A .23(5)1y x =-+B .23(-5)1y x =-C .23(5)1y x =+-D .23(5)1y x =++5.已知二次函数223y x x =--+,下列叙述中正确的是( )A .图象的开口向上B .图象的对称轴为直线1x =C .函数有最小值D .当1x >-时,函数值y 随自变量x 的增大而减小6.二次函数()20y ax bx c a =++≠的图象如图所示,给出下列四个结论:①240b ac -<;②0a b c ++<;③2a b >;④0abc >,其中正确的结论是( ). A .①② B .②④ C .③④ D .②③④ 7.下表是小亮填写的实践活动报告的部分内容: 题目 测量树顶到地面的距离测量目标示意图 相关数据 30AB =米,28α∠=︒,45β∠=︒A .()30tan 28x x =-︒B .()30tan 28x x =+︒C .30tan 28x x +=︒D .30tan 28x x -=︒ 8.在平面直角坐标系xOy 中,点A 在直线l 上,以A 为圆心,OA 为半径的圆与y 轴的另一个交点为E ,给出如下定义:若线段OE ,A 和直线l 上分别存在点B ,点C 和点D ,使得四边形ABCD 是矩形(点,,,A B C D 顺时针排列),则称矩形ABCD 为直线l 的“理想矩形”.例如,右图中的矩形ABCD 为直线l 的“理想矩形”.若点()3,4A ,则直线()10y kx k =+≠的“理想矩形”的面积为( )A .12B .314C .42D .329.如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡与水平地面夹角的正切值等于( )A .513B .1213C .512D .131210.如图,斜坡AP 的坡比为1∶2.4,在坡顶A 处的同一水平面上有一座高楼BC ,在斜坡底P 处测得该楼顶B 的仰角为45°,在坡顶A 处测得该楼顶B 的仰角为76°,楼高BC 为18m ,则斜坡AP 长度约为(点P 、A 、B 、C 、Q 在同一个平面内,sin760.97≈,cos760.22≈,tan76 4.5≈)( )A .30mB .28mC .26mD .24m 11.如图,矩形ABCD 的对角线交于点O ,已知,,AB m BAC a =∠=∠则下列结论错误..的是( )A .BDC α∠=∠B .tan BC m a =⋅ C .2sin m AO α=D .cos m BD a= 12.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则sin ∠BDE 的值是 ( )A .15B .14C .13D .24二、填空题13.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为________.14.如图,抛物线2y ax bx c =++的对称轴是x =1,下列结论:①abc >0;②240b ac ->;③8a+c <0;④5a+b+2c >0,正确的有___(填序号).15.有五张正面分别标有数字32112---,,,,的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于以x为自变量的二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是____.16.将抛物线22()1y x =-+向左平移2个单位长度,再向下平移1个单位长度,得到的抛物线解析式为______.17.在ABC 中,90,3,4ACB BC AC ∠=︒==,动点P 从点A 出发,以2cm/s 的速度沿AB 移动到点B ,则BCP 为等腰三角形时,点P 的运动时间为_________. 18.如图,点D 在钝角ABC 的边BC 上,连接AD ,45B ∠=︒,CAD CDA ∠=∠,:5:7CA CB =,则CAD ∠的余弦值为__________.19.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.20.在Rt ABC ∆中,90A ∠=︒,3AB =,4BC =则cos B =______.三、解答题21.某旅馆有客房120间,经市场调查发现,客房每天的出租数量y (间)与每间房的日租金x (元)的关系如图所示,为保证旅馆的收益,每天出租的房间数不少于90间. (1)结合图象,求出客房每天的出租的房间数y (间)与每间房的日租金x (元)之间的函数关系式和自变量的取值范围;(2)设客房的日租金总收入为W (元),不考虑其它因素,旅馆将每间客房的日租金定为多少元时,客房的日租金总收入最高?最高总收入为多少?22.创新商场销售一批进价为14元的日用品,销售一段时间后,发现每月销售数量y (件)与售价x (元/件)满足关系y =﹣25x +800.(1)若某月售出该日用品200件,求该日用品售出价格为每件多少元?(2)商场为了获得最大的利润,该日用品售出价格应定为每件多少元?此时的最大利润是多少元?23.2020年是国家实施精准扶贫、实现贫困人口全面脱贫的决胜之年.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售,在销售的30天中,第一天卖出20千克,为了扩大销售,采取降价措施,以后每天比前一天多卖出4千克,第x 天的售价为y 元/千克,y 关于x 的函数解析式为()()76120,2030,mx m x x y n x x ⎧-≤<⎪=⎨≤≤⎪⎩为正整数为正整数且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本).(1)m =______,n =______;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?24.226(sin30sin 60)︒︒-.25.桃园大桥是随州城区第二座景观桥,远远望去,桥身的红色立柱像四根大火炬.如图,小刚利用学到的数学知识测量大桥立柱在水面以上的高度MN .在桥面观测点A 处测得某根立柱顶端M 的仰角为30,︒测得这根立柱与水面交汇点N 的俯角为15,︒向立柱方向走40米到达观测点B 处,测得同一根立柱顶端M 的仰角为60︒.已知点,,,,A B C M N 在同一平面内,桥面与水面平行,且MN 垂直于桥面.(1)求大桥立柱在桥面以上的高度MC (结果保留根号);(2)求大桥立柱在水面以上的高度MN (结果精确到1米).参考数据:sin150.26,cos150.96,tan150.27︒≈︒≈︒≈,3 1.73≈26.如图,在东西方向的海岸线l 上有长为300米的码头海岸AB ,在码头的最西端A 处测得轮船M 在它的北偏东45︒方向上;同一时刻,在A 处正东方向距离A 处50米的C 处测得轮船M 在北偏东37︒方向上.(1)求轮船M 到海岸线l 的距离;(结果保留整数米)(2)如果轮船M 沿着南偏东22︒的方向就行,那么该轮船能否行至码头海岸AB 靠岸?请说明理由.(参考数据:sin370.60︒≈,tan370.75︒≈,sin 220.37︒≈,tan220.40︒≈)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据二次函数2y ax bx c =++的图象判断出a 、b 、c 、a b c -+的符号,再用排除法对四个答案进行逐一检验.【详解】解:由二次函数2y ax bx c =++的图象开口向上可知,0a >,因为图象与y 轴的交点在y 轴的负半轴,所以0c <,对称轴位于y 轴右侧,可知02b a ->,所以0b <, ∵0a >,0b <,0c <,0ac <,∴b 2−4ac >0,-b >0,∴二次函数24y bx b ac =-+-的图象过一、二、四象限,故可排除A 、C ;由函数图象可知,当1x =-时,0y >,即0y a b c =-+>,∴反比例函数a b c y x-+=的图象在一、三象限,可排除D 选项, 故选:B .【点睛】此题比较复杂,综合考查了二次函数、一次函数及反比例函数图象的特点,锻炼了学生数形结合解题的思想方法. 2.C解析:C【分析】根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a <0,由对称轴位置可得b >0,由抛物线与y 轴的交点位置可得c >0,于是可对②进行判断;根据顶点坐标对③进行判断;根据函数图象得当1<x <4时,一次函数图象在抛物线下方,则可对④进行判断;根据抛物线的对称性对⑤进行判断.【详解】∵抛物线的顶点坐标A (1,3),∴抛物线的对称轴为直线x =2b a-=1, ∴2a +b =0,所以①正确;∵抛物线开口向下,∴a <0,∴b =﹣2a >0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以②错误;∵抛物线的顶点坐标A (1,3),∴x =1时,二次函数有最大值,∴方程ax 2+bx +c =3有两个相等的实数根,所以③正确;∵抛物线y 1=ax 2+bx +c 与直线y 2=mx +n (m≠0)交于A (1,3),B 点(4,0), ∴当1<x <4时,y 2<y 1,所以④正确.∵抛物线与x 轴的一个交点为(4,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣2,0),所以⑤错误;故选:C .【点睛】本题主要考查了二次函数的图像、一次函数图像、二次函数的图象与系数的关系等知识,考查知识点较多,解答的关键在于读懂图象信息,掌握二次函数知识,灵活运用所学知识解决问题.3.D解析:D【分析】抛物线的顶点在x 轴上,则顶点的纵坐标为0,根据顶点纵坐标公式,列方程求解.【详解】解:抛物线24y x bx =++的顶点纵坐标为241441b ⨯⨯-⨯, ∵顶点在x 轴上, ∴241441b ⨯⨯-⨯=0, 解得b 2=16,b=±4.故选:D .【点睛】本题考查了二次函数的性质,抛物线y=ax 2+bx+c 的顶点在x 轴上,则顶点坐标的纵坐标为0.4.C解析:C【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=3x 2向左平移5个单位所得直线解析式为:y=3(x+5)2;再向下平移1个单位为:y=3(x+5)2-1.故选:C .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.D解析:D【分析】将函数图形变成顶点式,依照二次函数的性质对比四个选项即可得出结论.【详解】解:A. 2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,故选项A 错误;B.2223=(1)4y x x x =--+-++∴图象的对称轴为直线1x =-,故选项B 错误;C.2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,函数有最大值,故选项C 错误;D. 2223=(1)4y x x x =--+-++∴当1x >-时,函数值y 随自变量x 的增大而减小,故选项D 正确;故选:D .【点睛】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.6.B解析:B【分析】根据抛物线与x 轴交点可判断①;根据x=1时,y <0,可判断②;对称轴x=-1可判断③;根据抛物线开口方向、对称轴、与y 轴交点可判断④.【详解】解:①由抛物线图象与x 轴有两个交点可知240b ac ->,故①错误;②由图象知,当x=1时,y=a+b+c <0,故②正确;③抛物线对称轴x=-1,即-2b a=-1<0,即b=2a <0,即③错误; ④由抛物线图象得:开口向下,即a <0;c >0,b <0,∴abc >0,故④正确; 所以正确的有:②④,故选:B .【点睛】主要考查图象与二次函数系数之间的关系,掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定是解题的关键. 7.B解析:B【分析】根据∠β=45°,得出BC =CD =x ,再根据28α∠=︒,用它的正切列方程即可.【详解】解:∵45β∠=︒,∴BC =CD =x ,∵AB =30,∴AC =x +30,∴tan28°=30CD x AC x =+, ∴x =(x +30)tan28°,故选:B .【点睛】 本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.B解析:B【分析】过点A 作AF y ⊥轴于点F ,连接AO 、AC ,如图,根据点(3,4)A 在直线1y kx =+上可求出k ,设直线1y x =+与y 轴相交于点G ,易求出1OG =,45FGA ∠=︒,根据勾股定理可求出AG 、AB 、BC 的值,从而可求出“理想矩形” ABCD 面积.【详解】解:过点A 作AF y ⊥轴于点F ,连接AO 、AC ,如图.点A 的坐标为(3,4),22345AC AO ∴==+=,3AF =,4OF =.点(3,4)A 在直线1y kx =+上,314k ∴+=,解得1k =.设直线1y x =+与y 轴相交于点G ,当0x =时,1y =,点(0,1)G ,1OG =,413FG AF ∴=-==,45FGA ∴∠=︒,223332AG =+=. 在Rt GAB ∆中,tan 4532AB AG =︒=.在Rt ABC ∆中,22225(32)7BC AC AB =-=-=.∴所求“理想矩形” ABCD 面积为327314AB BC =⨯=;故选:B .【点睛】本题主要考查了一次函数图象上点的坐标特征,矩形的性质、勾股定理、特殊角的三角函数值等知识,解直角三角形求得矩形的边的关键.9.C解析:C【分析】如图(见解析),先利用勾股定理求出AC 的长,再根据正切三角函数的定义即可得.【详解】如图,由题意得:130,50,90,AB m BC m C A ==∠=︒∠是斜坡与水平地面的夹角, 由勾股定理得:22120AC AB BC m =-=, 则505tan 12012BC A AC ===, 即这个斜坡与水平地面夹角的正切值等于512, 故选:C .【点睛】本题考查了勾股定理、正切,熟练掌握正切三角函数的定义是解题关键.10.C解析:C【分析】先延长BC 交PD 于点D ,在Rt △ABC 中,tan76°=BC AC,BC=18求出AC ,根据BC ⊥AC ,AC ∥PD ,得出BE ⊥PD ,四边形AHEC 是矩形,再根据∠BPD=45°,得出PD=BD ,过点A 作AH ⊥PD ,根据斜坡AP 的坡度为1:2.4,得出512AH HP =,设AH=5k ,则PH=12k ,AP=13k ,由PD=BD ,列方程求出k 的值即可.【详解】解:延长BC 交PQ 于点D .∵BC ⊥AC ,AC ∥PQ ,∴BD ⊥PQ .∴四边形AHDC 是矩形,CD=AH ,AC=DH .∵∠BPD=45°,∴PD=BD .在Rt △ABC 中,tan76°=BC AC,BC=18米, ∴AC=4(米).过点A 作AH ⊥PQ ,垂足为点H .∵斜坡AP 的坡度为1:2.4, ∴512AH HP ,设AH=5k ,则PH=12k , 由勾股定理,得AP=13k .由PH+HD=BC+CD 得:12k+4=5k+18,解得:k=2,∴AP=13k=26(米).故选:C .【点睛】此题考查了解直角三角形,用到的知识点是勾股定理、锐角三角函数、坡度与坡角等,关键是做出辅助线,构造直角三角形.11.C解析:C【分析】根据矩形的性质得出∠ABC =∠DCB =90°,AC =BD ,AO =CO ,BO =DO ,AB =DC ,再解直角三角形判定各项即可.【详解】选项A ,∵四边形ABCD 是矩形,∴∠ABC =∠DCB =90°,AC =BD ,AO =CO ,BO =DO ,∴AO =OB =CO =DO ,∴∠DBC =∠ACB ,∴由三角形内角和定理得:∠BAC =∠BDC =∠α,选项A 正确;选项B ,在Rt △ABC 中,tanα=BC m , 即BC =m •tanα,选项B 正确;选项C ,在Rt △ABC 中,AC =cos m α,即AO =2cos m α, 选项C 错误;选项D ,∵四边形ABCD 是矩形,∴DC =AB =m ,∵∠BAC =∠BDC =α,∴在Rt △DCB 中,BD =cos m α, 选项D 正确.故选C .【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键. 12.C解析:C【分析】由矩形的性质可得AB =CD ,AD =BC ,AD ∥BC ,可得BE =CE =12BC =12AD ,由全等三角形的性质可得AE =DE ,由相似三角形的性质可得AF =2EF ,由勾股定理可求DF 的长,即可求sin ∠BDE 的值.【详解】∵四边形ABCD 是矩形∴AB =CD ,AD =BC ,AD ∥BC∵点E 是边BC 的中点,∴BE =CE =12BC =12AD , ∵AB =CD ,BE =CE ,∠ABC =∠DCB =90°∴△ABE ≌△DCE (SAS )∴AE =DE∵AD ∥BC∴△ADF ∽△EBF ∴AF AD =EF BE=2 ∴AF =2EF , ∴AE =3EF =DE ,∴ sin ∠BDE =EF 1=DE 3, 故选C .【点睛】 本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形的运用,熟练运用相似三角形的判定和性质是本题的关键.二、填空题13.【分析】由于y1y2y3是抛物线上三个点的纵坐标所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴再由对称性得A 点关于对称轴的对称点A 的坐标再根据抛物线开口向下在对称轴右边y 随x 的增大而减小便解析:231y y y >>【分析】由于y 1,y 2,y 3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A 点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y 随x 的增大而减小,便可得出y 1,y 2,y 3的大小关系.【详解】解:∵抛物线y=-(x+1)2+k ,∴对称轴为x=-1,∵A (-2,y 1),∴A 点关于x=-1的对称点A'(0,y 1),∵a=-1<0,∴在x=-1的右边y 随x 的增大而减小,∵A'(0,y 1),B (1,y 2),C (2,y 3),0<1<2,∴y 1>y 2>y 3,故答案为:231y y y >>.【点睛】本题考查了二次函数图象的性质,对称轴的求法,难度不大,关键是熟记二次函数的性质:a >0时,在对称轴左边,y 随x 的增大而减小,在对称轴右边,y 随x 的增大而增大;a <0时,在对称轴左边,y 随x 的增大而增大,在对称轴右边,y 随x 的增大而减小.14.②③④【分析】由抛物线的性质和对称轴是分别判断abc 的符号即可判断①;抛物线与x 轴有两个交点可判断②;由得令求函数值即可判断③;令时则令时即可判断④;然后得到答案【详解】解:根据题意则∵∴∴故①错误解析:②③④【分析】由抛物线的性质和对称轴是1x =,分别判断a 、b 、c 的符号,即可判断①;抛物线与x轴有两个交点,可判断②;由12b x a=-=,得2b a =-,令2x =-,求函数值,即可判断③;令2x =时,则420y a b c =++>,令1x =-时,0y a b c =-+>,即可判断④;然后得到答案.【详解】解:根据题意,则0a <,0c >, ∵12b x a=-=, ∴20b a =->, ∴0abc <,故①错误;由抛物线与x 轴有两个交点,则240b ac ->,故②正确;∵2b a =-,令2x =-时,420y a b c =-+<,∴80a c +<,故③正确;在2y ax bx c =++中,令2x =时,则420y a b c =++>,令1x =-时,0y a b c =-+>,由两式相加,得520a b c ++>,故④正确;综上,正确的结论有:②③④;故答案为:②③④.【点睛】本题考查了二次函数的图象和性质,解题的关键是熟练掌握二次函数的性质,熟练判断各个式子的符号. 15.【分析】把点的坐标代入解析式转化为a 的一元二次方程确定方程的根从给出的数字中扣除方程的根就是符合题意的a 值计算概率即可【详解】当二次函数的图象经过点时得解得所以符合题意的a 值有-3-12共三个所以二 解析:35【分析】把点的坐标代入解析式,转化为a 的一元二次方程,确定方程的根,从给出的数字中扣除方程的根就是符合题意的a 值,计算概率即可.【详解】当二次函数22(1)2y x a x a =-++-的图象经过点(1,0)时,得 220a a +-=,解得 122,1a a =-=,所以符合题意的a 值有-3,-1,2,共三个,所以二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是35, 故答案为:35. 【点睛】 本题考查了简单事件的概率计算、二次函数,利用二次函数的图象过点的意义,判定符合题意的a 值是解题的关键.16.【分析】根据左加右减上加下减的方法计算即可;【详解】由题可知向左平移2个单位长度可得:向下平移1个单位长度得;故答案为【点睛】本题主要考查了二次函数图象的平移准确计算是解题的关键解析:2y x 【分析】根据左加右减,上加下减的方法计算即可;【详解】由题可知,向左平移2个单位长度可得:22()2211=-++=+y x x ,向下平移1个单位长度得2211=+-=y x x ;故答案为2y x .【点睛】本题主要考查了二次函数图象的平移,准确计算是解题的关键. 17.秒或1秒或秒【分析】根据利用勾股定理求出AB 的长设点P 的运动时间为t 秒则由①②③分三种情况求解即可【详解】解:在中设点P 的运动时间为t 秒则①由过点C 作CD ⊥AB 于D 在中解得当P 出发秒时是等腰三角形; 解析:710秒或1秒或54秒. 【分析】根据90,3,4ACB BC AC ∠=︒==,利用勾股定理求出AB 的长,设点P 的运动时间为t 秒,则2AP tcm = ,()52BP t cm =-,由①CP BC =,②BC BP = , ③CP BP = 分三种情况求解即可.【详解】解: 在ABC 中,90,3,4ACB BC AC ∠=︒==,5AB ∴==,3cos 5B = 设点P 的运动时间为t 秒,则2AP tcm = ,()52BP t cm =-,①由CP BC =,过点C 作CD ⊥AB 于D ,()115222BD DP BP t ∴===-,在Rt CPD △中,39cos 355BD BC B ==⨯=, ()152295t ∴-=, 解得,710t =, ∴ 当P 出发710秒时,BCP 是等腰三角形;②由BC BP =时,523t -= 解得,1t = ,∴当P 出发1秒时,BCP 是等腰三角形;③由CP BP =时,过点P 作PE BC ⊥于E ,2BC BE =,在Rt BPE 中,()3=525BE BP cosB t =-, ()352532t ∴⨯-= 解得,54t =, ∴当P 出发54秒时,BCP 是等腰三角形.综上所述,当点P 出发710秒或1秒或54秒时,BCP 是等腰三角形. 故答案为:710秒或1秒或54秒. 【点睛】 本题考查了勾股定理和等腰三角形的判定,解答此题的关键是首先根据勾股定理求出AB 的长,然后再利用等腰三角形的性质去判定.18.【分析】作AH ⊥BC 于H 设AC ═CD=5k 则BC=7k 设AH=BH=x 在Rt △ACH 中利用勾股定理求得x 的值(x 用k 表示求得的值需淘汰不构成钝角三角形的值)然后表示ADDH 利用余弦的定义即可求得【详解析:10 【分析】作AH ⊥BC 于H ,设AC ═CD=5k ,则BC=7k ,设AH=BH=x ,在Rt △ACH 中,利用勾股定理求得x 的值(x 用k 表示,求得的值需淘汰不构成钝角三角形的值),然后表示AD ,DH ,利用余弦的定义即可求得.【详解】解:如图作AH ⊥BC 于H ,∵CAD CDA ∠=∠,:5:7CA CB =,设AC ═CD=5k ,BC=7k ,∵∠B=45°,∠AHB=90°,∴AH=BH ,设AH=BH=x ,在Rt △ACH 中,∵AH 2+HC 2=AC 2,∴x 2+(7k-x )2=(5k )2,解得x=3k 或4k ,当x=4k 时,即AH=4k ,HC=7k-4k=3k ,AH>HC ,此时根据大边对大角,∠HAC<∠HCA ,又∠HAC+∠HCA=90°,∴∠HAC<45°,∴∠BAC<90°,与△ABC 为钝角三角形矛盾,故x=4k 舍去,当x=3k 时,∴BH=AH=3k ,HC=7k-3k=4k ,DH=k ,∴AD ,∴cos cosDH CAD ADH AD ∠=∠===.【点睛】 本题考查解直角三角形,等腰三角形的判定定理,勾股定理,一元二次方程的应用等.解决本题的关键是作辅助线构造直角三角形,注意作辅助线时尽量不要破坏已给的角. 19.8【分析】在Rt △ADC 中利用正弦的定义得sinC ==则可设AD =12x 所以AC =13x 利用勾股定理计算出DC =5x 由于cos ∠DAC =sinC 得到tanB =接着在Rt △ABD 中利用正切的定义得到B解析:8【分析】在Rt △ADC 中,利用正弦的定义得sin C =AD AC =1213,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos ∠DAC =sin C 得到tan B =1213,接着在Rt △ABD 中利用正切的定义得到BD =13x ,所以13x +5x =12,解得x =23,然后利用AD =12x 进行计算. 【详解】 在Rt △ADC 中,sin C =AD AC =1213, 设AD =12x ,则AC =13x , ∴DC=5x ,∵cos ∠DAC =sin C =1213, ∴tan B =1213,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.20.【分析】根据题意画出图形进而得出cosB=求出即可【详解】解:∵∠A=90°AB=3BC=4则cosB==故答案为:【点睛】本题考查了锐角三角函数的定义正确把握锐角三角函数关系是解题的关键解析:3 4【分析】根据题意画出图形,进而得出cosB=ABBC求出即可.【详解】解:∵∠A=90°,AB=3,BC=4,则cosB=ABBC=34.故答案为:34.【点睛】本题考查了锐角三角函数的定义,正确把握锐角三角函数关系是解题的关键.三、解答题21.(1)32165y x=-+,160210x≤≤;(2)每间客房的日租金定为180元时,客房日租金的总收入最高为19440元【分析】(1)首先假设出一次函数解析式,再利用待定系数法求一次函数解析式即可;(2)根据客房日租金的总收入为W=每间客房的日租金×每天客房出租数,再利用配方法求出二次函数的最值即可.【详解】解:(1)设客房每天的出租数量y (间)与每间房的日租金x (元)之间的函数关系式(0)y kx b k =+≠.把(160,120),(170,114)代入得160120170114k b k b +=⎧⎨+=⎩, 解得35216k b ⎧=-⎪⎨⎪=⎩,∴ 32165y x =-+, 由题意得:321690532161205x ⎧-+≥⎪⎪⎨⎪-+≤⎪⎩ ∴160210x ≤≤∴自变量x 的取值范围是160210x ≤≤(2)由题意得:()2332161801944055W y x x x x ⎛⎫=⋅=-+⋅=--+ ⎪⎝⎭∵305-<,160210x ≤≤ ∴当180x =时,19440w =最大.答:每间客房的日租金定为180元时,客房日租金的总收入最高为19440元.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值问题,得出客房日租金的总收入为W=每间客房的日租金×每天客房出租数是解题关键. 22.(1)24元;(2)每件23元,此时的最大利润是2025元【分析】(1)将y=200代入解析式,求得x 的值即可;(2)设利润为w 元,根据总利润=单件利润×日销售量列出函数解析式,配方成顶点式即可得出答案.【详解】解:(1)∵y =﹣25x +800,∴200=﹣25x +800,解得x =24,答:若某月售出该日用品200件,该日用品售出价格为每件24元.(2)设利润为w 元,则有w ()()1425800x x =--+()225232025x =--+,当x =23时,最大利润为2025元,答:该日用品售出价格应定为每件23元,此时的最大利润是2025元.【点睛】本题考查二次函数的应用,解题的关键是正确解读题意,并根据总利润=单件利润×销售量”列出函数式.23.(1)12m =-,25n =;(2)当18x =时,968W =最大. 【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;(2)在(1)的基础上分段表示利润,讨论最值.【详解】解:(1)第12天的售价为32元/件,代入76y mx m =-得 321276m m =-,解得12m =-, 当地26天的售价为25元/千克时,代入y n =,则25n =, 故答案为:12m =-,25n =. (2)由(1)第x 天的销售量为()2041x +-即416x +.当120x ≤<时,()()22141638182723202189682W x x x x x ⎛⎫=+-+-=-++=--+ ⎪⎝⎭, ∴当18x =时,968W =最大.当2030x ≤≤时,()()416251828112W x x =+-=+,∵280>,∴W 随x 的增大而增大,∴当30x =时,952W =最大.∵968952>,∴当18x =时,968W =最大.【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.24.162-+ 【分析】先利用特殊的三角函数值计算,再利用二次根式的混合运算法则计算得出结果.【详解】解:原式1)2=-12=+162=-+. 【点睛】本题考查了特殊的三角函数值及二次根式的混合运算,解题的关键是熟练掌握运算法则.25.(1)2)51米.【分析】(1)由题意可得出BAM AMB ∠=∠,从而可得BM AB =,在Rt BCM ∆中求解即可得高度MC .(2)在Rt BCM ∆中求解可得BC ,从而可得AC ,在Rt ACN 中,可求CN ,进而可得MN .【详解】解:()130,60BAM CBM ∠=︒∠=︒,30,AMB ∴∠=︒40,BM AB ∴==在Rt BCM ∆中,MC BM sin CBM =⋅∠=答:大桥立柱在桥面以上的高度MC 为()2在Rt BCM ∆中,1202BC BM ==, 60,AC AB BC ∴=+=在Rt ACN 中,600.2716.2CN AC tan CAN =⋅∠≈⨯≈16.251MN MC NC ∴=+≈≈(米)答:大桥立柱在水面以上的高度MN 约为51米.【点睛】本题考查了解直角三角形的实际应用,解题的关键是熟记锐角三角函数的定义. 26.(1)轮船M 到海岸线l 的距离为200米;(2)该轮船能行至码头海岸AB 靠岸【分析】(1)过点M 作MD ⊥AC 交AC 的延长线于D ,设DM=x ,解直角三角形即可得到结论; (2)作∠DMF=22°,交l 于点F .解直角三角形即可得到结论.【详解】解:(1)过点M 作MD ⊥AC 交AC 的延长线于D ,设DM=x ,∵在Rt △CDM 中,CD=DM•tan ∠CMD=x•tan37°,又∵在Rt △ADM 中,∠MAC=45°,∴AD=DM ,∵AD=AC+CD=50+x•tan37°,∴50+x•tan37°=x , ∴50502001tan 3710.75x ︒=≈=--, 答:轮船M 到海岸线l 的距离约为200米;(2)作∠DMF=22°,交l 于点F ,在Rt △DMF 中,DF=DM•tan ∠FMD=DM•tan 22°≈200×0.40=80(米),∴AF=AC+CD+DF=DM+DF≈200+80=280<300,所以该轮船能行至码头AB 靠岸.【点睛】本题考查了解直角三角形的应用-方向角问题,读懂题目信息并作出辅助线构造成直角三角形是解题的关键.。

最新九年级数学下期中一模试题附答案

最新九年级数学下期中一模试题附答案

一、选择题1.下列函数:①2y x =-,②3y x =,③2y x ,④234y x x =++,y 是x 的反比例函数的个数有( ).A .1个B .2个C .3个D .4个2.下列函数中,当0x >时,y 随x 增大而增大的是( )A .2y x =B .22y x =+C . 1y x =-+D .22 y x =-- 3.如图是二次函数y =mx 2+nx +k 图象的一部分且过点P (3,0),二次函数图象的对称轴是直线x =1,下列结论正确的是( )A .n 2﹣4mk <0B .mk >0C .n =2mD .m ﹣n +k =0 4.二次函数223y x =-+在14x -≤≤内的最小值是( )A .3B .2C .-29D .-305.将进货价为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨1元,其销售量就减少5个,设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是( )A .()()352005y x x =--B .()()354005y x x =--C .()()402005y x x =--D .()()403755y x x =--6.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数解析式是260 1.5s t t =-,那么飞机着陆后滑行多长时间才能停下来.( )A .10sB .20sC .30sD .40s7.学校研究性学习小组的同学测量旗杆的高度.如图,在教学楼一楼地面C 处测得旗杆顶部的仰角为60︒,在教学楼三楼地面D 处测得旗杆顶部的仰角为30,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为( )A .7B .8C .9D .10 8.sin45cos45︒+︒的值为( ) A .1 B .2 C .2 D .22 9.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且FC=2BF ,连接AE ,EF .若AB=2,AD=3,则cos ∠AEF 的值是( )A .12B .1C .22D .3210.如图,四边形ABCD 中,∠B =∠C =90°,CD =2米,BC =5米,5sin 13A =,则AB =( )A .8米B .10米C .12米D .14米11.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为( )A .2B 5C .3D 612.如图,在33⨯正方形网格中,ABC 的顶点都在格点上,则sin CAB ∠=( )A .3B .22C .12D .3 二、填空题13.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,则c 的值等于_________. 14.将二次函数y =﹣(x ﹣k )2+k +1的图象向右平移1个单位,再向上平移2个单位后,顶点恰好在直线y =2x +1上,则k 的值为_____.15.已知抛物线22y x x c =-+与直线y m =相交于,A B 两点,若点A 的横坐标1A x =-,则点B 的横坐标B x 的值为_______.16.在平面直角坐标系中,把抛物线22y x =+先绕其顶点旋转180︒后,再向右平移2个单位,向下平移3个单位后的抛物线解析式为__________.17.在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =8,CD =5,则tan ∠ACD = ________ .18.如图,在Rt ABC 中,90B ∠=︒,2AB =,1BC =.将ABC 绕点A 按逆时针方向旋转90︒得到''AB C ,连接'B C ,则tan 'ACB ∠=__________.19.如图,在Rt ABC △中,90A ∠=︒,AB AC =,BD 是AC 边上的中线,则tan ADB ∠的值是______.20.如图,在一次数学课外实践活动中,小亮在距离旗杆10m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1.5m ,则旗杆高BC 为_____m (结果保留根号).三、解答题21.已知直线y =x +3分别交x 轴和y 轴于点A 和B ,抛物线y =ax 2+bx +c 经过点A 和B ,且抛物线的对称轴为直线x =﹣2.(1)抛物线与x 轴的另一个交点C 的坐标为 ;(2)试确定抛物线的解析式;(3)在同一平面直角坐标系中分别画出两个函数的图象(请用2B 铅笔或黑色水笔加黑加粗),观察图象,写出二次函数值小于一次函数值的自变量x 的取值范围 . 22.如图,在平面直角坐标系中,点()2,3A 为二次函数()220y ax bx a =+-≠与反比例函数()0k y k x=≠在第一象限的交点,已知该抛物线()220y ax bx a =+-≠与x 轴正、负半轴分别交于点E 、点D ,交y 轴负半轴于点B ,且1tan 2ADE ∠=. (1)求二次函数和反比例函数的表达式; (2)已知点M 为抛物线上一点,且在第三象限,顺次连接点D M B E 、、、,求四边形DMBE 面积的最大值.23.新年前夕,信业超市在销售中发现:某服装平均每天可售出20套,每件盈利40元.为了迎接新年,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套.(1)要想平均每天在销售服装上盈利1200元,那么每套应降价多少元?(2)商场要想每天获取最大利润,每套应降价多少元?24.如图,在矩形ABCD 中,BE 交AD 于点E 且平分∠ABC ,对角线BD 平分∠EBC .(1)求DE AE的值. (2)求tan ABD ∠.25.根据新冠疫情的防疫需要,学校需要做到经常开窗通风.如图1,一扇窗户打开一定角度,其中一端固定在窗户边OM 上的点A 处,另一端B 在边ON 上滑动,如图2为某一位置从上往下看的平面图,测得此时ABO ∠是45°,AB 长为20cm .(参考数据:sin370.6︒≈,cos370.8︒≈,tan370.75︒≈2 1.4≈,结果精确到1cm ) (1)求固定点A 到窗框OB 的距离;(2)若测得37AOB ∠=︒,求OA 的长度.26.如图,在△ABC中,∠BAC=90°,AB=AC=2,BD=1,DC=2CE.求证:cos∠ADE=2.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据反比例函数、一次函数、二次函数的性质,对各个选项逐个分析,即可得到答案.【详解】=-是一次函数,故选项①不符合题意;y x23y=是反比例函数,故选项②符合题意;x2y x是二次函数,故选项③不符合题意;234=++是二次函数,故选项④不符合题意;y x x∴y是x的反比例函数的个数有:1个故选:A.【点睛】本题考查了反比例函数、二次函数、一次函数的知识;解题的关键是熟练掌握反比例函数、二次函数、一次函数的定义,从而完成求解.2.B解析:B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【详解】解:A 、2y x=,反比例函数,k=2>0,分别在一、三象限,在每一象限内,y 随x 的增大而减小,不符合题意; B 、22y x =+,a=1>0,开口向上,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而增大,符合题意;C 、1y x =-+,一次函数,k=-1<0,故y 随着x 增大而减小,不符合题意;D 、22y x =--,a=-1<0,开口向下,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而减小,不符合题意.故选:B .【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想解题是本题的解题关键.3.D解析:D【分析】根据抛物线与x 轴有两个交点可对A 进行判断;由抛物线开口向上得m >0,由抛物线与y 轴的交点在x 轴下方得k <0,则可对B 进行判断;根据抛物线的对称轴是x =1对C 选项进行判断;根据抛物线的对称性得到抛物线与x 轴的另一个交点为(−1,0),所以m−n +k =0,则可对D 选项进行判断.【详解】解:A .∵抛物线与x 轴有两个交点,∴n 2﹣4mk >0,所以A 选项错误;B .∵抛物线开口向上,∴m >0,∵抛物线与y 轴的交点在x 轴下方,∴k <0,∴mk <0,所以B 选项错误;C .∵二次函数图象的对称轴是直线x =1,∴﹣2n m=1, ∴n =﹣2m ,所以C 选项错误;D .∵抛物线过点A (3,0),二次函数图象的对称轴是x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∴m ﹣n +k =0,所以D 选项正确;故选:D .【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线2b x a=-;抛物线与y 轴的交点坐标为(0,c );当b 2−4ac >0,抛物线与x 轴有两个交点;当b 2−4ac =0,抛物线与x 轴有一个交点;当b 2−4ac <0,抛物线与x 轴没有交点.4.C解析:C【分析】根据图象,直接代入计算即可解答【详解】解:由图可知,当x=4时,函数取得最小值y 最小值=-2×16+3=-29.故选:C .【点睛】本题考查二次函数最小(大)值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.5.B解析:B【分析】根据售价减去进价表示出实际的利润.【详解】解:设这种商品的售价为x 元时,获得的利润为y 元,根据题意可得:[](35)2005(40)y x x =--- 即y=(x-35)(400-5x ),故选:B .【点睛】本题考查了二次函数的应用,解题的关键是理解“商品每上涨1元,其销售量就减少5个”.6.B解析:B【分析】当s 取最大值时,飞机停下来,求函数最大值时的自变量即可.【详解】∵当s 取最大值时,飞机停下来,∴t= 6022( 1.5)b a -=-⨯-=20, 故选:B .【点睛】本题考查了二次函数应用-飞机着陆问题,熟练把问题转化为二次函数的最值问题是解题的关键.7.C解析:C【分析】 过点D 作DE ⊥AB ,垂足为E ,则四边形ACDE 为矩形,AE=CD=6米,AC=DE .设BE=x 米,先解Rt △BDE ,得出DE=3x 米,AC=3x 米,再解Rt △ABC ,得出AB=3x 米,然后根据AB-BE=AE ,列出关于x 的方程,解方程即可.【详解】解:过点D 作DE ⊥AB ,垂足为E ,由题意可知,四边形ACDE 为矩形,则AE=CD=6米,AC=DE .设BE=x 米.∵在Rt △BDE 中,∠BED=90°,∠BDE=30°,∴DE=3tan 30BE =︒3米, ∴3x 米.∵在Rt △ABC 中,∠BAC=90°,∠ACB=60°,∴AB=tan 603AC AC ︒=33米,∵AB-BE=AE ,∴3x-x=6,∴x=3,AB=3×3=9(米).即旗杆AB 的高度为9米.故选:C .【点睛】此题考查了解直角三角形的应用-仰角俯角问题,作出辅助线,构造直角三角形是解题的关键.8.C解析:C【分析】直接用特殊的锐角三角函数值代入求值即可;【详解】∵ sin45°=22 ,cos45°=22, ∴sin45°+ cos45°=2+2=2 , 故选:C .【点睛】本题考查了特殊的锐角三角函数值,正确记忆锐角三角函数值是解题的关键 . 9.C解析:C【分析】连接AF ,根据题意可分别求出BF 、FC 、DE 的长,再利用勾股定理分别求出AF 、AE 、EF 的长,利用勾股定理的逆定理判断出AEF 为等腰直角三角形,再利用三角函数即可求得答案.【详解】如图:连接AF ,四边形ABCD 是矩形∴2,3AB DC AD BC ====∴∠B=∠C=∠D=90°FC=2BF∴BF=1,FC=2E 是CD 的中点∴DE=CE=1∴BF=CE=1在Rt ABF 中22222215AF AB BF =+=+=在Rt EFC 中22222215EF FC CE =+=+=在Rt ADE △中222223110AE AD DE =+=+=∴222AE EF AF =+且AF=EF∴△AEF 为等腰直角三角形∴∠AFE=90°,∠AEF=∠EAF=45°∴cos ∠AEF=cos45°=2故选:C .【点睛】本题考查了矩形的性质,勾股定理及其逆定理的运用,特殊角的三角函数值,解题关键是利用勾股定理逆定理判断出AEF 为等腰直角三角形. 10.D解析:D【分析】过点D 作DE ⊥AB 于E ,得到四边形DEBC 是矩形,得到BE=DC=2米,DE=BC=5米,根据5sin 13A =,求得AD=13米,根据勾股定理求出AE=12米,即可得到答案. 【详解】过点D 作DE ⊥AB 于E ,∴∠DEB=∠B =∠C =90°,∴四边形DEBC 是矩形,∴BE=DC=2米,DE=BC=5米, ∵5sin 13A =, ∴513DE AD =, ∴AD=13米,∴12=米,∴AB=AE+BE=12+2=14米,故选:D ..【点睛】此题考查矩形的判定及性质,勾股定理,锐角三角函数,正确引出辅助线构建直角三角形解决问题是解题的关键.11.A解析:A【分析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:2,在Rt△PBF中,即可求得tan∠BPF 的值,继而求得答案.【详解】解:如图:连接BE,∵四边形BCED是正方形,∴DF=CF=12CD,BF=12BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:2,∴DP=PF=12CF=12BF,在Rt△PBF中,tan∠BPF=BFPF=2,∵∠APD=∠BPF,∴tan∠APD=2.故选:A.【点睛】本题考查相似三角形的判定与性质,以及求角的正切值,灵活运用相似三角形的性质,并理解正切的定义是解题关键12.B解析:B【分析】利用勾股定理可得AC ,BC AB ∠ABC =90°,在Rt △ABC 中求解sin ∠CAB 的值即可.【详解】由勾股定理,得:AC =BC =AB = ∵AB 2+BC 2=AC 2,∴∠ACB =90°,在Rt △ABC 中,sin ∠BAC =BCAC =2. 故选:B .【点睛】此题考查了特殊角的三角函数值,属于基础题,解答本题的关键是求出AB 、AC 、BC 的长度,判断出△ABC 是直角三角形. 二、填空题13.7或15【分析】根据题意可知抛物线顶点纵坐标是±4化成顶点式求解即可【详解】解:∵抛物线y=x2-6x+c-2的顶点到x 轴的距离是4∴抛物线顶点纵坐标是±4抛物线y=x2-6x+c-2化成顶点式为:解析:7或15.【分析】根据题意可知,抛物线顶点纵坐标是±4,化成顶点式求解即可.【详解】解:∵抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,∴抛物线顶点纵坐标是±4,抛物线y=x 2-6x+c-2化成顶点式为:y=(x-3)2+c-11,c-11=4,c=15,c-11=-4,c=7,故答案为:7或15.【点睛】本题考查了抛物线的顶点坐标,解题关键是理解到x 轴的距离是纵坐标的绝对值,注意:分类讨论.14.0【分析】先求出二次函数y =﹣(x ﹣k )2+k+1的图象平移后的顶点坐标再将它代入y =2x+1即可求出k 的值【详解】解:∵二次函数y =﹣(x ﹣k )2+k+1的顶点坐标为(kk+1)∴将y =﹣(x ﹣k解析:0【分析】先求出二次函数y =﹣(x ﹣k )2+k +1的图象平移后的顶点坐标,再将它代入y =2x +1,即可求出k 的值.【详解】解:∵二次函数y =﹣(x ﹣k )2+k +1的顶点坐标为(k ,k +1),∴将y =﹣(x ﹣k )2+k +1的图象向右平移1个单位,向上平移2个单位后顶点坐标为(k +1,k +3).根据题意,得k +3=2(k +1)+1,解得k =0.故答案是:0.【点睛】本题考查了二次函数图象与几何变换,一次函数图象上点的坐标特征,难度适中.根据点的平移规律:右加左减,上加下减正确求出二次函数y =−(x−k )2+k +1的图象平移后的顶点坐标是解题的关键.15.3【分析】根据题意AB 的纵坐标相同先根据A 的横坐标求得纵坐标把纵坐标代入解析式解关于x 的方程即可求得【详解】解:把xA=-1代入y=x2-2x+c 得y=1+2+c=3+c ∴A (-13+c )∵抛物线y解析:3【分析】根据题意A 、B 的纵坐标相同,先根据A 的横坐标求得纵坐标,把纵坐标代入解析式,解关于x 的方程即可求得.【详解】解:把x A =-1代入y=x 2-2x+c 得,y=1+2+c=3+c ,∴A (-1,3+c ),∵抛物线y=x 2-2x+c 与直线y=m 相交于A ,B 两点,∴B 的纵坐标为3+c ,把y=3+c 代入y=x 2-2x+c 得,3+c=x 2-2x+c ,解得x=-1或x=3,∴点B 的横坐标x B 的值为3,故答案为3.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,明确A 、B 的纵坐标相同是解题的关键.16.【分析】先求出抛物线绕其顶点旋转后解析式再根据平移规律即可求解【详解】解:抛物线先绕其顶点旋转后解析式为将抛物线向右平移个单位向下平移个单位后的抛物线解析式为故答案为:【点睛】本题考查了抛物线图象与 解析:2(2)1=---y x【分析】先求出抛物线22y x =+绕其顶点旋转180︒后解析式,再根据平移规律即可求解.【详解】解:抛物线22y x =+先绕其顶点旋转180︒后解析式为22y x =-+,将抛物线22y x =-+向右平移2个单位,向下平移3个单位后的抛物线解析式为()212y x =---.故答案为:2(2)1=---y x【点睛】本题考查了抛物线图象与几何变换,熟知二次函数图象旋转与平移规律是解题关键. 17.【分析】过D 作于点E 则DE 是的中位线即可求得DE 的长在直角利用勾股定理即可求得EC 的长根据正切的定义即可求解【详解】如图过D 作于点E 则∵CD 是AB 边上的中线∴DE 是的中位线∴在直角中∴故答案为:【点 解析:43. 【分析】过D 作DE AC ⊥于点E ,则DE 是ABC 的中位线,即可求得DE 的长,在直角 DCE ,利用勾股定理即可求得EC 的长,根据正切的定义即可求解.【详解】如图,过D 作DE AC ⊥于点E ,则//DE BC ,∵CD 是AB 边上的中线,∴DE 是ABC 的中位线,∴118422DE BC ==⨯=, 在直角DEC 中,2222543EC CD DE =-=-=, ∴4tan 3DE ACD EC ∠==, 故答案为:43. 【点睛】本题主要考查了正切的定义,三角形的中位线定理,正确作出辅助线,把求三角函数值的问题转化为求直角三角形的边的比值,是解题的关键. 18.【分析】如图延长与的延长线交于点证明四边形为正方形再求解过作于利用等面积法求解再利用勾股定理求解从而可得答案【详解】解:如图由题意得:延长与的延长线交于点则四边形为正方形过作于故答案为:【点睛】本题解析:4 3【分析】如图,延长C B''与BC的延长线交于点,G证明四边形ABGB'为正方形,再求解,B C AC',过A作AM B C'⊥于M,利用等面积法求解,AM再利用勾股定理求解,MC 从而可得答案.【详解】解:如图,由题意得:9090BAB B AB C'''∠=︒∠=∠=︒,,2AB AB'==,1BC=,22215,AC∴=+=延长C B''与BC的延长线交于点,G则90AB G'∠=︒,∴四边形ABGB'为正方形,2211B G BG CG BG BC'∴===-=-=,,90B GB'∠=︒,22215,B C'∴=+=过A作AM B C'⊥于M,11,22AB CS AB AB B C AM'''∴==54AM=,4555AM∴==,()224355555MC⎛⎫∴=-=⎪⎝⎭,4545tan'.3355AMACBMC∴∠===故答案为:4.3【点睛】本题考查的是勾股定理的应用,旋转的性质,正方形的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键.19.2【分析】由题意得到则结合角的正切值即可得到答案【详解】解:∵是边上的中线∴∴∵∴∵在中∴;故答案为:2【点睛】本题考查了求角的正切值三角形中线的性质解题的关键是掌握三角形中线的性质正确得到解析:2【分析】 由题意,得到12AD AC =,则2AC AD =,结合角的正切值tan AB ADB AD ∠=,即可得到答案.【详解】解:∵BD 是AC 边上的中线, ∴12AD AC =, ∴2AC AD=, ∵AB AC =, ∴2AB AD=, ∵在Rt ABD 中,90A ∠=︒, ∴tan 2AB ADB AD ∠==; 故答案为:2.【点睛】本题考查了求角的正切值,三角形中线的性质,解题的关键是掌握三角形中线的性质,正确得到2AB AD=. 20.(15+)【分析】首先过点A 作AE ∥DC 交BC 于点E 则AE=CD=10mCE=AD=15m 然后在Rt △BAE 中∠BAE=60°然后由三角形函数的知识求得BE 的长继而求得答案【详解】如图过点A 作AE ∥解析:(1.5+【分析】首先过点A 作AE ∥DC ,交BC 于点E ,则AE=CD=10m ,CE=AD=1.5m ,然后在Rt △BAE 中,∠BAE=60°,然后由三角形函数的知识求得BE 的长,继而求得答案.【详解】如图,过点A 作AE ∥DC ,交BC 于点E ,则AE=CD=10m,CE=AD=1.5m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=103m),∴BC=CE+BE=1.5+103m),∴旗杆高BC为(1.5+103,故答案为:(1.5+103.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,解题的关键是想添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题21.(1)(﹣1,0);(2)y=x2+4x+3;(3)﹣3<x<0.【分析】(1)先求出点B,点A坐标,由对称性可求点C坐标;(2)利用待定系数法可求解析式;(3)由图象可求解.【详解】解:(1)∵直线y=x+3分别交x轴和y轴于点A和B,∴点A(﹣3,0),点B(0,3),∵抛物线的对称轴为直线x=﹣2.抛物线与x轴的另一个交点为C,∴点C(﹣1,0),故答案为(﹣1,0);(2)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),点C(﹣1,0),∴3093ca b ca b c=⎧⎪=-+⎨⎪=-+⎩,解得:143abc=⎧⎪=⎨⎪=⎩,∴二次函数的解析式为:y=x2+4x+3;(3)如图所示:当﹣3<x <0时,二次函数值小于一次函数值,故答案为:﹣3<x <0.【点睛】本题考查了二次函数与不等式,待定系数法求解析式,求出抛物线的解析式是本题的关键.22.(1)213222y x x =+-;6y x =;(2)9 【分析】(1)将()2,3A 代入反比例函数解析式即可求出k 值;再根据1tan 2ADE ∠=构建直角三角形即可求出D 点坐标;再讲A 、D 两点坐标代入二次函数解析式即可求出二次函数的表达式;(2)作出辅助线后将所求四边形的面积分为三部分,即DHM △、OEB 和梯形HOBM ,分别求出后求和,即可得出面积S 与M 点横坐标m 的二次函数关系式,有函数性质即可求出四边形DMBE 面积的最大值.【详解】解:(1)如图,过A 点作AC x ⊥轴且与x 轴交于点C ;将()2,3A 代入k y x=中,解得6k =,∴6y x=, ∴3AC =,2OC = ∵1tan 2ADE ∠=, ∴6DC =,∴4DO DC OC =-=,∴(4,0)D -,将A ,D 代入()220y ax bx a =+-≠中得: 422316420a b a b +-=⎧⎨--=⎩解得1232a b ⎧=⎪⎪⎨⎪=⎪⎩, ∴二次函数表达式为:213222y x x =+-; (2)如图,过M 作MH x ⊥轴于H ,并设点M 的坐标为213(,2)22m m m +-, ∵M 点在第三象限 ∴213222MH m m =--+ 则+DMBE HOBM S S S S =+△DHM △OEB 四边形梯形, 4212=222m MH m ++⨯++()MH ()(-) 42=12mMH MH m mMH +--+ =21MH m -+213=2(2)122m m m --+-+ 2=45m m --+2=(2)9m -++∴当2m =-时四边形DMBE 的面积最大,最大面积为9.【点睛】本题主要考查利用待定系数法求解二次函数、反比例函数的解析式以及函数的性质和数形结合的能力,对于学生的综合能力要求较高.23.(1)应降价20元;(2)每套应降价15元【分析】(1)设每件衬衫应降价x 元,利用每件利润×总销量=总利润,列方程求解即可; (2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)解:设每件衬衫应降价x 元,根据题意,得()()402021200x x -+=,整理,得22604000x x -+=,解得110x =,220x =.∵尽快减少库存,∴20x答:应降价20元.(2)解:设每件衬衫应降价x 元,总利润为W 元,根据题意,得.()()40202W x x =-+2260800x x =-++, 当152b x a=-=时,利润最大, ()()4015202151250W =-+⨯=最大利润.【点睛】此题主要考查了一元二次方程以及二次函数的应用,正确利用每件利润×总销量=总利润得出关系式是解题关键.24.(1;(21【分析】(1)证明△ABE 是等腰直角三角形得BE =,再证明∠EBD EDB =∠得BE=DE ,从而可得结论;(2)设AB AE m ==,则BE DE ==,再求出AD 的长,最后求出tan ABD ∠的值即可.【详解】解:(1)∵四边形ABCD 是矩形∴∠90,//ABC BAD AD BC =∠=︒∵BE 平分∠ABC , ∴∠45ABE =︒∴△ABE 是等腰直角三角形, ∴BE =∵BD 平分∠EBC∴∠EBD CBD =∠∵//AD BC∴∠EDB CBD =∠∴∠EBD EDB =∠∴BE DE =∴2DE BE AE AE == (2)由(1)知,AB AE =设AB AE m ==,则2BE DE m ==∴(21)AD AE DE m =+=+在Rt ABD ∆中, tan 21AD ABD AB∠==+. 【点睛】 此题主要考查了矩形的性质,等三角形的判定以及垗角的正切值,证明2BE AE =是解答此题的关键.25.(1)14cm ;(2)23cm .【分析】(1)过A 作AD OB ⊥于D ,解直角三角形ABD 即可;(2)根据(1)中AD 的长,解直角三角形ADO 即可.【详解】解:(1)过A 作AD OB ⊥于D ,则AD 的长就是A 到OB 的距离,在Rt △ABD 中,∵sin AD ABD AB=∠, 20AB =,45ABD ∠=︒,∴sin 4520AD =︒, 即2202AD =, ∴10214AD =≈cm .(2)∵AD OB ⊥,在Rt AOD 中,∵sin AD AOD AO=∠, 14AD =,37AOD ∠=︒,∴14sin37AO=︒,即140.6 AO=,∴14230.6AO=≈cm.【点睛】本题考查了作高构造直角三角形,并解直角三角形,熟练掌握构造高线构造直角三角形,并灵活求解是解题的关键.26.见解析.【分析】先由等腰直角三角形的性质得∠B=∠C=45°,再证△ABD∽△DCE,得∠BAD=∠CDE,然后由三角形外角的性质得∠ADE=∠B=45°,即可得出结论;【详解】证明:∵∠BAC=90°,AB=AC=2,∴∠B=∠C=45°,∵BD=1,DC=2CE,∴ABBD=DCCE=2,∴△ABD∽△DCE,∴∠BAD=∠CDE,∵∠ADC=∠ADE+∠CDE=∠B+∠BAD,∴∠ADE=∠B=45°,∴cos∠ADE=cos45°=2.【点睛】本题考查了相似三角形的判定与性质,等腰直角三角形的性质以及锐角三角函数定义等知识点,熟练掌握相似三角形的判定与性质是解决问题的关键;。

【人教版】初三数学下期中一模试题及答案

【人教版】初三数学下期中一模试题及答案

一、选择题1.如图,在Rt ABC 中,90C ∠=︒,7AC =,24BC =,将它绕着BC 中点D 顺时针旋转一定角度后到A B C ''',恰好使//B C AB '',A C ''与边AB 交于点E ,则A E '的长为( )A .72B .4924C .8425D .91252.如图,点D 在ABC 的边AC 上,添加下列哪个条件后,仍无法判定ABC ADB ∽△△( )A .C ABD ∠=∠B .CBA ADB ∠=∠C .AB ADAC AB= D .AB BCAC BD= 3.如图所示,一电线杆AB 的影子分别落在了地上和墙上,某一时刻,小明竖起1米高的直杆,量得其影长为0.5米,此时,他又量得电线杆AB 落在地上的影子BD 长3米,落在墙上的影子CD 的高为2米,小明用这些数据很快算出了电线杆AB 的高,请你计算,电线杆AB 的高为( )A .5米B .6米C .8米D .10米4.如图,已知D 、E 分别为AB 、AC 上的两点,且DE ∥BC ,AE=2CE ,AB=12,则AD 的长为( )A .4B .6C .5D .85.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,AD :BD=5:3,CF=6,则DE 的长为( )A .6B .8C .10D .126.如图,在ABC 中,点D 、E 分别在边AB 、AC 上,则在下列五个条件中:①AED B ∠=∠;②//DE BC ;③AD AEAC AB=;④AD BC DE AC ⋅=⋅,能满足ADE ACB 的条件有( )A .1个B .2个C .3个D .4个7.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x=上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( )A .120x x <B .130x x <C .230x x <D .120x x +<8.反比例函数y =kx的图象经过点A (﹣2,3),则此图象一定经过下列哪个点( ) A .(3,2) B .(﹣3,﹣2) C .(﹣3,2) D .(﹣2,﹣3)9.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-10.对于反比例函数21k y x+=,下列说法错误的是( )A .函数图象位于第一、三象限B .函数值y 随x 的增大而减小C .若A (-1,y 1)、B (1,y 2)、C (2,y 3)是图象上三个点,则y 1<y 3<y 2D .P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,则△OPQ 的面积是定值11.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A .y x =-B .2y x =+C .2y x=D .22y x x =-12.如图,点A 是反比例函数y =kx(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣4二、填空题13.如图,D E 、分别是ABC 的边AB BC 、上的点,且//,DE AC AE CD 、相交于点O ,若:1:25DOE COA S S =△△,则BECE的值是________.14.如图,点P 是ABC 的重心,过P 作BC 的平行线,分别交AC ,AB 于点D ,E ,作//DF EB ,交CB 于点F ,若ABC 的面积为227cm ,则DFC △的面积为______2cm .15.如图,ABC 中,1BC =.若113AD AB =,且11//D E BC ,照这样继续下去,12113D D D B =,且22//D E BC ;23213D D D B =,且33//DE BC ;…;1113n n n D D D B --=,且//n n D E BC 则101101=D E _________.16.在梯形ABCD 中,//AD BC ,两条对角线AC 、BD 相交于点O ,:1:9AODCOBSS=,那么BOC DOC S S =△△:__________.17.调查显示,某商场一款运动鞋的售价是销量的反比例函数(调查获得的部分数据如下表).售价x(元/双)200240250400销售量y(双)30252415已知该运动鞋的进价为180元/双,要使该款运动鞋每天的销售利润达到2400元,则其售价应定为_______元.18.如果反比例函数y2mx-=的图象在第一、三象限,那么m的取值范围是____.19.如图,在平面直角坐标系中,反比例函数y=kx(k≠0),经过▱ABCD的顶点B.D,点A的坐标为(0,-1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点C的坐标是______.20.如图,菱形ABCD顶点A在函数y=4x(x>0)的图像上,函数y=kx(k>4,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=4,∠ADC=150°,则k=______。

【北师大版】初三数学下期中一模试卷(附答案)(1)

【北师大版】初三数学下期中一模试卷(附答案)(1)

一、选择题1.对于二次函数2y x bx c =++(b ,c 是常数)中自变量x 与函数y 的部分对应值如下表:x1- 0 1 2 3 4 y 10 5 2 1 2 5 A .函数图像开口向上B .当5x =时,10y =C .当2x >时,y 随x 的增大而增大.D .方程20x bx c ++=有两个不相等的实数根2.已知二次函数()()12y a x x x x =--与x 轴的交点是(1,0)和(3,0),关于x 的方程()()12a x x x x m --=(其中0m >)的两个解分别是1-和5,关于x 的方程()()12a x x x x n --=(其中0n m <<)也有两个整数解,这两个整数解分别是( ) A .1和4 B .2和5 C .0和4 D .0和5 3.已知抛物线24y x bx =++的顶点在x 轴上,则b 的值为( )A .2B .4C .-4D . 4.当函数21(1)23ay a x x +=-++ 是二次函数时,a 的取值为( ) A .1a = B .1a =±C .1a ≠D .1a =- 5.在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =--的图象可能为( )A .B .C .D .6.二次函数()20y ax bx c a =++≠的图象如图所示,给出下列四个结论:①240b ac -<;②0a b c ++<;③2a b >;④0abc >,其中正确的结论是( ). A .①② B .②④ C .③④ D .②③④7.sin 45cos45︒+︒的值为( )A .1B .2C .2D .22 8.如图,网格中所有小正方形的边长均为1,有A 、B 、C 三个格点,则ABC ∠的余弦值为( )A .12B .255C .55D .2 9.cos60︒的值是( ) A .12 B .33 C .32 D .310.如图,拦水坝的横断面是梯形,高6BC =米,斜面坡度为1:2,则斜坡AB 的长为( )A .43米B .65米C .125米D .12米11.如图,在直角△BAD 中,延长斜边BD 到点C ,使得BD=2DC ,连接AC ,如果5tanB 3=,则tan CAD ∠的值是( )A .33B 3C .13D .15 12.在Rt ABC 中,90C ∠=︒,5AB =,4BC =,则tan A 的值为( ) A .35 B .45 C .34 D .43二、填空题13.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,则c 的值等于_________.14.抛物线()20y ax bx c a =++≠的部分图象如图所示,其与x 轴的一个交点坐标为()4,0-,对称轴为1x =-,则0y >时,x 的取值范围________.15.如图,已知点()6,0A ,O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数1y 和过P 、A 两点的二次函数2y 的图像开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当5OD AD ==时,这两个二次函数的最大值之和等于________.16.如图,在正方形ABCD 中,点E 是BC 边上的动点,过点E 作AE 的垂线交CD 边于点F ,设BE x =,FD y =,y 关于x 的函数关系图像如图所示,则m =________.17.如图,矩形ABCD 的四个顶点分别在直线3421,,,l l l l 上.若这四条直线相互平行且相邻直线的间距均为1,若α=30°,则矩形ABCD 的面积为_________.18.如图,在ABC 中,AD BC ⊥交BC 于点D ,AD BD =,若42AB =4tan 3C =,则BC =________.19.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AB =9,AC =6,则cos ∠DCB =________________ .20.如图,在菱形ABCD 中, 3AB AC ==点E 、F 分别在边AB 、AD 上,且 AE DF =,则EF 的最小值为________.三、解答题21.某公司在市场销售“国耀2020”品牌手机,第一年售价定为4500元时,销售量为14百万台,根据以往市场调查经验,从第二年开始,手机每降低500元,销售量就增加2百万台,设该手机在市场销售的年份为x 年(x 为整数).(1)根据题意,填写下表: 第x 年1 2 3 … x 售价(元) 4500 4000 …销售量(百万台) 1416 … (百万元),试问该公司销售“国耀2020”手机在第几年的年销售额可以达到最大?最大值为多少百万元?(3)若生产一台“国耀2020”手机的成本为3000元,如果你是该公司的决策者,要使公司的累计总利润最大,那么“国耀2020”手机销售 年就应该停产,去创新新的手机. 22.如图1,在矩形ABCD 中,8AB =,6AD =,沿对角线AC 剪开,再把ACD △沿AB 方向平移得到图2,其中A D '交AC 于E ,A C ''交BC 于F .(1)在图2中,除ABC 与C DA ''△外,指出图中全等三角形(不能添加辅助线和字母)并选择一对加以证明;(2)设AA x '=.①当x 为何值时,四边形A ECF '是菱形?②设四边形A ECF '的面积为y ,求y 与x 的关系式,并求出y 最大值.23.已知抛物线2y ax c =+经过点()0,2A 和点()1,0B -.(1)求抛物线的解析式;(2)将(1)中的抛物线平移,使其顶点坐标为()2,1,平移后的抛物线与x 轴的两个交点分别为点,C D (点C 在点D 的左边).求点,C D 的坐标;(3)将(1)中的抛物线平移,设其顶点的纵坐标为m ,平移后的抛物线与x 轴两个交点之间的距离为n .若15m <≤,直接写出n 的取值范围.24.如图,广场上空有一个气球A ,地面上点B 、C 在一条直线上,BC =24m .在点B 、C 分别测得气球A 的仰角为30°和60°,求气球A 离地面的高度.25.生活中,我们经常看到有的窗户上安装着遮阳蓬,如图1,现在要为一个面向正南方向的窗户安装一个矩形遮阳蓬.如图2,AB 表示窗户的高,CD 表示遮阳莲,且1.5m AB =,遮阳莲与窗户所在平面的夹角BCD ∠等于75︒.已知该地区冬天正午太阳最低时,光线与水平线的夹角为30;夏天正午太阳最高时,光线与水平线的夹角为60︒,若使冬天正午阳光最低时光线最大限度的射入室内,而夏天正午阳光最高时光线刚好不射入室内,试求出遮阳蓬的宽度CD .26.今年由于防控疫情,师生居家隔离,进行线上学习,AB 和CD 是社区两栋邻楼的示意图,小伟站在自家阳台的C 点,测得对面楼顶点A 的仰角为22︒,地面点E 的俯角为45︒,点E 在线段BD 上,测得B 、E 间距离为8.7米,楼AB 高123米.(1)求小伟家阳台距地面CD 的高度(结果精确到1米,参考数据:sin 220.37︒≈,cos 220.93︒≈,tan 220.40︒≈3 1.73≈)(2)在实际测量过程中,测量误差可以避免吗?并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据表格中的数据和二次函数图象具有对称性即可判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由表格可得,当x <2时,y 随x 的值增大而减小;当x >2时,y 随x 的值增大而增大,该函数开口向上,故选项A 、C 不符合题意;∴点(−1,10)的对称点是(5,10),∴点(5,10)在该函数的图象上,故选项B 不符合题意;由表格可得,该抛物线开口向上,且最小值是1,则该抛物线与x 轴没有交点, ∴方程20x bx c ++=无实数根,故选项D 符合题意.故选:D .【点睛】本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.2.C解析:C【分析】先根据二次函数y=a(x-x 1)(x-x 2)与x 轴的交点是(1,0)和(3,0)判断二次函数的对称轴方程,再根据关于x 的方程a(x-x 1)(x-x 2)=m(其中m>0)的两个解分别是-1和5判断开口方向,最后根据二次函数图象的性质即可得到答案;【详解】∵二次函数y=a(x-x 1)(x-x 2)与x 轴的交点是(1,0)和(3,0),∴得到二次函数的对称轴方程为:x=2,又∵关于x 的方程a(x-x 1)(x-x 2)=m(其中m>0)的两个解分别是-1和5,∴二次函数y=a(x-x 1)(x-x 2)开口向上(远离对称轴的点纵坐标变大),又∵x 的方程a(x-x 1)(x-x 2)=n 也有两个整数解,根据0<n<m 得到解在-1和5之间,∵解为正数且关于x=2对称,故选:C .【点睛】本题主要考查了二次函数图象的性质,根据图象的性质求解二次函数的整数解,熟练掌握二次函数的图象的性质是解题的关键3.D解析:D【分析】抛物线的顶点在x 轴上,则顶点的纵坐标为0,根据顶点纵坐标公式,列方程求解.【详解】解:抛物线24y x bx =++的顶点纵坐标为241441b ⨯⨯-⨯, ∵顶点在x 轴上, ∴241441b ⨯⨯-⨯=0, 解得b 2=16,b=±4.故选:D .【点睛】本题考查了二次函数的性质,抛物线y=ax 2+bx+c 的顶点在x 轴上,则顶点坐标的纵坐标为0.4.D解析:D【分析】根据二次函数的定义去列式求解计算即可.【详解】∵函数21(1)23a y a x x +=-++ 是二次函数,∴a-1≠0,2a 1+=2,∴a≠1,21a =,∴1a =-,故选D .【点睛】本题考查了二次函数的定义,熟记二次函数的定义并灵活列式计算是解题的关键. 5.D解析:D【分析】根据二次函数的开口方向,与y 轴的交点;一次函数经过的象限,与y 轴的交点可得相关图象.【详解】解:∵一次函数经过y 轴上的(0,c ),二次函数经过y 轴上的(0,-c ),∴两个函数图象交于y 轴上的不同点,故A ,C 选项错误;当a <0,c <0时,二次函数开口向上,一次函数经过二、三、四象限,故B 选项错误; 当a <0,c >0时,二次函数开口向上,一次函数经过一、二、四象限,故D 选项正确; 故选:D .【点睛】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y 轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.6.B解析:B【分析】根据抛物线与x 轴交点可判断①;根据x=1时,y <0,可判断②;对称轴x=-1可判断③;根据抛物线开口方向、对称轴、与y 轴交点可判断④.【详解】解:①由抛物线图象与x 轴有两个交点可知240b ac ->,故①错误;②由图象知,当x=1时,y=a+b+c <0,故②正确;③抛物线对称轴x=-1,即-2b a=-1<0,即b=2a <0,即③错误; ④由抛物线图象得:开口向下,即a <0;c >0,b <0,∴abc >0,故④正确; 所以正确的有:②④,故选:B .【点睛】主要考查图象与二次函数系数之间的关系,掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定是解题的关键. 7.C解析:C【分析】直接用特殊的锐角三角函数值代入求值即可;【详解】∵ sin45°=2 ,cos45°=2, ∴sin45°+ cos45°=2+2=2 , 故选:C .【点睛】 本题考查了特殊的锐角三角函数值,正确记忆锐角三角函数值是解题的关键 . 8.B解析:B【分析】过点B 作BD ⊥AC 于点D ,过点C 作CE ⊥AB 于点E ,则BD=AD=3,CD=1,利用勾股定理可求出AB ,BC 的长,利用面积法可求出CE 的长,再利用余弦的定义可求出∠ABC 的余弦值.【详解】解:过点B 作BD ⊥AC 于点D ,过点C 作CE ⊥AB 于点E ,则BD=AD=3,CD=1,如图所示.2232BD AD +=2210BD CD +.∵12AC•BD=12AB•CE ,即12×2×3=122, ∴2∴2222BC CE -=∴cos ∠ABC=222510BE BC ==. 故选:B .【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,利用面积法及勾股定理求出CE ,BC 的长度是解题的关键. 9.A解析:A【分析】根据特殊角三角函数值直接判断即可.【详解】解:∵1cos 60=2︒, 故选:A . 【点睛】 本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键. 10.B解析:B【分析】 根据坡度求出AC 的长度,再利用勾股定理求出AB .【详解】∵坡度12BC i AC ==,6BC =米, ∴AC=12米,∴AB=222212665AC BC +=+=米,故选:B .【点睛】此题考查已知正切值求边长,勾股定理求直角三角形边长,熟记坡度定义求出AC 是解题的关键.11.D解析:D【分析】延长AD ,过点C 作CE ⊥AD ,垂足为E ,由5tanB 3=,即53AD AB =,设AD =5x ,则AB =3x ,利用相似三角形的判定可证△CDE ∽△BDA ,由相似三角形的性质可得:12CE DE CD AB AD BD ===,进而可得CE =32x ,DE =52x ,从而可求得tan ∠CAD 的值. 【详解】解:如图,延长AD ,过点C 作CE ⊥AD ,垂足为E ,∵5tanB 3=,即53AD AB =, ∴设AD =5x ,则AB =3x ,∵∠CDE =∠BDA ,∠CED =∠BAD ,∴△CDE ∽△BDA , ∴12CE DE CD AB AD BD ===, ∴CE =32x ,DE =52x , ∴AE =152x , ∴tan ∠CAD =15CE AE =. 故选:D .【点睛】 本题考查了锐角三角函数的定义、相似三角形的判定和性质等知识,解题的关键是:正确添加辅助线,将∠CAD 放在直角三角形中.12.D解析:D【分析】由勾股定理算出AC 的值,然后根据正切函数的定义即可得到解答.【详解】解:由勾股定理可得:3AC =, ∴tanA=43BC AC =, 故选D .【点睛】本题考查解直角三角形,熟练掌握勾股定理及三角函数的定义是解题关键.二、填空题13.7或15【分析】根据题意可知抛物线顶点纵坐标是±4化成顶点式求解即可【详解】解:∵抛物线y=x2-6x+c-2的顶点到x 轴的距离是4∴抛物线顶点纵坐标是±4抛物线y=x2-6x+c-2化成顶点式为:解析:7或15.【分析】根据题意可知,抛物线顶点纵坐标是±4,化成顶点式求解即可.【详解】解:∵抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,∴抛物线顶点纵坐标是±4,抛物线y=x 2-6x+c-2化成顶点式为:y=(x-3)2+c-11,c-11=4,c=15,c-11=-4,c=7,故答案为:7或15.【点睛】本题考查了抛物线的顶点坐标,解题关键是理解到x 轴的距离是纵坐标的绝对值,注意:分类讨论.14.或【分析】根据抛物线与x 轴的一个交点坐标和对称轴由抛物线的对称性可求抛物线与x 轴的另一个交点再根据抛物线的增减性可求当y <0时x 的取值范围【详解】解:∵抛物线y=ax2+bx+c (a≠0)与x 轴的一解析:4x <-或2x >【分析】根据抛物线与x 轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当y <0时,x 的取值范围.【详解】解:∵抛物线y=ax 2+bx+c (a≠0)与x 轴的一个交点坐标为(-4,0),对称轴为x=-1, ∴抛物线与x 轴的另一个交点为(2,0),由图象可知,当y >0时,x 的取值范围是x <-4或x >2.故答案为:x <-4或x >2.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,关键是得到抛物线与x 轴的另一个交点.15.4【分析】过B 作BF ⊥OA 于F 过D 作DE ⊥OA 于E 过C 作CM ⊥OA 于M 则BF+CM 是这两个二次函数的最大值之和BF ∥DE ∥CM 求出AE=OE=3DE=4设P (2x0)根据二次函数的对称性得出OF=P解析:4【分析】过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,则BF+CM 是这两个二次函数的最大值之和,BF ∥DE ∥CM ,求出AE=OE=3,DE=4.设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,推出△OBF ∽△ODE ,△ACM ∽△ADE ,得出BF OF DE OE =,CM AM DE AE=,代入求出BF 和CM ,相加即可求出答案. 【详解】解:过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA ,∴BF ∥DE ∥CM ,∵OD=AD=5,DE ⊥OA ,∴OE=EA=12OA=3, 由勾股定理得:DE=4.设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE , ∴BF OF DE OE =,CM AM DE AE=, ∵AM=PM=12(OA-OP )=12(6-2x )=3-x , 即43BF x =,343CM x -=, 解得:BF=43x ,CM=4-43x , ∴BF+CM=4.故答案为4.【点睛】此题考查了二次函数的最值,勾股定理,等腰三角形的性质,以及相似三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.16.2【分析】设正方形的边长为a 则CFEC 均可用a 表示证明△ABE ∽△ECF 写出比例式找到y 与x 之间的函数式根据二次函数的最值求法结合所给函数图象求出a 值而后可求m 值【详解】设正方形的边长为a 则CF=a解析:2【分析】设正方形的边长为a ,则CF 、EC 均可用a 表示,证明△ABE ∽△ECF ,写出比例式找到y 与x 之间的函数式,根据二次函数的最值求法,结合所给函数图象,求出a 值,而后可求m 值.【详解】设正方形的边长为a ,则CF=a-y .∵∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF .又∠B=∠C ,∴△ABE ∽ECF , ∴BE FC AB EC =,x a y a a x-=-,整理得:21y x x a a =-+, 当2a x =时,y 有最小值34a , 从所给函数图象上看,当x m =时,y 有最小值3,∴334a =, 解得:4a =, ∴22a x m ===. 故答案为:2.【点睛】本题主要考查了动点问题产生的函数图象、相似三角形的判定和性质,解题的关键是动中找静,会阅读图象信息.17.【分析】过B 点作直线EF 与平行线垂直与l2交于点E 与l3交于点F 得AB=2进而求得矩形的面积;【详解】解:如图过B 作于E 点交于F 点∵∴∠又∵相邻直线的间距均为1∴BF=EF=1则∴又∵矩形ABCD 中解析:83 【分析】过B 点作直线EF 与平行线垂直,与l 2交于点E ,与l 3交于点F .得AB=2,433BC =.进而求得矩形的面积;【详解】解:如图,过B 作2BE l ⊥于E 点,交2l 于F 点∵34//l l∴∠=30BAF α∠=︒又∵相邻直线的间距均为1,∴BF=EF=1则1sin 2BF AB α== ∴2212AB BF ==⨯=又∵矩形ABCD 中,∠90ABC =°而∠+90ABF α∠=︒∴30EBC α∠=∠=︒,且BE=2∴cos BE EBC BC ∠==∴223BC BE =÷==则S 矩形ABCD=AB×BC=2=【点睛】 本题考查了矩形的性质、直角三角形中三角函数的应用,锐角三角函数值的计算等知识,根据平行线之间的距离构造全等的直角三角形是关键.18.7【分析】由题意得是等腰直角三角形由求出AD 和BD 的长度再根据求出CD 的长即可求出BC 的长【详解】解:∵∴是等腰直角三角形∴∴∵∴∵∴∵∴故答案是:7【点睛】本题考查解直角三角形解题的关键是掌握利用解析:7【分析】由题意得ABD △是等腰直角三角形,由AB =AD 和BD 的长度,再根据4tan 3C =,求出CD 的长,即可求出BC 的长. 【详解】解:∵AD BC ⊥,AD BD =,∴ABD △是等腰直角三角形,∴45ABD ∠=︒,∴sin 2AD ABD AB ∠==, ∵AB =∴4=AD , ∵4tan 3AD C CD ==, ∴3CD =,∵4BD AD ==,∴437BC BD CD =+=+=.故答案是:7.【点睛】本题考查解直角三角形,解题的关键是掌握利用锐角三角函数解直角三角形的方法. 19.【分析】首先利用等角的余角得到∠A=∠DCB 然后根据余弦的定义求出cosA 即可【详解】解:在Rt △ABC 中∵CD ⊥AB ∴∠DCB+∠B=90°∵∠ACB =90°∴∠A+∠B=90°∴∠A=∠DCB 而 解析:23【分析】首先利用等角的余角得到∠A=∠DCB ,然后根据余弦的定义求出cosA 即可.【详解】解:在Rt △ABC 中,∵CD ⊥AB ,∴∠DCB+∠B=90°,∵∠ACB =90°,∴∠A+∠B=90°,∴∠A=∠DCB ,而cosA=AC AB =69=23, ∴cos ∠DCB=23. 故答案为:23. 【点睛】 本题考查了锐角三角函数的定义:在Rt △ABC 中,∠C=90°,我们把锐角A 的邻边a 与斜边c 的比叫做∠A 的余弦,记作cosA .20.【分析】根据菱形的性质可得=3从而得出都是等边三角形利用SAS 即可证出从而得出根据等边三角形的判定可得是等边三角形从而得出即CE 最小时EF 最小根据垂线段最短可得时线段最小利用锐角三角函数即可求出结论【分析】根据菱形的性质可得AB BC CD AD AC =====3,从而得出ABC ,ACD △都是等边三角形,利用SAS 即可证出EAC FDC ≌,从而得出,EC FC ACE DCF =∠=∠,根据等边三角形的判定可得ECF △是等边三角形,从而得出CE EF CF ==,即CE 最小时,EF 最小,根据垂线段最短可得CE AB ⊥时,线段CE 最小,利用锐角三角函数即可求出结论.【详解】解:∵四边形ABCD 是菱形,且AB AC ==3,∴AB BC CD AD AC =====3,∴ABC ,ACD △都是等边三角形,∴60EAC D ∠=∠=︒,在EAC 和FDC △中EA FD EAC D AC DC =⎧⎪∠=∠⎨⎪=⎩∴EAC FDC ≌,∴,EC FC ACE DCF =∠=∠,∴60ECF ACD ∠=∠=︒,∴ECF △是等边三角形,∴CE EF CF ==,∵CE AB ⊥时,线段CE 最小,最小值为BC·sin ∠3=, ∴EF的最小值为2【点睛】此题考查的是菱形的性质、等边三角形的判定及性质、全等三角形的判定及性质和解直角三角形,掌握菱形的性质、等边三角形的判定及性质、全等三角形的判定及性质和利用锐角三角函数解直角三角形是解题关键. 三、解答题21.(1)见解析;(2)第二年销售额最大,为64000百万元;(3)四【分析】(1)根据题意填写表格即可;(2)由题意得:W =(2x +12)(﹣500x +5000)=﹣1000(x ﹣2)2+64000,进而求解;(3)由题意得:(2x +12)(﹣500x +5000﹣3000)=0,通过解方程即可求解.【详解】(1)根据题意,填写下表:(2)由题意得:W =(2x +12)(﹣500x +5000)=﹣1000(x ﹣2)2+64000, ∵﹣1000<0,故抛物线开口向下,W 有最大值,当x =2(年)时,W 最大值为64000(百万元),第二年销售额最大,为64000百万元;(3)由题意得:(2x +12)(﹣500x +5000﹣3000)=0,﹣1000(x +1)2+25000=0,∴x 1=4,x 2=﹣6(舍),∴第四年该手机应该停产,【点睛】本题考查了二次函数的性质在实际生活中的应用,解题关键是读懂题意,确定变量,建立函数模型,利用函数的增减性来解答.22.(1)AA E C CF ''△≌△,A BF CDE '△≌△;证明见解析 (2)①5 ②23(4)124y x =--+;12 【分析】(1)根据矩形的性质、全等三角形的判定定理证明;(2)①设A′E=a ,A′F=b ,根据相似三角形的性质用x 表示出a 、b ,根据菱形的判定定理列出方程,解方程即可;②根据三角形的面积公式求出y 关于x 的二次函数解析式,根据二次函数的性质计算即可.【详解】解:(1)△AA′E ≌△C′CF ,△A′BF ≌△CDE ,由题意得,四边形A′DCB 是矩形,∴A′B=DC ,∴AA′=CC′,∵AB ∥CD ,∴∠BA′F=∠C′,由题意得,∠BA′F=∠A ,∴∠A=∠C′,在△AA′E 和△C′CF 中,A C AA C CAA E C CF ∠∠'⎧⎪''⎨⎪∠'∠'⎩===, ∴△AA′E ≌△C′CF (ASA );由题意得,四边形A′DCB 是矩形,∴A′B=DC ,∠B=∠D=90゜,DA′=CB ,DA′//CB ,由△AA′E ≌△C′CF ,得,A′E=FC∵四边形A′DCF 是平行四边形,∴A′F=EC ,∴Rt △A′BF ≌△CDE ;(2)①设A′E=a ,A′F=b ,在Rt △ABC 中,8AB =,6AD =,∠B=90゜∴10AC ===∵A′F ∥AC , ∴A F BA AC BA ''=,即8108b x -=, 解得,4054x b -=, 同理68a x =, 解得,34a x =, 当A′E=A′F 时,四边形A′ECF 是菱形, ∴4054x -=34x , 解得,x=5,∴当x=5时,四边形A′ECF 是菱形; ②3(8)4y A E A B x x ''=⨯=-,即364y x x =-+. 23(4)124y x =--+,y 的最大值为12. 【点睛】本题考查的是四边形的综合题,矩形的性质、相似三角形的判定和性质、全等三角形的判定和性质、二次函数的解析式的确定以及二次函数的最值的求法,掌握相关的判定定理和性质定理是解题的关键.23.(1)222y x =-+;(2)2,222C D ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(3n <≤【分析】(1)把点A 、B 的坐标分别代入函数解析式,列出关于a 、c 的方程组,通过解方程求得它们的值;(2)根据平移的规律写出平移后抛物线的解析式,然后令0y =,则解关于x 的方程,即可求得点C 、D 的横坐标;(3)根据抛物线与x 轴两个交点之间的距离为21||x x -的关系来即可求n 的取值范围;【详解】解:(1)抛物线2y ax c =+经过点(0,2)A 和点(1,0)B -,∴20c a c =⎧⎨+=⎩, 解得:22a c =-⎧⎨=⎩, ∴此抛物线的解析式为222y x =-+;(2)此抛物线平移后顶点坐标为(2,1),∴抛物线的解析式为22(2)1y x =--+,令0y =,即22(2)10x --+=,解得 12x =+,22x =-, 点C 在点D 的左边,(C ∴ 22-0),(2D +,0); (3)设平移后抛物线的解析式是22y x m =-+,该抛物线与x 轴的两交点横坐标为1x ,2x ,整理为:220x m -=.此时120x x +=,122m x x =-.则21||x x n -=.当1m =时,n =当5m =时,n =.所以,n n <【点睛】本题考查了待定系数法求二次函数解析式,二次函数图象的几何变换.要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.24.气球A 离地面的高度为.【分析】作AD ⊥l ,设AD=x ,Rt △ABD 中求得tan 30AD BD ︒==,再由tan 60︒==x 即可得. 【详解】 如图,过点A 作AD ⊥l ,设AD =xm , 则3BD x =, ∴60tan ︒=324x -3=, ∴123AD x ==,∴气球A 离地面的高度为123m .【点睛】本题考查了解直角三角形的应用-仰角俯角问题,掌握仰角是向上看的视线与水平线的夹角、俯角是向下看的视线与水平线的夹角、熟记锐角三角函数的定义是解题的关键. 25.9236CD -=【分析】 如图,EB 为冬天的太阳光线,30,EDF ∠=︒ TA 为夏天的太阳光线,60,TAN ∠=︒ 水平线//,DF AN 证明 1.5,BA BD ==45,CDB ∠=︒ 过C 作CH BD ⊥于,H 可得,CH DH = 33,33BH CH DH == 再列方程3 1.5,3DH DH += 求解933,4DH -=由2cos cos 45,2DH CDH CD ∠==︒= 从而可得答案. 【详解】解:如图,EB 为冬天的太阳光线,30,EDF ∠=︒ TA 为夏天的太阳光线,60,TAN ∠=︒ 水平线//,DF AN60,TDF TAN ∴∠=∠=︒30,TDE BDA ∴∠=∠=︒,AC AN ⊥30,BAD BDA ∴∠=︒=∠60,CBD BAD BDA ∴∠=∠+∠=︒ 1.5,BA BD ==75BCD ∠=︒,45,CDB ∴∠=︒过C 作CH BD ⊥于,H45,HCD CDH ∴∠=∠=︒,CH DH ∴=由tan tan 60CH CBH BH∠==︒=,BH DH ∴==1.5,DH DH +=DH ∴=由cos cos 45DH CDH CD ∠==︒=CD ∴===经检验:CD =符合题意. 【点睛】 本题考查的是三角形的内角和定理,三角形的外角的性质,等腰三角形的判定,二次根式的运算,解直角三角形的应用,掌握以上知识是解题的关键.26.(1)阳台距地面CD 的高度约为12米;(2)不可避免,理由见解析【分析】(1)设阳台距地面CD 的高度为x 米.过点C 作CF AB ⊥于点F .先证明ED x =,在Rt AFC 中,求出AF=x ,再表示出CF BD BE ED ==+,得到关于x 的方程,解方程即可求解;(2)根据生活的实际得出误差不可避免即可求解.【详解】解:(1)设阳台距地面CD 的高度为x 米.如图,过点C 作CF AB ⊥于点F ,则四边形BDCF 为矩形.∵在Rt EDC 中,45CED ECF ECD ∠=∠=︒=∠,CD x =,∴ED x =.∵在Rt AFC 中,22ACF ∠=︒,AF AB FB x =-=,∴1235(123)tan 22AF x x CF --=≈=︒, ∵CF BD BE ED ==+, ∴5(123)8.7x x -=+. 解得12x ≈, 答:阳台距地面CD 的高度约为12米.(2)不可避免.产生測量误差的原因有:仪器原因;外界环境影响等.这些条件在进行测量工作时都有其自身的局恨性和对测量的不利因素,因此不可避免.【点睛】本题考查了解直角三角形的应用,根据题意添加辅助线构造三角形,并利用三角函数知识表示线段长构造方程是解题关键.。

【人教版】初三数学下期中一模试题含答案

【人教版】初三数学下期中一模试题含答案

一、选择题1.如图,在平行四边形ABCD 中,点E ,F 分别为,AB BC 的中点,则三角形BEF 与多边形EFCDA 的面积之比为( )A .1∶4B .1∶5C .1∶7D .1∶82.如图,在Rt ABC 中,90,ACB AC BC ∠==,点D 、E 在AB 边上,45DCE ∠=,若3,4AD BE ==,则ABC ∣的面积为( )A .20B .24C .32D .363.有下列四种说法:其中说法正确的有( )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似. A .4个B .3个C .2个D .1个4.如图,地面上点A 处有一只兔子,距它10米的B 处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C 离木桩B( )米.A .60B .50C .40D .455.已知两个三角形相似,其中一个三角形的两个内角分别为72,63︒︒,则另一个三角形的最小内角为( ) A .72︒B .63︒C .45︒D .不能确定6.如图,四边形ABCD 是正方形,E 是BC 的中点,连接AE 与对角线BD 相交于点G ,连接CG 并延长,交AB 于点F ,连接DE 交CF 于点H .以下结论:①CDE BAE ∠=∠;②CF DE ⊥;③AF BF =;④22CE CH CF =⋅.其中正确结论的个数有( )A .1B .2C .3D .47.如图,正方形ABCD 的顶点A 的坐标为()1,0-,点D 在反比例函数my x=的图象上,B 点在反比例函数3y x=的图像上,AB 的中点E 在y 轴上,则m 的值为( )A .-2B .-3C .-6D .-88.一次函数y kx b =+和反比例函数xby k =的部分图象在同一坐标系中可能为( ) A . B . C . D .9.如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴上,反比例函数()0ky x x=>的图象经过菱形对角线的交点,A 且与边BC 交于点F ,点C 的坐标为()8,4,则OBF ∆的面积为( )A .104B .83C .103D .11410.将函数 6y x=的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是( ) A .61y x =+ B .61y x =- C .61y x=+ D .61y x=- 11.如图,曲线表示温度T (℃)与时间t (h )之间的函数关系,它是一个反比例函数的图像的一支.当温度T ≤2℃时,时间t 应( )A .不小于23h B .不大于23h C .不小于32h D .不大于32h 12.如图直线y 1=x+1与双曲线y 2=kx交于A (2,m )、B (﹣3,n )两点.则当y 1>y 2时,x 的取值范围是( )A .x >﹣3或0<x <2B .﹣3<x <0或x >2C .x <﹣3或0<x <2D .﹣3<x <2二、填空题13.下列五组图形中,①两个等腰三角形;②两个等边三形;③两个菱形;④两个矩形;⑤两个正方形.一定相似的有_______(填序号)14.在四边形ABCD 中,//AB DC ,90B ∠=︒,3AB =,11BC =,6DC =,点P 在BC 上,连接AP ,DP ,若ABP △与PCD 相似,则BP 的长为___________.15.如图,在正方形ABCD 中,15AB =,点,E F 分别为AB ,DC 上的点,将正方形沿EF 折叠,使点A 落在A '处,点D 落在D 处,FD '交BC 于点G ,A D ''交BC 于点H ,若10DF =,203CG =,则BH 的长为___________.16.在ABC中,点D、E分别在边AB、AC上,AB=12,AC=16,AE=4,若ABC与ADE相似,则AD=__________.17.如图,在平面直角坐标系xOy中,直线y=ax,y=1ax与反比例函数y=6x(x>0)分别交于点A,B两点,由线段OA,OB和函数y=6x(x>0)在A,B之间的部分围成的区域(不含边界)为W.(1)当A点的坐标为(2,3)时,区域W内的整点为_____个;(2)若区域W内恰有8个整点,则a的取值范围为_____.18.如图,一次函数y1=ax+b与反比例函数2kyx的图像交于A(1,4)、B(4,1)两点,若使y1>y2,则x的取值范围是___________.19.已知反比例函数3yx=-,当1x>时,y的取值范围是____20.如图,直线y=ax经过点A(4,2),点B在双曲线y=kx(x>0)的图象上,连结OB、AB,若∠ABO=90°,BA=BO,则k的值为_____.三、解答题21.如图,△ABC中,E、F分别是边AB、AC的中点,EF=a,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,(1)当CQ=12CE时,求EP+BP的值.(2)当CQ=13CE时,求EP+BP的值.(3)当CQ=1nCE时,直接写出EP+BP的值.22.如图,直线EF 与⊙O 相切于点C ,点A 为⊙O 上异于点C 的一动点,⊙O 的半径为4,AB ⊥EF 于点B ,设∠ACF =α(0°<α<180°).(1)如图1,若α=45°,求证:四边形OCBA 为正方形; (2)当AC =4时,求α的度数. (3)若AC -AB =1,求AC 的长.23.如图,一次函数y =kx +b 的图象与反比例函数y =mx的图象相交于A (1,a ),B (﹣3,c ),直线y =kx +b 交x 轴、y 轴于C 、D .(1)求ma c+的值; (2)求证:AD =BC ; (3)直接写出不等式0mkx b x-->的解集. 24.如图,在平面直角坐标系中,Rt △ABC 的边AB ⊥x 轴,垂足为A,C 的坐标为(1,0),反比例函数y=kx(x>0)的图象经过BC 的中点D,交AB 于点E.已知AB=4,BC=5.求k 的值25.方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度不超过120千米/小时.(1)求v 关于t 的函数表达式,并写出t 的取值范围; (2)方方上午8点驾驶小汽车从A 出发.①方方需要当天12点48分至14点之间到达B 地,求小汽车行驶速度v 的范围. ②方方能否在当天11点30分前到达B 地?说明理由. 26.如图,已知AB 为O 直径,C 为O 外一点,(连结,AC BC 交O 于点F ,取弧BF 的中点D ,连接AD 交BC 于点E ,过点E 作EH AB ⊥于H ,且满足BH BC BE AB ⋅=⋅.(1)求证:AC 是O 的切线;(2)若8,10CF BF ==,求AC 和EH 的长【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】连接AC ,根据中位线定理得//EF AC ,12EF AC =,即可由BEF BAC ,根据相似比求出面积比,设BEFSk =,则4BACSk =,再用k 表示出多边形EFCDA 的面积,即可求出结果. 【详解】解:如图,连接AC ,∵E 、F 分别是AB 和BC 的中点, ∴//EF AC ,12EF AC =, ∴BEFBAC ,∴221124BEF BAC S EF SAC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,设BEFSk =,则4BACSk =, ∴3AEFC BACBEFS S Sk =-=,∵四边形ABCD 是平行四边形,∴4ACDBACSSk ==,∴7EFCDA AEFC ACDS S S k =+=,∴::71:7BEFEFCDA SS k k ==.故选:C . 【点睛】本题考查相似三角形的性质,解题的关键是掌握相似三角形面积比等于相似比的平方的性质.2.D解析:D 【分析】设DE x =,则7AB x =+,然后根据相似三角形的判定及性质以及勾股定理求出x 的值,最后利用直角三角形面积公式求解即可. 【详解】设DE x =,则7AB x =+,45DCE CAE DBC ∠=∠=∠=︒,ACE CDE BDC ∴△△△. 设,CD a CE b ==,则有以下等式:()::3x b b x =+,()::4x a a x =+,::x a b AC =, 整理得()()223,4,b x x a x x x AC ab =+=+⋅=,()()()22222227342x x x x x a b x AC +++===, 解得5x =, 12AB ∴=,62AC BC ∴==,16262362ABC S ∴=⨯⨯=△,故选:D . 【点睛】本题主要考查相似三角形的判定及性质,勾股定理,利用方程的思想是解题的关键.3.D解析:D 【分析】直接利用相似图形的判定方法分别判断得出答案. 【详解】解:①两个菱形不一定相似,因为对应角不一定相等; ②两个矩形不一定相似,因为对应边不一定成比例; ③两个平行四边形不一定相似,因为形状不一定相同; ④两个正方形相似,正确. 故选:D . 【点睛】本题考查了相似多边形的判定,正确掌握判定方法是解题的关键.4.B解析:B 【分析】如图,证明△ABE ∽△ACD ,根据相似三角形的性质列式求解即可. 【详解】 解:如图,根据题意得,△ABE ∽△ACD , ∴AB BEAC CD= ∵AB=10m ,BE=1.6m ,CD=9.6m∴10 1.6=AC9.6∴AC=60m∴BC=AC-AB=60-10=50m故选:B.【点睛】此题主要考查了相似三角形的应用,善于观察题目的信息是解题以及学好数学的关键.5.C解析:C【分析】根据相似三角形的性质、三角形的内角和定理可得出另一个三角形的三个内角度数,由此即可得.【详解】︒︒,由相似三角形的性质得:另一个三角形的两个内角分别为72,63︒-︒-︒=︒,则另一个三角形的第三个内角为180726345因此,另一个三角形的最小内角为45︒,故选:C.【点睛】本题考查了相似三角形的性质、三角形的内角和定理,熟练掌握相似三角形的性质是解题关键.6.D解析:D【分析】证明△ABE≌△DCE,可得结论①正确;由正方形的性质可得AB=AD=BC=CD,BE=CE,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,可证△ABE≌△DCE,△ABG≌△CBG,可得∠BCF=∠CDE,由余角的性质可得结论②;证明△DCE≌△CBF可得结论③,证明△CHF∽△CBF即可得结论④正确.【详解】解:∵四边形ABCD是正方形,点E是BC的中点,∴AB=AD=BC=CD,BE=CE,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS)∴∠DEC=∠AEB,∠BAE=∠CDE,DE=AE,故①正确,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS)∴∠BAE=∠BCF,∴∠BCF=∠CDE,且∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故②正确,∵∠CDE=∠BCF ,DC=BC ,∠DCE=∠CBF=90°,∴△DCE ≌△CBF (ASA ),∴CE=BF ,∵CE=12BC=12AB , ∴BF=12AB , ∴AF=BF ,故③正确,∵∠BCF+∠BFC=90°,∠DEC=∠BFC∴∠BCF+∠DECC=90°,∴∠CHE=90°∴∠CHE=∠FBC又∠DEC=∠BFC∴△CHF ∽△CBF∴CH CE BC CF= ∵BC=2CE , ∴2BC CE CE CE CH CF CF== ∴22CE CH CF =⋅故选:D .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,熟练运用这些性质进行推理是本题的关键.7.D解析:D【分析】作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,先根据题意求得AN=2,然后证明△ADM ≌△BAN 得到DM=AN=2,AM=BN=3,则D (-4,2),根据待定系数法即可求得m 的值.【详解】解:作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,∵点A 的坐标为(-1,0),∴OA=1,∵AE=BE ,BN ∥y 轴,∴OA=ON=1,∴AN=2,B 的横坐标为1,把x=1代入3y x=,得y=3, ∴B (1,3),∴BN=3,∵四边形ABCD 为正方形,∴AD=AB ,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM ,在△ADM 和△BAN 中90AND ANB ADM BAN AD AB ∠∠︒⎧⎪∠∠⎨⎪⎩==== ∴△ADM ≌△BAN (AAS ),∴DM=AN=2,AM=BN=3,∴134OM OA AM =+=+= ,∴D 42-(,), ∵点D 在反比例函数m y x=,的图象上, ∴428m =-⨯=- ,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,正方形的性质,三角形全等的判定和性质等知识,求得D 的坐标是解题的关键. 8.C解析:C【分析】运用一次函数和反比例函数的图象性质逐项分析即可.先观察反比函数看k 、b 是同号还是异号,再由一次函数图象判断k 、b 是同号还是异号,如果两者相一致就是正确选项,否则是错误选项.【详解】【点睛】 此题考查反比例函数和一次函数的图象特点.其关键是要弄清图象特点与关系式中k 、b 同号还是异号.9.C解析:C【分析】根据菱形的性质可求出点A 坐标,将点A 的坐标代入到反比例函数解析式可求得k 值,即可确定函数的解析式,过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N ,如图,首先在Rt △CNB 中,根据勾股定理建立方程求出OB 的长,进而可求得点B 的坐标,然后利用待定系数法可求得直线BC 的解析式,再联立直线和双曲线的解析式求出交点F 坐标,然后根据三角形的面积公式求解可.【详解】解:∵四边形OBCD 是菱形,∴OA =AC ,∵C (8,4),∴A (4,2),把点A (4,2)代入反比例函数()0k y x x =>,得到k =8, ∴反比例函数的解析式为y =8x; 过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N ,如图,设OB =x ,则BC =x ,BN =8﹣x ,在Rt △CNB 中,x 2﹣(8﹣x )2=42,解得:x =5,∴点B 的坐标为(5,0),设直线BC 的函数表达式为y =ax +b ,把点B (5,0),C (8,4)代入得:∴5084a b a b +=⎧⎨+=⎩,解得:43203a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线BC 的解析式为42033y x =-,解方程组420338y x y x⎧=-⎪⎪⎨⎪=⎪⎩,得:18x y =-⎧⎨=-⎩或643x y =⎧⎪⎨=⎪⎩, ∴点F 的坐标为F (6,43), 作FH ⊥x 轴于H ,连接OF ,∴S △OBF =12OB •FH =14105233⨯⨯=, 故选:C .【点睛】本题考查了菱形的性质、利用待定系数法求函数的解析式、两个函数的交点问题以及勾股定理等知识,属于常考题型,熟练掌握上述知识是解题的关键.10.B解析:B【分析】由于把双曲线平移,k 值不变,利用“左加右减,上加下减”的规律即可求解.【详解】解:将函数6y x=的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是61y x =-, 故选:B .【点睛】 本题考查了反比例函数的图象,注意:平移后解析式有这样一个规律“左加右减,上加下减”.11.C解析:C【分析】本题首先利用待定系数法确定反比例函数解析式,继而根据题目已知列不等式关系,最后求解不等式解答本题.【详解】 假设反比例函数关系式为:=k T t(其中k 为常数且不为零,t 为正数), 由图可知点(1,3)在反比例函数上,故将点代入函数可得:3k =,故3T t =. ∵2T ≤, ∴32t≤, 解上述不等式得:32t ≥,即时间t 不小于32h . 故选:C .【点睛】本题考查反比例函数的性质,待定系数法求比例系数k 是解题第一步,后续不等式求解,需要注意如果涉及负数需要变号.12.B解析:B【分析】当y 1>y 2时,x 的取值范围就是y 1的图象落在y 2图象的上方时对应的x 的取值范围.【详解】根据图象可得当y 1>y 2时,x 的取值范围是:﹣3<x <0或x >2.故选:B .【点睛】本题考查了反比例函数与一次函数图象的交点问题,“数形结合”是解题的关键.二、填空题13.②⑤【分析】根据相似图形的性质对各个选项逐个分析即可得到答案【详解】两个等腰三角形的顶角不一定相等故不一定相似;两个等边三角形一定相似;两个菱形的内角不一定相等故不一定相似;两个矩形的相邻边长比例不解析:②⑤【分析】根据相似图形的性质对各个选项逐个分析,即可得到答案.【详解】两个等腰三角形的顶角不一定相等,故不一定相似;两个等边三角形一定相似;两个菱形的内角不一定相等,故不一定相似;两个矩形的相邻边长比例不一定相等,故不一定相似;两个正方形一定相似;故答案为:②⑤.【点睛】本题考查了图形相似的知识;解题的关键是熟练掌握相似图形的性质,从而完成求解. 14.或2或9【分析】先根据平行线的性质可得再分和两种情况然后分别利用相似三角形的性质即可得【详解】设则如图因此分以下两种情况:(1)若则即解得或经检验或均是所列方程的根则此时或;(2)若则即解得经检验是 解析:113或2或9 【分析】 先根据平行线的性质可得90C B ∠=∠=︒,再分ABP PCD △△和ABP DCP △△两种情况,然后分别利用相似三角形的性质即可得.【详解】设BP x =,则11CP BC BP x =-=-,如图,//,90AB DC B =︒∠,90C B ∴∠=∠=︒,因此,分以下两种情况:(1)若ABP PCD △△, 则AB BP PC CD=,即3116x x =-, 解得2x =或9x =,经检验,2x =或9x =均是所列方程的根,则此时2BP =或9BP =;(2)若ABP DCP △△, 则AB BP DC CP =,即3611x x=-, 解得113x =, 经检验,113x =是所列方程的根, 则此时113BP =; 综上,BP 的长为113或2或9, 故答案为:113或2或9.【点睛】本题考查了相似三角形的性质、平行线的性质、分式方程的几何应用,依据题意,正确分两种情况讨论是解题关键.15.【分析】根据正方形的性质得到AB=AD=DC=BC=15∠A=∠D=∠C=∠B=90°根据折叠的性质得到∠D=∠D´=90°DF=DF´=10根据勾股定理可得FC的长从而得到D´G根据相似三角形的判解析:25 4【分析】根据正方形的性质得到AB=AD=DC=BC=15,∠A=∠D=∠C=∠B=90°,根据折叠的性质得到∠D=∠D´=90°,DF=DF´=10,根据勾股定理可得FC的长,从而得到D´G,根据相似三角形的判定得到△HGD´∽△FGC,从而得到HG GDFG GC'=,可得HG的长,由BH=BC-HG-CG即可得出结论.【详解】解:∵四边形ABCD为正方形,∴AB=AD=DC=BC=15,∠A=∠D=∠C=∠B=90°,由折叠的性质,得∠D=∠D´=90°,DF=DF´=10,在Rt△FCG中,FC=DC-DF=15-10=5,CG=203,∴22222025533 CG FC⎛⎫+=+=⎪⎝⎭,∴D´G=D´F-FG=10-253=53,∵∠D´=∠C=90°,∠HGD´=∠FGC,∴△HGD´∽△FGC,∴HG GD FG GC'=,∴HG=255·253320123FG GDGC=='⨯,∴BH=BC-HG-CG=15-2512-203=254.故答案为254.【点睛】本题考查了相似三角形的判定与性质,勾股定理,折叠的性质及正方形的性质.证得△HGD´和△FGC相似是解题的关键.16.或【分析】分类讨论:当△ADE∽△ABC和当△AED∽△ABC根据相似的性质得出两种比例式进而解答即可【详解】如图∵∠DAE=∠BAC∴当△ADE∽△ABC∴即解得:AD=3∴当△AED∽△ABC∴解析:163或3【分析】分类讨论:当△ADE∽△ABC和当△AED∽△ABC,根据相似的性质得出两种比例式进而解答即可.【详解】如图∵∠DAE=∠BAC,∴当△ADE∽△ABC,∴AB ADAC AE=,即12164AD=,解得:AD=3,∴当△AED∽△ABC,∴AB AE AC AD=,即12416AD=,解得:AD=163,故答案为:163或3【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.17.24<a≤5或≤a<【分析】(1)把A点坐标代入y=ax得出直线直线y=ax 和的解析式作出函数图象再根据定义求出区域W的整点个数便可;(2)直线y=ax关于y=x对称当区域W内恰有8个整点则在直线y解析:2 4<a≤5或15≤a<14【分析】(1)把A点坐标代入y=ax,得出直线直线y=ax和1y xa=的解析式,作出函数图象,再根据定义求出区域W的整点个数便可;(2)直线y=ax,1y xa=关于y=x对称,当区域W内恰有8个整点,则在直线y=x上方与下方各有3个整点,进而求解.【详解】解:(1)如图,∵A(2,3),∴3=2a,∴a=32,∴直线OA:y=32x,直线OB:y=23 x,∴当23x=6x时,解得:x=3,或x=﹣3(负值舍去),∴B(3,2),∴故区域W内的整点个数有(1,1),(2,2)共2个,故答案为:2;(2)∵直线y=ax,1y xa=关于y=x对称,∵y=6x与y=x66),∴在W区域内有点(1,1),(2,2),∴区域W内恰有8个整点,∴在直线y=x上方与下方各有3个整点即可,∵(2,3),(3,2)在y=6x上,∴整点为(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),当点(1,4)在y=ax上时,a=4,当点(1,5)在y=ax上时,a=5,∴4<a≤5;当点(1,4)在1y xa=上时,a=14,当点(1,5)在1y xa=上时,a=15,∴1 5≤a<14;故答案为:4<a≤5或15≤a<14.【点睛】本题主要考查了一次函数与反比例函数图象的交点,主要考查了待定系数法求函数解析式,函数图象与性质,新定义,最后一问关键是读懂新定义,找到关键点求出a的值.18.x<0或1<x<4【分析】根据图形找出一次函数图象在反比例函数图象上方的x的取值范围即可【详解】解:根据图形当x<0或1<x<4时一次函数图象在反比例函数图象上方y1>y2故答案为:x<0或1<x<解析:x<0或1<x<4【分析】根据图形,找出一次函数图象在反比例函数图象上方的x的取值范围即可.【详解】解:根据图形,当x<0或1<x<4时,一次函数图象在反比例函数图象上方,y1>y2.故答案为:x<0或1<x<4.【点睛】本题考查了反比例函数一次函数的交点问题,要注意y轴左边的部分,一次函数图象在第二象限,反比例函数图象在第三象限,这也是本题容易忽视而导致出错的地方.19.-3<y<0【分析】根据反比例函数的增减性求解【详解】在反比例函数∴函数图象在第二四象限且在每个象限内y随x的增大而增大当x>1时函数图象在第四象限且当x=1时y=-3∴当x>1时-3<y<0;故答解析:-3<y<0【分析】根据反比例函数的增减性求解.【详解】在反比例函数3yx=-,30k=-<,∴函数图象在第二、四象限,且在每个象限内y随x的增大而增大,当x>1时,函数图象在第四象限且当x=1时,y=-3,∴当x>1时-3<y<0;故答案为:-3<y<0.【点睛】考查反比例函数的增减性,掌握反比例函数的增减性是解题的关键,即在y=kx(k≠0)中,当k>0时,在每个象限内y随x的增大而减小,当k<0时,在每个象限内y随x的增大而增大.20.3【分析】作BC⊥x轴于CAD⊥BC于D易证得△BOC≌△ABD得出OC=BDBC=AD 设B 的坐标为(mn )则OC=mBC=n 根据线段相等的关系得到解得求得B 的坐标然后代入y=(x >0)即可求得k 的解析:3.【分析】作BC ⊥x 轴于C ,AD ⊥BC 于D ,易证得△BOC ≌△ABD ,得出OC=BD ,BC=AD ,设B 的坐标为(m ,n ),则OC=m ,BC=n ,根据线段相等的关系得到24m n n m -⎧⎨-⎩== ,解得13m n ⎧⎨⎩== ,求得B 的坐标,然后代入y=k x(x >0)即可求得k 的值. 【详解】解:作BC ⊥x 轴于C ,AD ⊥BC 于D ,则∠COB+∠OBC=90°,∵∠ABO=90°,∴∠OBC+∠ABD=90°,∴∠COB=∠ABD ,在△BOC 和△ABD 中COB ABD OCB BDA OB AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△BOC ≌△ABD (AAS ),∴OC=BD ,BC=AD ,设B 的坐标为(m ,n ),则OC=m ,BC=n ,∵点A (4,2),∴24m n n m -⎧⎨-⎩== ,解得, ∴B 的坐标为(1,3),∵点B 在双曲线y=k x(x >0)的图象上, ∴k=1×3=3,故答案为3.【点睛】此题考查反比例函数图象上点的坐标特征,三角形全等的判定和性质,得出相等线段列出关于m 、n 的方程组是解题的关键.三、解答题21.(1)2a ;(2)4a ;(3)2an ﹣2a .【分析】(1)延长BQ 交EF 的延长线于点G ,根据三角形中位线定理求出BC ,证明△BQC ∽△GQE ,根据相似三角形的性质得到EG=BC=2a ,根据角平分线的定义、平行线的性质得到PB=PG ,得到答案;(2)(3)仿照(1)的解法解答.【详解】解:(1)如图1,延长BQ 交EF 的延长线于点G ,∵E 、F 分别是边AB 、AC 的中点,∴EF 是△ABC 的中位线,∴BC=2EF=2a ,EF ∥BC ,∴△BQC ∽△GQE , ∴1EG EQ BC QC==, ∴EG=BC=2a ,∵BQ 是∠CBP 的平分线,∴∠PBQ=∠CBQ ,∵EF ∥BC ,∴∠EGQ=∠CBQ ,∴∠PBQ=∠EGQ ,∴PB=PG ,∴PE+PB=PE+PG=EG=2a ;(2)如图2,延长BQ 交EF 的延长线于点M ,由(1)可知,△BQC ∽△MQE , ∴1.2BC CQ EM EQ ==, ∴EM=2BC=4a ,∴PE+PB=PE+PM=EM=4a ;(3)如图2,当1CQ CE n=时,则EQ=(n-1)CQ , 由EF ∥BC 得,△MEQ ∽△BCQ , ∴1EM EQ n BC QC==-, ∴EM=(n-1)BC=2a (n-1),即EP+BP=2an-2a .【点睛】本题考查了相似三角形的判定与性质、角平分线的定义、平行线的性质,延长BQ 构造出相似三角形,求出EP+BP=EM 并得到相似三角形是解题的关键.22.(1)见解析;(2)α的度数为30°或150°;(3)422AC =+或422-【分析】(1)连接OA ,OC ,先证明△ABC 是等腰直角三角形,然后证明△OAC 是等腰直角三角形,可得四边形OCBA 是矩形,再根据OA =OC ,即可证明结论;(2)连接OA ,OA ꞌ,可证明△A ꞌCO 与△ACO 是等边三角形,可得∠A ꞌCO =∠ACO =60°,根据在Rt △ACB 中,AC =4,AB =2,即可得出答案;(3)连接CO 并延长,交⊙O 于D ,连接AD ,先证明△DCA ∽△CAB ,可得DC AC AC AB=,设AC =a ,则AB =a −1,根据⊙O 的半径为4,CD =8,可得出结论.【详解】(1)如图,连接OA ,OC ,∵∠ACF =α=45°,AB ⊥EF∴△ABC是等腰直角三角形∵EF与⊙O相切于C∴∠OCB=90°∴∠OCA=45°∵OA=OC∴△OAC是等腰直角三角形∴∠OCB=∠CBA=∠COA=90°∴四边形OCBA是矩形∵OA=OC∴矩形OCBA是正方形;(2)如图,当AC=AꞌC=4时,AB=2,连接OA,OAꞌ,则△AꞌCO与△ACO是等边三角形∴∠AꞌCO=∠ACO=60°在Rt△ACB中,AC=4,AB=2∴∠ACB=30°∴∠AꞌCB=150°∴α的度数为30°或150°;(3)如图2,连接CO并延长,交⊙O于D,连接AD∵CD为⊙O的直径∴∠DAC=90°∴∠D+∠DCA=90°∵∠DCA+∠ACB=90°∴∠D=∠ACB又∵∠DAC=∠ABC=90°∴△DCA∽△CAB∴DC AC AC AB设AC =a ,则AB =a −1∵⊙O 的半径为4∴CD =8 ∴81a a a =-解得:14a =+24a =- ∴4AC =+或4-【点睛】本题考查了切线的性质定理,相似三角形的性质,正方形的判定,等边三角形的判定和性质等,掌握这些知识点是解题关键.23.(1)32m a c =+;(2)见解析;(3)0m kx b x -->的解集为x >3或﹣1<x <0. 【分析】 (1)点A 、B 都在反比例函数y=m x 的图象上,则a=-3c=m ,故m a c +=33c c c --+=32; (2)求出D (0,-2c ),C (-2,0),则AD 2=1+9c 2;BC 2=1+9c 2,即可证明;(3)观察函数图象即可求解.【详解】 解:(1)∵点A 、B 都在反比例函数y =m x 的图象上, ∴a =﹣3c =m , ∴3332m c a c c c -==+-+; (2)将A (1,﹣3c )、B (﹣3,c ),分别代入y =kx +b 得33k b c k b c +=-⎧⎨-+=⎩,解得2k c b c =-⎧⎨=-⎩, ∴y =﹣cx ﹣2c ,令x =0,y =﹣2c ,令y =0,即y =﹣cx ﹣2c =0,解得x =﹣2,∴D (0,﹣2c ),C (﹣2,0),∴AD 2=1+9c 2;BC 2=1+9c 2,∴AD =BC ;(3)∵y =kx ﹣b =﹣cx +2c ,∴点(3,﹣c )、(﹣1,3c )为直线y =kx ﹣b =﹣cx +2c 与双曲线m y x =的交点, ∴0m kx b x-->的解集为x >3或﹣1<x <0. 【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,使用一次函数,体现了方程思想,综合性较强.24.k=5【分析】先由勾股定理求出AC 的长度,得到点C 坐标,再确定出点B 的坐标,由中点坐标公式得出点D 的坐标,最后把点D 坐标代入反比例函数解析式中即可求得k 的值.【详解】∵在Rt △ABC 中,AB=4,BC=5,∴,∵点C 坐标(1,0),∴OC=1,∴OA=OC+AC=4,∴点A 坐标(4,0),∴点B (4,4),∵点C (1,0),点B (4,4),∴BC 的中点D (52,2), ∵反比例函数y=k x(x >0)的图象经过BC 的中点D , ∴k=xy=52=52⨯ 【点睛】 本题考查了反比例函数图象上点的坐标特征,勾股定理,中点坐标公式,熟练运用反比例函数图象性质是解决问题的关键.25.(1)480(4)v t t=≥;(2)①80100v ≤≤;②方方不能在11点30分前到达B 地 【分析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解; (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时,将它们分别代入v 关于t 的函数表达式,即可得小汽车行驶的速度范围; ②8点至11点30分时间长为3.5小时,将其代入v 关于t 的函数表达式,可得速度大于120千米/时,从而得答案.【详解】解:(1)根据题意,得480vt =, ∴480v t=, ∵4800>,∴当120v ≤时,4t ≥,∴480(4)v t t=≥, 故答案为480(4)v t t =≥. (2)①根据题意,得4.86t ≤≤,∵4800>, ∴4804806 4.8v ≤≤, ∴80100v ≤≤,故答案为:80100v ≤≤.②方方不能在11点30分前到达B 地.理由如下:若方方要在11点30分前到达B 地,则 3.5t <, ∴4801203.5v >>,所以方方不能在11点30分前到达B 地. 故答案为:不能.【点睛】 本题是反比例函数在行程问题中的应用,根据时间速度和路程的关系可以求解,本题属于中档题.26.(1)见解析;(2)AC =;4EH =【分析】(1)根据条件可证明△EBH ∽△CBA ,推出90CAB EHB ∠=∠=︒即可.(2)证明△AFC ∽△BFA ,可得AF 2=FC•FB ,求出AF ,再利用勾股定理求出AC ,证明EH=EF ,在Rt △BEH 中,利用勾股定理构建方程即可解决问题.【详解】(1)证明:∵BH BC BE AB ⋅=⋅, ∴BH BE BA BC=, ∵EBH CBA ∠=∠,∴EBH CBA ∽, ∴EHB CAB ∠=∠, ∵EH AB ⊥, ∴90EHB ∠=︒, ∴90CAB EHB ∠=∠=︒, ∴AC AB ⊥, ∴AC 是O 的切线.(2)解:连接AF .∵AB 是直径,∴90AFB AFC ∠=∠=︒,∵90,90C CAF CAF FAB ∠+∠=︒∠+∠=︒,∴C FAB ∠=∠,∴AFC BFA ∽,∴280AF FC FB =⋅=, ∴45AF = ∴22228(45)12,10(45)65AC AB =+==+=∵DF BD =,∴FAD DAB ∠=∠,∵,EF AF EH AB ⊥⊥,∴EF EH =,设EH EF x ==,∵AE AE =,∴()Rt AEF Rt AEH HL ≌, ∴5,25AF AH BH ===在Rt EBH △中,∵222BE EH BH =+, ∴222(10)(25)x x -=+,∴4x =,∴4EH =.【点睛】本题考查了相似三角形的判定和性质,圆周角,切线的判定等知识,解题的关键是正确作出辅助线,寻找相似三角形解决问题.。

【浙教版】初三数学下期中一模试题(含答案)(1)

【浙教版】初三数学下期中一模试题(含答案)(1)

一、选择题1.如图,D 是△ABC 的边BC 上一点,AC =4,AD =2,∠DAB =∠C .如果△ACD 的面积为15,那么△ABD 的面积为( )A .15B .10C .152D .52.如图,在Rt ABC 中,90C ∠=︒,7AC =,24BC =,将它绕着BC 中点D 顺时针旋转一定角度后到A B C ''',恰好使//B C AB '',A C ''与边AB 交于点E ,则A E '的长为( )A .72B .4924C .8425D .91253.如图,点D 在ABC 的边AC 上,添加下列哪个条件后,仍无法判定ABC ADB ∽△△( )A .C ABD ∠=∠B .CBA ADB ∠=∠C .AB AD AC AB = D .AB BC AC BD = 4.如图,练习本中的横格线都平行且相邻两条横格线间的距离都相等,同一条直线上的三个点A ,B ,C 都在横格线上.若线段AB =6,则线段AC 的长为( )A .12B .18C .24D .305.如图,在平面直角坐标系中,ABC 的顶点坐标分别是()1,2A ,()1,1B ,()3,1C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A .25B .2C .4D .56.如图,△ABC 、△FGH 中,D 、E 两点分别在AB 、AC 上,F 点在DE 上,G 、H 两点在BC 上,且DE ∥BC ,FG ∥AB ,FH ∥AC ,若BG :GH :HC=4:6:5,则△ADE 与△FGH 的面积比为何?( )A .2:1B .3:2C .5:2D .9:4第II 卷(非选择题) 请点击修改第II 卷的文字说明参考答案7.下列函数中,y 总随x 的增大而减小的是( )A .4y x =-B .4y x =-C .4y x =D .4y x =- 8.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y=3x的图象经过A 、B 两点,则菱形ABCD 的面积是( )A .42B .4C .22D .29.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36- 10.如图,函数k y x=与2(0)y kx k =-+≠在同一平面直角坐标系中的图像大致( ) A . B .C .D .11.一次函数y =kx ﹣k 与反比例函数y =k x在同一直角坐标系内的图象大致是( ) A . B . C . D .12.如图,点A 是反比例函数2(0)y x x =>的图象上任意一点,AB x 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则ABCD S 为( )A .2.5B .3.5C .4D .5二、填空题13.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折 叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG = 1.5 S △FGH ;④AG+DF=FG ;其中正确的是______________.(填写正确结论的序号)14.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点()AP PB >,如果AB 的长度为8cm ,那么AP 的长度是_____________.15.如图,在四边形ABCD 中,点E 在AD 上,EC//AB ,EB//DC ,若△ABE 面积为5 , △ECD 的面积为1,则△BCE 的面积是________.16.如图,90A B ∠=∠=︒,AB a ,AD BC <,在边AB 上取点P ,使得PAD △,PBC 与PDC △两两相似,则AP 长为___________.(结果用含a 的代数式表示)17.若一次函数32y x =-与反比例函数k y x =的图象有两个不同的交点,则k 的取值范围是________. 18.如图,一次函数1y kx b =+的图象与反比例函数24y x =的图象交于A (1,m ),B (4,n )两点.则不等式40kx b x+-≥的解集为______.19.如图,在平面直角坐标系中,反比例函数y=k x(k≠0),经过▱ABCD 的顶点B .D ,点A 的坐标为(0,-1),AB ∥x 轴,CD 经过点(0,2),▱ABCD 的面积是18,则点C 的坐标是______.20.如图,点A 在反比例函数k y x=的图象上,AB 垂直x 轴于B ,若AOB S ∆=2,则这个反比例函数的解析式为_______________.三、解答题21.如图,在ABC 中,点D 、E 分别在AB 、AC 上,//DE BC ,若4AE =,2DB =,2AD CE =,求AD 的长.22.已知:如图在菱形ABCD 中,点E 、F 分别在边AB 、AD 上,BE =DF ,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .求证:△BEC ∽△BCH .23.定义:有一组对角互补的四边形叫做互补四边形.(1)在互补四边形ABCD 中,A ∠与C ∠是一组对角,若::2:3:4,B C D ∠∠∠=则A ∠= °(2)如图,在ABC 中,点,D E 分别在边,AB BC 上,且,BE BC AB BD ⋅=⋅求证:四边形ADEC 是互补四边形.24.如图,已知点A (1,-2)在反比例函数y =k x 的图象上,直线y =-x +1与反比例函数y =k x的图象的交点为点B 、D .(1)求反比例函数和直线AB 的表达式;(2)求S △AOB ;(3)动点P (x ,0)在x 轴上运动,若△OAP 是等腰三角形时,直接写出点P 的坐标. 25.为让同学们更好的了解电路,学校实验室购进一批蓄电池,已知蓄电池的电压为定值,同学们在实验过程中得到电流I (A )是电阻R (Ω)的反比例函数,其图象如图所示.(电压=电流×电阻)(1)求蓄电池的电压是多少?(2)若保证电路中的小灯泡发光所需要的电流的范围为212I ≤≤,则求电路中能使小灯泡发光的电阻R 的取值范围.26.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min 时,材料温度降为600℃.如图,煅烧时温度y (℃)与时间x min ()成一次函数关系:锻造时,温度y (℃)与时间x min ()成反比例函数关系。

【浙教版】初三数学下期中一模试卷(带答案)(1)

【浙教版】初三数学下期中一模试卷(带答案)(1)

一、选择题1.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象可能是( )A .B .C .D .2.在二次函数2y ax bx c =++中,函数值y 与自变量x 的部分对应值如下表 则m 的值为( ). x -2 -1 0 1 2 3 4 y72-1-2m27A .1B .-1C .2D .-23.已知二次函数2y x bx c =-+与x 轴只有一个交点,且图象经过两点A (1,n ),B (m +2,n ),则m 、n 满足的关系为( )A .24m n =B .22m n =C .()214m n +=D .()212m n +=4.二次函数2(0)y ax bx c a =++≠的图象如图,给出下列四个结论:①20ac b -<;②320b c +<;③()m am b b a ++≤;④22()a c b +<;其中正确结论的个数有( )A .1B .2C .3D .45.如图是二次函数y =mx 2+nx +k 图象的一部分且过点P (3,0),二次函数图象的对称轴是直线x =1,下列结论正确的是( )A .n 2﹣4mk <0B .mk >0C .n =2mD .m ﹣n +k =06.二次函数y =ax 2+bx +c 的图象如图所示,下列结论中正确的有①abc >0;②b 2﹣4ac <0;③2a >b ;④(a +c )2<b 2;⑤a ﹣2b +4c >0.( )A .1个B .2个C .3个D .4个7.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点E ,且DE CE =,若3AB =,则DE 等于( )A .1B .32C .12D .338.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为( )A .2B 5C .3D 69.如图,等边OAB ∆的边OB 在x 轴的负半轴上,双曲线ky x=过OA 的中点,已知等边三角形的边长是4,则该双曲线的表达式为( )A.3yx=B.3yx=-C.23yx=D.23yx=-10.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AD与AB的长度之比为()A.tantanaβB.tantan aβC.sinsinaβD.coscos aβ11.如图,在直角坐标系中,P是第一象限内的点,其坐标是(3,4),且OP与x轴正半轴的夹角为α,则sinα的值为()A.45B.54C.35D.5312.如图,一斜坡AB的长为213m,坡度为1:1.5,则该斜坡的铅直高度BC的高为()A.3m B.4m C.6m D.16m二、填空题13.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为________.14.抛物线y =a (x ﹣2)(x ﹣2a)(a 是不等于0的整数)顶点的纵坐标是一个正整数,则a 等于_____.15.抛物线2y ax bx c =++的对称轴为直线1x =-,部分图象如图所示,下列判断中:①0abc >;②240b ac ->;③930a b c -+=;④若点()()120.5,,2,y y --均在抛物线上,则12y y >;⑤520a b c -+<.其中正确的序号是____(填写正确的序号).16.已知点()4,A m -,()2,B m ,()6,C n 均在抛物线2y x bx c =++上,则m ,n 的大小关系是m __________n .17.如图,正方形ABCD 的边长为4,E 为AB 边上一点,tan ∠ADE=34,M 为ED 的中点,过点M 作DE 的垂线,交边AD 于点P ,若点N 在射线PM 上,且由点E 、M 、N 组成的三角形与△AED 相似,则PN 的长为______.18.如图,C ,D 是两个村庄,分别位于一个湖的南,北两端A 和B 的正东方向上,且点D 位于点C 的北偏东60°方向上,CD=12km ,则AB=_______km19.如图,在菱形ABCD 中, 3AB AC ==点E 、F 分别在边AB 、AD 上,且 AE DF =,则EF 的最小值为________.20.如图,在△ABC 中,∠A =30°,∠B =45°,BC =6cm ,则AB 的长为_____.三、解答题21.某公司以30元/千克的价格购进一批藜麦进行销售.若以每千克35元的价格销售,每天可售出450千克.当售价每涨0.5元时,日销售量就会减少15千克.设当天藜麦的销售单价为x (元/千克)(30x ≥,且x 是按0.5元的倍数上涨),销售量为y (千克),销售利润为w 元. (1)完成下表; 销售单价x (元/千克) 35 36404550日销售量y (千克)450(3)为保证某天获得2880元的销售利润,且销售量较大,则该天的销售单价应定为多少?(4)该公司应该如何确定这批藜麦的销售单价,才能使日销售利润最大?最大利润是多少?22.在平面直角坐标系中,已知抛物线y=x2﹣2x.(1)它的顶点坐标是,当x时,y随x的增大而减小;(2)将抛物线y=x2﹣2x向左平移2个单位长度,再向下平移3个单位长度,设所得新抛物线与x轴交于A、B两点,与y轴交于点C,写出新抛物线的解析式并求△ABC的面积.23.如图,有四张背面完全相同的卡片A,B,C,D,其中正面分别写着四个不同的函数表达式,将四张卡片洗匀正面朝下随机放在桌面上.(1)从四张卡片中随机摸出一张,摸出的卡片上的函数y随x的增大而减小的概率是______;(2)小亮和小强用这四张卡片做游戏,规则如下:两人同时从四张卡片中各随机抽出一张,若抽出的两张卡片上的函数增减性相同,则小亮胜;若抽出的两张卡片上的函数增减性不同,则小强胜.这个游戏公平吗?请说明理由.24.如图,某渔船在完成捕捞作业后准备返回港口C,途经某海域A处时,港口C的工作人员监测到点A在南偏东30方向上,另一港口B的工作人员监测到点A在正西方向上.已知港口C在港口B的北偏西60︒方向,且B、C两地相距120海里.(1)求出此时点A到港口C的距离(计算结果保留根号);(2)若该渔船从A处沿AC方向向港口C驶去,当到达点A'时,测得港口B在A'的南偏东75︒的方向上,求此时渔船的航行距离(计算结果保留根号).25.计算:4sin60°+(3.14-π)0-12-tan230°.26.如图,旗杆AB竖立在斜坡CB的顶端,斜坡CB长为65米,坡度为i=125.小明从与点C相距115米的点D处向上爬12米到达建筑物DE的顶端点E.在此测得旗杆顶端点A 的仰角为39°,求旗杆的高度AB.(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先由一次函数y ax b =+的图象得到a 、b 的正负,再与二次函数2y ax bx c =++的图象的开口方向、对称轴位置相比较即可做出判断. 【详解】解:A 、由抛物线可知,a <0,x =﹣2ba<0,得b <0,由直线可知,a >0,b >0,故本选项错误;B 、由抛物线可知,a <0,x =﹣2ba<0,得b <0,由直线可知,a <0,b <0,故本选项正确;C 、由抛物线可知,a >0,x =﹣2ba>0,得b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a <0,x =﹣2ba<0,得b <0,由直线可知,a <0,b >0,故本选项错误. 故选:B . 【点睛】本题主要考查一次函数的图象、二次函数2y ax bx c =++的图象与性质,熟练掌握两函数图象与解析式的系数的关系是解答的关键.2.B解析:B 【分析】根据二次函数的性质,结合题意,将0x =、1y =-代入到2y ax bx c =++,得c 的值;将1x =-、2y =和1x =、2y =-代入到21y ax bx =+-,通过求解二元一次方程,即可得到a 、b 的值,从而得到二次函数解析式,经计算即可得到答案. 【详解】根据题意,将0x =、1y =-代入到2y ax bx c =++,得1c =- ∴21y ax bx =+-将1x =-、2y =和1x =、2y =-代入到21y ax bx =+-,得1212a b a b --=⎧⎨+-=-⎩∴1a =,2b =- ∴221y x x =--当2x =时,222211m =-⨯-=- 故选:B . 【点睛】本题考查了二次函数、二元一次方程组的知识;解题的关键是熟练掌握二次函数、二元一次方程组的性质,从而完成求解.3.C解析:C 【分析】设解析式为()()12y x x m n =---+,得对称轴为32m x +=,由抛物线与x 轴只有一个交点得顶点为3,02m +⎛⎫⎪⎝⎭,代入()()12y x x m n =---+整理后即可得出结论. 【详解】解:设解析式为()()12y x x m n =---+ ∵A ,B 两点关于对称轴对称 ∴对称轴为直线12322m m x +++== ∵二次函数与x 轴只有一个交点∴顶点为3,02m +⎛⎫⎪⎝⎭把3,02m +⎛⎫⎪⎝⎭代入()()12y x x m n =---+ ∴3312022m m m n ++⎛⎫⎛⎫---+= ⎪⎪⎝⎭⎝⎭ ∴1102222m m n ⎛⎫⎛⎫+--+= ⎪⎪⎝⎭⎝⎭∴()214m n +=故选:C 【点睛】本题考查的是抛物线与x 轴的交点问题,根据题意得出抛物线的对称轴方程是解答此题的关键.4.D解析:D【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断. 【详解】解:∵抛物线开口向下,所以a<0,与y 轴交于正半轴,所以c >0, ∴ac<0,∵b²≥0,∴20ac b -<,∴①正确; ∵把x=1代入抛物线得:y=a+b+c <0, ∴2a+2b+2c <0,∵-2ba -=-1, ∴b=2a ,∴3b+2c <0,∴②正确; ∵抛物线的对称轴是直线x=-1, ∴y=a-b+c 的值最大,即把x=m 代入得:y=am 2+bm+c≤a -b+c , ∴am 2+bm+b≤a ,即m (am+b )+b≤a ,∴③正确; ∵a+b+c <0,a-b+c >0, ∴(a+c+b )(a+c-b )<0, 则(a+c )2-b 2<0, 即(a+c )2<b 2,故④正确; 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax 2+bx+c=0的解的方法,同时注意特殊点的运用.5.D解析:D 【分析】根据抛物线与x 轴有两个交点可对A 进行判断;由抛物线开口向上得m >0,由抛物线与y 轴的交点在x 轴下方得k <0,则可对B 进行判断;根据抛物线的对称轴是x =1对C 选项进行判断;根据抛物线的对称性得到抛物线与x 轴的另一个交点为(−1,0),所以m−n +k =0,则可对D 选项进行判断. 【详解】解:A .∵抛物线与x 轴有两个交点, ∴n 2﹣4mk >0,所以A 选项错误; B .∵抛物线开口向上, ∴m >0,∵抛物线与y 轴的交点在x 轴下方,∴k <0,∴mk <0,所以B 选项错误;C .∵二次函数图象的对称轴是直线x =1, ∴﹣2nm=1, ∴n =﹣2m ,所以C 选项错误;D .∵抛物线过点A (3,0),二次函数图象的对称轴是x =1, ∴抛物线与x 轴的另一个交点为(﹣1,0), ∴m ﹣n +k =0,所以D 选项正确; 故选:D . 【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线2bx a=-;抛物线与y 轴的交点坐标为(0,c );当b 2−4ac >0,抛物线与x 轴有两个交点;当b 2−4ac =0,抛物线与x 轴有一个交点;当b 2−4ac <0,抛物线与x 轴没有交点.6.C解析:C 【分析】由函数图象可知a <0,对称轴﹣1<x <0,图象与y 轴的交点c >0,函数与x 轴有两个不同的交点;即可得出b ﹣2a >0,b <0;△=b 2﹣4ac >0;再由图象可知当x =1时,y <0,即a +b +c <0;当x =﹣1时,y >0,即a ﹣b +c >0;当x =﹣12时,y >0,即14a ﹣12b +c >0,即可求解. 【详解】解:由函数图象抛物线开口向下,对称轴﹣1<x <0,图象与y 轴的交点c >0, ∴a <0,2ba-<0,c >0, ∴b <0,∴abc >0,故①正确;∵函数与x 轴有两个不同的交点, ∴△=b 2﹣4ac >0,故②错误; ∵2ba->﹣1, ∴2a <b ,故③错误;当x =1时,y <0,即a +b +c <0; 当x =﹣1时,y >0,即a ﹣b +c >0;∴(a +b +c )(a ﹣b +c )<0,即(a +c )2<b 2;故④正确;∵x =﹣12时,y >0, ∴14a ﹣12b +c >0,即a ﹣2b +4c >0,故⑤正确; 故选:C .【点睛】此题考查二次函数的图象,根据图象确定式子的正负,正确理解函数图象,由图象得到相关信息,掌握二次函数的性质,根的判别式与图象的关系是解题的关键.7.A解析:A【分析】由题意,根据菱形的性质和等腰三角形,以及三角形的内角和定理,求出30CBD ∠=︒,然后由特殊角的三角函数值,即可求出答案.【详解】解:由题意,在菱形ABCD 中,有∴CBD CDB ∠=∠,∵DE CE =,∴ECD CDB ∠=∠,∴22BEC ECD CDB CDB CBD ∠=∠+∠=∠=∠,∵CE BC ⊥,即90BCE ∠=︒,∴90CBD BEC ∠+∠=︒,∴390CBD ∠=︒,∴30CBD ∠=︒,在Rt △BCE 中,有tan tan 30CE CBD BC ∠=︒=,∴3=, ∴1CE =.故选:A .【点睛】本题考查了特殊角的三角函数值,菱形的性质和等腰三角形,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确的求出30CBD ∠=︒.8.A解析:A【分析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:2,在Rt△PBF中,即可求得tan∠BPF 的值,继而求得答案.【详解】解:如图:连接BE,∵四边形BCED是正方形,∴DF=CF=12CD,BF=12BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:2,∴DP=PF=12CF=12BF,在Rt△PBF中,tan∠BPF=BFPF=2,∵∠APD=∠BPF,∴tan∠APD=2.故选:A.【点睛】本题考查相似三角形的判定与性质,以及求角的正切值,灵活运用相似三角形的性质,并理解正切的定义是解题关键9.B解析:B【分析】如图,过点C作CD⊥OB于点D.根据等边三角形的性质、中点的定义可以求得点C的坐标,然后把点C的坐标代入双曲线方程,列出关于系数k的方程,通过解该方程即可求得k的值.【详解】解:如图,过点C作CD⊥OB于点D.∵△OAB 是等边三角形,该等边三角形的边长是4,∴OA=4,∠COD=60°,又∵点C 是边OA 的中点,∴OC=2,∴OD=OC•cos60°=2×12=1,33. ∴C (-13 31k -, 解得,3,∴该双曲线的表达式为3y =. 故选:B .【解答】本题考查了待定系数法求反比例函数解析式,等边三角形的性质.解题的关键是求得点C 的坐标. 10.C解析:C【分析】先在Rt △ABC 和Rt △ADC 中,求出AB =sin AC a、AD =sin AC β,再求长度之比即可. 【详解】解:在Rt △ABC 中,∵sin ∠ABC =AC AB ,即sinα=AC AB , ∴AB =sin AC a, 在Rt △ADC 中,∵sin ∠ADC =AC AD ,即sinβ=AC AD , ∴AD =sin AC β,∴AD AB=sin sin ACAC βα=sin sin a β, 故选:C .【点睛】本题考查锐角的三角函数、解直角三角形的应用,借助中间参数AC ,利用正弦函数的定义求解是解答的关键.11.A解析:A【分析】根据坐标与图形的关系得到OA =3,AP =4,根据勾股定理得到OP =5,根据正弦的概念解答即可.【详解】作PA ⊥x 轴于A ,由题意得,OA =3,AP =4,由勾股定理得,OP =5,则sinα=PA OP =45, 故选:A .【点睛】 本题考查的是锐角三角函数的定义、坐标与图形的关系,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.12.B解析:B【分析】 首先根据题意作出图形,然后根据坡度=1:1.5,可得到BC 和AC 之间的倍数关系式,设BC=x ,则AC=1.5x ,再由勾股定理求得AB=132x ,从而求得BC 的值. 【详解】解:∵斜坡AB 的坡度i=BC :AC=1:1.5,AB =13∴设BC=x ,则AC=1.5x ,∴由勾股定理得2213(1.5)2x x x +=,又∵AB=∴x =x=4, ∴BC=4m .故选:B .【点睛】本题考查坡度坡角的知识,属于基础题,对坡度的理解及勾股定理的运用是解题关键.二、填空题13.【分析】由于y1y2y3是抛物线上三个点的纵坐标所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴再由对称性得A 点关于对称轴的对称点A 的坐标再根据抛物线开口向下在对称轴右边y 随x 的增大而减小便 解析:231y y y >>【分析】由于y 1,y 2,y 3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A 点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y 随x 的增大而减小,便可得出y 1,y 2,y 3的大小关系.【详解】解:∵抛物线y=-(x+1)2+k ,∴对称轴为x=-1,∵A (-2,y 1),∴A 点关于x=-1的对称点A'(0,y 1),∵a=-1<0,∴在x=-1的右边y 随x 的增大而减小,∵A'(0,y 1),B (1,y 2),C (2,y 3),0<1<2,∴y 1>y 2>y 3,故答案为:231y y y >>.【点睛】本题考查了二次函数图象的性质,对称轴的求法,难度不大,关键是熟记二次函数的性质:a >0时,在对称轴左边,y 随x 的增大而减小,在对称轴右边,y 随x 的增大而增大;a <0时,在对称轴左边,y 随x 的增大而增大,在对称轴右边,y 随x 的增大而减小.14.-1【分析】令y=0时则有则有进而可得对称轴为直线然后可求抛物线顶点纵坐标为由此可得当a 不为±1时纵坐标不为整数进而可求解a 的值【详解】解:由题意得:令y=0时则有解得:∴抛物线与x 轴交点的坐标为由 解析:-1【分析】令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭,则有122,2x x a==,进而可得对称轴为直线11x a =+,然后可求抛物线顶点纵坐标为12a a--+,由此可得当a 不为±1时,纵坐标不为整数,进而可求解a 的值.【详解】解:由题意得:令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭, 解得:122,2x x a==, ∴抛物线与x 轴交点的坐标为()2,0,2,0a ⎛⎫ ⎪⎝⎭, 由抛物线的对称性可得对称轴为直线11x a =+, ∴把11x a =+代入抛物线解析式得顶点纵坐标为12y a a=--+, ∵顶点的纵坐标是一个正整数且a 是不等于0的整数,∴1a =±,当1a =时,y=0(不符合题意,舍去);当1a =-时,y=4,(符合题意)∴1a =-;故答案为-1.【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.15.②③⑤【分析】利用抛物线开口方向得到a >0利用抛物线的对称轴方程得到b=2a >0利用抛物线与y 轴的交点位置得到c <0则可对①进行判断;利用抛物线与x 轴交点个数可对②进行判断;利用抛物线的对称性得到抛 解析:②③⑤【分析】利用抛物线开口方向得到a >0,利用抛物线的对称轴方程得到b=2a >0,利用抛物线与y 轴的交点位置得到c <0,则可对①进行判断;利用抛物线与x 轴交点个数可对②进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(-3,0),则可对③进行判断;根据二次函数的性质,通过比较两点到对称轴的距离可对④进行判断;利用5a-2b+c=5a-4a-3a=-2a <0,则可对⑤进行判断.【详解】解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x=-2b a=-1, ∴b=2a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①错误;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,所以②正确;∵抛物线的对称轴为直线x=-1,抛物线与x 轴的一个交点坐标为(1,0),∴抛物线与x 轴的另一个交点坐标为(-3,0),∴9a-3b+c=0,所以③正确;∵点(-0.5,y 1)到直线x=-1的距离比点(-2,y 2)到直线x=-1的距离小,而抛物线开口向上,∴y 1<y 2;所以④错误;∵5a-2b+c=5a-4a-3a=-2a <0,故⑤正确,故答案为:②③⑤.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点. 16.【分析】由点AB 的坐标利用二次函数的对称性可求出b 的值利用二次函数图象上点的坐标特征可找出m 和n 的大小关系【详解】解:∵二次函数y=x2+bx+c 的图象经过点A (-4m )B (2m )∴∴b=2∵点A(解析:m n <【分析】由点A 、B 的坐标利用二次函数的对称性可求出b 的值,利用二次函数图象上点的坐标特征可找出m 和n 的大小关系.【详解】解:∵二次函数y=x 2+bx+c 的图象经过点A (-4,m )、B (2,m ), ∴42122b -+-==-, ∴b=2, ∵点A(-4,m),C (6,n )在二次函数y=x 2+bx+c 的图象上,∴m=16-8+c=8+c ;n=36+12+c=48+c ,∴m<n,故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,利用二次函数图象上点的坐标特征得到m,n的大小是解题的关键.17.0或或【分析】首先根据tan∠ADE=求得AE=3根据勾股定理求出DE=5由M为ED的中点得DM=EM=根据tan∠ADE=求得PM=然后分三种情况根据相似三角形的性质即可求解【详解】解:∵正方形A解析:0或154或12524【分析】首先根据tan∠ADE=34求得AE=3,根据勾股定理求出DE=5,由M为ED的中点得DM=EM=52,根据tan∠ADE=34求得PM=158,然后分三种情况,根据相似三角形的性质即可求解.【详解】解:∵正方形ABCD的边长为4,tan∠ADE=AEAD=34,AE=3,∴DE=22345+=,∵M为ED的中点,∴DM=EM=52,∴在Rt△PMD中,PM=DM∙an∠ADE=52×34=158,如图:点N 在线段PM 上,1EMN DAE △∽△时1MN EM AE DA =,即15234MN =, ∴1158MN =, ∴111515088PN PM MN =-=-=; 点N 在线段PM 的延长线上,2EMN DAE △∽△时2MN EM AE DA =,即25234MN =, ∴2158MN =, ∴22151515884PN PM MN =+=+=; 点N 在线段PM 的延长线上,3EMN EAD △∽△时3MN EM AD EA =,即35243MN =, ∴3103MN =, ∴3315101258324PN PM MN =+=+=. 故答案为:0或154或12524. 【点睛】 本题考查正方形的性质,相似三角形的性质,利用正切值求边长,熟练掌握相似三角形的性质是解题的关键.18.【分析】过点C 作CE ⊥BD 于E 构造直角三角形由方位角确定∠ECD=60°在Rt △CED 中利用三角函数AB=CD•cos ∠ECD 即可【详解】过点C 作CE ⊥BD 于E 由湖的南北两端A 和B ∴∠EBA=∠BA解析:【分析】过点C 作CE ⊥BD 于E 构造直角三角形,由方位角确定∠ECD=60°,在Rt △CED 中利用三角函数AB=CD•cos ∠ECD 即可.【详解】过点C 作CE ⊥BD 于E ,由湖的南,北两端A 和B∴∠EBA=∠BAC=90º,又∠BEC=90º则四边形ABCE 为矩形,∴AB=CE∵点D 位于点C 的北偏东60°方向上,∴∠ECD=60°,∵CD=12km ,在Rt △CED 中,∴CE=CD•cos ∠ECD=12×12=6km , ∴AB=CE=6km .故答案为:6.【点睛】本题考查解直角三角形的应用,通过辅助线,将问题转化矩形和三角形中,利用三角函数与矩形性质便可解决是关键.19.【分析】根据菱形的性质可得=3从而得出都是等边三角形利用SAS 即可证出从而得出根据等边三角形的判定可得是等边三角形从而得出即CE 最小时EF 最小根据垂线段最短可得时线段最小利用锐角三角函数即可求出结论 33 【分析】根据菱形的性质可得AB BC CD AD AC =====3,从而得出ABC ,ACD △都是等边三角形,利用SAS 即可证出EAC FDC ≌,从而得出,EC FC ACE DCF =∠=∠,根据等边三角形的判定可得ECF △是等边三角形,从而得出CE EF CF ==,即CE 最小时,EF 最小,根据垂线段最短可得CE AB ⊥时,线段CE 最小,利用锐角三角函数即可求出结论.【详解】解:∵四边形ABCD 是菱形,且AB AC ==3,∴AB BC CD AD AC =====3,∴ABC ,ACD △都是等边三角形,∴60EAC D ∠=∠=︒, 在EAC 和FDC △中EA FD EAC D AC DC =⎧⎪∠=∠⎨⎪=⎩∴EAC FDC ≌,∴,EC FC ACE DCF =∠=∠,∴60ECF ACD ∠=∠=︒, ∴ECF △是等边三角形, ∴CE EF CF ==,∵CE AB ⊥时,线段CE 最小,最小值为BC·sin ∠B=333322⨯=, ∴EF 的最小值为33故答案为:33. 【点睛】此题考查的是菱形的性质、等边三角形的判定及性质、全等三角形的判定及性质和解直角三角形,掌握菱形的性质、等边三角形的判定及性质、全等三角形的判定及性质和利用锐角三角函数解直角三角形是解题关键.20.【分析】根据题意过点C 作CD ⊥AB 根据∠B =45°得CD =BD 根据勾股定理和BC =得出BD 再根据∠A =30°得出AD 进而分析计算得出AB 即可【详解】解;过点C 作CD ⊥AB 交AB 于D ∵∠B =45°∴C 解析:33+【分析】根据题意过点C 作CD ⊥AB ,根据∠B =45°,得CD =BD ,根据勾股定理和BC =6得出BD ,再根据∠A =30°,得出AD ,进而分析计算得出AB 即可. 【详解】解;过点C 作CD ⊥AB ,交AB 于D .∵∠B =45°, ∴CD =BD ,∵BC ,∴BD∵∠A =30°, ∴tan30°=CDAD,∴AD =30CDtan ︒=3,∴AB=AD+BD =3.故答案为:3. 【点睛】本题考查解直角三角形,熟练应用三角函数的定义是解题的关键.三、解答题21.(1)420;300;150;0;(2)301500y x =-+;(3)38元/千克;(4)销售单价定为40元/千克时,才能使日销售利润最大,最大利润是3000元. 【分析】(1)根据题意,填写表格即可;(2)设y kx b =+,将(35,450)、(40,300)代入,可得出k 、b 的值,继而得出y 与x 的函数关系式;(3)每天的总利润=每天的销量⨯每千克的利润,从而可得一元二次方程,利用配方法求解最值即可;(4)由(3)知,日销售利润()()()23015003030403000w x x x =-+-=--+,据此求解即可. 【详解】解:(1)根据题意,填表如下:设其函数表达式为y kx b =+.则40300500k b k b +=⎧⎨+=⎩解得30k =-,1500b =.∴所求的函数表达式为301500y x =-+.(3)日销售利润为()()()3030150030w y x x x =-=-+-, 由题意,得()()301500302880x x -+-=.整理,得28015960x x -+=. 解得142x =,238x =.∵销售单价为38元/千克时的销售量比销售单价为42元/千克时大, ∴舍去142x =,保留238x =.答:为保证某天获得2880元的销售利润,且销售量较大,则该天的销售单价应定为38元/千克.(4)由(3)知,日销售利润()()30150030w x x =-+-,即()222(302400450003080150030403000)w x x x x x =-+-=--+=--+. ∵300-<,∴当40x =时,3000w 最大值=元.故这批藜麦的销售单价定为40元/千克时,才能使日销售利润最大,最大利润是3000元. 【点睛】本题考查了二次函数的应用及一元二次方程的应用,解答本题的关键是仔细审题,得出利润w 与售价x 的函数关系式,注意掌握配方法求二次函数最值的应用. 22.(1)(1,-1),x<1;(2)y =x 2+2x -3,6. 【分析】(1)先将y =x 2﹣2x 化为顶点式,即可得出顶点坐标,再根据二次函数的性质可求出y 随x 的增大而减小时自变量的取值情况;(2)根据函数图象的平移规律,可求出新抛物线的解析式,再利用新抛物线的函数解析式求出△ABC 的底和高,即可求出面积. 【详解】解:(1)∵y =x 2﹣2x =(x -1)2-1, 则顶点坐标为(1,-1),∵y =x 2﹣2x 为二次函数,且a =1, ∴开口向上,对称轴为x=1, ∴在x<1时,y 随x 的增大而减小. 故答案为:(1,-1),x<1.(2)将抛物线y =x 2﹣2x =(x -1)2-1向左平移2个单位得y =(x -1+2)2-1=(x +1)2-1,再向下平移三个单位,得y =(x +1)2-1-3=(x +1)2-4, 化简得y =x 2+2x -3,即新抛物线的解析式为y =x 2+2x -3,∵抛物线y =x 2+2x -3与x 轴交于两点A 、B 两点, ∴令y =0,则x 2+2x -3=0, 解得x 1=-3,x 2=1, ∴AB =4, 令x =0,y =-3,∴C 点坐标为(0,-3),S △ABC 中,底边为AB ,三角形的高即为C 点到x 轴的距离, ∴S △ABC =12×4×3=6. 【点睛】此题考查了二次函数的综合问题,熟练掌握二次函数的图象与性质的相关知识并能灵活运用是解题的关键. 23.(1)12;(2)不公平,见解析 【分析】(1)先判断出A 、B 、C 、D 四个卡片上的函数增减性,在结合概率的定义即可求解 (2)根据题意用列表法分别求出小亮和小强同时抽到函数增减性相同的概率,和增减性不同的概率,二者进行比较即可 【详解】(1)卡片A 上的函数为12y x =-,为减函数,y 随x 的增大而减小; 卡片B 上的函数为()10y x x=-<,为增函数,y 随x 的增大而增大; 卡片C 上的函数为()230y x x =->,为增函数,y 随x 的增大而增大;卡片D 上的函数为5y x =-,为减函数,y 随x 的增大而减小;所以从四张卡片中随机摸出一张,摸出的卡片上的函数y 随x 的增大而减小的概率为2142= (2)不公平.理由如下,根据题意列表得:由表可知总共有12中等可能的结果,抽出的两张卡片上的函数增减性相同的概率为41123= ;抽出的两张卡片上的函数增减性不同的概率是82123=, 2133>,∴不公平. 【点睛】本题考查了函数的性质,概率和游戏的公平性,掌握列表或树状图法展示等可能的结果是解题关键.24.(1)此时点A 到港口C 的距离为403海里;(2)此时该渔船的航行距离为(60203)-海里.【分析】(1)延长BA ,过点C 作CD ⊥BA 延长线与点D ,由直角三角形的性质和锐角三角函数的定义求出AC 即可;(2)过点A′作A′N ⊥BC 于点N ,由(1)得:CD=60海里,403AC =海里,证出A′B 平分∠CBA ,得A'E=A'N ,设AA′=x ,则AE=12AA',A'N=A′E=3AE=3x ,证出A'C=2A'N=3x ,由题意得出方程,解方程即可. 【详解】(1)如图所示:延长BA ,过点C 作CD BA ⊥延长线与点D ,由题意可得:30CBD ∠=︒,120BC =海里, 则6201CD BC ==海里, 3cos cos30CD ACD AC ∠==︒=即603AC =403AC ∴=即此时点A 到港口C 的距离为3 (2)过点A′作A′N ⊥BC 于点N ,如图: 由(1)得:CD=60海里,3 ∵A'E ∥CD , ∴∠AA'E=∠ACD=30°, ∴∠BA′A=45°, ∵∠BA'E=75°, ∴∠ABA'=15°, ∴∠2=15°=∠ABA',即A′B 平分∠CBA , ∴A'E=A'N ,设AA′=x ,则AE=12AA',A'N=, ∵∠1=60°-30°=30°,A'N ⊥BC , ∴x , ∵A'C+AA'=AC , ∴,解得: ∴AA'=(答:此时渔船的航行距离为(答:此时该渔船的航行距离为(60-海里. 【点睛】本题考查了解直角三角形的应用-方向角问题,解决本题的关键是掌握方向角定义.25.23. 【分析】先计算特殊角的三角函数值、零指数幂,化简二次根式,再计算各部分的和即可得到结果. 【详解】4sin60°+(3.14-π)0-tan 230°2=13=23. 【点睛】本题考查特殊角的三角函数值、零指数幂及化简二次根式,熟记各特殊角的三角函数值及实数运算法则是解题关键. 26.9米. 【分析】过点B 作CD 的垂线,设垂足为F ,再过点E 作EG ⊥BF ,垂足为G ,依题意分别求出线段BF 、CF 、DF 、AG 的长度,即可求得旗杆的高度AB . 【详解】解:过点B 作CD 的垂线,设垂足为F ,再过点E 作EG ⊥BF ,垂足为G ,如图,∵斜坡CB 长为65米,坡度为i =125, 设BF=12x ,则CF=5x , ∴()()22212565x x +=,解得x=5, ∴BF=60,CF=25, ∵DC=115, ∴EG=DF=115-25=90,在Rt AEG ∆中,39AEG ∠=︒, ∴AG=tan39900.8172.9EG ︒≈⨯=, ∴AB=AG+FG-BF=72.9+12-60=24.9, 答:旗杆的高度AB 为24.9米. 【点睛】本题考查了坡度的定义,锐角三角比的定义,勾股定理的应用,解题的关键是准确作出辅助线,构造直角三角形.。

【浙教版】初三数学下期中一模试题及答案(1)

【浙教版】初三数学下期中一模试题及答案(1)

一、选择题1.如图,在平行四边形ABCD 中,点E ,F 分别为,AB BC 的中点,则三角形BEF 与多边形EFCDA 的面积之比为( )A .1∶4B .1∶5C .1∶7D .1∶82.如图,在平行四边形ABCD 中,:2:1AE BE =,F 是AD 的中点,射线EF 与AC 交于点G ,与CD 的延长线交于点P ,则AG GC的值为( ).A .5:8B .3:8C .3:5D .2:53.如图,在□ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则△DEF 与四边形EFCO 的面积比为( )A .1: 4B .1:5C .1:6D .1: 74.如图,在ABC ,AB AC a ==,点D 是边BC 上的一点,且BD a =,1AD DC ==,则a 等于( )A .512 B .512C .1D .2 5.△ABC 与△DBC 如图放置,已知,∠ABC =∠BDC =90°,∠A =60°,BD =CD =2,将△ABC 沿BC 方向平移至△A'B'C'位置,使得A'C 边恰好经过点D ,则平移的距离是( )A .1B .22﹣2C .23﹣2D .26﹣4 6.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中△ABC 相似的是( )A .B .C .D .7.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为()1,1-,点B 在x 轴正半轴上,点D 在第三象限的双曲线8y x=上,过点C 作//CE x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .2.3D .58.在同一坐标系中,y kx k =-与()0k y k x=≠的图象大致是( ) A . B .C .D .9.已知一个正比例函数与一个反比例函数的图像交于(-3,4),则这两个函数的表达式分别是( )A .412,3y x y x ==B .412,3y x y x =-=-C .412,3y x y x =-=D .412,3y x y x==- 10.反比例函数y=kb x的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是( )A .B .C .D .11.已知电压U 、电流I 、电阻R 三者之间的关系式为:U IR =(或者U I R=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是( )A .B .C .D .12.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( ) A .123y y y << B .132y y y << C .321y y y << D .231y y y <<二、填空题13.如图,△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点P 沿BC 边以2cm/s 的速度从点B 向点C 移动,同时点Q 沿CA 边以1cm/s 的速度从点C 向点A 移动.若以点C 、P 、Q 构成的三角形与△ABC 相似,则运动时间为____________秒.14.如图,BD 、CE 是锐角ABC 的两条高线,则图中与BOE △相似三角形有______个.15.如图,在△ABO 的顶点A 在函数k y x=(x >0)的图像上∠ABO=90°,过AO 边的三等分点M 、N 分别作x 轴的平行线交AB 于点P 、Q .若四边形MNQP 的面积为3,则k 的值为________.16.如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 坐标为(5,0),则点A 的坐标为__________.17.如图,在ABO ∆中,90BAO AO AB ∠==,,且点4(2)A ,在双曲线(0)k y x x=>上,OB 交双曲线于点C ,则C 点的坐标为______.18.下列y 关于x 的函数中,y 随x 的增大而增大的有_____.(填序号)①y =﹣2x+1,②y 1x=,③y =(x+2)2+1(x >0),④y =﹣2(x ﹣3)2﹣1(x <0) 19.如图,矩形ABCD 的边AB 与x 轴平行,顶点A 的坐标为(2,1),点B ,D 都在反比例函数6y x=的图像上,则矩形ABCD 的面积为_____.20.如图,点A 在反比例函数k y x=的图象上,AB 垂直x 轴于B ,若AOB S ∆=2,则这个反比例函数的解析式为_______________.三、解答题21.如图,△ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径.求证:△ABE ~△ADC .22.如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A ,C 分别在x ,y 轴的正半轴上.点Q 在对角线OB 上,且QO OC =,连接CQ 并延长CQ 交边AB 于点P .求点P 的坐标.23.如图(1),点A 是反比例函数4y x=的图象在第一象限内一动点,过A 作AC x ⊥轴于点C ,连接OA 并延长到点B ,过点B 作BD x ⊥轴于点D ,交双曲线于点E ,连结OE .(1)若6OBE S =△,求经过点B 的反比例函数解析式.(2)如图(2),过点B 作BF y ⊥轴于点F ,交双曲线于点G .①延长OA 到点B ,当AB OA =时,请判断FG 与BG 之间的数量关系,并说明理由. ②当AB nOA =时,请直接写出FG 与BG 之间的数量关系.24.如图,在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)的图象与反比例函数kyx=(k≠0,x>0)的图象相交于A(1,5),B(m,1)两点,与x轴,y轴分别交于点C,D,连接OA,OB.(1)求反比例函数kyx=(k≠0,x>0)和一次函数y=ax+b(a≠0)的表达式;(2)求△AOB的面积.25.如图,一次函数1522y x=-+的图象与反比例函数()0ky kx=>的图象交于,A B两点,过点A作x轴的垂线,垂足为M,AOM∆面积为1.(1)求反比例函数的解析式.(2)求出A、B两点坐标,并直接写出不等式1522kxx<-+的解集.(3)在x轴上找一点P,并求出PA PB-取最大值时点P的坐标.26.将ABC绕点A逆时针方向旋转θ,并使各边长变为原来的n倍,得到AB C''△,我们将这种变换记为[],nθ.(1)问题发现如图①,对ABC 作变换60,3⎡⎤︒⎣⎦得AB C ''△,则:AB C ABC S S ''=△△______;直线BC 与直线B C ''所夹的锐角度数为______. (2)拓展探究如图②,ABC 中,35BAC ∠=︒且:2AB AC =,连结BB ',CC '.对ABC 作变换60,3⎡⎤︒⎣⎦得AB C ''△,求:ABB ACC S S ''△△的值及直线BB '与直线CC '相交所成的较小角的度数,并就图②的情形说明理由.(3)问题解决如图③,ABC 中,30BAC ∠=︒,90ACB ∠=︒,对ABC 作变换[],n θ得AB C ''△,使点B 、C 、C '在同一直线上,且四边形ABB C ''为矩形,请直接写出n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】连接AC ,根据中位线定理得//EF AC ,12EF AC =,即可由BEF BAC ,根据相似比求出面积比,设BEF Sk =,则4BAC S k =,再用k 表示出多边形EFCDA 的面积,即可求出结果.【详解】解:如图,连接AC ,∵E 、F 分别是AB 和BC 的中点,∴//EF AC ,12EF AC =, ∴BEFBAC , ∴221124BEFBAC S EF S AC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,设BEF S k =,则4BAC Sk =, ∴3AEFC BAC BEF S SS k =-=, ∵四边形ABCD 是平行四边形, ∴4ACD BAC S S k ==,∴7EFCDA AEFC ACD S S Sk =+=, ∴::71:7BEF EFCDA S S k k ==.故选:C .【点睛】本题考查相似三角形的性质,解题的关键是掌握相似三角形面积比等于相似比的平方的性质.2.D解析:D【分析】证明AFE △≌△()DFP AAS ,推出=AE DP ,由:2:1AE BE =,设BE k =,2AE k =,推出3AB CD k ==,5PC k =,由//AE BC ,可得AG AE GC CP=的值. 【详解】∵四边形ABCD 是平行四边形,∴//AB PC ,AB CD =,∴AEF P ∠=∠,∵AFE DFP ∠=∠,AF DF =,∴AFE △≌△()DFP AAS ,∴=AE DP ,∵:2:1AE BE =,设BE k =,2AE k =,∴3AB CD k ==,5PC k =,∵//AE BC , ∴2255AG AE k GC CP k ===, 故选:D .【点睛】 本题考查了平行四边形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用已知条件证明三角形全等、利用参数解决问题,属于中考常考题型.3.B解析:B【分析】设△DEF 的面积为S ,分别用S 表示出△AEB ,△AOB ,△DOC 的面积,即可解决问题.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,设△DEF 的面积为S ,∵DF ∥AB ,DE :EB=1:3,∴△ABE 的面积为9S ,∵EO :BO=1:2,∴△AOB 的面积=△DOC 的面积=6S ,∴四边形FEOC 的面积为6S-S=5S , ∴15DEF S S EFOC =四边形=1:5, 故选:B .【点睛】 本题考查了相似三角形的性质、平行四边形的性质等知识,解题的关键是熟练掌握相似三角形的性质.4.A解析:A【分析】证明△ABC ∽△DAC 得AB BC DA AC=,然后列方程求解即可. 【详解】解:∵AB AC a ==,∴∠B=∠C又∵1AD DC ==,∴∠C=∠DAC ∴△ABC ∽△DAC ∴AB BC DA AC= ∴11a a a += 解得,152a +=或152a (舍去) 故选:A【点睛】本题考查了相似三角形的判定与性质,解题的关键是理解题意,灵活运用所学知识解决问5.C解析:C【分析】过点D 作DJ ⊥BC 于J ,根据勾股定理求出BC ,利用等腰直角三角形的性质求出DJ 、BJ 、JC ,利用平行线分线段成比例定理求出JC′即可解决问题.【详解】解:过点D 作DJ ⊥BC 于J .∵DB =DC =2,∠BDC =90°,∴BC ()()222222+4,DJ =BJ =JC =2,∵∠ABC =90°,∠A =60°,∴∠ACB =30°,∴AC=2AB ,∵AB 2+42=(2AB)2,∴A′B′=AB =433, ∵DJ//A′B′,∴DJ A B ''=C J C B''', ∴434C J ', ∴C′J =3∴JB′=4﹣3∴BB ′=2﹣(4﹣3=3﹣2.故选:C .【点睛】本题考查了平移的性质,直角三角形的性质,等腰三角形的性质,勾股定理,以及平行线分线段成比例定理. 6.B解析:B【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出【详解】解:由勾股定理得:AB =2231+=10,BC =2,AC =2211+=2,∴AC :BC :AB =1:2:5,A 、三边之比为1:5:22,图中的三角形(阴影部分)与△ABC 不相似;B 、三边之比:1:2:5,图中的三角形(阴影部分)与△ABC 相似;C 、三边之比为2:5:3,图中的三角形(阴影部分)与△ABC 不相似;D 、三边之比为2:5:13,图中的三角形(阴影部分)与△ABC 不相似. 故选:B .【点睛】此题考查三角形相似判定定理的应用,解答关键是应用勾股定理求出边长.7.B解析:B【分析】证明()△△DHA CGD AAS ≅,()△△ANB DGC AAS ≅得到:1AN DG AH===,而11AH m =--=,解得2m =-,即可求解;【详解】 设点8,D m m ⎛⎫ ⎪⎝⎭, 如图所示,过点D 作x 轴的垂线交CE 于点G ,过点A 作x 轴的平行线DG 于点H ,过点A 作AN x ⊥轴于点N ,∵90GDC DCG ∠+∠=︒,90GDC HDA ∠=∠=︒,∴HDA GCD ∠=∠,又AD CD =,90DHA CGD ∠=∠=︒,∴()△△DHA CGDAAS ≅,∴HA DG =,DH CG =, 同理可得:()△△ANB DGCAAS ≅,∴1AN DG AH===, 则点8,1G m m ⎛⎫- ⎪⎝⎭,CG DH =, 11AH m =--=,解得:2m =-, 故点()2,5G --,()2,4D --,()2,1H-, 则点8,55E ⎛⎫-- ⎪⎝⎭,25GE =, ∴223555CE CG GE DH GE =-=-=-=. 故答案选B .【点睛】本题主要考查了反比例函数图象上点的坐标特征,正方形的性质,准确分析计算是解题的关键.8.D解析:D【分析】根据一次函数和反比例函数的图象与性质即可得.【详解】对于一次函数y kx k =-,当1x =时,0y k k =-=,则直线y kx k =-经过定点(1,0),A 、由一次函数的图象得:0k <,由反比例函数的图象得:0k >,两者不一致,此项不符题意;B 、由一次函数的图象得:0k >,由反比例函数的图象得:0k <,两者不一致,此项不符题意;C 、一次函数的图象不经过定点(1,0),此项不符题意;D 、由一次函数的图象得:0k <,且经过定点(1,0),由反比例函数的图象得:0k <,两者一致,此项符合题意;故选:D .【点睛】本题考查了反比例函数与一次函数的综合,熟练掌握一次函数和反比例函数的图象与性质是解题关键.9.B解析:B【分析】用待定系数法分别求出两个函数表达式即可.【详解】解:设正比例函数为y =kx ,将(-3,4)代入,得4=-3k , 解得43k =-, ∴正比例函数为43y x =-, 设反比例函数为k y x=, 将(-3,4)代入,得43k =- 解得k =-12,∴反比例函数为12y x=-, 故选:B .【点睛】本题考查了用待定系数法求正比例函数表达式和反比例函数表达式,熟练掌握待定系数法是解决本题的关键.10.D解析:D【分析】先由反比例函数的图象得到k ,b 同号,然后分析各选项一次函数的图象即可.【详解】∵y=kb x的图象经过第一、三象限, ∴kb >0,∴k ,b 同号, 选项A 图象过二、四象限,则k <0,图象经过y 轴正半轴,则b >0,此时,k ,b 异号,故此选项不合题意;选项B 图象过二、四象限,则k <0,图象经过原点,则b=0,此时,k ,b 不同号,故此选项不合题意;选项C 图象过一、三象限,则k >0,图象经过y 轴负半轴,则b <0,此时,k ,b 异号,故此选项不合题意;选项D 图象过一、三象限,则k >0,图象经过y 轴正半轴,则b >0,此时,k ,b 同号,故此选项符合题意; 故选D .考点:反比例函数的图象;一次函数的图象.11.A解析:A【分析】在实际生活中,电压U 、电流I 、电阻R 三者之中任何一个不能为负,依此可得结果.【详解】A 图象反映的是U I R=,但自变量R 的取值为负值,故选项A 错误;B 、C 、D 选项正确,不符合题意.故选:A .【点睛】此题主要考查了现实生活中函数图象的确立,注意自变量取值不能为负是解答此题的关键. 12.B解析:B【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x=<的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.二、填空题13.或【分析】首先设点P 移动t 秒时△CPQ 与△ABC 相似然后分别从当即时△CPQ ∽△CBA 与当即时△CPQ ∽△CAB 去分析求解即可求得答案【详解】设点P 移动t 秒时△CPQ 与△ABC 相似∵点P 从点B 以2c解析:125或3211【分析】首先设点P 移动t 秒时△CPQ 与△ABC 相似,然后分别从当CP CQ CB CA =,即8286t t -=时,△CPQ ∽△CBA ,与当CQ CP CB CA =,即8286t t -=时,△CPQ ∽△CAB ,去分析求解即可求得答案.【详解】设点P 移动t 秒时△CPQ 与△ABC 相似,∵点P 从点B 以2cm/s 的速度向点C 移动,点Q 以1cm/s 的速度从点C 向点A 移动, ∴BP =2tcm ,CQ =tcm ,则CP =CB−BP =8−2t (cm ),∵∠C 是公共角,∴当CP CQ CB CA=,即8286t t -=时,△CPQ ∽△CBA , 解得:t =125; 当CQ CP CB CA=,即8286t t -=时,△CPQ ∽△CAB , 解得:t =3211, ∴点P 移动125s 或3211s 时△CPQ 与△ABC 相似. 故答案为:125或3211【点睛】此题考查了相似三角形的判定.此题难度适中,注意掌握数形结合思想、分类讨论思想以及方程思想的应用.14.3【分析】根据∠BEO=∠CDO=90°可证同理可证从而得出答案;【详解】是的高又∵综上与相似的三角形有3个故答案为:3【点睛】本题考查了相似三角形的判定解题的关键是找出两个对应角相等即可;解析:3【分析】根据∠BEO=∠CDO=90°,BOE COD ∠=∠可证BOE COD ∽△△,同理可证BOE CAE ∽△△,BOE BAD ∽△△,从而得出答案;【详解】 BD ,CE 是ABC 的高,90BEO CEA BDC BDA ∴∠=∠=∠=∠=︒,BEO CDO ∠=∠,BOE COD ∠=∠,BOE COD ∴∽△△,90EBO A ∠+∠=︒,90ACE A ∠+∠=︒,EBO ECA∴∠=∠,又∵BEO CEA∠=∠,BOE CAE∴∽△△,BEO BDA∠=∠,∠=∠OBE ABD,BOE BAD∴∽△△,综上与BOE△相似的三角形有3个.故答案为:3.【点睛】本题考查了相似三角形的判定,解题的关键是找出两个对应角相等即可;15.【分析】易证△ANQ∽△AMP∽△AOB由相似三角形的性质:面积比等于相似比的平方可求出△ANQ的面积进而可求出△AOB的面积则k的值也可求出【详解】∵NQ∥MP∥OB∴△ANQ∽△AMP∽△AOB解析:18【分析】易证△ANQ∽△AMP∽△AOB,由相似三角形的性质:面积比等于相似比的平方可求出△ANQ的面积,进而可求出△AOB的面积,则k的值也可求出.【详解】∵NQ∥MP∥OB,∴△ANQ∽△AMP∽△AOB,∵M、N是OA的三等分点,∴11,23 AN ANAM AO==,∴14ANQAMPSS=,∵四边形MNQP的面积为3,∴314ANQANQSS=+,∴S△ANQ=1,∵2119 AOBANS AO⎛⎫==⎪⎝⎭,∴S△AOB=9,∴k=2S△AOB=18,故答案为:18.【点睛】本题考查了相似三角形的判定和性质以及反比例函数k的几何意义,正确的求出S△ANQ=1是解题的关键.16.(255)【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出A 点坐标【详解】解:∵以原点O 为位似中心在第一象限内将线段CD 放大得到线段AB ∴B 点与D 点是对应点则位似比为:5:2∵C (12)∴解析:(2.5,5).【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出A 点坐标.【详解】解:∵以原点O 为位似中心,在第一象限内,将线段CD 放大得到线段AB ,∴B 点与D 点是对应点,则位似比为:5:2,∵C (1,2),∴点A 的坐标为:(2.5,5)故答案为(2.5,5).【点睛】本题考查位似图形的应用,熟练掌握位似图形的相似比和两点间的距离公式是解题关键. 17.()【分析】根据等腰直角三角形求得B 得坐标联立方程即可求得C 得坐标【详解】解:将A 点代入得k=8∴双曲线y =(x >0)设点B (mn )m >0∵△ABO 为等腰直角三角形则AO =BO =OB ∴且m >0解得即解析:() 【分析】根据等腰直角三角形求得B 得坐标,联立方程即可求得C 得坐标.【详解】解:将A 点代入得4=2k , k=8, ∴双曲线y =8x(x >0), 设点B (m ,n )m >0 ∵△ABO 为等腰直角三角形 则AO =BO=2OB ∴()()()222242416{2416n m m n -+-=++=+,且m >0 , 解得62m n ⎧⎨⎩==, 即B (6,2),∴直线OB 得解析式为 y =13x ,联立方程138y x y x ⎧=⎪⎪⎨⎪=⎪⎩,且x >0解得3x y ⎧=⎪⎨=⎪⎩,∴C点的坐标为:(3)故答案为:(3). 【点睛】 本题主要考查双曲线与一次函数的交点问题,掌握等腰直角三角形的性质是解答本题的关键.18.③④【分析】根据一次函数二次函数反比例函数的性质即可一一判断【详解】解:y 随x 的增大而增大的函数有③④故答案为③④【点睛】本题主要考查一次函数二次函数反比例函数的性质解决本题的关键是熟练掌握一次函数解析:③④【分析】根据一次函数、二次函数、反比例函数的性质即可一一判断.【详解】解:y 随x 的增大而增大的函数有③④,故答案为③④.【点睛】本题主要考查一次函数、二次函数、反比例函数的性质,解决本题的关键是熟练掌握一次函数,二次函数,反比例函数图像性质.19.8【分析】根据A 点坐标及反比例解析式求出B 和D 点坐标进而得到矩形的长和宽即可求出面积【详解】解:∵A 点坐标为(21)∴D 点横坐标为2又D 点在反比例函数上∴D(23)B 点纵坐标为1又B 点在反比例函数上解析:8【分析】根据A 点坐标及反比例解析式求出B 和D 点坐标,进而得到矩形的长和宽,即可求出面积.【详解】解:∵A 点坐标为(2,1)∴D 点横坐标为2,又D 点在反比例函数6y x=上,∴D(2,3)B点纵坐标为1,又B点在反比例函数6yx=上,∴B(6,1)∴AB=6-2=4,AD=3-1=2∴矩形ABCD的面积=AB×AD=4×2=8.故答案为8.【点睛】本题考查了反比例函数上点的坐标的求法及矩形的面积公式,熟练掌握反比例函数的图形性质是解决此类题的关键.20.【分析】因为过双曲线上任意一点引x轴y轴垂线所得矩形面积S是个定值|k|△AOB的面积为矩形面积的一半即|k|【详解】由于点A在反比例函数的图象上则S△AOB=|k|=2∴k=±4;又由于函数的图象解析:4 yx =-【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值|k|,△AOB的面积为矩形面积的一半,即12|k|.【详解】由于点A在反比例函数kyx=的图象上,则S△AOB=12|k|=2,∴k=±4;又由于函数的图象在第二象限,k<0,∴k=-4,∴反比例函数的解析式为4yx=-;故答案为:4yx =-.【点睛】此题主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.三、解答题21.见解析.【分析】根据∠AEB=∠ACB(同弧所对的圆周角相等)和AD是△ABC的高,AE是⊙O的直径,利用一个三角形的两个角与另一个三角形的两个角对应相等,即可证明.【详解】证明:∵AB=AB∴∠AEB =∠ACB (同弧所对的圆周角相等),∵AE 为直径,∴∠ABE =90°(直径所对的圆周角是直角),又∵AD ⊥BC ,即∠ADC =90°,∴∠ABE =∠ADC ,∴△ABE ∽△ADC .【点睛】此题主要考查学生对相似三角形的判定和圆周角定理的理解和掌握,解题的关键是利用同弧上的圆周角相等,先求证∠AEB =∠ACB ,然后即可得出结论.22.(2,4P -【分析】根据正方形的性质求出BO 和BQ 的长,再由COQ PBQ ,利用对应边成比例列式求出BP 的长,从而算出AP 的长,就可以得到点P 的坐标. 【详解】解:∵正方形OABC 的边长是2,∴2OC BC QO ===,根据勾股定理,BO =,∴2BQ BO OQ =-=,∵//CO BP ,∴COQ PBQ , ∴CO OQPB BQ =,即2PB =,解得2PB =,∴224AP AB BP =-=-=-∴(2,4P -.【点睛】本题考查平面直角坐标系和图象,正方形的性质,相似三角形的性质和判定,解题的关键是利用相似三角形对应边成比例列式求线段长.23.(1)16y x=;(2)①13FG BG =,理由见解析;②(21)FG n BG =+ 【分析】(1)根据题意求出OBD S △,根据反比例函数k 的几何意义求出过点B 的反比例函数解析式;(2)①设OC a =,用a 表示出点A 的坐标,根据相似三角形的性质表示出点B 的坐标,求出FG 和BG ,计算即可;②用与①相似的方法分别求出FG 和BG ,计算即可.【详解】解:(1)设点E 的坐标为(,)x y ,∵点E 在反比例函数4y x =的图象上, ∴4xy =, 则122xy =, ∴2ODE S =△,又6OBE S =△,∴8OBD S =△,∴过点B 的反比例函数解析式为:16y x=; (2)①设OC a =,则点A 的坐标为4,a a ⎛⎫ ⎪⎝⎭, ∵AB OA =,∴点B 的坐标为82,a a ⎛⎫ ⎪⎝⎭, ∵84a x =,2a x =, ∴2a FG =,又2FB a =, ∴32BG a =, ∴13FG BG =; ②设OC b =,则点A 的坐标为4,b b ⎛⎫ ⎪⎝⎭,∵AB nOA =, ∴11OA OB n =+, ∴点B 的坐标为4(1)(1),n n b b +⎛⎫+ ⎪⎝⎭, ∵4(1)4n b x +=,1b x n =+, ∴1b FG n =+,又2FB b =,∴211n BG b n +=+, ∴(21)FG n BG =+. 【点睛】本题考查的是反比例函数知识的综合运用,掌握待定系数法求反比例函数解析式、反比例函数k 的几何意义是解题的关键.24.(1)5y x =,6y x =-+;(2)12 【分析】(1)将点A (1,5)代入k y x=(k≠0,x >0),得到k 的值及反比例函数解析式;再将将点B (m ,1)代入反比例函数,得点B 坐标;将点A (1,5),B (5,1)代入y =ax+b ,通过求解二元一次方程组,即可得到答案;(2)结合一次函数6y x =-+,得点D 坐标;再由△AOB 的面积=△BOD 的面积-△AOD 的面积,经计算即可得到答案.【详解】(1)将点A (1,5)代入k y x=(k≠0,x >0) 得:51k =解得:k =5 ∴反比例函数的表达式为:5y x =将点B (m ,1)代入5y x =得:m =5∴点B (5,1)将点A (1,5),B (5,1)代入y =ax+b得551a b a b +=⎧⎨+=⎩解得:16a b =-⎧⎨=⎩ ∴一次函数表达式为:6y x =-+;(2)由一次函数6y x =-+可知:D (0,6)∴△AOB 的面积=△BOD 的面积-△AOD 的面积1165611222=⨯⨯-⨯⨯=. 【点睛】本题考查了反比例函数、一次函数、二元一次方程组的知识;解题的关键是熟练掌握反比例函数、一次函数、二元一次方程组的性质,从而完成求解.25.(1)2y x =;(2)()1,2A ,14,2B ⎛⎫ ⎪⎝⎭,解集为14x <<或0x <;(3)()5,0 【分析】(1)根据反比例函数比例系数k 的几何意义得出12|k|=1,进而得到反比例函数的解析式;(2)解析式联立求得A 、B 的坐标,根据图象即可求得不等式1522k x x <-+的解集; (3)一次函数1522y x =-+与x 轴的交点即为P 点,此时|PA−PB|的值最大,最大值为AB 的长;根据一次函数图象上点的坐标特征即可求得点P 的坐标.【详解】(1)∵反比例函数()0k y k x=>的图象过点A ,过A 点作x 轴的垂线,垂足为M ,AOM ∆面积为1, ∴1|k |12=, ∵0k >, ∴2k =, 故反比例函数的解析式为:2y x=; (2)由15-222y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,解得12x y =⎧⎨=⎩或412x y =⎧⎪⎨=⎪⎩, ∴()1,2A ,14,2B ⎛⎫ ⎪⎝⎭, ∴不等式1522k x x <-+的解集为14x <<或0x <; (3)一次函数1522y x =-+的图象与x 轴的交点即为P 点, 此时PA PB -的值最大,最大值为AB 的长.∵一次函数1522y x =-+, 令0y =,则15022x -+=,解得5x =, ∴P 点坐标为()5,0.【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题,解题的关键是确定|PA−PB|的值最大时,点P 的位置,灵活运用数形结合思想是解题的关键.26.(1)3:1,60;(2)35︒,理由见解析;(3)2n =.【分析】(1)利用新定义得出[],n θ的意义,利用旋转的性质得到AB C ''△∽ABC ,且相似比,60BAB '∠=︒,进而求出面积比,通过外角的性质得到DEB '∠即可求出直线BC 与直线B C ''所夹的锐角度数;(2)利用新定义得出[],n θ的意义,得到::AB AB AC AC ''==35BAC B AC ''∠=∠=︒,进而可以得到BAB CAC ''∠=∠,下证BAB '△∽CAC '△,通过题中给的相似比即可求出面积之比,延长CC '交BB '于D ,通过DEB AEC ''∠=∠,BB A CC A ''∠=∠,可以证得DEB '△∽AEC ',从而得到C DB ''∠的度数,即可得直线BB '与直线CC '相交所成的较小角的度数;(3)由四边形ABB C ''为矩形,得到90BAC '∠=︒,进而求出CAC '∠的度数,利用含30角的直角三角形的性质即可得到AC AC'的值,进而求出n 的值. 【详解】解:(1)由题意可知:对ABC 作变换60⎡︒⎣得AB C ''△,∴AB C ''△∽ABC ,60BAB '∠=︒,∴B B '∠=∠,∴()2:3:1AB C ABC S S ''==, ADE B BAB '∠=∠+∠,ADE B DEB ''∠=∠+∠,∴60DEB BAB ''∠=∠=︒,即直线BC 与直线B C ''所夹的锐角度数为:60︒.故答案为:3:1,60.(2)根据题意得:::1:AB AB AC AC ''==35BAC B AC ''∠=∠=︒, ∴BAC B AC B AC B AC ''''∠+∠=∠+∠,∴BAB CAC ''∠=∠,∴BAB '△∽CAC '△,∴相似比AB k AC=,BB A CC A ''∠=∠,:AB AC =,∴2:2ABB ACC S S ''==,延长CC '交BB '于D ,如图,设CC '交AB '于E .DEB AEC ''∠=∠,BB A CC A ''∠=∠,∴DEB '△∽AEC ',∴35C DB B AC ''''∠=∠=︒,∴:2ABB ACC S S ''=△△,直线BB '与直线CC '相交所成的较小角的度数为35︒. (3)四边形ABB C ''为矩形,∴90BAC '∠=︒,30BAC ∠=︒,∴60CAC BAC BAC ''∠=∠-∠=︒,90ACB ∠=︒,∴90ACC '∠=︒,在Rt ACC '△中,12AC AC '=, ∴21AC AC '=, ∴2AC n AC'==, 即n 的值为2.【点睛】本题考查了图形的旋转,相似三角形的判定和性质,新定义运算,三角形的外角性质以及含30角的直角三角形的性质,解题的关键是根据题意得出[],n θ的意义.。

2020-2021初三数学下期中一模试题(带答案)(1)

2020-2021初三数学下期中一模试题(带答案)(1)

2020-2021初三数学下期中一模试题(带答案)(1)一、选择题1.如图,△ABC 中,DE ∥BC ,若AD :DB =2:3,则下列结论中正确的( )A .23DE BC =B .25DE BC = C .23AE AC =D .25AE EC = 2.观察下列每组图形,相似图形是( )A .B .C .D .3.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(4,4)B .(3,3)C .(3,1)D .(4,1) 4.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP=2,BP=6,∠APC=30°,则CD 的长为( )A 15B .5C .15D .85.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A.3B.163C.203D.1656.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为 ( )A.1:2B.1:4C.1:5D.1:67.在△ABC中,若|sinA-32|+(1-tanB)2=0,则∠C的度数是( )A.45°B.60°C.75°D.105°8.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m9.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,4)C.(2,﹣1)D.(8,﹣4)10.如图,河堤横断面迎水坡AB的坡比是1:3,堤高BC=12m,则坡面AB的长度是()A.15m B.3C.24m D.10311.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A .△PAB ∽△PCA B .△ABC ∽△DBA C .△PAB ∽△PDAD .△ABC ∽△DCA12.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252- B .25- C .251- D .52-二、填空题13.如果把两条邻边中较短边与较长边的比值为512-的矩形称作黄金矩形.那么,现将长度为20cm 的铁丝折成一个黄金矩形,这个黄金矩形较短的边长是_____cm . 14.如图,在直角坐标系中,点(2,0)A ,点(0,1)B ,过点A 的直线l 垂直于线段AB ,点P 是直线l 上在第一象限内的一动点,过点P 作PC x ⊥轴,垂足为C ,把ACP △沿AP 翻折180︒,使点C 落在点D 处,若以A ,D ,P 为顶点的三角形与△ABP 相似,则满足此条件的点P 的坐标为__________.15.如图,点A 在双曲线y=2x 上,点B 在双曲线y= 5x上,且AB ∥y 轴,C ,D 在y 轴上,若四边形ABCD 为平行四边形,则它的面积为________.16.如图,直立在点B 处的标杆AB =2.5m ,站立在点F 处的观测者从点E 看到标杆顶A ,树顶C 在同一直线上(点F ,B ,D 也在同一直线上).已知BD =10m,FB =3m,人的高度EF =1.7 m,则树高DC 是________.(精确到0.1 m)17.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左侧墙上与地面成60°角时,梯子顶端距离地面23米,若保持梯子底端位置不动,将梯子斜靠在右端时,与地面成45°,则小巷的宽度为_____米(结果保留根号).18.已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.19.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC和MD重合.已知AB="AC=8" cm,将△MED绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是 cm2.20.若关于x的分式方程33122x mx x+-=--有增根,则m的值为_____.三、解答题21.由一些大小相同,棱长为1的小正方体搭成的几何体的俯视图如图所示,数字表示该位置的正方体个数.(1)请画出它的主视图和左视图;(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为;(3)在不改变主视图和俯视图的情况下,最多可添加块小正方体.22.如图,直线y=12x+2与双曲线y=kx相交于点A(m,3),与x轴交于点C.(1)求双曲线的解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.23.如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x 是多少?24.如图,在平面直角坐标系xOy 中,直线y =x +b 与双曲线y =k x相交于A ,B 两点, 已知A (2,5).求:(1)b 和k 的值;(2)△OAB 的面积.25.已知:如图,在ABC 中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC 外角CAM ∠的平分线,CE AN ⊥,垂足为点E ,连接DE 交AC 于点F .() 1求证:四边形ADCE 为矩形;()2当ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明. ()3在()2的条件下,若AB AC 22==,求正方形ADCE 周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】运用平行线分线段成比例定理对各个选项进行判断即可.【详解】∵AD:DB=2:3,∴ADAB=25.∵DE∥BC,∴DEBC=ADAB=25,A错误,B正确;AE AC =ADAB=25,C错误;AE EC =ADDB=23,D错误.故选B.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.2.D解析:D【解析】【分析】根据相似图形的定义,形状相同,可得出答案.【详解】解:A、两图形形状不同,故不是相似图形;B、两图形形状不同,故不是相似图形;C、两图形形状不同,故不是相似图形;D、两图形形状相同,故是相似图形;故选:D.【点睛】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.3.A解析:A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.4.C解析:C【解析】【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA-AP=2,接着在Rt△OPH中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt△OHC中利用勾股定理计算出CH=15,所以CD=2CH=215.【详解】作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴22=15OC OH∴15故选C.【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键5.C解析:C【解析】【分析】根据矩形的性质可知:求AD 的长就是求BC 的长,易得∠BAC =∠ADE ,于是可利用三角函数的知识先求出AC ,然后在直角△ABC 中根据勾股定理即可求出BC ,进而可得答案.【详解】解:∵四边形ABCD 是矩形,∴∠B =∠BAC =90°,BC=AD ,∴∠BAC +∠DAE =90°, ∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=,在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==,∴AD=BC 203==. 故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.6.B解析:B【解析】试题分析:利用位似图形的性质首先得出位似比,进而得出面积比.∵以点O 为位似中心,将△ABC 放大得到△DEF ,AD=OA ,∴OA :OD=1:2,∴△ABC 与△DEF 的面积之比为:1:4.故选B .考点:位似变换.7.C解析:C【解析】【分析】先根据非负数的性质求出sinA 及tanB 的值,再根据特殊角的三角函数值求出∠A 及∠B 的值,由三角形内角和定理即可得出结论.【详解】∵|sin A B )2=0,∴sinA=2,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.8.A解析:A【解析】∵BE∥AD,∴△BCE∽△ACD,∴CB CEAC CD=,即CB CEAB BC DE EC=++,∵BC=1,DE=1.8,EC=1.2∴1 1.21 1.8 1.2 AB=++∴1.2AB=1.8,∴AB=1.5m.故选A.9.A解析:A【解析】【分析】利用位似比为1:2,可求得点E的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E(-4,2),位似比为1:2,∴点E的对应点E′的坐标为(2,-1)或(-2,1).故选A.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.10.C解析:C【解析】【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案.【详解】解:Rt△ABC中,BC=12cm,tanA=1:3;∴AC=BC÷tanA=123cm,∴AB=2212(123)+=24cm.故选:C.【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.11.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠P AB≠∠PCA,∠PBA≠∠P AC,∴无法判定△P AB与△PCA相似,故A错误;同理,无法判定△P AB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=P A,AC=P A,AD=P A,BD=2P A,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.12.A解析:A【解析】根据黄金比的定义得:512APAB=,得5142522AP=⨯= .故选A.二、填空题13.【解析】【分析】设这个黄金矩形较长的边长是xcm根据题意得:解方程可得【详解】设这个黄金矩形较长的边长是xcm根据题意得:解得:x=则这个黄金矩形较短的边长是cm故答案为:【点睛】考核知识点:黄金分解析:(1555)-【解析】【分析】设这个黄金矩形较长的边长是xcm ,根据题意得:220x x ⎛⎫+= ⎪⎝⎭,解方程可得. 【详解】设这个黄金矩形较长的边长是xcm ,根据题意得:12202x x ⎛⎫-+= ⎪⎝⎭,解得:x= 5,则这个黄金矩形较短的边长是15)(152⨯=-cm .故答案为:(15- 【点睛】考核知识点:黄金分割点的应用.理解黄金分割的意义是关键.14.或【解析】【分析】求出直线l 的解析式证出△AOB∽△PCA 得出设AC=m (m >0)则PC=2m 根据△PCA≌△PDA 得出当△PAD∽△PBA 时根据得出m=2从而求出P 点的坐标为(44)(0-4)若△解析:5,12⎛⎫⎪⎝⎭或(4,4)【解析】 【分析】求出直线l 的解析式,证出△AOB ∽△PCA ,得出12BO AC AO PC ==,设AC=m (m >0),则PC=2m ,根据△PCA ≌△PDA ,得出12AD AC PD PC ==,当△PAD ∽△PBA 时,根据12AD BA PD PA ==,222(2)AP m m =+=,得出m=2,从而求出P 点的坐标为(4,4)、(0,-4),若△PAD ∽△BPA ,得出12PA AD BA PD ==,求出PA =,从而得出222(2)m m +=⎝⎭,求出12m =,即可得出P 点的坐标为5,12⎛⎫⎪⎝⎭. 【详解】∵点A (2,0),点B (0,1), ∴直线AB 的解析式为y=-12x+1 ∵直线l 过点A (4,0),且l ⊥AB ,∴直线l 的解析式为;y=2x-4,∠BAO+∠PAC=90°,∵PC ⊥x 轴, ∴∠PAC+∠APC=90°, ∴∠BAO=∠APC , ∵∠AOB=∠ACP , ∴△AOB ∽△PCA , ∴BO AOCA PC =, ∴12BO AC AO PC ==, 设AC=m (m >0),则PC=2m , ∵△PCA ≌△PDA , ∴AC=AD ,PC=PD , ∴12AD AC PD PC ==, 如图1:当△PAD ∽△PBA 时,则AD PDBA PA =, 则12AD BA PD PA ==, ∵22152=+ ∴5∴222(2)(25)m m +=, ∴m=±2,(负失去) ∴m=2,当m=2时,PC=4,OC=4,P 点的坐标为(4,4), 如图2,若△PAD ∽△BPA ,则12 PA ADBA PD==,∴152PA AB==,则2 225(2)2m m⎛+=⎝⎭,∴m=±12,(负舍去)∴m=12,当m=12时,PC=1,OC=52,∴P点的坐标为(52,1),故答案为:P(4,4),P(52,1).【点睛】此题考查了一次函数的综合,用到的知识点是相似三角形和全等三角形的判定与性质、勾股定理、一次函数等,关键是根据题意画出图形,注意点P在第一象限有两个点.15.3【解析】试题分析:由AB∥y轴可知AB两点横坐标相等设A(m)B(m)求出AB=﹣=再根据平行四边形的面积公式进行计算即可得=•m=3考点:反比例函数系数k的几何意义解析:3【解析】试题分析:由AB∥y轴可知,A、B两点横坐标相等,设A(m,2m),B(m,5m),求出AB=5m﹣2m=3m,再根据平行四边形的面积公式进行计算即可得ABCDS=3m•m=3.考点:反比例函数系数k的几何意义16.2m【解析】【详解】解:过点E作EM⊥CD交AB与点N∴故答案为52m 【点睛】本题是考查相似三角形的判定和性质关键是做出辅助线构造相似三角形利用相似三角形的性质得出结论即可这类题型可以作垂直也可以作解析:2m 【解析】 【详解】解:过点E 作EM ⊥CD,交AB 与点N.∴,EN ANEAN ECM EM CM~∴=30.82.5, 1.7,0.8,10,313AB m EF m AN m BD m FB m CM==∴===∴=,()3.47CM m ∴≈ ()1.7 3.47 5.2.CD m ∴=+≈故答案为5.2m . 【点睛】本题是考查相似三角形的判定和性质.关键是做出辅助线,构造相似三角形,利用相似三角形的性质得出结论即可.这类题型可以作垂直也可以作平行线,构造相似三角形.17.【解析】【分析】本题需要分段求出巷子被分成的两部分再加起来即可先在直角三角形ABC 中用正切和正弦分别求出BC 和AC (即梯子的长度)然后再在直角三角形DCE 中用∠DCE 的余弦求出DC 然后把BC 和DC 加 解析:222+【解析】 【分析】本题需要分段求出巷子被分成的两部分,再加起来即可.先在直角三角形ABC 中,用正切和正弦,分别求出BC 和AC (即梯子的长度),然后再在直角三角形DCE 中,用∠DCE 的余弦求出DC ,然后把BC 和DC 加起来即为巷子的宽度. 【详解】 解:如图所示:3米,∠ACB=60°,∠DCE=45°,AC=CE. 则在直角三角形ABC 中,AB BC =tan∠ACB=tan60°AB AC =sin∠ACB=sin60°∴BC=2,AC=4,∴直角三角形DCE中,CE=AC=4,∴CDCE=cos45°=,∴CD=,∴BD=,故答案为:【点睛】本题需要综合应用正切、正弦.余弦来求解,注意梯子长度不变,属于中档题.18.m>2【解析】分析:根据反比例函数y=当x>0时y随x增大而减小可得出m﹣2>0解之即可得出m的取值范围详解:∵反比例函数y=当x>0时y随x 增大而减小∴m﹣2>0解得:m>2故答案为m>2点睛:本解析:m>2.【解析】分析:根据反比例函数y=2mx-,当x>0时,y随x增大而减小,可得出m﹣2>0,解之即可得出m的取值范围.详解:∵反比例函数y=2mx-,当x>0时,y随x增大而减小,∴m﹣2>0,解得:m>2.故答案为m>2.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.19.【解析】【分析】分析:设BCAD交于点G过交点G作GF⊥AC与AC交于点F根据AC=8就可求出GF的长从而求解【详解】解:设BCAD交于点G过交点G 作GF⊥AC与AC交于点F设FC=x则GF=FC=解析:【解析】【分析】分析:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,根据AC=8,就可求出GF的长,从而求解.【详解】解:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,设FC=x,则GF=FC=x,∵旋转角为60°,即可得∠FAG=60°,∴AF=GFcot∠FAG=33x.所以x+3x=8,则x=12-43.所以S△AGC=12×8×(12-43)=48-16320.3【解析】【分析】把分式方程化为整式方程进而把可能的增根代入可得m 的值【详解】去分母得3x-(x-2)=m+3当增根为x=2时6=m+3∴m=3故答案为3【点睛】考查分式方程的增根问题;增根问题可按解析:3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.三、解答题21.(1)见解析;(2)32.(3)1.【解析】试题分析:(1)根据图示可知主视图有3列,每列小正方形的个数依次为3、1、3,左视图有两列,每列小正方形的个数依次为3、2,据此即可画出;(2)根据三视图画出几何体,根据几何体即可得;(3)要不改变主视图和俯视图的情况下,根据题意画出添加小正方体后的图形(如图2)即可.试题解析:(1)它的主视图和左视图,如图所示,(2)如图1,给这个几何体喷上颜色(底面不喷色),根据图形可知需要喷色的面有32个,所以喷色的面积为32;(3)如图2,在不改变主视图和俯视图的情况下,最多可添加1个小正方体,22.(1)6yx(2)(-6,0)或(-2,0).【解析】分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t 的方程,则可求得P点坐标.详解:(1)把A点坐标代入y=12x+2,可得:3=12m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=6x;(2)在y=12x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=12×3|t+4|.∵△ACP的面积为3,∴12×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.23.7 【解析】 【分析】根据已知角的度数,易求得∠BAC =∠BCA =30°,由此得BC =AB =3米;可在Rt △CBF 中,根据BC 的长和∠CBF 的余弦值求出BF 的长,进而由x =BF−EF 求得汽车车头与斑马线的距离. 【详解】 如图:延长AB .∵CD ∥AB ,∴∠CAB =30°,∠CBF =60°;∴∠BCA =60°−30°=30°,即∠BAC =∠BCA ; ∴BC =AB =3米;Rt △BCF 中,BC =3米,∠CBF =60°; ∴BF =12BC =1.5米; 故x =BF−EF =1.5−0.8=0.7米.答:这时汽车车头与斑马线的距离x 是0.7米. 【点睛】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形. 24.(1)b=3,k=10;(2)S △AOB =212. 【解析】(1)由直线y=x+b 与双曲线y=kx相交于A 、B 两点,A (2,5),即可得到结论; (2)过A 作AD⊥x 轴于D ,BE⊥x 轴于E ,根据y=x+3,y=10x,得到(-5,-2),C (-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论. 解:(1)把()2,5A 代入y x b =+.∴52b =+∴3b =. 把()2,5A 代入k y x =,∴52k =, ∴10k =.(2)∵10y x=,3y x =+. ∴103x x=+时,2103x x =+, ∴12x =,25x =-.∴()5,2B --. 又∵()3,0C -, ∴AOBAOCBOC SSS=+ 353222⨯⨯=+10.5=. 25.(1)证明见解析;(2)BAC 90∠=且AB AC =时,四边形ADCE 是一个正方形;证明见解析;(3)8; 【解析】 【分析】( 1 )根据等腰三角形的性质,可得 ∠ CAD=12∠ BAC ,根据等式的性质,可得∠CAD+ ∠CAE=12( ∠BAC+ ∠CAM )=90°,根据垂线的定义,可得∠ADC=∠CEA ,根据矩形的判定,可得答案;( 2 )根据等腰直角三角形的性质,可得AD 与CD 的关系,根据正方形的判定,可得答案;( 3 )根据勾股定理,可得AD 的长,根据正方形周长公式,可得答案. 【详解】()1∵AB AC =,AD BC ⊥,垂足为点D ,∴1CAD BAC 2∠∠=. ∵AN 是ABC 外角CAM ∠的平分线, ∴1CAE CAM 2∠∠=. ∵BAC ∠与CAM ∠是邻补角, ∴BAC CAM 180∠∠+=, ∴()1CAD CAE BAC CAM 902∠∠∠∠+=+=. ∵AD BC ⊥,CE AN ⊥, ∴ADC CEA 90∠∠==, ∴四边形ADCE 为矩形;(2)BAC 90∠=且AB AC =时,四边形ADCE 是一个正方形, ∵BAC 90∠=且AB AC =,AD BC ⊥, ∴1CAD BAC 452∠∠==,ADC 90∠=,∴ACD CAD 45∠∠==, ∴AD CD =.∵四边形ADCE 为矩形, ∴四边形ADCE 为正方形;()3由勾股定理,得AB =,AD CD =,=,AD 2=,正方形ADCE 周长4AD 428=⨯=. 【点睛】本题考查了的正方形的判定与性质,(1)利用了等腰三角形的性质,矩形的判定;(2)利用了正方形的判定;(3)利用了勾股定理,正方形的周长,灵活运用是关键.。

新初三数学下期中一模试题(附答案)

新初三数学下期中一模试题(附答案)

新初三数学下期中一模试题(附答案) 一、选择题1.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数1yx=-的图象上,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y1<y22.如果反比例函数y=kx(k≠0)的图象经过点(﹣3,2),则它一定还经过()A.(﹣12,8)B.(﹣3,﹣2)C.(12,12)D.(1,﹣6)3.已知反比例函数y=﹣6x,下列结论中不正确的是()A.函数图象经过点(﹣3,2)B.函数图象分别位于第二、四象限C.若x<﹣2,则0<y<3D.y随x的增大而增大4.P是△ABC一边上的一点(P不与A、B、C重合),过点P的一条直线截△ABC,如果截得的三角形与△ABC相似,我们称这条直线为过点P的△ABC的“相似线”.Rt△ABC中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线”最多有几条?()A.1条B.2条C.3条D.4条5.如图,在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣1(k为常数,且k>0)的图象可能是()A.B.C.D.6.观察下列每组图形,相似图形是()A.B.C.D.7.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)8.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA 9.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+10.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为 ( )A.1:2B.1:4C.1:5D.1:611.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.12B.2C.14D.1312.在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( ) A . B . C . D .二、填空题13.如图,P (m ,m )是反比例函数9y x=在第一象限内的图象上一点,以P 为顶点作等边△PAB ,使AB 落在x 轴上,则△POB 的面积为_____.14.计算:cos 245°-tan30°sin60°=______. 15.如图,在平面直角坐标系内有一点()5,12P ,那么OP 与x 轴正半轴的夹角α的余弦值为______.16.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.17.已知一个反比例函数的图象经过点(2,3)--,则这个反比例函数的表达式为________.18.已知点(,)P m n 在直线2y x =-+上,也在双曲线1y x=-上,则m 2+n 2的值为______.19.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.20.若函数y =(k -2)2k 5x -是反比例函数,则k =______.三、解答题21.等腰Rt PAB V 中,90PAB ∠=o ,点C 是AB 上一点(与A B 、不重合),连接PC ,将线段PC 绕点C 顺时针旋转90o ,得到线段DC .连接, PD BD . 探究PBD ∠的度数,以及线段AB 与BD BC 、的数量关系.(1)尝试探究:如图(1)PBD ∠= ;AB BC AC =+= ;(2)类比探索:如图(2),点C 在直线AB 上,且在点B 右侧,还能得出与(1)中同样的结论么?请写出你得到的结论并证明:22.如图,AB 是⊙O 直径,BC ⊥AB 于点B ,点C 是射线BC 上任意一点,过点C 作CD 切⊙O 于点D ,连接AD .(1)求证:BC =CD ;(2)若∠C =60°,BC =3,求AD 的长.23.在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A 4 2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP =AD .(1)求证:PD =AB .(2)如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E ,当BE CE的值是多少时,△PDE 的周长最小?(3)如图(3),点Q 是边AB 上的定点,且BQ=BC.已知AD=1,在(2)的条件下连接DE 并延长交AB 的延长线于点F,连接CF,G 为CF 的中点,M、N 分别为线段QF 和CD 上的动点,且始终保持QM=CN,MN 与DF 相交于点H,请问GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.24.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.25.如图,E为□ABCD的边CD延长线上的一点,连结BE交AC于点O,交AD于点F,求证:BO EO FO BO.【参考答案】***试卷处理标记,请不要删除一、选择题1.B【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【详解】∵反比例函数y=﹣1x中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.【点睛】本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.2.D解析:D【解析】【分析】分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=kx(k≠0)的图象经过点(−3,2),∴k=−3×2=−6,∵−12×8=−4≠−6,−3×(−2)=6≠−6,12×12=6≠−6,1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.3.D解析:D【解析】【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.A、∵当x=﹣3时,y=2,∴此函数图象过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C、∵当x=﹣2时,y=3,∴当x<﹣2时,0<y<3,故本选项正确;D、∵k=﹣6<0,∴在每个象限内,y随着x的增大而增大,故本选项错误;故选:D.【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.4.C解析:C【解析】试题分析:根据相似线的定义,可知截得的三角形与△ABC有一个公共角.①公共角为∠A 时,根据相似三角形的判定:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时,根据相似三角形的判定:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,根据∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.解:①公共角为∠A时:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,∵∠CPB=∠A+∠ABP,∴PB>PC,PC=PA,∴P B>PA,∴∠PBA<∠A,∴∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.综上最多有3条.故选C.5.B解析:B【解析】当k>0时,直线从左往右上升,双曲线分别在第一、三象限,故A、C选项错误;∵一次函数y=kx-1与y轴交于负半轴,∴D选项错误,B选项正确,故选B.6.D解析:D【分析】根据相似图形的定义,形状相同,可得出答案.【详解】解:A、两图形形状不同,故不是相似图形;B、两图形形状不同,故不是相似图形;C、两图形形状不同,故不是相似图形;D、两图形形状相同,故是相似图形;故选:D.【点睛】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.7.A解析:A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.8.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠P AB≠∠PCA,∠PBA≠∠P AC,∴无法判定△P AB与△PCA相似,故A错误;同理,无法判定△P AB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=P A,AC=P A,AD=P A,BD=2P A,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.9.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.10.B解析:B【解析】试题分析:利用位似图形的性质首先得出位似比,进而得出面积比.∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选B.考点:位似变换.11.D解析:D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD=,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.12.B解析:B【解析】【分析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=4;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=4.故选B.【点睛】主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.二、填空题13.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB 是等边三角形∴∠PAH=60°∴根据锐角三解析:9332+ . 【解析】 【详解】如图,过点P 作PH ⊥OB 于点H ,∵点P (m ,m )是反比例函数y=9x在第一象限内的图象上的一个点, ∴9=m 2,且m >0,解得,m=3.∴PH=OH =3.∵△P AB 是等边三角形,∴∠P AH =60°. ∴根据锐角三角函数,得3∴OB 3∴S △POB =12OB•PH 933+. 14.0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案【详解】=故答案为0【点睛】此题主要考查了特殊角的三角函数值正确记忆相关数据是解题关键解析:0【解析】【分析】 直接利用特殊角的三角函数值代入进而得出答案.【详解】2cos 45tan30sin60︒-︒︒=223311023222-=-= . 故答案为0.【点睛】 此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.15.【解析】【详解】如图过点P 作PA⊥x 轴于点A∵P(512)∴OA=5PA=12由勾股定理得OP=∴故填:【点睛】此题考查锐角三角函数的定义先构建直角三角形确定边长即可得到所求的三角函数值解析:513【解析】【详解】如图,过点P 作PA ⊥x 轴于点A ,∵P(5,12),∴OA=5,PA=12,由勾股定理得OP=222251213OA PA +=+=,∴5cos 13OA OP α==, 故填:513.【点睛】此题考查锐角三角函数的定义,先构建直角三角形,确定边长即可得到所求的三角函数值. 16.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何解析:8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个. 点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.17.【解析】【分析】把已知点的坐标代入可求出k 值即得到反比例函数的解析式【详解】设这个反比例函数的表达式为了则所以这个反比例函数的表达式为故答案是:【点睛】考查的是用待定系数法求反比例函数的解析式解题关 解析:6y x =【解析】【分析】把已知点的坐标代入可求出k 值,即得到反比例函数的解析式.【详解】设这个反比例函数的表达式为了(0)k y k x=≠,则 (2)(3)6k =-⨯-=,所以这个反比例函数的表达式为6 yx =.故答案是:6 yx =.【点睛】考查的是用待定系数法求反比例函数的解析式,解题关键是设关系式、再将已知点坐标代入,从而求解即可.18.6【解析】分析:直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值再利用完全平方公式将原式变形得出答案详解:∵点P(mn)在直线y=-x+2上∴n+m=2∵点P(m解析:6【解析】分析:直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值,再利用完全平方公式将原式变形得出答案.详解:∵点P(m,n)在直线y=-x+2上,∴n+m=2,∵点P(m,n)在双曲线y=-1x上,∴mn=-1,∴m2+n2=(n+m)2-2mn=4+2=6.故答案为6.点睛:此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征,正确得出m,n之间的关系是解题关键.19.【解析】【分析】由正方形的性质易证△ABC∽△FEC可设BC=x只需求出BC即可求出图中阴影部分的面积【详解】如图所示:设BC=x则CE=1﹣x∵AB∥EF∴△ABC∽△FEC∴=∴=解得x=∴阴影解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x-解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.20.-2【解析】【分析】根据反比例函数的定义列出方程解出k的值即可【详解】解:若函数y=(k-2)是反比例函数则解得k=﹣2故答案为﹣2解析:-2【解析】【分析】根据反比例函数的定义列出方程2k-5=-1k-20⎧⎨≠⎩,解出k的值即可.【详解】解:若函数y=(k-2)2k5x-是反比例函数,则2k-5=-1 k-20⎧⎨≠⎩解得k=﹣2,故答案为﹣2.三、解答题21.(1)90o ,2BC BD +;(2)结论:90PBD ∠=︒, 2AB BD BC =-,理由详见解析【解析】【分析】 (1)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,2AC BD =,因此2AC BD =,即可得出结论;(2)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,AC BD =,因此AC =,即可得出结论.【详解】解:(1)PCD QV 为等腰直角三角形,且90PCD ∠=︒, 45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又PA PB =Q ,~PAC PBD ∴∆∆2=,AC BD ∴=,∴2AC BD =,∴2AB BC AC BC BD =+=+,故答案为90o ,2BC BD +,(2)结论:90PBD ∠=︒; AB BC =-;理由如下: PCD QV 为等腰直角三角形,且90PCD ∠=︒,45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又PA PC PB PD ==Q ,PAC PBD ∴V V ∽,相似比为22=, 90PBD PAC ∴∠=∠=︒,22AC BD =, 2AC BD ∴=, 2AB AC BC BD BC ∴=-=-. 【点睛】 本题是相似形综合题,主要考查了等腰直角三角形的性质、相似三角形的判定与性质等知识;熟练掌握等腰直角三角形的性质,证明三角形相似是解决问题的关键.22.(1)证明见解析;(2)3.【解析】【分析】(1)根据切线的判定定理得到BC 是⊙O 的切线,再利用切线长定理证明即可;(2)根据含30°的直角三角形的性质、正切的定义计算即可.【详解】(1)∵AB 是⊙O 直径,BC ⊥AB ,∴BC 是⊙O 的切线,∵CD 切⊙O 于点D ,∴BC =CD ;(2)连接BD ,∵BC =CD ,∠C =60°,∴△BCD 是等边三角形,∴BD =BC =3,∠CBD =60°,∴∠ABD =30°,∵AB 是⊙O 直径,∴∠ADB =90°,∴AD =BD •tan ∠ABD =3.【点睛】本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.23.(1)证明见解析(2)22-(3)2【解析】【分析】(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=2,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.【详解】(1)在图1中,设AD=BC=a,则有AB=CD=2a,∵四边形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD=22AD PA+=2a,∵AB=2a,∴PD=AB;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,则有2,∵BP=AB-PA,∴2a-a,∵BP′∥CD,∴2222BE BP a aCE CD a--===;(3)2,理由为:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∴AQ=AB-BQ=AB-BC ,∵BC=AD ,∴AQ=AB-AD ,∴BF=AQ ,∴QF=BQ+BF=BQ+AQ=AB ,∵AB=CD ,∴QF=CD ,∵QM=CN ,∴QF-QM=CD-CN ,即MF=DN ,∵MF ∥DN ,∴∠NFH=∠NDH ,在△MFH 和△NDH 中,{MFH NDHMHF NHD MF DN∠∠∠∠=== ,∴△MFH ≌△NDH (AAS ),∴FH=DH ,∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=12CD=12×. 【点睛】 此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.24.河宽为17米.【解析】【分析】由题意先证明∆ABC ∽∆ADE ,再根据相似三角形的对应边成比例即可求得AB 的长.【详解】∵CB ⊥AD ,ED ⊥AD ,∴∠CBA =∠EDA =90°,∵∠CAB =∠EAD ,∴∆ABC ∽∆ADE , ∴AD DE AB BC=, 又∵AD=AB+BD ,BD=8.5,BC =1,DE =1.5, ∴8.5 1.51AB AB +=,即河宽为17米.【点睛】本题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键. 25.见解析【解析】【分析】由AB∥CD得△AOB∽△COE,有OE:OB=OC:OA;由AD∥BC得△AOF∽△COB,有OB:OF=OC:OA,进而解答.【详解】∵AB∥CD,∴△AOB∽△COE.∴OE:OB=OC:OA;∵AD∥BC,∴△AOF∽△COB.∴OB:OF=OC:OA.∴OB:OF=OE:OB,即:BO EO FO BO【点睛】本题考查了平行四边形的性质与相似三角形的判定与性质,解题的关键是熟练的掌握行四边形的性质与相似三角形的判定与性质.。

【人教版】初三数学下期中一模试卷带答案

【人教版】初三数学下期中一模试卷带答案

一、选择题1.如图,在平行四边形ABCD 中,:2:1AE BE =,F 是AD 的中点,射线EF 与AC 交于点G ,与CD 的延长线交于点P ,则AGGC的值为( ).A .5:8B .3:8C .3:5D .2:52.如图,在▱ABCD 中,M 、N 为BD 的三等分点,连接CM 并延长交AB 与点E ,连接EN 并延长交CD 于点F ,则DF :FC 等于( ).A .1:2B .1:3C .2:3D .1:43.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =则EF ED ⋅的值为( )A .4B .6C .8D .164.如图,直线l 1//l 2//l 3,分别交直线m 、n 于点A 、B 、C 、D 、E 、F .若AB ∶BC =5∶3,DE =15,则EF 的长为( )A .6B .9C .10D .255.如图,已知点E 是正方形ABCD 的边AB 边上的黄金分割点,且,AE EB >若1S 表示AE 为边长的正方形面积,2S 表示以BC 为长,BE 为宽的矩形面积,3S 表示正方形ABCD 除去1S 和2S 剩余的面积,则32:S S 的值为( )A .51- B .51+ C .352D .35+ 6.已知P 是线段AB 的黄金分割点,且51AB =+,则AP 的长为( ).A .2B .51-C .2或51-D .35-7.如图,正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式kax x<的解集为( )A .2x <-或2x >B .2x <-或02x <<C .20x -<<或02x <<D .20x -<<或2x >8.已知一个正比例函数与一个反比例函数的图像交于(-3,4),则这两个函数的表达式分别是( ) A .412,3y x y x == B .412,3y x y x=-=- C .412,3y x y x=-= D .412,3y x y x==- 9.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( )A .y x =-B .2y x =+C .2y x=D .22y x x =-10.如图,在平面直角坐标系中,直线y x =-与双曲线ky x=交于A 、B 两点,P 是以点(2,2)C 为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .12-B .32-C .2-D .14-11.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x 轴交反比例函数3y x =-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则ABCDS为( )A .2.5B .3.5C .4D .512.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大 C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小二、填空题13.如图圆内接正六边形ABCDEF 中,AC 、BF 交于点M .则:ABM AFM S S =△△___________.14.如图,ABC 中,1BC =.若113AD AB =,且11//D E BC ,照这样继续下去,12113D D D B =,且22//D E BC ;23213D D D B =,且33//D E BC ;…;1113n n n D D D B --=,且//n n D E BC 则101101=D E _________.15.在四边形ABCD 中,//AB DC ,90B ∠=︒,3AB =,11BC =,6DC =,点P 在BC 上,连接AP ,DP ,若ABP △与PCD 相似,则BP 的长为___________. 16.如图,已知CD 为O 的直径,弦AB CD ⊥交CD 于点E ,连接BD ,OB ,AC ,若8AB =,2DE =,则O 的半径为______.17.如图,A 、B 两点在双曲线()30y x x=>,分别经过A 、B 两点向坐标轴作垂线段,已知1S =阴影,则12S S +=______.18.函数25(1)ny n x -=+是反比例函数,且图象位于第二、四象限内,则n =____.19.如图,直线AB 过原点分别交反比例函数6y x=,于A .B ,过点A 作AC x ⊥轴,垂足为C ,则△ABC 的面积为______.20.已知,点P (a ,b )为直线3y x =-与双曲线2y x=-的交点,则11b a -的值等于__.三、解答题21.已知:E 是矩形ABCD 的边AB 上一个动点,直线EF DE ⊥交BC 于点F .(1)求证:ADE ∽BFE △;(2)若直线EF 经过C 点,且3AD =,10AB =,是否存在这样的点E ,使ADE 和BFE △相似?若存在,请求出AE 的长度;若不存在,请说明理由.(3)连结DF ,若3AD =,2AE =,当ADE 和EFD △相似时,则AB =______. 22.如图,在平面直角坐标系xOy 中,OAB 如图放置,点P 是AB 边上的一点,过点P 的反比例函数(0,0)ky k x x=>>与OA 边交于点E ,连接OP .(1)如图1,若点A 的坐标为(3,4),点B 的坐标为(5,0),且OPB △的面积为5,求直线AB 和反比例函数的解析式;(2)如图2,若60AOB ︒∠=,过P 作//PC OA ,与OB 交于点C ,若12PC OE =,并且OPC 的面积为33,求OE 的长. (3)在(2)的条件下,过点P 作//PQ OB ,交OA 于点Q ,点M 是直线PQ 上的一个动点,若OEM △是以OE 为直角边的直角三角形,则点M 的坐标为______. 23.阅读下面材料 (问题情境)课外兴趣小组活动时,老师提出了如下问题:如图①.在△ABC 中,若AB =8,AC =6,求BC 边上的中线AD 取值范围,小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE =AD ,请根据小明方法思考:(1)由已知和作图能得到△ADC ≌△EDB 的理由是( ) A .SSS B .SAS C .AAS D .HL (2)由三角形三边的关系可求得AD 长的取值范围是( )A .6<AD <8B .6≤AD ≤8C .1<AD <7 D .1≤AD ≤7 (解后感悟)解题时,条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到一个三角形中. (灵活运用)如图②,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE =EF 若EF =4,EC =3,求线段BF 的长.24.为让同学们更好的了解电路,学校实验室购进一批蓄电池,已知蓄电池的电压为定值,同学们在实验过程中得到电流I (A )是电阻R (Ω)的反比例函数,其图象如图所示.(电压=电流×电阻) (1)求蓄电池的电压是多少?(2)若保证电路中的小灯泡发光所需要的电流的范围为212I ≤≤,则求电路中能使小灯泡发光的电阻R 的取值范围.25.如图,已知函数()0ky x x=>的图象经过点,,A B 点A 的坐标为()1,2.过点A 作//AC y 轴,1AC =(点C 位于点A 的下方),过点C 作//CD x 轴,与函数的图象交于点D ,过点B 作BE CD ⊥,垂足E 在线段CD 上,连接,OC OD .()1求OCD ∆的面积;()2当12BE AC =时,求CE 的长. 26.如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (﹣2,0),与反比例函数y =ax在第一象限内的图象交于点B (2,n ),连结BO ,若S △AOB =4. (1)求该反比例函数y =ax的表达式和直线AB :y =kx+b 对应的函数表达式; (2)观察在第一象限内的图象,直接写出不等式kx+b <ax的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】证明AFE △≌△()DFP AAS ,推出=AE DP ,由:2:1AE BE =,设BE k =,2AE k =,推出3AB CD k ==,5PC k =,由//AE BC ,可得AG AEGC CP=的值. 【详解】∵四边形ABCD 是平行四边形, ∴//AB PC ,AB CD =, ∴AEF P ∠=∠,∵AFE DFP ∠=∠,AF DF =, ∴AFE △≌△()DFP AAS , ∴=AE DP ,∵:2:1AE BE =,设BE k =,2AE k =, ∴3AB CD k ==,5PC k =, ∵//AE BC ,∴2255AG AE k GC CP k ===, 故选:D . 【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用已知条件证明三角形全等、利用参数解决问题,属于中考常考题型.2.B解析:B 【分析】由题意可得DN=NM=MB ,据此可得DF :BE=DN :NB=1:2,再根据BE :DC=BM :MD=1:2,AB=DC ,故可得出DF :FC 的值. 【详解】解:由题意可得DN=NM=MB ,AB//CD ,AB//BC ∴△DFN ∽△BEN ,△DMC ∽△BME ,∴DF :BE=DN :NB=1:2,BE :DC=BM :MD=1:2, 又∵AB=DC , ∴DF :AB=1:4, ∴DF :FC=1:3 故选:B .【点睛】本题考查相似三角形的性质,两相似三角形对应线段成比例,要注意比例线段的应用.3.D解析:D 【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论. 【详解】解:∵四边形ABCD 是正方形, ∴∠BAC=∠ADB=45°,∵把△ABC 绕点A 逆时针旋转到△AB'C', ∴∠EAF=∠BAC=45°, ∵∠AEF=∠DEA , ∴△AEF ∽△DEA ,∴AE EFDE AE =, ∴EF•ED=AE 2, ∵AE=4,∴EF•ED 的值为16, 故选:D . 【点睛】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.4.B解析:B 【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案. 【详解】解:∵l 1∥l 2∥l 3,DE=15,∴53DE AB EF BC ==,即1553EF =, 解得,EF=9, 故选:B . 【点睛】本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.5.A解析:A 【分析】设正方形ABCD 的边长为a ,关键黄金分割点的性质得到512AE AB 和12BEAE =,用a 表示出1S 、2S 和3S 的面积,再求比例. 【详解】解:设正方形ABCD 的边长为a , ∵点E 是AB 上的黄金分割点,∴512AEAB ,则12AE a =,∴BE AE =,则21322BE a a ⎛⎫== ⎪ ⎪⎝⎭,∵2221S AE ⎫===⎪⎪⎝⎭,2232S BE BC a =⋅=,∴)2222333222S a a a a -=--=,∴)223231:2:22S S a a ==. 故选:A . 【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质.6.C解析:C 【分析】若点P 是靠近点B 的黄金分割点,则AP AB =,然后代入数据计算即可;若点P 是靠近点A 的黄金分割点,先求出BP ,再利用线段的和差即可求出AP . 【详解】解:若P 是靠近点B 的黄金分割点,则)12AP AB ===;若P 是靠近点A 的黄金分割点,则)111222BP AB ==⨯=,∴121AP AB BP =-=-=;故选:C . 【点睛】本题主要考查了黄金分割,熟练掌握黄金分割比为12是解题的关键. 7.B解析:B【分析】先根据反比例函数与正比例函数的性质求出B 点横坐标,再由函数图象可得k ax x <,求出x 的取值范围即可.【详解】∵正比例函数y ax =的图象与反比例函数k y x =的图象相交于A ,B 两点, ∴A ,B 两点坐标关于原点对称,∵点A 的横坐标为2,∴B 点的横坐标为-2, ∵k ax x<, ∴在第一和第三象限,正比例函数y ax =的图象在反比例函数k y x=的图象的下方, ∴2x <-或02x <<,故选:B .【点睛】 本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.8.B解析:B【分析】用待定系数法分别求出两个函数表达式即可.【详解】解:设正比例函数为y =kx ,将(-3,4)代入,得4=-3k , 解得43k =-, ∴正比例函数为43y x =-, 设反比例函数为k y x=, 将(-3,4)代入,得43k =- 解得k =-12, ∴反比例函数为12y x =-, 故选:B .【点睛】本题考查了用待定系数法求正比例函数表达式和反比例函数表达式,熟练掌握待定系数法是解决本题的关键.9.B解析:B【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”.【详解】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x ,A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合;B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合;C 、2x x=,解得:x =x =“好点”)和(,),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.10.A解析:A【分析】连接BP ,证得OQ 是△ABP 的中位线,当P 、C 、B 三点共线时PB 长度最大,PB=2OQ=4,设 B 点的坐标为(x ,-x ),根据点(2,2)C ,可利用勾股定理求出B 点坐标,代入反比例函数关系式即可求出k 的值.【详解】解:连接BP ,∵直线y x =-与双曲线k y x=的图形均关于直线y=x 对称, ∴OA=OB ,∵点Q 是AP 的中点,点O 是AB 的中点∴OQ 是△ABP 的中位线,当OQ 的长度最大时,即PB 的长度最大,∵P B≤PC+BC ,当三点共线时PB 长度最大,∴当P 、C 、B 三点共线时PB=2OQ=4,∵PC=1,∴BC=3,设B 点的坐标为(x ,-x ),则()()22BC=2-23x x ++=, 解得1222,22x x ==-(舍去) 故B 点坐标为22,22⎛⎫- ⎪⎪⎝⎭, 代入k y x=中可得:12k =-, 故答案为:A .【点睛】本题考查三角形中位线的应用和正比例函数、反比例函数的性质,结合题意作出辅助线是解题的关键.11.D解析:D【分析】过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ) ∴BH=a ,CD=AB=2a -(3a -)=5a ∴ABCD S =BH·CD=5故选D .【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.12.B解析:B【分析】 反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】 解:反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】 本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内. 二、填空题13.【分析】根据正六边形的性质判断出△AMB ∽△BAF 再根据相似三角形的性质求解即可【详解】由题意可知∠AFB=∠ABF=∠CAB=30°则△AMB ∽△BAF 且在△BAF 中∠BAF=120°∴△BAF 是解析:12 【分析】 根据正六边形的性质,判断出△AMB ∽△BAF ,再根据相似三角形的性质求解即可.【详解】由题意,可知∠AFB=∠ABF=∠CAB=30°,则△AMB ∽△BAF ,且在△BAF 中,∠BAF=120°,∴△BAF 是顶角为120°的等腰三角形,作AP ⊥BF ,∵∠ABF=30°,∴AB=2AP ,BP=3AP ,BF=2BP=23AP ,∴3AB BF =, ∴△AMB ∽△BAF ,相似比为:3, ∴:1:3ABM AFB S S =△△∴1:1:22ABM AFM S S ==, 故答案为:12.【点睛】本题考查正多边形的性质及相似三角形的判定与性质,准确推断出相似三角形,且注意相似三角形的面积比等于相似比的平方是解题关键.14.【分析】由D1E1∥BC 可得△AD1E1∽△ABC 然后由相似三角形的对应边成比例证得继而求得D1E1的长又由D1D2=可得AD2=继而求得D2E2的长同理可求得D3E3的长于是可得出规律则可求得答案解析:10121()3- 【分析】由D 1E 1∥BC ,可得△AD 1E 1∽△ABC ,然后由相似三角形的对应边成比例,证得111D E AD BC AB =,继而求得D 1E 1的长,又由D 1D 2= 113D B ,可得AD 2= 59AB ,继而求得D 2E 2的长,同理可求得D 3E 3的长,于是可得出规律,则可求得答案.【详解】解:∵D 1E 1∥BC ,∴△AD 1E 1∽△ABC , ∴111D E AD BC AB=, ∵BC=1,AD 113AB =, ∴D 1E 113=, ∵D 1D 2=113D B , ∴AD 2= 59AB , 同理可得:22254211()993D E ==-=-, 3331921()273D E ==-, ∴21().3n n n D E =-∴101101D E =10121()3-. 故答案为:10121()3-.【点睛】 此题考查了相似三角形的判定与性质.得到规律21().3nn n D E =-是关键. 15.或2或9【分析】先根据平行线的性质可得再分和两种情况然后分别利用相似三角形的性质即可得【详解】设则如图因此分以下两种情况:(1)若则即解得或经检验或均是所列方程的根则此时或;(2)若则即解得经检验是 解析:113或2或9 【分析】 先根据平行线的性质可得90C B ∠=∠=︒,再分ABP PCD △△和ABP DCP △△两种情况,然后分别利用相似三角形的性质即可得.【详解】设BP x =,则11CP BC BP x =-=-,如图,//,90AB DC B =︒∠,90C B ∴∠=∠=︒,因此,分以下两种情况:(1)若ABP PCD △△, 则AB BP PC CD =,即3116x x =-, 解得2x =或9x =,经检验,2x =或9x =均是所列方程的根,则此时2BP =或9BP =; (2)若ABP DCP △△, 则AB BP DC CP =,即3611x x=-, 解得113x =, 经检验,113x =是所列方程的根, 则此时113BP =; 综上,BP 的长为113或2或9, 故答案为:113或2或9.【点睛】本题考查了相似三角形的性质、平行线的性质、分式方程的几何应用,依据题意,正确分两种情况讨论是解题关键.16.5【分析】设的半径为则由垂径定理得证明根据对应边成比例列式求出r 的值【详解】解:∵∴∵∴∴设的半径为则∵∴∴解得故答案是:5【点睛】本题考查圆的性质和相似三角形的性质和判定解题的关键是掌握圆周角定理 解析:5【分析】设O 的半径为r ,则22CE r =-,由垂径定理得142AE BE AB ===,证明AECDEB ,根据对应边成比例列式求出r 的值.【详解】解:∵AB CD ⊥,∴90ACE DBE ∠=∠=︒,∵AEC DEB ∠=∠,∴AEC DEB , ∴AE EC DE EB=, 设O 的半径为r ,则22CE r =-,∵AB CD ⊥, ∴142AE BE AB ===, ∴42224r -=,解得=5r . 故答案是:5.【点睛】本题考查圆的性质和相似三角形的性质和判定,解题的关键是掌握圆周角定理和垂径定理,以及相似三角形对应边成比例的性质.17.4【分析】根据反比例函数系数k 的几何意义求出S1+S 阴影和S2+S 阴影求出答案【详解】解:∵AB 两点在双曲线上∴S1+S 阴影=3S2+S 阴影=3∴S1+S2=6-2=4故答案为:4【点睛】本题考查的解析:4【分析】根据反比例函数系数k 的几何意义,求出S 1+S 阴影和S 2+S 阴影,求出答案.【详解】解:∵A 、B 两点在双曲线3y x=上, ∴S 1+S 阴影=3,S 2+S 阴影=3,∴S 1+S 2=6-2=4,故答案为:4.【点睛】本题考查的是反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|. 18.-2【分析】根据反比例函数的定义与性质解答即可【详解】根据反比函数的解析式y=(k≠0)故可知n+1≠0即n≠-1且n2-5=-1解得n=±2然后根据函数的图像在第二四三象限可知n+1<0解得n<-解析:-2.【分析】根据反比例函数的定义与性质解答即可.【详解】根据反比函数的解析式y=kx(k≠0),故可知n+1≠0,即n≠-1,且n2-5=-1,解得n=±2,然后根据函数的图像在第二、四三象限,可知n+1<0,解得n<-1,所以可求得n=-2.故答案为:-2【点睛】本题考查反比例函数的定义与性质,熟记定义与性质是解题的关键.19.6;【分析】通过反比例函数与一次函数交点关于原点成中心对称得到OA 与OB相等得到△AOC与△BOC面积相等再通过反比例函数的几何意义得到△AOC的面积等于即可得到结果【详解】解:∵反比例函数与正比例解析:6;【分析】通过反比例函数与一次函数交点关于原点成中心对称,得到OA与OB相等,得到△AOC与△BOC面积相等,再通过反比例函数的几何意义得到△AOC的面积等于12k,即可得到结果.【详解】解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴S△BOC=S△AOC,又∵A是反比例函数上的点,且AC⊥x轴于点C,∴△AOC的面积=12k=12×6=3,∴△ABC的面积=6故答案为:6.【点睛】本题考查反比例函数与一次函数的交点问题,反比例函数几何意义,充分理解反比例的几何意见是快速解题的关键.20.-【分析】将点P分别代入两函数解析式得到:b=a﹣3b=﹣进而得到a﹣b=3ab=﹣2将其代入求值即可【详解】∵点P(ab)为直线y=x﹣3与双曲线y=﹣的交点∴b=a﹣3b=﹣∴a﹣b=3ab=﹣解析:-3 2【分析】将点P分别代入两函数解析式得到:b=a﹣3,b=﹣2a,进而得到a﹣b=3,ab=﹣2.将其代入求值即可.【详解】∵点P (a ,b )为直线y =x ﹣3与双曲线y =﹣2x的交点, ∴b =a ﹣3,b =﹣2a, ∴a ﹣b =3,ab =﹣2. ∴1b ﹣1a =a b ab -=32-=﹣32. 故答案是:﹣32. 【点睛】考查了反比例函数与一次函数的交点,解题关键是是得到a ﹣b =3,ab =﹣2.三、解答题21.(1)证明见解析;(2)存在,1AE =或9;(3)4或132【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)设AE x =,则10BE x =-,利用相似三角形的性质,构建方程求解即可;(3)连接DF .分两种情形:当ADE EDF ∽△时,当ADE △∽EFD △时,分别构建方程求解即可.【详解】(1)∵四边形ABCD 是矩形∴90A B ∠=∠=︒,∵EF DE ⊥∴90DEF ∠=︒,∴AED BFE ∠=∠ ∴ADE ∽BFE △;(2)设AE x =,则10BE x =-, 由题意得:3BF BC AD ===∵ADE ∽BFE △ ∴AD AE BE BF =, ∴3103x x =- 解得:1x =或9 经检验,1x =或9是分式方程的根,∴1AE =或9;(3)连接DF .当ADE ∽EDF 时 则AD AE DE EF = ∴32DF AD EF AE == ∵ADE ∽BEF ∴32AD DE EB EF == ∵3AD =∴2BE =∴224AB AE BE =+=+=当ADE ∽EFD △时 则AD AE EF DE = ∴23DE AE EF AD == ∵ADE ∽BEF ∴23AD DE EB EF == ∵3AD = ∴92BE = ∴913222AB AE EB =+=+= 综上所述,满足条件的AB 的值为4或132 故答案为:4或132. 【点睛】 本题考查了相似三角形、矩形、分式方程的知识;解题的关键是熟练掌握相似三角形、矩形、分式方程的性质,从而完成求解.22.(1)210y x =-+,8y x =;(2)4OE =;(3)(3-或(53,. 【分析】(1)过点P 作PD ⊥OB 于点D ,根据点B 的坐标为(5,0),且OPB △的面积为5求出PD 的长,求出直线AB 的解析式,故可得出P 点坐标,利用待定系数法求出反比例函数的解析式即可;(2)作EF ⊥OB 于F ,PD ⊥OB 于D ,则//EF PD ,先证明OEF CPD ∽,设OE=m ,根据相似三角形对应边成比例求得1133,,22OF OE m EF OE m ====13,,4CD m PD m ==进而求得P 的坐标,求得OC 的长,然后根据OPC 的面积为33,列出关于m 的方程,解方程求得即可. (3)先求得,E P 的坐标,再根据//,PQ OB 设(),3,M x 分两种情况讨论,当90MOE ∠=︒,90OEM ∠=︒, 再利用勾股定理列方程,解方程可得答案. 【详解】解:(1)如图1,过点P 作PD ⊥OB 于点D ,∵点B 的坐标为(5,0), OPB △的面积为 5,∴152OB PD =, 552PD ∴=, 解得:PD=2, 设直线AB 的解析式为 y=ax+b (a≠0),∵A (3,4),B (5,0),∴ 3450a b a b +=⎧⎨+=⎩, 解得:210a b =-⎧⎨=⎩, ∴直线AB 的解析式为210y x =-+,当y=2时,-2x+10=2,解得x=4,∴P ( 4,2),∵点P 的反比例函数k y x =(x >0)上, ∴2=4k ,解得:k=8,∴反比例函数的解析式为:8y x=; (2)如图2,作EF ⊥OB 于F ,PD ⊥OB 于D ,则//EF PD ,∵//PC OA , 12PC OE =∴OEF CPD ∽, ∴2OF EF OE CD PD CP ===, 设OE=m , ∵∠AOB=60°, ∴1133,,22OF OE m EF ==== ∴13,,4CD m PD == ∴13,22E m m ⎛⎫ ⎪ ⎪⎝⎭,P 的纵坐标为34m , ∵E 、P 都是反比例函数k y x =(k >0,x >0)上的点, ∴设P 的横坐标为x ,则 133224m m =, x m ∴=,∴OD=m , ∴1344OC OD CD m m m =-=-=, ∵OPC 的面积为332, ∴1332OC PD = 1333324m ⨯= 解得:m=4,(负根舍去)∴OE=4.(3)∵(223E ,, (43,P , //,PQ OB 如图3,当∠EOM=90°时,设(3,M x由222,OM OE ME += ()()()()22222232232323,x x ∴+++=-+- 412,x ∴-=3,x ∴=-()33,M ∴-,如图4,当∠OEM=90°时,由222,OE EM OM += (()222222232333,x x ∴++-+=+ 420,x ∴-=-5,x ∴=(53.M ∴,∴M 的坐标为(3-或(53,.故答案为:(3-或(53,.【点睛】本题考查的是反比例函数综合题,涉及到用待定系数法求一次函数及反比例函数的解析式,相似三角形的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.23.(1)B ;(2)C ;应用:7.【分析】(1)由已知AD 是△ABC 的中线,和作图延长AD 到点E ,使DE =AD ,CD=BD, ∠ADC=∠EDB, AD=DE 得到△ADC ≌△EDB (SAS) 即可,(2) 由△ADC ≌△EDB ,则BE=AC=6,AE=2AD ,AB=8,在ΔABE 中,AB-BE<AE<AB+BE ,即则2<2AD<14即可,【灵活运用】延长AD 到G ,使DG=AD ,连接BG ,由(1)知△ADC ≌△GDB ,BG=AC=AE+EC=7 ∠G=∠DAC 可以判定BG ∥AC ,由∠BFG=∠AFE ,得ΔGBF ∽ΔAEF ,由性质BG BF AE EF=. 【详解】(1)由已知AD 是△ABC 的中线,和作图延长AD 到点E ,使DE =AD ,CD=BD, ∠ADC=∠EDB, AD=DE 得到△ADC ≌△EDB (SAS)故选择:B ,(2) 由△ADC ≌△EDB ,则BE=AC=6,AE=2AD ,AB=8,在ΔABE 中,AB-BE<AE<AB+BE ,即AB-BE=8-6=2,AB+BE=14,则2<2AD<14,1<AD<7故选择:C ,灵活运用延长AD 到G ,使DG=AD ,连接BG ,由(1)知△ADC ≌△GDB ,BG=AC=AE+EC=7,∠G=∠DAC ,BG ∥AC ,∠BFG=∠AFE ,ΔGBF ∽ΔAEF ,BG BF AE EF=, 744BF =, BF=7.【点睛】本题考查中线加倍问题,由中线加倍,利用SAS 推出三角形全等,把问题转化为三角形中的问题,用三角形的三边关系,确定取值范围,由△ADC ≌△GDB ,∠G=∠DAC 可以判定BG ∥AC ,由∠BFG=∠AFE ,得ΔGBF ∽ΔAEF ,用相似三角形的性质解决问题. 24.(1)蓄电池的电压是36V ;(2)电阻R 的取值范围是318R ≤≤.【分析】(1)根据“电压=电流×电阻”即可求解;(2)先利用待定系数法即可求出这个反比例函数的解析式,再将212I ≤≤代入即可确定电阻的取值范围.【详解】(1)蓄电池的电压是4×9=36,∴蓄电池的电压是36V ;(2)电流I 是电阻R 的反比例函数,设k I R =, ∵图象经过(9,4),∴9436k =⨯=, ∴36I R=, 当I=2时,18R =,当I=12时,3R =,∵I 随R 的增大而减小,∴电阻R 的取值范围是:318R ≤≤.【点睛】本题考查了反比例函数的应用,解题的关键是正确地从中整理出函数模型,并利用函数的知识解决实际问题.25.(1)12;(2)13【分析】(1)根据点A 坐标求出函数表达式及点C 坐标,再求出点D 坐标,然后根据坐标计算面积即可;(2)先求出BE 得到点B 的纵坐标,再利用表达式求出横坐标,从而计算即可.【详解】解:(1)∵函数()0k y x x =>的图象经过点A(1,2), ∴21k =,即2k =, ∴2y x=, ∵//AC y 轴,1AC =,∴点C 的坐标为(1,1),∵//CD x 轴,点D 在函数图象上,∴点D 的坐标为(2,1),∴CD=1, ∴111122OCD S =⨯⨯=△; (2)∵12BE AC =, ∴12BE =, ∵BE CD ⊥,∴点B 的纵坐标是32, ∴点B 的横坐标是43, ∴41133CE =-=. 【点睛】本题考查了反比例函数的应用,熟练掌握待定系数法求表达式及特殊点的坐标特征是解题的关键.26.(1)y =8x,y =x+2;(2)0<x <2. 【分析】(1)根据S △AOB 求出n 的值,然后将B 点坐标带入即可求得反比例函数解析式,利用待定系数法,代入A 、B 点坐标即可求得直线AB 的解析式;(2)观察函数图像,直线AB 在BC 段时在反比例函数的下方,因此根据B 、C 的横坐标即可求解.【详解】(1)由A (﹣2,0),得OA =2;∵点B (2,n )在第一象限内,S △AOB =4,∴12OA•n=4;∴n=4;∴点B的坐标是(2,4);∵该反比例函数的解析式为y=ax(a≠0),将点B的坐标代入,得4=12 a,∴a=8;∴反比例函数的解析式为y=8x,∵直线AB的解析式为y=kx+b(k≠0),将点A,B的坐标分别代入,得2024k bk b-+=⎧⎨+=⎩,解得12kb=⎧⎨=⎩,∴直线AB的解析式为y=x+2;(2)由于B点坐标为(2,4),可知不等式kx+b<ax的解集为:0<x<2.故答案为(1)y=8x,y=x+2;(2)0<x<2.【点睛】本题考查了反比例函数的性质,待定系数法求函数解析式,和一次函数于反比例函数综合,正确的识别示意图是本题的关键.。

初三数学下期中一模试卷带答案

初三数学下期中一模试卷带答案

初三数学下期中一模试卷带答案一、选择题1.P是△ABC一边上的一点(P不与A、B、C重合),过点P的一条直线截△ABC,如果截得的三角形与△ABC相似,我们称这条直线为过点P的△ABC的“相似线”.Rt△ABC中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线”最多有几条?()A.1条B.2条C.3条D.4条2.如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=3x(x>0)、y=kx(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A.﹣1B.1C.12-D.123.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12C EAFC CDF=VV,那么S EAFS EBCVV的值是()A.12B.13C.14D.194.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为()A.a B.a C.a D.a5.在函数y=21a x +(a 为常数)的图象上有三个点(﹣1,y 1),(﹣14,y 2),(12,y 3),则函数值y 1、y 2、y 3的大小关系是() A .y 2<y 1<y 3B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 3<y 1<y 26.如图,已知DE∥BC,CD 和BE 相交于点O ,S △DOE :S △COB =4:9,则AE :EC 为( )A .2:1B .2:3C .4:9D .5:47.如图,△OAB ∽△OCD ,OA :OC =3:2,∠A =α,∠C =β,△OAB 与△OCD 的面积分别是S 1和S 2,△OAB 与△OCD 的周长分别是C 1和C 2,则下列等式一定成立的是( )A .32OB CD=B .32αβ=C .1232S S = D .1232C C =8.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .1659.如图,在平行四边形中,点在边上,与相交于点,且,则与的周长之比为( )A .1 : 2B .1 : 3C .2 : 3D .4 : 910.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是( )A .B .C .D .11.若270x y -=. 则下列式子正确的是( ) A .72x y = B .27x y= C .27x y = D .27x y = 12.如图,一张矩形纸片ABCD 的长BC =xcm ,宽AB =ycm ,以宽AB 为边剪去一个最大的正方形ABEF ,若剩下的矩形ECDF 与原矩形ABCD 相似,则xy的值为( )A .512- B .512+ C .2D .212+ 二、填空题13.如图,已知AD 为ABC ∆的角平分线,DE AB ∥,如果23AE EC =,那么AE AB=______.14.将三角形纸片△ABC 按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =8,BC =10,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF的长度是______________.15.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数kyx(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.16.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则点C的坐标为________.17.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为__时,△ADP和△ABC相似.18.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.19.如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为_____.20.已知点P在线段AB上,且AP:BP=2:3,那么AB:PB=_____.三、解答题21.如图,一次函数y=mx+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B(4,1)两点,过点A作y轴的垂线,垂足为M.(1)求一次函数和反比例函数的解析式;(2)求△OAM的面积S;(3)在y轴上求一点P,使PA+PB最小.22.由一些大小相同,棱长为1的小正方体搭成的几何体的俯视图如图所示,数字表示该位置的正方体个数.(1)请画出它的主视图和左视图;(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为;(3)在不改变主视图和俯视图的情况下,最多可添加块小正方体.23.如图,AB∥CD,AC与BD的交点为E,∠ABE=∠ACB.(1)求证:△ABE∽△ACB;(2)如果AB=6,AE=4,求AC,CD的长.24.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AC=米后,斜坡AB改造为AB=米,坡度为1:3;将斜坡AB的高度AE降低20200斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)25.为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y 与x的函数关系式呢?(2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:根据相似线的定义,可知截得的三角形与△ABC有一个公共角.①公共角为∠A 时,根据相似三角形的判定:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时,根据相似三角形的判定:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,根据∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.解:①公共角为∠A时:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,∵∠CPB=∠A+∠ABP,∴PB>PC,PC=PA,∴PB>PA,∴∠PBA<∠A,∴∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.综上最多有3条.故选C.2.A解析:A【解析】【分析】连接OC、OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB=S△OCB,再利用反比例函数系数k的几何意义得到12×|3|+12•|k|=2,然后解关于k的绝对值方程可得到满足条件的k的值.【详解】连接OC、OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=12×|3|+12•|k|,∴12×|3|+12•|k|=2,而k<0,∴k=﹣1,故选A.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.3.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCCVV,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭VV,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方. 4.C解析:C【解析】【分析】【详解】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为a,∴△ACD的面积为a,故选C.【点睛】本题考查相似三角形的判定与性质,掌握相关性质是本题的解题关键.解析:A 【解析】 【分析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及增减性,再根据各点横坐标的值判断出y 1,y 2,y 3的大小关系即可. 【详解】∵反比例函数的比例系数为a 2+1>0,∴图象的两个分支在一、三象限,且在每个象限y 随x 的增大而减小. ∵﹣114-<<0,∴点(﹣1,y 1),(14-,y 2)在第三象限,∴y 2<y 1<0. ∵12>0,∴点(12,y 3)在第一象限,∴y 3>0,∴y 2<y 1<y 3. 故选A . 【点睛】本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.6.A解析:A 【解析】试题解析:∵ED ∥BC ,.DOE COB AED ACB ∴V V V V ∽,∽:4:9DOE BOC DOE COB S S V V Q V V ∽,,=:2:3.ED BC ∴= AED ACB QV V ∽,::.ED BC AE AC ∴=:2:3,?::ED BC ED BC AE AC Q ,==:2:3AE AC ∴=,:2:1.AE EC ∴= 故选A.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.7.D解析:D 【解析】A 选项,在△OAB ∽△OCD 中,OB 和CD 不是对应边,因此它们的比值不一定等于相似比,所以A 选项不一定成立;B 选项,在△OAB ∽△OCD 中,∠A 和∠C 是对应角,因此αβ=,所以B 选项不成立; C 选项,因为相似三角形的面积比等于相似比的平方,所以C 选项不成立;D 选项,因为相似三角形的周长比等于相似比,所以D 选项一定成立.8.C解析:C 【解析】 【分析】根据矩形的性质可知:求AD 的长就是求BC 的长,易得∠BAC =∠ADE ,于是可利用三角函数的知识先求出AC ,然后在直角△ABC 中根据勾股定理即可求出BC ,进而可得答案. 【详解】解:∵四边形ABCD 是矩形,∴∠B =∠BAC =90°,BC=AD ,∴∠BAC +∠DAE =90°, ∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=, 在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==,∴AD=BC 203==. 故选:C. 【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.9.C解析:C 【解析】 【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的周长比等于相似比就可得到答案. 【详解】∵四边形ABCD 是平行四边形, ∴DC ∥AB ,CD=AB . ∴△DFE ∽△BFA , ∵DE :EC=1:2, ∴EC :DC=CE :AB=2:3, ∴C △CEF :C △ABF =2:3. 故选C .10.C解析:C 【解析】 【分析】 【详解】cos55°,按键顺序正确的是.故答案选C . 11.A解析:A【解析】【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x -7y =0,∴2x =7y .A .72x y =,则2x =7y ,故此选项正确; B .27x y =,则xy =14,故此选项错误; C .27x y =,则2y =7x ,故此选项错误; D .27x y =,则7x =2y ,故此选项错误. 故选A .【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.12.B解析:B【解析】【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】∵四边形ABCD 是矩形,∴AD =BC =xcm ,∵四边形ABEF 是正方形,∴EF =AB =ycm ,∴DF =EC =(x ﹣y )cm ,∵矩形FDCE 与原矩形ADCB 相似,∴DF :AB =CD :AD , 即:x y y y x-= ∴x y 5+1 故选B .【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.二、填空题13.【解析】【分析】由证得【详解】∵∴△CED∽△CAB∴∵∴∵为的角平分线∴∠ADE=∠BAD=∠DAE∴故填:【点睛】此题考查相似三角形的判定与性质根据平行线证得三角形相似由此得到边的比值关系推导出 解析:35 【解析】 【分析】 由DE AB ∥证得 【详解】∵DE AB ∥,∴△CED ∽△CAB,∴DE CE AB AC =, ∵23AE EC =, ∴35DE CE AB AC ==, ∵AD 为ABC ∆的角平分线,DE AB ∥,∴∠ADE=∠BAD=∠DAE,∴AE AB =35DE CE AB AC ==, 故填:35. 【点睛】 此题考查相似三角形的判定与性质,根据平行线证得三角形相似,由此得到边的比值关系,推导出AE AB的值. 14.5或(答对一个得1分)【解析】根据△B′FC 与△ABC 相似时的对应情况有两种情况:①B′FC ∽△ABC 时B′FAB=CF/BC 又因为AB=AC=8BC=10BF=BF 所以解得BF=;②△B′CF ∽△解析:5或(答对一个得1分)【解析】根据△B′FC与△ABC相似时的对应情况,有两种情况:① B′FC∽△ABC时,B′F AB ="CF/BC" ,又因为AB=AC=8,BC=10,B'F=BF,所以10810BF BF-=,解得BF=;②△B′CF∽△BCA时,B′F/BA ="CF/CA" ,又因为AB=AC=8,BC=10,B'F=CF,BF=B′F,又BF+FC=10,即2BF=10,解得BF=5.故BF的长度是5或.15.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b图中阴影部分的面积等于9可求出b解析:3yx =.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx=(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.16.【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长进而得出△OAD ∽△OBG 进而得出AO 的长即可得出答案【详解】∵正方形BEFG 的边长是6∴∵两个正方形的相似比为∴∴∵AD ∥BG ∴△OAD解析:(3,2)【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长,进而得出△OAD ∽△OBG ,进而得出AO 的长,即可得出答案.【详解】.∵正方形BEFG 的边长是6,∴6BE EF ==. ∵两个正方形的相似比为13, ∴163CB CB EF ==. ∴2AB BC ==,.∵AD ∥BG ,∴△OAD ∽△OBG , ∴13OA OB =,即213OB OB -=. ∴3OB =.∴点C 的坐标为(3,2). 【点睛】本题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO 的长是解题关键. 17.4或9【解析】当△ADP ∽△ACB 时需有∴解得AP =9当△ADP ∽△ABC 时需有∴解得AP =4∴当AP 的长为4或9时△ADP 和△ABC 相似解析:4或9.【解析】当△ADP ∽△ACB 时,需有AP AD AB AC =,∴6128AP =,解得AP =9.当△ADP ∽△ABC 时,需有AP AD AC AB =,∴6812AP =,解得AP =4.∴当AP 的长为4或9时,△ADP 和△ABC 相似.18.【解析】【分析】由正方形的性质易证△ABC ∽△FEC 可设BC=x 只需求出BC 即可求出图中阴影部分的面积【详解】如图所示:设BC =x 则CE =1﹣x ∵AB ∥EF ∴△ABC ∽△FEC ∴=∴=解得x =∴阴影 解析:16【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.19.70°【解析】【分析】设∠BEF=α则∠EFC=180°﹣α∠DFE=∠BEF=α∠CFE=40°+α依据∠EFC=∠EFC即可得到180°﹣α=40°+α进而得出∠BEF的度数【详解】∵∠C=∠C解析:70°【解析】【分析】设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,依据∠EFC=∠EFC',即可得到180°﹣α=40°+α,进而得出∠BEF的度数.【详解】∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.【点睛】本题考查了矩形的性质、折叠的性质,熟练掌握相关的性质是解题的关键. 20.5:3【解析】【详解】试题解析:由题意AP:BP=2:3AB:PB=(AP+PB):PB=(2+3):3=5:3故答案为5:3解析:5:3【解析】【详解】试题解析:由题意AP:BP=2:3,AB:PB=(AP+PB):PB=(2+3):3=5:3.故答案为5:3.三、解答题21.(1)y=4x;y=-x+5(2)2(3)(0,175)【解析】分析:(1)根据待定系数法分别求出反比例函数与一次函数解析式即可;(2)根据反比例函数的性质,xy=k<直接求出面积即可;(3)作点A关于y轴的对称点N,则N(-1,4),连接BN交y轴于点P,点P即为所求.详解:(1)将B(4,1)代入y=kx得:1=4k,∴k=4,∴y=4x,将B(4,1)代入y=mx+5,得:1=4m+5,∴m=-1,∴y=-x+5,(2)在y=4x中,令x=1,解得y=4,∴A(1,4),∴S=12×1×4=2,(6分)(3)作点A关于y轴的对称点N,则N(-1,4),连接BN交y轴于点P,点P即为所求.设直线BN的关系式为y=kx+b,由414k bk b==+⎧⎨-+⎩,得35175kb⎧-⎪⎪⎨⎪⎪⎩==,∴y=−35x+175,∴P(0,175)点睛:此题主要考查了待定系数法求一次函数与反比例函数解析式以及作对称点问题,根据已知得出对称点是解决问题的关键.22.(1)见解析;(2)32.(3)1.【解析】试题分析:(1)根据图示可知主视图有3列,每列小正方形的个数依次为3、1、3,左视图有两列,每列小正方形的个数依次为3、2,据此即可画出;(2)根据三视图画出几何体,根据几何体即可得;(3)要不改变主视图和俯视图的情况下,根据题意画出添加小正方体后的图形(如图2)即可.试题解析:(1)它的主视图和左视图,如图所示,(2)如图1,给这个几何体喷上颜色(底面不喷色),根据图形可知需要喷色的面有32个,所以喷色的面积为32;(3)如图2,在不改变主视图和俯视图的情况下,最多可添加1个小正方体,23.(1)详见解析;(2)AC=9,CD=152. 【解析】【分析】 (1)根据相似三角形的判定证明即可;(2)利用相似三角形的性质解答即可.【详解】证明:(1)∵∠ABE =∠ACB ,∠A =∠A ,∴△ABE ∽△ACB ;(2)∵△ABE ∽△ACB , ∴AB AE AC AB=, ∴AB 2=AC •AE ,∵AB =6,AE =4,∴AC =29AB AE=, ∵AB ∥CD ,∴△CDE ∽△ABE , ∴CD CE AB AE=, ∴()••651542AB AC AE AB CE CD AE AE -⨯==== . 【点睛】 此题考查相似三角形的判定和性质,关键是根据相似三角形的判定证明△ABE ∽△ACB .24.斜坡CD 的长是8017【解析】【分析】根据题意和锐角三角函数可以求得AE 的长,进而得到CE 的长,再根据锐角三角函数可以得到ED 的长,最后用勾股定理即可求得CD 的长.【详解】∵90AEB =︒∠,200AB =,坡度为3∴tan ABE∠==,∴30ABE∠=︒,∴11002AE AB==,∵20AC=,∴80CE=,∵90CED∠=︒,斜坡CD的坡度为1:4,∴14CEDE=,即8014ED=,解得,320ED=,∴CD=米,答:斜坡CD的长是【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.25.(1)()3084{?48(8)x xyxx≤≤=>;(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的.【解析】【分析】(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(8,6)代入即可,从图上读出x的取值范围;药物燃烧后,设出y与x之间的解析式y=2kx,把点(8,6)代入即可;(2)把y=1.6代入反比例函数解析式,求出相应的x;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与10进行比较,大于或等于10就有效.【详解】解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1>0)代入(8,6)为6=8k1∴k1=34设药物燃烧后y关于x的函数关系式为y=2kx(k2>0)代入(8,6)为6=2k8,∴k2=48∴药物燃烧时y关于x的函数关系式为3y x4=(0≤x≤8)药物燃烧后y关于x的函数关系式为48yx=(x>8)∴()30x84y48(8)xxx⎧≤≤⎪⎪⎨=⎪>⎪⎩(2)结合实际,令48yx=中y≤1.6得x≥30即从消毒开始,至少需要30分钟后生才能进入教室.(3)把y=3代入3y x4=,得:x=4把y=3代入48yx=,得:x=16∵16﹣4=12所以这次消毒是有效的.【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.。

【浙教版】初三数学下期中一模试题(带答案)(1)

【浙教版】初三数学下期中一模试题(带答案)(1)

一、选择题1.如图,在平行四边形ABCD 中,点E ,F 分别为,AB BC 的中点,则三角形BEF 与多边形EFCDA 的面积之比为( )A .1∶4B .1∶5C .1∶7D .1∶8 2.如图,一次函数y =﹣2x +10的图象与反比例函数y =k x (k >0)的图象相交于A 、B 两点(A 在B 的右侧),直线OA 与此反比例函数图象的另一支交于另一点C ,连接BC 交y 轴于点D ,若52BC BD =,则△ABC 的面积为( )A .12B .10C .9D .83.如图,矩形ABCD 中,AD m =,AB n =,要使BC 边上至少存在一点P ,使ABP △、APD △、CDP 两两相似,则m 、n 间的关系式一定满足( )A .12m n ≥B .m n ≥C .32m ≥D .2m n ≥ 4.下列条件中,不能判断△ABC 与△DEF 相似的是( )A .∠A =∠D ,∠B =∠FB .BC AC EF DF =且∠B =∠D C .AB BC AC DE EF DF == D .AB AC DE DF=且∠A =∠D5.如图,ABC 是等边三角形,被一平行于BC 的矩形所截(即:FG ∥BC),若AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的( )A .19B .29C .13D .496.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 为BC 的中点,连接AE 交BD 于点F ,若1OF =,则BD 的长为( )A .5B .6C .7D .87.如图,正方形ABCD 的顶点A 的坐标为()1,0-,点D 在反比例函数m y x =的图象上,B 点在反比例函数3y x=的图像上,AB 的中点E 在y 轴上,则m 的值为( )A .-2B .-3C .-6D .-8 8.如图,函数k y x=-与1y kx =+(0k ≠)在同一平面直角坐标系中的图像大致( ) A . B .C .D .9.已知反比例函数y=21k x +的图上象有三个点(2,1y ), (3, 2y ),(1-, 3y ),则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .2y >1y >3yC .3y >1y >2yD .3y >2y >1y 10.若函数5y x =与1y x =+的图像交于点(),A a b ,则11a b -的值为 ( ) A .15- B .15 C .5- D .511.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数k y x =在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A .1B .32C .2D .23 12.函数k y x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .二、填空题13.如图,在矩形ABCD 中,6,AD AE BD =⊥,垂足为,3E ED BE =,动点,P Q 分别在,BD AD 上,则AE 的值为__________,AP PQ +的最小值为_____________.14.如图,在平行四边形ABCD 中,E 在AD 上,21AE ED =,CE 交BD 于F ,则:BCF DCF S S =△△__________.15.如图,在四边形ABCD 中,AC 平分∠BAD ,AD=AC ,以A 为圆心,AB 长为半径画弧,交AC 于点E ,连接DE 、BE ,并延长BE 交CD 于点F ,下列结论:①△BAC ≌ △EAD ,②BC+CF=DE+EF ,③∠ABE+∠ADE=∠BCD ,其中正确的有____(填序号)16.如图,在ABC 中,点D 是线段BC 的黄金分割点(DC BD >),若ABD △的面积是252-,则ABC 的面积是_______.17.在平面直角坐标系中,若直线2y x =-+与反比例函数k y x=的图象有2个公共点,则k 的取值范围是_________. 18.如图,点A 在反比例函数k y x=(x>0)图象上,AB ⊥x 轴于点B ,点C 在x 轴负半轴上,且BO=2CO ,若△ABC 的面积为18,则k 的值为_______.19.设A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,则实数k 的取值范围是__.20.如图,平面直角坐标系中,等腰Rt ABC ∆的顶点.A B 分别在x 轴、y 轴的正半轴, 90,ABC =∠CA x ⊥轴, 点C 在函数()0k y x x=>的图象上.若2,AB =则k 的值为_____.三、解答题21.如图,在ABC 中,点D 、E 分别在AB 、AC 上,//DE BC ,若4AE =,2DB =,2AD CE =,求AD 的长.22.如图,抛物线213-222y x x =-与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC ,BC ,点M 是线段BC 下方抛物线上的任意一点,点M 的横坐标为m ,过点M 画MN ⊥x 轴于点N ,交BC 于点P .(1)填空:A ( , ),C ( , );(2)探究△ABC 的外接圆圆心的位置,并求出圆心的坐标;(3)探究当m 取何值时线段PM 的长度取得最大值,最大值为多少?23.如图,Rt ABC ∆中,90ACB ∠=︒,顶点A 、B 都在反比例函数()0k y x x=>的图象上,直线AC x ⊥轴,垂足为D ,连结OA ,使OA AB ⊥于A ,连结OC ,并延长交AB 于点E ,当2AB OA =时,点E 恰为AB 的中点,若()1,A n .(1)求反比例函数的解析式;(2)求EOD ∠的度数.24.已知,反比例函数k y x=(k 是常数,且0k ≠)的图象经过点(,3)A b . (1)若4b =,求y 关于x 的函数表达式.(2)若点(3,3)B b b 也在该反比例函数图象上,求b 的值. 25.如图,在平面直角坐标系xOy 中,一次函数y =ax+b (a≠0)的图象与反比例函数k y x=(k≠0,x >0)的图象相交于A (1,5),B (m ,1)两点,与x 轴,y 轴分别交于点C ,D ,连接OA ,OB .(1)求反比例函数k y x =(k≠0,x >0)和一次函数y =ax+b (a≠0)的表达式; (2)求△AOB 的面积. 26.如图,反比例函数k y x=的图像经过第二象限内的点(1,)A m -,AB x ⊥轴于点B ,AOB ∆的面积为2.若直线y ax b =+经过点A ,并且经过反比例函数k y x=的图像上另一点(,2)C n -.(1)求反比例函数k y x=与直线y ax b =+的解析式; (2)连接OC ,求AOC ∆的面积; (3)不等式0k ax b x+-≥的解集为_________ (4)若()11,D x y 在k y x=(0)k ≠图像上,且满足13y ≥-,则1x 的取值范围是_________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】连接AC ,根据中位线定理得//EF AC ,12EF AC =,即可由BEF BAC ,根据相似比求出面积比,设BEF Sk =,则4BAC S k =,再用k 表示出多边形EFCDA 的面积,即可求出结果.【详解】解:如图,连接AC ,∵E 、F 分别是AB 和BC 的中点,∴//EF AC ,12EF AC =, ∴BEF BAC , ∴221124BEFBAC S EF S AC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 设BEF S k =,则4BAC Sk =, ∴3AEFC BAC BEF S SS k =-=, ∵四边形ABCD 是平行四边形, ∴4ACD BAC S S k ==,∴7EFCDA AEFC ACD S S Sk =+=, ∴::71:7BEF EFCDA S S k k ==.故选:C . 【点睛】 本题考查相似三角形的性质,解题的关键是掌握相似三角形面积比等于相似比的平方的性质.2.B解析:B【分析】过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,则//BM CN ,可证得23BM BC CN CD ==,设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭,由已知可求得A 、B 、C 的坐标,则可求得直线BC 的解析式,进而求得点D 、F 的坐标,由ABD ADF BDF S S S -=△△△及:2:5ABD ABC S S =△△可求得ABC S.【详解】 过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,如图,则有//BM CN ,∴BMD CND ∽,又52BC BD = ∴23BM BD CN CD ==, 设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭. ∵点A ,B 在直线AB 上, ∴2210223103k x x k x x⎧=-⨯+⎪⎪⎨⎪=-⨯+⎪⎩ ∴解得:112x k =⎧⎨=⎩, ∴点()3,4A ,点()2,6B 、点()3,4C --.设直线BC 的解析式为y=mx+n ,则有:2634m n m n +=⎧⎨-+=-⎩, 解得:22m n =⎧⎨=⎩, ∴直线BC 解析式为22y x =+,∴点()0,2D ,∵点F 是直线AB 与y 轴的交点,∴点()0,10F∴()()10232102224ABD ADF BDF S S S -==-⨯÷--⨯÷=△△△又∵:2:5ABD ABC S S =△△,∴55S 41022ABC ABD S ==⨯=, 故选:B .【点睛】 本题考查了一次函数与反比例函数的图象交点问题、待定系数法求一次函数解析式、相似三角形的判定与性质、直线上点的坐标特征、等高三角形的面积比等于底的比等知识,求出点A 、B 的坐标和作辅助线借助相似三角形解决问题是解答的关键.3.D解析:D【分析】由于△MNP 和△DCP 相似,可得出关于MN 、PC 、NP 、CD 的比例关系式.设PC=x ,那么NP=m-x ,根据比例关系式可得出关于x 的一元二次方程,由于NC 边上至少有一点符合条件的P 点,因此方程的△≥0,由此可求出m 、n 的大小关系.【详解】 解:若设PC=x ,则NP=m-x ,∵△ABP ∽△PCD ,AB BP PC CD ∴=即,n m x x n-= 即x 2-mx+n 2=0方程有解的条件是:m 2-4n 2≥0,∴(m+2n )(m-2n )≥0,则m-2n≥0,∴m≥2n .故选:D .【点睛】本题是存在性问题,可以转化为方程问题,利用判断方程的解的问题来解决. 4.B解析:B【分析】直接根据三角形相似的判定方法分别判断得出答案.【详解】解:A 、A D ∠=∠,B F ∠=∠,根据有两组角对应相等的两个三角形相似,可以得出ABC DFE ∽△△,故此选项不合题意;B 、BC AC EF DF=,且B D ∠=∠,不是两边成比例且夹角相等,故此选项符合题意; C 、AB BC AC DE EF DF==,根据三组对应边的比相等的两个三角形相似,可以得出ABC DEF ∽△△,故此选项不合题意;D 、AB AC DE DF =且A D ∠=∠,根据两组对应边的比相等且夹角对应相等的两个三角形相似,可以得出ABC DEF ∽△△,故此选项不合题意;故选:B .【点睛】此题主要考查了相似三角形的判定,关键是掌握三角形相似的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似. 5.C解析:C【分析】AB 被截成三等分,可得AB=3AE ,AF=2AE ,由EH ∥FG ∥BC ,可得△AEH ∽△AFG ∽△ABC ,则S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2,S 阴影= S △AFG - S △AEH =13S △ABC . 【详解】∵AB 被截成三等分,∴AB=3AE ,AF=2AE ,∵EH ∥FG ∥BC ,∴△AEH ∽△AFG ∽△ABC ,∴S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2=AE 2:(2AE )2:(3AE )2=1:4:9,∴S △AEH =19S △ABC , S △AFG =4 S △AEH , S 阴影= S △AFG - S △AEH =3 S △AEH =3×19 S △ABC =13S △ABC . 故选择:C .【点睛】 本题考查阴影部分面积问题,关键是利用相似三角形的面积比等于相似比的平方,找到阴影面积与△AEH 的关系,由△AEH 与△ABC 的关系来转化解决问题.6.B解析:B【分析】根据平行四边形的性质知AD=2BE ,BC ∥AD ,BO=OD ,设BF=a ,得DF=a+2,由BC ∥AD 知△BEF ∽△DAF ,据此得=BF DF 12=BE DA ,得出BF 的长,从而得出BD 的长. 【详解】解:∵点E 是BC 中点,∴BC=2BE ,∵四边形ABCD 是平行四边形,∴BC=AD ,BC ∥AD ,BO=OD ,∴AD=2BE ,设BF=a ,∵OF=1,∴BO=DO=a+1,则DF=a+2,∵BC ∥AD∴△BEF ∽△DAF , 12∴==BF BE DF DA ∴1,22=+a a 解得a=2,经检验a=2是原方程的解∴BF=2,∴BO=DO=3,∴BD=6故选:B .【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握平行四边形的性质和相似三角形的判定与性质.7.D解析:D【分析】作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,先根据题意求得AN=2,然后证明△ADM ≌△BAN 得到DM=AN=2,AM=BN=3,则D (-4,2),根据待定系数法即可求得m 的值.【详解】解:作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,∵点A 的坐标为(-1,0),∴OA=1,∵AE=BE ,BN ∥y 轴,∴OA=ON=1,∴AN=2,B 的横坐标为1,把x=1代入3y x=,得y=3, ∴B (1,3),∴BN=3,∵四边形ABCD 为正方形,∴AD=AB ,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM ,在△ADM 和△BAN 中90AND ANB ADM BAN AD AB ∠∠︒⎧⎪∠∠⎨⎪⎩==== ∴△ADM ≌△BAN (AAS ),∴DM=AN=2,AM=BN=3,∴134OM OA AM =+=+= ,∴D 42-(,), ∵点D 在反比例函数m y x=,的图象上, ∴428m =-⨯=- ,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,正方形的性质,三角形全等的判定和性质等知识,求得D 的坐标是解题的关键. 8.B解析:B【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项.【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数k y x =-的图象分布在二、四象限,没有选项符合题意;当0k <时,函数1y kx =+的图象经过一、二、四象限,反比例函数k y x =-的图象分布在一、三象限,B 选项正确,故选:B.【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大. 9.A解析:A【分析】先判断出k 2+1是正数,再根据反比例函数图象的性质,比例系数k >0时,函数图象位于第一三象限,在每一个象限内y 随x 的增大而减小判断出y 1、y 2、y 3的大小关系,然后即可选取答案.【详解】解:∵k 2≥0,∴k 2+1≥1,是正数,∴反比例函数y =21k x+的图象位于第一三象限,且在每一个象限内y 随x 的增大而减小,∵(2,y 1),(3,y 2),(﹣1,y 3)都在反比例函数图象上,∴0<y 2<y 1,y 3<0,∴y 1>y 2>y 3.故选:A .【点睛】本题考查了反比例函数图象的性质,对于反比例函数y =k x(k ≠0),(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内,本题先判断出比例系数k 2+1是正数是解题的关键.10.B解析:B【分析】先把A (a ,b )分别代入两个解析式得到5b a =,b =a +1,则ab =5,b -a =1,再变形11a b -得到b a ab-,然后利用整体思想进行计算即可. 【详解】解:把A (a ,b )代入5y x=与y =x +1, 得5b a=,b =a +1, 即ab =5,b -a =1, 所以11a b -=b a ab -=15. 故选:B.【点睛】 本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.11.B解析:B【分析】设OA 为4a ,则根据题干中的比例关系,可得AD=3a ,CE=2a ,BE=a ,从而得出点D 和点E 的坐标(用a 表示),代入反比例函数可求得a 的值,进而得出BC 长.【详解】设OA=4a 根据2CE BE =,34AD OA =得:AD=3a ,CE=2a ,BE=a ∴D(4a ,3a),E(4a+4,a)将这两点代入解析得; 3444k a a k a a ⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32 故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D 、E 的坐标,然后代入解析式求解.12.C解析:C【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.二、填空题13.3【分析】在Rt △ABE 中利用三角形相似可求得AEDE 的长设A 点关于BD的对称点A′连接A′D 可证明△ADA′为等边三角形当PQ ⊥AD 时则PQ 最小所以当A′Q ⊥AD 时AP +PQ 最小从而可求得AP +P解析:3 33 【分析】 在Rt △ABE 中,利用三角形相似可求得AE 、DE 的长,设A 点关于BD 的对称点A′,连接A′D ,可证明△ADA′为等边三角形,当PQ ⊥AD 时,则PQ 最小,所以当A′Q ⊥AD 时AP +PQ 最小,从而可求得AP +PQ 的最小值等于DE 的长.【详解】设BE x =,则3DE x =,∵四边形ABCD 为矩形,且AE BD ⊥, 90BAE ABE ︒∴∠+∠=,90BAE DAE ︒∠+∠=,ABE DAE ∴∠=∠,又AEB DEA ∠=∠,ABE DAE ∴∽,2AE BE DE ∴=⋅,即223AE x =,3AE x ∴=,在Rt ADE △中,由勾股定理可得222AD AE DE =+,即2226(3)(3)x x =+,解得:3x =,3,33AE DE ∴==,如图,设A 点关于BD 的对称点为A ',连接,A D PA '', 则26,6A A AE AD AD A D ''=====,AA D '∴是等边三角形,PA PA '=,∴当A '、P Q 、三点在一条线上时,A P PQ '+最小,由垂线段最短可知当PQ AD ⊥时,A P PQ '+最小,33AP PQ A P PQ A Q DE ''∴+=+===.故答案是:3;33.【点睛】本题主要考查轴对称的应用,利用最小值的常规解法确定出A 的对称点,从而确定出AP +PQ 的最小值的位置是解题的关键,利用条件证明△A′DA 是等边三角形,借助几何图形的性质可以减少复杂的计算.14.3【分析】证明可得结合三角形面积公式即可求得结果【详解】在平行四边形ABCD 中∵∴∵∴故答案为:3【点睛】本题考查了三角形相似的性质与判定解答本题的关键是熟练运用相似三角形的性质与判定解析:3【分析】证明DEF BCF ,可得31BF CB DF ED ==,结合三角形面积公式即可求得结果. 【详解】在平行四边形ABCD 中,AD BC =,//AD BC , ∵21AE ED =,AE ED AD +=,∴13ED AD = ∵//AD BC ,13DF ED ED BF BC AD ∴===. ∴3BCF DGF S BF S DF==. 故答案为:3.【点睛】本题考查了三角形相似的性质与判定,解答本题的关键是熟练运用相似三角形的性质与判定.15.①②③【分析】先由已知条件利用SAS 证明△BAC ≌△EAD 得到①;由全等得到BC=DE 然后再通过证明△ABE ∽△ACD 得到∠ABE=∠ACD=∠AEB 进而再得到CF=EF 得到BC+CF=DE+EF 即解析:①②③【分析】先由已知条件利用SAS 证明△BAC ≌ △EAD ,得到①;由全等得到BC=DE ,然后再通过证明△ABE ∽△ACD ,得到∠ABE=∠ACD=∠AEB ,进而再得到CF=EF ,得到BC+CF=DE+EF ,即②正确;由∠ABE=∠ACD ,∠BCA=∠EDA ,可得到∠ABE+∠ADE=∠BCD ,即③正确.【详解】解:由题意可知,∠BAC=∠CAD ,AB=AE ,在△BAC 和△EAD 中,AB AE BAC CAD AC AD =⎧⎪=⎨⎪=⎩∠∠∴△BAC ≌ △EAD ,故①正确;∵△BAC ≌ △EAD ,∴BC=ED ,∠BCA=∠EDA ,由于AB=AE ,AC=AD ,∠BAC=∠CAD , ∴AB AE AC AD=, ∴△ABE ∽△ACD ,且△ABE 和△ACD 都为等腰三角形,∴∠ABE=∠ACD=∠AEB ,∵∠AEB=∠CEF ,∴∠ECF=∠CEF ,∴CF=EF ,∴BC+CF=DE+EF ,故②正确;由以上过程知道∠ABE=∠ACD ,∠BCA=∠EDA ,∴∠ABE+∠ADE=∠ACD+∠BCA=∠BCD ,故③正确.故答案为:①②③.【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,正确找到全等三角形是解题的关键.16.【分析】根据黄金分割的定义以及等高的两个三角形面积之比等于底之比即可求出的面积【详解】解:∵在中点是线段的黄金分割点()∴∵的面积是∴的面积故答案为:【点睛】本题考查了黄金分割的概念也考查了三角形的解析:2【分析】根据黄金分割的定义,以及等高的两个三角形面积之比等于底之比,即可求出ABC 的面积.【详解】解:∵在ABC 中,点D 是线段BC 的黄金分割点(DC BD >),∴BD BC 1==: ∵ABD △的面积是2∴ABC 的面积()3222=÷=故答案为:2.【点睛】本题考查了黄金分割的概念,也考查了三角形的面积公式,解题的关键是正确理解黄金分割的概念.17.且【分析】联立两函数解析式消去y 得到关于x 的一元二次方程由两函数在同一直角坐标系中的图象有两个公共点得到根的判别式大于0列出关于k 的不等式求出不等式的解集即可得到k 的范围【详解】联立两解析式得:消去 解析:1k <且0k ≠【分析】联立两函数解析式,消去y 得到关于x 的一元二次方程,由两函数在同一直角坐标系中的图象有两个公共点得到根的判别式大于0,列出关于k 的不等式,求出不等式的解集即可得到k 的范围.【详解】 联立两解析式得:2y xk y x =-+⎧⎪⎨=⎪⎩, 消去y 得:220x x k -+=,∵两个函数在同一直角坐标系中的图象有两个公共点,∴24440b ac k =-=->,即1k <,则当k 满足1k <且0k ≠时,这两个函数在同一直角坐标系中的图象有两个公共点. 故答案为:1k <且0k ≠.【点睛】本题考查了一次函数与反比例函数的交点问题,把两函数图象的交点问题转化成一元二次方程根的问题是解题的关键.18.24【分析】根据BO=2CO 可得出△AOB 的面积然后根据k 的几何意义得出k 的值【详解】如下图连接AO ∵BO=2CO △ABC 的面积为18∴△AOB 的面积=18×18×=12∴k=12×2=24故答案为解析:24【分析】根据BO=2CO ,可得出△AOB 的面积,然后根据k 的几何意义,得出k 的值.【详解】如下图,连接AO∵BO=2CO ,△ABC 的面积为18∴△AOB 的面积=18×OB CB =18×23=12 ∴k=12×2=24故答案为:24.【点睛】本题考查反比例函数k 的几何意义,将△AOB 的面积与k 联系上,是解题的关键. 19.﹣1<k <1【分析】根据函数值的大小关系判别函数的图象位置根据位置判定比例系数的大小再解不等式【详解】因为A (x1y1)B (x2y2)为函数图象上的两点且x1<0<x2y1>y2所以函数图象分支在二解析:﹣1<k <1【分析】根据函数值的大小关系,判别函数的图象位置,根据位置判定比例系数的大小,再解不等式.【详解】因为A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2, 所以函数图象分支在二、四象限所以k 2-1<0解得﹣1<k <1故答案为:﹣1<k <1【点睛】考核知识点:反比例函数的图象.数形结合,熟记反比例函数的性质是关键.20.4【分析】根据等腰三角形的性质和勾股定理求出AC 的值根据等面积法求出OA 的值OA 和AC 分别是点C 的横纵坐标又点C 在反比例函数图像上即可得出答案【详解】∵△ABC 为等腰直角三角形AB=2∴BC=2解得解析:4【分析】根据等腰三角形的性质和勾股定理求出AC 的值,根据等面积法求出OA 的值,OA 和AC 分别是点C 的横纵坐标,又点C 在反比例函数图像上,即可得出答案.【详解】∵△ABC 为等腰直角三角形,AB=2∴BC=2,AC ==1122BC AB OA AC ⨯⨯=⨯⨯ 112222OA ⨯⨯=⨯⨯解得:∴点C 的坐标为 又点C 在反比例函数图像上 ∴4k ==故答案为4.【点睛】本题考查的是反比例函数,解题关键是根据等面积法求出点C 的横坐标.三、解答题21.AD =4【分析】设AD =x ,则12CE x =,根据平行线分线段成比例定理可得关于x 的方程,解方程即可求出答案.【详解】解:∵DE ∥BC , ∴AD AE DB EC=, 设AD =x ,则12CE x =, ∴4122x x =, 解得:x =4或﹣4(舍去),即AD =4.【点睛】本题考查了平行线分线段成比例定理和简单的一元二次方程的解法,熟练掌握上述知识、灵活应用方程思想是解题的关键.22.(1)-1,0;0,-2;(2)3,02⎛⎫ ⎪⎝⎭;(3)当m=2时,PM 的最大值是2【分析】(1)利用抛物线解析式容易求得A 、C 的坐标;(2)证明△AOC ∽△COD ,Rt △ACB 的外接圆圆心为AB 的中点,由此求得圆心的坐标即可;(3)可求得直线BC 的解析式,利用m 可表示出PM 的长,则可利用二次函数的性质求得PM 的最大值.【详解】 解:(1)当y=0,则213-222y x x =-=0,得方程的解121,4x x =-= ∴A (-1,0)B (4,0),当x=0时,y=-2∴C (0,-2). (2)1,2,4OA OC OB ===∠AOC=∠COB=90° ∴12OA OC OC OB ==∴△AOC ∽△COB∴∠ACO=∠OBC∠ACO+∠OCB=90°∠OBC+∠OCB=90°=∠ACB∴Rt △ACB 的外接圆圆心为AB 的中点,∵A (-1,0)B (4,0),∴圆心的坐标(3,02). (3)C (0,-2),B (4,0)又∵直线BC 解析式1y 22x =- 1(,2)2p m m -,M (m, 213222m m --) PM=(122m -)-(213222m m --) 2122PM m m =-+ 21=(2)22m --+ 当m=2时,PM 最大值=2.【点睛】本题考查了二次函数的性质,掌握性质是解题的关键.23.(1)反比例函数的解析式为1y x+=;(2)22.5° 【分析】(1)根据同角的余角相等和相似三角形的判定可证得△AOD ∽△BAC ,则有AO OD AD AB AC BC==,进而有AC=2,BC=2n ,则点B 坐标为(2n+1,n ﹣2),由(2n+1)(n ﹣2)=1·n 解出n 值,即可求得k 值进行解答; (2)根据直角三角形的中线等于斜边的一半可证得BE=CE=AE=12AB=OA ,进而∠AEO=2∠ECB=45°,由BC ∥x 轴得∠EOD=∠ECB 即可解答·【详解】解:(1)∵直线AC x ⊥轴,OA AB ⊥,∴∠OAE=90°,∠ADO=90°,∴∠AOD+∠OAD=90°,∠BAC+∠OAD=90°,∴∠AOD=∠BAC ,又∠ACB=∠ADO=90°,∴△AOD ∽△BAC ,∴AO OD AD AB AC BC==, ∵()1,A n ,∴OD=1,AD=n ,又2AB OA =,∴AC=2OD=2,BC=2AD=2n ,∵∠ACB=∠ADO=90°,∴BC ∥x 轴,∴点B 的坐标为(2n+1,n ﹣2),∵点A 、B 都在反比例函数()0k y x x =>的图象上, ∴(2n+1)(n ﹣2)=1·n ,解得:n 1= 1n 2= 1(负值,舍去),则A(1,1,则k=1×(1+=1+∴反比例函数的解析式为y =; (2)∵Rt ABC ∆中,90ACB ∠=︒,点E 为AB 的中点,∴BE=CE=AE=12AB , 又∵AB=2OA ,∠OAE=90°,∴∠AEO=∠AOE=45°,∠ECB=∠EBC,∵∠AEO=2∠ECB ,∴∠ECB= 12∠AEO=22.5°, ∵BC ∥x 轴,∴∠EOD=∠ECB=22.5°.【点睛】本题考查了求反比例函数的解析式、相似三角形的判定与性质、坐标与图形、直角三角形的斜边中线性质、等腰三角形的性质、三角形的外角、平行线的性质等知识,是一道与反比例函数有关的几何题,难度适中,解答的关键是熟练掌握相关知识的运用,利用数形结合思想找寻知识的关联点,进行推理、探究与计算.24.(1)12y x=;(2)13b = 【分析】(1)把A 点代入反比例函数即可求解;(2)把A 、B 两点代入反比例函数列出方程组即可求解;【详解】解:(1)∵4b =,∴A (4,3),把A 点代入反比例函数得:34k =, 即k=12,∴函数解析式为:12y x=; (2)把A 、B 代入反比例函数得:333k b k b b ⎧=⎪⎪⎨⎪=⎪⎩①② 解得:13b =. 【点睛】本题主要考查的是反比例函数的性质,熟练掌握反比例函数的性质是解答本题的关键. 25.(1)5y x =,6y x =-+;(2)12 【分析】(1)将点A (1,5)代入k y x=(k≠0,x >0),得到k 的值及反比例函数解析式;再将将点B (m ,1)代入反比例函数,得点B 坐标;将点A (1,5),B (5,1)代入y =ax+b ,通过求解二元一次方程组,即可得到答案;(2)结合一次函数6y x =-+,得点D 坐标;再由△AOB 的面积=△BOD 的面积-△AOD 的面积,经计算即可得到答案.【详解】(1)将点A (1,5)代入k y x=(k≠0,x >0) 得:51k =解得:k =5 ∴反比例函数的表达式为:5y x =将点B (m ,1)代入5y x=得:m =5∴点B (5,1)将点A (1,5),B (5,1)代入y =ax+b 得551a b a b +=⎧⎨+=⎩解得:16a b =-⎧⎨=⎩∴一次函数表达式为:6y x =-+;(2)由一次函数6y x =-+可知:D (0,6)∴△AOB 的面积=△BOD 的面积-△AOD 的面积1165611222=⨯⨯-⨯⨯=. 【点睛】本题考查了反比例函数、一次函数、二元一次方程组的知识;解题的关键是熟练掌握反比例函数、一次函数、二元一次方程组的性质,从而完成求解.26.(1)4y x -=;22y x =-+ (2)3 (3)1x ≤-或02x <≤ (4)43x ≥或x <0 【分析】(1)根据k 的几何意义即可求出k ;求出k 后利用交点C 即可求出一次函数 (2)利用割补法即可求出面积(3)根据A ,C 的坐标,结合图象即可求解;(4)先求出3y =-时,43x =,再观察图像即可求解. 【详解】(1)∵点(1,)A m -在第二象限内,∴AB m =,1OB =, ∴122ABO S AB BO ∆=⋅=即:1122m ⨯=,解得4m =, ∴(1,4)A -,∵点(1,4)A -,在反比例函数k y x =的图像上, ∴41k =-,解得4k =-, ∵反比例函数为4y x -=, 又∵反比例函数4y x -=的图像经过(,2)C n -, ∴42n--=,解得2n =, ∴(2,2)C -,∵直线y ax b =+过点(1,4)A -,(2,2)C -,∴422a b a b =-+⎧⎨-=+⎩解方程组得22a b =-⎧⎨=⎩, ∴直线y ax b =+的解析式为;22y x =-+;(2)24y x =-+当0y =时,220x -+=,1x =,∴22y x =-+与x 轴的交点坐标为(1,0)设直线22y x =-+与x 轴的交点为E ,则1OE =∴AOC AOE COE S S S =+11141222=⨯⨯+⨯⨯ 3=(3)由题:k ax b x+≥ 由图像可知:当1x ≤-或02x <≤时,符合条件;故答案为:1x ≤-或02x <≤;(4)3y =-时,43x =,结合图像可知:当13y ≥-,则1x 的取值范围是43x ≥或x <0. 故答案为:43x ≥或x <0. 【点睛】本题主要考查了反比例函数,待定系数法求函数解析式,综合性较强,但只要细心分析题目难度不大.。

【浙教版】初三数学下期中一模试卷含答案(1)

【浙教版】初三数学下期中一模试卷含答案(1)

一、选择题1.二次函数2y ax bx c =++的图象如图所示,则函数值y 0>时,x 的取值范围是( )A .x 2<-B .x 5>C .2x 5-<<D .x 2<-或x 5> 2.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如表: x﹣1 0 1 3 y﹣1 3 5 3 则代数式﹣2a (4a +2b +c )的值为( ) A .92 B .152 C .9 D .153.如图,抛物线2y ax bx c =++的顶点坐标为(1,4)a -,点()14,A y 是该抛物线上一点,若点()22,B x y 是该抛物线上任意一点.有下列结论:①420a b c -+>;②抛物线2y ax bx c =++与x 轴交于点(1,0)-,(3,0);③若21y y >,则24x >;④若204x ≤≤,则235a y a -≤≤.其中,正确结论的个数是( )A .0B .1C .2D .34.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①a >0;②b >0; ③方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3;④当y >0时,x 的取值范围是﹣1<x <3;其中结论正确的个数是( )A .4个B .3个C .2个D .1个5.已知抛物线24y x bx =++的顶点在x 轴上,则b 的值为( )A .2B .4C .-4D .6.如图,抛物线2y ax bx c =++的对称轴是直线1x =-,下列结论:①0abc >;②240b ac -≥;③80a c +<;④5320a b c -+<,正确的有( )A .1个B .2个C .3个D .4个7.如图,在△ABC 中,AD 是BC 上的高,tan ∠B =cos ∠DAC ,若sin C =1213,BC =12,求AD 的长( )A .13B .12C .8D .无法判断 8.如图,网格中所有小正方形的边长均为1,有A 、B 、C 三个格点,则ABC ∠的余弦值为( )A .12B .255C .55D .29.如图,在平面直角坐标系中,点A 坐标为()3,4,那么cos α的值是( )A .34B .43C .35D .4510.如图,Rt ABC △中,90ACB ∠=︒,CD AB ⊥,4tan 3B =,若10BC =,则AD 的长为( )A .6B .323C .7.5D .1011.在Rt ABC 中,∠C =90º,下列关系式中错误的是( )A .BC =AB•sinAB .BC =AC•ta nA C .AC =BC•tanBD .AC =AB•cosB 12.如图,在Rt △ABC 中,∠ACB=90°,若5AC =,BC=2,则sin ∠A 的值为( )A 5B 5C .23D 25 二、填空题13.函数y =ax 2+bx +c (a ≠0)图像如图所示,过点(﹣1,0),对称轴为x =2,下列结论正确的是_____.①4a +b =0;②24a +2b +3c <0;③若A (﹣3,y 1),B (﹣0.5,y 2),C (3.5,y 3)三点都在抛物线上,y 1<y 2<y 3; ④当y 1>﹣1时,y 随x 增大而增大.14.抛物线()20y ax bx c a =++≠的部分图象如图所示,其与x 轴的一个交点坐标为()4,0-,对称轴为1x =-,则0y >时,x 的取值范围________.15.在平面直角坐标系中,把抛物线22y x =+先绕其顶点旋转180︒后,再向右平移2个单位,向下平移3个单位后的抛物线解析式为__________.16.将抛物线2610y x x =-+先向左平移2个单位长度,再向下平移1个单位长度,得到的抛物线与x 轴的交点坐标是______.17.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F ,若AC =6,tanB =34,则CE =_____.18.如图,点P (m ,1)是反比例函数3y x=图象上的一点,PT ⊥x 轴于点T ,把△PTO 沿直线OP 翻折得到△PT O ',则点T '的坐标为_______________.19.如图,在△ABC 中,∠BAC =90°,AB =AC =5,将△ABC 折叠,使点B 落在AC 边上的点D 处,EF 为折痕,若sin ∠CFD 的值为23,则BE =_____.20.如图,一艘轮船在小岛A 的北偏东60°方向且距小岛80海里的B 处,沿正西方向航行一定时间后到达小岛的北偏西45°的C 处,则该船航行的路程为_____海里.三、解答题21.如图,抛物线223y x x =--与x 轴交于A 、B 两点.(1)抛物线与x 轴的交点坐标为______;(2)求抛物线与坐标轴围成的ABC 的面积;(3)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上滑动到什么位置时,满足6PAB S =△,并求出此时P 点的坐标.22.如图,在平面直角坐标系中,已知抛物线252y ax bx =++与x 轴交于()5,0A ,()1,0B -两点,与y 轴交于点C .(1)求抛物线的解析式;(2)若点M 是抛物线的顶点,连接AM ,CM ,求AMC 的面积;(3)若点Р是抛物线上的一个动点,过点Р作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线,垂足为点F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标.23.跳绳时,绳甩到最高处时的形状是抛物线,正在甩绳的甲、乙两名同学拿绳的手间距AB 为6米,到地面的距离AO 和BD 均为0.9米,身高为1.4米的小丽站在距点O 的水平距离为1米的点F 处,绳子甩到最高处时刚好通过她的头顶点E .以点O 为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为20.9y ax bx =++.(1)求该抛物线的表达式;(2)如果小明站在OD 之间,且离点O 的距离为3米,当绳子甩到最高处时刚好通过他的头顶上方0.4米处,求小明的身高是多少?此时小明若向点O 方向走多少米,就能让绳子甩到最高处时,绳子刚好通过他的头顶;(3)如果有若干个与小明同身高的同学一起站在OD 之间玩跳绳,现知只要绳子甩到最高处时超过她们的头顶且每个同学同方向站立时的脚跟之间距离不小于0.55米就可以一起玩,问最多可以几个同学一起玩.24.(1)()3016tan 301220212π-⎛⎫︒+-- ⎪⎝⎭ (2)解不等式组:5131131132x x x x -<+⎧⎪++⎨≥+⎪⎩ (3)解方程:22311x x x++=-- 25.如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点,,A D G 在同一直线上,且5,3AD DE ==,连接,,AC CG AE ,并延长AE 交CG 于点H .(1)求sin EAC ∠的值.(2)求线段AH 的长.26.如图,根据道路管理规定,在某笔直的大道AB 上行驶的车辆,限速60千米/时,已知测速站点M 距大道AB 的距离MN 为30米,现有一辆汽车从A 向B 方向匀速行驶,测得此车从A 点行驶到B 点所用时间为6秒,已知60AMN ∠=︒,45BMN ∠=︒.(参考数据:3 1.732≈,2 1.414≈)(1)计算AB 的长度(结果保留整数);(2)试判断此车是否超速,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据函数图象求出与x 轴的交点坐标,再由图象得出答案.【详解】解:有函数图象观察可知,当25x -<<时,函数值0y >.故选:C .【点睛】本题考查二次函数与不等式.掌握数形结合思想是解题关键.2.B解析:B【分析】由当x=0和x=3时y 值相等,可得出二次函数图象的对称轴为直线x=32,进而可得出2b a -的值,由x=1时y=5,可得出当x=2时y=5,即4a+2b+c=5,再将2b a -=32及4a+2b+c=5代入2b a -(4a+2b+c )中即可求出结论. 【详解】解:∵当x =0和x =3时,y 值相等,∴二次函数图象的对称轴为直线x =32, ∴3=22b a -. ∵当x =1时,y =5,∴当x =2×32﹣1=2时,y =5, ∴4a +2b +c =5. ∴2b a -(4a +2b +c )=32×5=152. 故选:B .【点睛】 本题考查了二次函数图象上点的坐标特征以及二次函数的性质,利用二次函数的性质及二次函数图象上点的坐标特征,找出2b a-和(4a+2b+c )的值是解题的关键. 3.C解析:C【分析】利用对称轴公式和顶点坐标得出4a a b c -=++,2b a =-,3c a =-,则可对①进行判断;抛物线解析式为223y ax ax a =--,配成交点式得()()31y a x x =-+,可对②进行判断;根据二次函数对称性和二次函数的性质可对③进行判断;计算4x =时5y a =,根据二次函数的性质可对④进行判断【详解】①根据抛物线()20y ax bx c a =++≠的图像可知 抛物线的对称轴12b x a=-= 2b a ∴=-顶点坐标为(1、4a -)4a a b c ∴-=++3c a ∴=-424435a b c a a a a ∴-+=+-=抛物线开口向上,则0a >420a b c ∴-+>故结论①正确②2b a =-,3c a =-()()22331y ax ax a a x x ∴=--=-+∴抛物线()20y ax bx c a =++≠与x 轴交于(1-、0),(3、0)故结论②正确③A (4、1y )关于直线1x =的对称点为(2-、1y )∴当21y y >时,则24x >或22x <-故结论③错误④当4x =时,116416835y a b c a a a a =++=--=∴当204x ≤≤时,245a y a -≤≤故结论④错误故选:C .【点睛】本题考查了抛物线与x 轴的交点,也考查了二次函数的性质,解题关键是把求二次函数与x 轴交点问题转化为解关于x 一元二次方程,并熟练掌握二次函数的性质.4.B解析:B【分析】根据抛物线与系数的关系判断即可.【详解】解:抛物线开口向下,a<0,故①错误;对称轴在y 轴右侧,a 、b 异号,b >0,故②正确;抛物线与x 轴交点为(﹣1,0),对称轴为直线x =1,根据对称性,另一个交点为(3,0),故③正确;根据图象可知,x 的取值范围是﹣1<x <3时;抛物线在x 轴上方,故④正确; 故选:B .【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.5.D解析:D【分析】抛物线的顶点在x 轴上,则顶点的纵坐标为0,根据顶点纵坐标公式,列方程求解.【详解】解:抛物线24y x bx =++的顶点纵坐标为241441b ⨯⨯-⨯,∵顶点在x 轴上, ∴241441b ⨯⨯-⨯=0, 解得b 2=16,b=±4.故选:D .【点睛】本题考查了二次函数的性质,抛物线y=ax 2+bx+c 的顶点在x 轴上,则顶点坐标的纵坐标为0.6.B解析:B【分析】首先根据函数图像分别判断出a 、b 、c 的符号判断结论①;再利用与x 轴交点的个数得出24b ac -的正负判断结论②;利用对称轴以及当2x =时函数值的正负判断结论③;利用当1x =-和2x =-时的函数值的正负来判断结论④.【详解】结论①由抛物线开口方向向上可得0a >;对称轴在y 轴左侧可得a 、b 符号相同,即0b >;函数图像与y 轴交于负半轴,可得0c <;由此可知0abc <,故①错误. 结论②由函数图像与x 轴有两个交点可得240b ac ->,故②正确.结论③由函数图像可知抛物线对称轴为1x =-,所以12b a-=-,整理可得2b a =;当2x =时,420a b c ++>,将2b a =代入420a b c ++>可得,80a c +>,故③错误. 结论④由函数图像可知当2x =-时,420a b c -+<,当1x =-时,0a b c -+<,所以532(42)()0a b c a b c a b c -+=-++-+<,故④正确.综上所述,本题正确结论为②④,共2个.故选B.【点睛】本题主要考查二次函数的系数与图像的关系,关键在利用函数中当1x =-、2x =-和1x =-时的函数值的大小来判断③④结论的对错.7.C解析:C【分析】 根据12sin 13AD C AC ==,可设AD =12x ,由勾股定理可求出DC ,利用tan ∠B =cos ∠DAC 可求出BD =13x ,利用BC =12,求出x ,进而求解.【详解】 在Rt △ADC 中,12sin 13AD C AC ==, 设AD =12x ,则AC =13x ,∴225DC AC AD x =-=,∵cos ∠DAC =sin C =1213, ∴tan B =1213, 在Rt △ABD 中,∵tan B 1213AD BD ==,∴BD =13x , ∴13x +5x =12,解得23x =, ∴AD =12x =8.故选C .【点睛】 本题考查解直角三角形,熟练掌握正切,正弦和余弦的定义是解题的关键. 8.B解析:B【分析】过点B 作BD ⊥AC 于点D ,过点C 作CE ⊥AB 于点E ,则BD=AD=3,CD=1,利用勾股定理可求出AB ,BC 的长,利用面积法可求出CE 的长,再利用余弦的定义可求出∠ABC 的余弦值.【详解】解:过点B 作BD ⊥AC 于点D ,过点C 作CE ⊥AB 于点E ,则BD=AD=3,CD=1,如图所示.2232BD AD +=2210BD CD +=∵12AC•BD=12AB•CE ,即12×2×3=122•CE , ∴2,∴2222BC CE -=∴cos ∠ABC=2225510BE BC ==. 故选:B .【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,利用面积法及勾股定理求出CE ,BC 的长度是解题的关键.9.C解析:C【分析】作AB ⊥x 轴于B ,先利用勾股定理计算出OA =5,然后在Rt △AOB 中利用余弦的定义求解即可.【详解】解:作AB ⊥x 轴于B ,如图,∵点A 的坐标为(3,4),∴OB =3,AB =4,∴OA =2234+=5,在Rt △AOB 中,cosα=35OB OA =. 故选:C .【点睛】本题考查了解直角三角形的应用、坐标与图形性质、勾股定理等知识;熟练掌握三角函数的定义是解题的关键.10.B解析:B【分析】设DC=4x ,BD=3x ,根据勾股定理求CD ,再根据∠ACD=∠B ,用三角函数求AD .【详解】解:∵CD AB ⊥,4tan 3DB B DC ==,设DC=4x ,BD=3x , (3x )2+(4x )2=102,∵x>0,解得x=2,∴BD=6,CD=8 ∵∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B ,∴4tan 3ACD ∠=, ∴43AD CD =,CD=8,∴323AD =, 故选:B .【点睛】 本题考查了三角函数,勾股定理等知识,解题关键是根据已知的正切值求出线段长. 11.D解析:D【分析】根据三角函数的定义即可作出判断.【详解】解:A 、∵sin BC A AB=, ∴sin BC AB A =,故正确,不符合题意;B 、∵tanA= BC AC, ∴BC=AC•tanA ,故正确,不符合题意;C 、∵tanB=AC BC, ∴AC=BC•tanB , 故正确,不符合题意;D 、∵cos BC B AB=, ∴cos BC AB B =,故错误,符合题意;故选:D .【点睛】本题考查锐角三角函数的定义:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.12.C解析:C【分析】先利用勾股定理求出AB 的长,然后再求sin ∠A 的大小.【详解】解:∵在Rt △ABC 中,AC =BC=2∴3=∴sin ∠A=23BC AB = 故选:C .【点睛】 本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.①②③【分析】由抛物线的对称轴可判断①;由①可得出过点(﹣10)代入可得出c =﹣5a 代入化简即可判断②;根据二次函数的增减性知抛物线上点离对称轴水平距离越小函数值越大据此可判断③;由抛物线的图像的增 解析:①②③【分析】由抛物线的对称轴可判断①;由①可得出=4b a -,过点(﹣1,0),代入可得出c =﹣5a ,代入化简即可判断②;根据二次函数的增减性知抛物线上点离对称轴水平距离越小,函数值越大,据此可判断③;由抛物线的图像的增减性直接判断④.【详解】函数y =ax 2+bx +c (a ≠0)的对称轴2b x a =-, ∵ 对称轴2x =, ∴=22b a-, ∴=4b a -,∴ 4+=0a b ,故①正确;有图可知,a <0,∴=4b a -,∴ 2=8b a -,过点(﹣1,0),∴ a-b+c =0,∴ b=a+c ,即a+c=﹣4a ,∴ c =﹣5a ,∴24a +2b +3c =24a -8a -15a =a <0,故②正确;当x =0时,y =c ,∵A (﹣3,y 1),B (﹣0.5,y 2),C (3.5,y 3)三点都在抛物线上,点A 与2x =的水平距离为5,点B 与2x =的水平距离为2.5,点C 与2x =的水平距离为1.5,∵5>2.5>1.5,∴ 123y y y <<,故③正确;有图可知,当11y >-,y 随x 增大先增大后减小,故④不正确;综上,正确的有:①②③.故答案为:①②③.【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.14.或【分析】根据抛物线与x 轴的一个交点坐标和对称轴由抛物线的对称性可求抛物线与x 轴的另一个交点再根据抛物线的增减性可求当y <0时x 的取值范围【详解】解:∵抛物线y=ax2+bx+c (a≠0)与x 轴的一解析:4x <-或2x >【分析】根据抛物线与x 轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当y <0时,x 的取值范围.【详解】解:∵抛物线y=ax 2+bx+c (a≠0)与x 轴的一个交点坐标为(-4,0),对称轴为x=-1, ∴抛物线与x 轴的另一个交点为(2,0),由图象可知,当y >0时,x 的取值范围是x <-4或x >2.故答案为:x <-4或x >2.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,关键是得到抛物线与x 轴的另一个交点.15.【分析】先求出抛物线绕其顶点旋转后解析式再根据平移规律即可求解【详解】解:抛物线先绕其顶点旋转后解析式为将抛物线向右平移个单位向下平移个单位后的抛物线解析式为故答案为:【点睛】本题考查了抛物线图象与 解析:2(2)1=---y x【分析】先求出抛物线22y x =+绕其顶点旋转180︒后解析式,再根据平移规律即可求解.【详解】解:抛物线22y x =+先绕其顶点旋转180︒后解析式为22y x =-+,将抛物线22y x =-+向右平移2个单位,向下平移3个单位后的抛物线解析式为()212y x =---.故答案为:2(2)1=---y x【点睛】本题考查了抛物线图象与几何变换,熟知二次函数图象旋转与平移规律是解题关键. 16.【分析】先把抛物线解析式整理出顶点式形式再根据规律求出平移后的抛物线再求出抛物线与轴的交点坐标即可【详解】解:∵∴抛物线向左平移2个单位长度再向下平移个单位长度得:∴平移后的抛物线顶点坐标为(10) 解析:()1,0【分析】先把抛物线解析式整理出顶点式形式,再根据规律求出平移后的抛物线,再求出抛物线与x 轴的交点坐标即可.【详解】解:∵22610=(3)1y x x x =-+-+,∴抛物线2610y x x =-+向左平移2个单位长度,再向下平移1个单位长度,得: 222610=(3+2)11(1)y x x x x =-+-+-=-∴平移后的抛物线顶点坐标为(1,0),即所得到的抛物线与x 轴的交点坐标为(1,0).故答案为:(1,0).【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式,本题巧妙之处在于抛物线顶点坐标在x 轴上.17.3【分析】证明∠CEF=∠CFE 得到CE=CF 过点F 作FH ⊥AB 于H 根据角平分线的性质得到FC=FH 设FH=x 根据tanB =求出BC=8根据勾股定理求出FB=得到解之即可得到答案【详解】证明:∵在R解析:3【分析】证明∠CEF=∠CFE 得到CE=CF ,过点F 作FH ⊥AB 于H ,根据角平分线的性质得到FC=FH ,设FH=x ,根据tanB =34求出BC=8,43BH x =,根据勾股定理求出53x =,得到583x x =-,解之即可得到答案. 【详解】 证明:∵在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B ,∵AF 平分∠CAB ,∴∠CAE=∠BAF ,∴∠ACD+∠CAE=∠B+∠BAF ,∵∠CEF=∠ACD+∠CAE ,∠CFE=∠B+∠BAF ,∴∠CEF=∠CFE∴CE=CF ,过点F 作FH ⊥AB 于H ,∵AF 平分∠CAB ,FC ⊥AC ,FH ⊥AB ,∴FC=FH ,设FH=x ,在Rt △ABC 中,∠ACB =90°,AC =6,tanB =34, ∴BC=8,∴FC=x ,FB=8-x ,∵3tan 4FH B BH ==, ∴43BH x =, ∴FB=2253FH BH x +=, ∴583x x =-, 解得x=3,∴CE=FC=FH=3,故答案为:3. .【点睛】此题考查角平分线的性质,等角对等边的判定,勾股定理,利用锐角三角函数求边长,题中证得CE=FC 并引出辅助线解决问题是解题的关键.18.【分析】连接过点作于点C 先根据反比例函数解析式求出点P 坐标根据的正切值得到它的度数再根据折叠的性质证明是等边三角形再解直角三角形得到OC 和的长即可求出的坐标【详解】解:如图连接过点作于点C ∵点P(m 解析:33,22⎛⎫ ⎪ ⎪⎝⎭【分析】 连接TT ',过点T '作T C OT '⊥于点C ,先根据反比例函数解析式求出点P 坐标,根据POT ∠的正切值得到它的度数,再根据折叠的性质证明TOT '是等边三角形,再解直角三角形得到OC 和CT '的长,即可求出T '的坐标.【详解】解:如图,连接TT ',过点T '作T C OT '⊥于点C ,∵点P (m ,1)是反比例函数3y x =图象上的一点, ∴31=3m , ∴3OT =,1PT =,∵3tan POT ∠=∴30POT ∠=︒,由折叠的性质得:30,3POT POT OT OT ∠=∠=︒='='∴60TOT '∠=︒,又∵OT OT '=,∴TOT '是等边三角形,∵T C OT '⊥, ∴1322OC OT ==, 33sin 32CT OT TOT '''=⋅∠==,∴32T ⎫'⎪⎪⎝⎭.故答案为:32⎫⎪⎪⎝⎭.【点睛】本题考查反比例函数与几何,解题的关键是掌握反比例函数的性质,利用锐角三角函数值得到特殊角的度数,然后解直角三角形.19.3【分析】由题意得△BEF ≌△DEF 故∠EDF=∠B ;由三角形的外角性质即可解决【详解】解:∵在△ABC 中∠BAC=90°AB=AC=5∴∠B=∠C 设BE=x ∵AB=5∴AE=AB-BE=5-x ∵将解析:3【分析】由题意得△BEF ≌△DEF ,故∠EDF=∠B ;由三角形的外角性质,即可解决.【详解】解:∵在△ABC 中,∠BAC=90°,AB=AC=5,∴∠B=∠C ,设BE=x ,∵AB=5∴AE=AB-BE=5-x ,∵将△ABC 折叠,使点B 落在AC 边上的点D 处,∴△BEF ≌△DEF∴BE=DE=5-x ,∠B=∠EDF=∠C∵∠ADE+∠EDF=∠C+∠DFC∴∠ADE=∠DFC∴sin ∠CFD=sin ∠ADE=523AE x DE x -==, 解得,x=3,即,BE=3故答案为:3【点睛】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用全等三角形的性质、三角形外角性质等知识来解决问题. 20.(40+40)【分析】过A 作AQ ⊥BC 于Q ∠BAQ =60°∠CAQ =45°AB =80海里在直角三角形ABQ 中求出AQBQ 再在直角三角形AQC 中求出CQ 再根据BC =CQ+BQ 即可得出答案;【详解】解:解析:(【分析】过A 作AQ ⊥BC 于Q ,∠BAQ =60°,∠CAQ =45°,AB =80海里,在直角三角形ABQ 中求出AQ 、BQ ,再在直角三角形AQC 中求出CQ ,再根据BC =CQ+BQ 即可得出答案;【详解】解:过A 作AQ ⊥BC 于Q ,由题意得:AB =80,在直角三角形ABQ 中,∠BAQ =60°,∴∠B =90°﹣60°=30°,∴AQ =12AB =40,BQ =3AQ =403, 在直角三角形AQC 中,∠CAQ =45°,∴CQ =AQ =40,∴BC =BQ+CQ =(40+403)海里.故答案为:(40+403)【点睛】本题考查了解直角三角形的应用中的方向角问题、等腰直角三角形的性质、含30°角的直角三角形的性质等知识;通过解直角三角形得出CQ 和BQ 是解决问题的关键.三、解答题21.(1)()1,0-或()3,0;(2)6;(3)点P 的坐标为()17,3+、()17,3-、()0,3-、()2,3-.【分析】(1)令y=0,转化为一元二次方程,方程的根就是与x 轴交点的横坐标;(2)求出AB 的长度,OC 的长度,按公式计算即可;(3)利用面积公式,抛物线的解析式转化成一元二次方程求解即可.【详解】解:(1)当0y =时,2230x x --=,解得 11x =-,23x =,∴抛物线与x 轴的交点坐标为()1,0-或()3,0,故答案为:()1,0-或()3,0.(2)由(1)点()1,0A -,()3,0B ,()0,3C-, ∴()314AB =--=,3OC =, ∴14362ABC S =⨯⨯=△. (3)∵点()1,0A -,点()3,0B ,()222314y x x x =--=--,∴此抛物线有最小值,此时4y =-,()314AB =--=,∵6PAB S =△,抛物线上有一个动点P ,∴点P 的纵坐标的绝对值为6234⨯=, ∴2233x x --=或2233x x --=-,解得,11x =,21x =,30x =,42x =,∴点P 的坐标为()1、()1-、()0,3-、()2,3-.【点睛】本题考查了二次函数与坐标轴的交点,抛物线上的内接三角形的面积,动点问题,熟练掌握性质,并能灵活运用是解题的关键.22.(1)y =−12x 2+2x +52;(2)152;(3)(2,2)或(2-2) 【分析】(1)利用二次函数的交点式,结合待定系数法即可求解;(2)△AMC 的面积=S △MHC +S △MHA =12×MH×OA ,即可求解; (3)点D 在直线AC 上,设点D (m ,−12m +52),由题意得,四边形OEDF 为矩形,故EF =OD ,即当线段EF 的长度最短时,只需要OD 最短即可,进而求解.【详解】解:(1)令x =0,则y =52,即C (0,52), 设抛物线的表达式为y =a (x−5)(x +1), 将点C 的坐标代入上式得:52=a (0−5)(0+1), 解得a =−12,∴抛物线的表达式为:y=−1 2(x−5)(x+1)=−12x2+2x+52;(2)由抛物线的表达式得:顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC的表达式为y=kx+t,则5205tk t⎧⎪⎨⎪⎩==+,解得:1252kt⎧-⎪⎪⎨⎪⎪⎩==,∴直线AC的表达式为:y=−12x+52,当x=2时,y=32,则MH=92−32=3,则△AMC的面积=S△MHC+S△MHA=12×MH×OA=12×3×5=152;(3)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,∴EF2=OD2=m2+(−12m+52)2=54m2−52m+254,∵54>0,故EF 2存在最小值(即EF 最小),此时m =1, ∴点D (1,2),∵点P 、D 的纵坐标相同, ∴2=−12x 2+2x +52,解得x =2±故点P 的坐标为(2+2)或(2-,2).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,是解题的关键.23.(1)20.10.60.9y x x =-++;(2)1.4米;(3)8个【分析】(1)已知抛物线解析式,求其中的待定系数,选定抛物线上两点E (1,1.4),B (6,0.9)坐标代入即可;(2)小明站在OD 之间,且离点O 的距离为3米,即OF=3,求当x=3时的函数值即可得出小明身高;将y=1.4代入解析式求出x 的值,再减去1即可得出答案;(3)求出y=1.4时x 的值,再用两者之间的差除以0.55,取整得出答案.【详解】解:(1)由题意得把点E (1,1.4),B (6,0.9),代入y=ax 2+bx+0.9得,0.9 1.43660.90.9a b a b ++=⎧⎨++=⎩, 解得0.10.6a b =-⎧⎨=⎩ , ∴所求的抛物线的解析式是y=-0.1x 2+0.6x+0.9;(2)把x=3代入y=-0.1x 2+0.6x+0.9得:y=-0.1×32+0.6×3+0.9=1.8;1.8-0.4=1.4(米),∴小明的身高是1.4米;把y=1.4代入y=-0.1x 2+0.6x+0.9得-0.1x 2+0.6x+0.9=1.4,解得:x 1=1,x 2=5(舍),则3-1=2(米),此时小明向点O 方向走2米就能让绳子甩到最高处时绳子刚好通过他的头顶. (3)当y=1.4时,-0.1x 2+0.6x+0.9=1.4,解得x 1=1,x 2=5,∴5-1=4,∴4÷0.55≈7.27,∴最多可以8个同学一起玩.【点睛】本题考查了二次函数的应用及坐标的求法,此题为数学建模题,解题的关键是注意审题,将实际问题转化为求函数最值问题,培养自己利用数学知识解答实际问题的能力. 24.(1)-7;(2)x≤-1;(3)x=34-. 【分析】(1)根据特殊角的三角函数值、负指数幂、二次根式的性质及零指数幂计算即可; (2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)原式; (2)解:5131131132x x x x -<+⎧⎪⎨++≥+⎪⎩①② 由①得:x<1,由②得:x≤-1,则不等式组的解集为x≤-1.(3)去分母得:2-x-2=3x-3,移项:-x-3x=-3,合并同类项:-4x=3,解得:x=34-, 经检验x=34-是分式方程的解; 【点睛】本题考查了解分式方程,实数的运算,以及解一元一次不等式组,解分式方程利用了转化的思想,注意要检验.25.(1)17;(2)17【分析】 (1)作EM AC ⊥于M ,根据sin EM EAM AE∠=求出EM 、AE 即可解决问题. (2)先证明GDC EDA ∆≅∆,得GCD EAD ∠=∠,推出AH GC ⊥,再根据1122AGC S AG DC GC AH ∆=⋅⋅=⋅⋅,即可解决问题. 【详解】解:(1)作EM AC ⊥于M .四边形ABCD 是正方形,90ADC ∴∠=︒,5AD DC ,45DCA ∠=︒,∴在RT ADE ∆中,90ADE ∠=︒,5AD =,3DE =, 2234AE ADDE ∴=+=,在RT EMC ∆中,90EMC ∠=︒,45ECM ∠=︒,2EC =,2EM CM ∴==, ∴在RT AEM ∆中,217sin 34EM EAC AE ∠===.(2)在GDC ∆和EDA ∆中,DG DE GDC EDA DC DA =⎧⎪∠=∠⎨⎪=⎩,GDC EDA ∴∆≅∆, GCD EAD ∴∠=∠,34GC AE =90DAE AED ∠+∠=︒,DEA CEH ∠=∠,90DCG HEC ∴∠+∠=︒,90EHC ∴∠=︒,AH GC ∴⊥,1122AGC S AG DC GC AH ∆=⋅⋅=⋅⋅, ∴11853422AH ⨯⨯=, 2034AH ∴=【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、三角形面积等知识,添加常用辅助线是解决问题的关键,学会用面积法求线段,属于中考常考题型. 26.(1)82米;(2)不超速,见解析【分析】(1)已知MN=30m ,∠AMN=60°,∠BMN=45°求AB 的长度,可以转化为解直角三角形; (2)求得从A 到B 的速度,然后与60千米/时≈16.66米/秒,比较即可确定答案.【详解】解:(1)由题意可得在Rt AMN △中,30MN =米,60AMN ∠=︒, ∴tan AN MN AMN =⋅∠=在Rt BMN 中,∵45BMN ∠=︒,∴30BN MN ==(米). ∴3082AB AN BN =+=≈(米).(2)此车不超速,理由如下:由题意可得,汽车从A 到B 为匀速行驶,用时为6秒,且82AB =米,则汽车的速度为()306513.66÷=≈(米/秒).∵60千米/时≈16.67米/秒,13.6616.67<,∴此车不会超速.【点睛】本题考查了勾股定理以及解直角三角形的应用,解题的关键是从题目中抽象出直角三角形,难度不大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【必考题】初三数学下期中一模试题及答案(1) 一、选择题1.已知线段a、b,求作线段x,使22bxa=,正确的作法是()A.B.C.D.2.如图,河坝横断面迎水坡AB的坡比是1:3(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高3mBC=,则坡面AB的长度是().A.9m B.6m C.63m D.33m3.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.3B.2C.6D.44.如图,在正方形ABCD中,N为边AD上一点,连接BN.过点A作AP⊥BN于点P,连接CP,M为边AB上一点,连接PM,∠PMA=∠PCB,连接CM,有以下结论:①△PAM∽△PBC;②PM⊥PC;③M、P、C、B四点共圆;④AN=AM.其中正确的个数为()A.4B.3C.2D.15.观察下列每组图形,相似图形是()A .B .C .D .6.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32 OBCD=B.32αβ=C.1232SS=D.1232CC=7.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°8.如图,在ABC∆中,//DE BC,9AD=,3DB=,2CE=,则AC的长为()A.6B.7C.8D.99.如图,阳光从教室的窗户射入室内,窗户框AB 在地面上的影子长DE =1.8m ,窗户下沿到地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为( )A .1.5mB .1.6mC .1.86mD .2.16m10.如图,在△ABC 中,M 是AC 的中点,P ,Q 为BC 边上的点,且BP=PQ=CQ ,BM 与AP ,AQ 分别交于D ,E 点,则BD ∶DE ∶EM 等于A .3∶2∶1B .4∶2∶1C .5∶3∶2D .5∶2∶111.如图▱ABCD ,F 为BC 中点,延长AD 至E ,使:1:3DE AD =,连结EF 交DC 于点G ,则:DEG CFG S S ∆V =( )A .2:3B .3:2C .9:4D .4:9 12.下列变形中: ①由方程125x -=2去分母,得x ﹣12=10; ②由方程29x =92两边同除以29,得x =1; ③由方程6x ﹣4=x +4移项,得7x =0;④由方程2﹣5362x x -+=两边同乘以6,得12﹣x ﹣5=3(x +3). 错误变形的个数是( )个. A .4 B .3 C .2 D .1二、填空题13.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD ,东边城墙AB 长9里,南边城墙AD 长7里,东门点E 、南门点F 分别是AB ,AD 的中点,EG ⊥AB ,FE ⊥AD ,EG =15里,HG 经过A 点,则FH =__里.14.利用标杆CD测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E.若标杆CD的高为1.5米,测得DE=2米,BD=16米,则建筑物的高AB为_____米.15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的P点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.16.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则点C的坐标为________.17.反比例函数y=kx的图象经过点P(a、b),其中a、b是一元二次方程x2+k x+4=0的两根,那么点P的坐标是________.18.如图所示,将一副三角板摆放在一起,组成四边形ABCD,∠ABC=∠ACD=90°,∠ADC=60°,∠ACB=45°,连接BD,则tan∠CBD的值为_____.19.若ab=34,则a bb=__________.20.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)三、解答题21.如图,∠ABD=∠BCD=90°,AB•CD=BC•BD,BM∥CD交AD于点M.连接CM交DB于点N.(1)求证:△ABD∽△BCD;(2)若CD=6,AD=8,求MC的长.22.如图,在正方形ABCD中,E为边AD上的点,点F在边CD上,且CF=3FD,∠BEF=90°(1)求证:△ABE∽△DEF;(2)若AB=4,延长EF交BC的延长线于点G,求BG的长23.如图,已知反比例函数y=kx的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C (x ,y )也在反比例函数y =k x的图象上,当-3≤x ≤-1时,求函数值y 的取值范围.24.如图,在平面直角坐标系xOy 中,直线y =x +b 与双曲线y =k x相交于A ,B 两点, 已知A (2,5).求:(1)b 和k 的值;(2)△OAB 的面积.25.(1)计算:tan 609tan308sin 602cos 45︒︒︒︒+-+(2)在ABC V 中,90,2,6C AC BC ︒∠===A ∠的度数【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a 、b 和2b ,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x .【详解】解:由题意,22b x a= ∴2a b b x=,∵线段x 没法先作出,根据平行线分线段成比例定理,只有C 符合.故选C .2.B解析:B【解析】由图可知,:BC AC =tan BAC ∠=, ∴30BAC ∠=︒, ∴36m 1sin 302BC AB ===︒. 故选B . 3.B解析:B【解析】【分析】由已知条件可得ABC DAC ~V V ,可得出AC BC DC AC =,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~V V ,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC= 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 4.A解析:A【解析】【分析】根据互余角性质得∠PAM =∠PBC ,进而得△PAM ∽△PBC ,可以判断①;由相似三角形得∠APM =∠BPC ,进而得∠CPM =∠APB ,从而判断②;根据对角互补,进而判断③;由△APB ∽△NAB 得AP AN BP AB=,再结合△PAM ∽△PBC 便可判断④. 【详解】解:∵AP ⊥BN ,∴∠PAM+∠PBA =90°,∵∠PBA+∠PBC =90°,∴∠PAM=∠PBC,∵∠PMA=∠PCB,∴△PAM∽△PBC,故①正确;∵△PAM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故②正确;∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,∴∠MPB=∠MCB,故③正确;∵AP⊥BN,∴∠APN=∠APB=90°,∴∠PAN+∠ANB=90°,∵∠ANB+∠ABN=90°,∴∠PAN=∠ABN,∵∠APN=∠BPA=90°,∴△PAN∽△PBA,∴AN PA BA PB=,∵△PAM∽△PBC,∴Al AP BC BP=,∴AN AM AB BC=,∵AB=BC,∴AM=AN,故④正确;故选:A.【点睛】本题考查了相似三角形的判定和性质,正方形的性质、四点共圆,同角的余角相等,判断出PM⊥PC是解题的关键.5.D【解析】【分析】根据相似图形的定义,形状相同,可得出答案.【详解】解:A 、两图形形状不同,故不是相似图形;B 、两图形形状不同,故不是相似图形;C 、两图形形状不同,故不是相似图形;D 、两图形形状相同,故是相似图形;故选:D .【点睛】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.6.D解析:D【解析】A 选项,在△OAB ∽△OCD 中,OB 和CD 不是对应边,因此它们的比值不一定等于相似比,所以A 选项不一定成立;B 选项,在△OAB ∽△OCD 中,∠A 和∠C 是对应角,因此αβ=,所以B 选项不成立; C 选项,因为相似三角形的面积比等于相似比的平方,所以C 选项不成立;D 选项,因为相似三角形的周长比等于相似比,所以D 选项一定成立.故选D.7.A解析:A【解析】【分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【详解】设木桩上升了h 米,∴由已知图形可得:tan20°=8h , ∴木桩上升的高度h =8tan20°故选B. 8.C解析:C【解析】【分析】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC=,然后利用比例性质求EC 和AE 的值即可∵//DE BC , ∴AD AE DB EC =,即932AE =, ∴6AE =,∴628AC AE EC =+=+=.故选:C .【点睛】此题考查平行线分线段成比例,解题关键在于求出AE9.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD ,∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 10.C解析:C【解析】【分析】过A 作AF ∥BC 交BM 延长线于F ,设BC=3a ,则BP=PQ=QC=a ;根据平行线间的线段对应成比例的性质分别求出BD 、BE 、BM 的长度,再来求BD ,DE ,EM 三条线段的长度,即可求得答案.【详解】过A 作AF ∥BC 交BM 延长线于F ,设3BC a =,则BP PQ QC a ===;∵AM CM =,AF ∥BC ,∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP , ∴133BD BP a DF AF a ===, ∴34DF BF BD ==, ∵AF ∥BQ , ∴2233BE BQ a EF AF a ===, ∴23EF BE =,即25BF BE =, ∵AF ∥BC , ∴313BM BC a MF AF a===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】 本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.11.D解析:D【解析】【分析】先设出DE x =,进而得出3AD x =,再用平行四边形的性质得出3BC x =,进而求出CF ,最后用相似三角形的性质即可得出结论.【详解】解:设DE x =,∵:1:3DE AD =,∴3AD x =,∵四边形ABCD 是平行四边形,∴//AD BC ,BC AD 3x ==,∵点F 是BC 的中点,∴1322CF BC x ==, ∵//AD BC , ∴DEG CFG ∆∆∽, ∴224392DEGCFG S DE x S CF x ⎛⎫ ⎪⎛⎫=== ⎪ ⎪⎝⎭ ⎪⎝⎭V V , 故选:D .【点睛】此题主要考查了相似三角形的判定和性质,平行四边形的性质,中点的定义,表示出CF 是解本题的关键.12.B解析:B【解析】【分析】根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.【详解】 ①方程125x -=2去分母,两边同时乘以5,得x ﹣12=10,故①正确. ②方程29x =92,两边同除以29,得x =814;要注意除以一个数等于乘以这个数的倒数,故②错误.③方程6x ﹣4=x +4移项,得5x =8;要注意移项要变号,故③错误.④方程2﹣5362x x -+=两边同乘以6,得12﹣(x ﹣5)=3(x +3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故④错误.故②③④变形错误.故选B .【点睛】 在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号.二、填空题13.05【解析】∵EG⊥ABFH⊥ADHG 经过A 点∴FA∥EGEA∥FH∴∠HFA=∠AEG=90°∠FHA=∠EAG∴△GEA∽△AFH∴∵AB=9里DA =7里EG =15里∴FA=35里EA =45里∴解析:05∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴EG EA AF FH=.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴15 4.5 3.5FH=,解得FH=1.05里.故答案为1.05.14.5【解析】【分析】根据同一时刻同一地点物高与影长成正比列式求得CD 的长即可【详解】解:∵AB∥CD∴△EBA∽△ECD∴即∴AB=135(米)故答案为:135【点睛】此题主要考查相似三角形的性质解题解析:5【解析】【分析】根据同一时刻同一地点物高与影长成正比列式求得CD的长即可.【详解】解:∵AB∥CD,∴△EBA∽△ECD,∴CD EDAB EB=,即1.52216AB=+,∴AB=13.5(米).故答案为:13.5【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的判定与性质.15.5【解析】根据题意画出图形构造出△PCD∽△PAB利用相似三角形的性质解题解:过P作PF⊥AB交CD于E交AB于F如图所示设河宽为x米∵AB∥CD∴∠PDC =∠PBF∠PCD=∠PAB∴△PDC∽△解析:5【解析】根据题意画出图形,构造出△PCD∽△PAB,利用相似三角形的性质解题.解:过P作PF⊥AB,交CD于E,交AB于F,如图所示设河宽为x米.∴∠PDC=∠PBF ,∠PCD=∠PAB ,∴△PDC ∽△PBA , ∴AB PF CD PE =, ∴AB 15x CD 15+=, 依题意CD=20米,AB=50米, ∴15205015x =+, 解得:x=22.5(米).答:河的宽度为22.5米.16.【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长进而得出△OAD ∽△OBG 进而得出AO 的长即可得出答案【详解】∵正方形BEFG 的边长是6∴∵两个正方形的相似比为∴∴∵AD ∥BG ∴△OAD解析:(3,2)【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长,进而得出△OAD ∽△OBG ,进而得出AO 的长,即可得出答案.【详解】.∵正方形BEFG 的边长是6,∴6BE EF ==. ∵两个正方形的相似比为13, ∴163CB CB EF ==. ∴2AB BC ==,.∵AD ∥BG ,∴△OAD ∽△OBG , ∴13OA OB =,即213OB OB -=. ∴3OB =.∴点C 的坐标为(3,2). 【点睛】本题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO 的长是解题关键.17.(-2-2)【解析】【分析】先根据点P (ab )是反比例函数y=的图象上的点把点P 的坐标代入解析式得到关于abk 的等式ab=k ;又因为ab 是一元二次方程x2+kx+4=0的两根得到a+b=-kab=4解析:(-2,-2).【解析】【分析】先根据点P (a ,b )是反比例函数y=k x 的图象上的点,把点P 的坐标代入解析式,得到关于a 、b 、k 的等式ab=k ;又因为a 、b 是一元二次方程x 2+kx+4=0的两根,得到a+b=-k ,ab=4,根据以上关系式求出a 、b 的值即可.【详解】把点P (a ,b )代入y=k x得,ab=k , 因为a 、b 是一元二次方程x 2+kx+4=0的两根,根据根与系数的关系得:a+b=-k ,ab=4, 于是有:a b 4{ab 4+=-=, 解得a 2 {b 2=-=-, ∴点P 的坐标是(-2,-2).18.【解析】【分析】如图所示连接BD 过点D 作DE 垂直于BC 的延长线于点E 构造直角三角形将∠CBD 置于直角三角形中设CE 为x 根据特殊直角三角形分别求得线段CDACBC 从而按正切函数的定义可解【详解】解:如解析:31- 【解析】【分析】如图所示,连接BD ,过点D 作DE 垂直于BC 的延长线于点E ,构造直角三角形,将∠CBD 置于直角三角形中,设CE 为x ,根据特殊直角三角形分别求得线段CD 、AC 、BC ,从而按正切函数的定义可解.【详解】解:如图所示,连接BD ,过点D 作DE 垂直于BC 的延长线于点E,∵在Rt △ABC 中,∠ACB =45°,在Rt △ACD 中,∠ACD =90°∴∠DCE=45°,∵DE⊥CE∴∠CEB=90°,∠CDE=45°∴设DE=CE=x,则CDx,在Rt△ACD中,∵∠CAD=30°,∴tan∠CD AC,则AC,在Rt△ABC中,∠BAC=∠BCA=45°∴BC,∴在Rt△BED中,tan∠CBD=DE BE.【点睛】本题考查了用定义求三角函数,同时考查了特殊角的三角函数值,如何作辅助线,是解题的关键.19.【解析】【分析】由比例的性质即可解答此题【详解】∵∴a=b∴=故答案为【点睛】此题考查了比例的基本性质熟练掌握这个性质是解答此题的关键解析:7 4【解析】【分析】由比例的性质即可解答此题.【详解】∵34ab=,∴a=34 b,∴a bb+=3744b b bb b+=,故答案为7 4【点睛】此题考查了比例的基本性质,熟练掌握这个性质是解答此题的关键.20.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.三、解答题21.(1)见解析;(2)MC=.【解析】【分析】(1)由两组边成比例,夹角相等来证明即可;(2)由相似三角形的性质得边成比例,进而利用勾股定理求得BC,再判定∠MBC=90°,最后由勾股定理求得MC的值即可.【详解】(1)证明:∵AB•CD=BC•BD∴ABBC=BDCD在△ABD和△BCD中,∠ABD=∠BCD=90°∴△ABD∽△BCD;(2)∵△ABD∽△BCD∴ADBD=BDCD,∠ADB=∠BDC又∵CD=6,AD=8∴BD2=AD•CD=48∴BC∵BM∥CD∴∠MBD=∠BDC,∠MBC=∠BCD=90°∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∴MC.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理与勾股定理的运用.22.(1)详见解析;(2)10【解析】【分析】(1)由正方形的性质得出∠A=∠D=90°,AB=BC=CD=AD,AD∥BC,证出∠ABE=∠DEF,即可得出△ABE∽△DEF;(2)求出DF=1,CF=3,由相似三角形的性质得出AE ABDF DE=,解得DE=2,证明△EDF∽△GCF,得出DE DFCG CF=,求出CG=6,即可得出答案.【详解】(1)证明:∵四边形ABCD为正方形,∴∠A=∠D=90°,AB=BC=CD=AD,AD∥BC,∵∠BEF=90°,∵∠AEB+∠EBA=∠DEF+∠EBA=90°,∴∠ABE=∠DEF,∴△ABE∽△DEF;(2)解:∵AB=BC=CD=AD=4,CF=3FD,∴DF=1,CF=3,∵△ABE∽△DEF,∴AE ABDF DE=,即441DEDE-=,解得:DE=2,∵AD∥BC,∴△EDF∽△GCF,∴DE DFCG CF=,即213CG=,∴CG=6,∴BG=BC+CG=4+6=10.【点睛】本题考查了相似三角形的判定及性质、正方形的性质,掌握相似三角形的判定和性质是解题的关键.23.(1) k=4, m=1;(2)当-3≤x≤-1时,y的取值范围为-4≤y≤-4 3 .【解析】【分析】【详解】试题分析:(1)根据反比例函数系数k的几何意义先得到k的值,然后把点A的坐标代入反比例函数解析式,可求出k的值;(2)先分别求出x=﹣3和﹣1时y的值,再根据反比例函数的性质求解.试题解析:(1)∵△AOB 的面积为2,∴k=4,∴反比例函数解析式为4y x =,∵A (4,m ),∴m=44=1; (2)∵当x=﹣3时,y=﹣43; 当x=﹣1时,y=﹣4,又∵反比例函数4y x =在x <0时,y 随x 的增大而减小,∴当﹣3≤x≤﹣1时,y 的取值范围为﹣4≤y≤﹣43. 考点:反比例函数系数k 的几何意义;反比例函数图象上点的坐标特征.24.(1)b=3,k=10;(2)S △AOB =212. 【解析】(1)由直线y=x+b 与双曲线y=k x相交于A 、B 两点,A (2,5),即可得到结论; (2)过A 作AD⊥x 轴于D ,BE⊥x 轴于E ,根据y=x+3,y=10x,得到(-5,-2),C (-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论. 解:(1)把()2,5A 代入y x b =+.∴52b =+∴3b =.把()2,5A 代入k y x =,∴52k =, ∴10k =.(2)∵10y x =,3y x =+. ∴103x x=+时,2103x x =+, ∴12x =,25x =-.∴()5,2B --.又∵()3,0C -,∴AOB AOC BOC S S S =+V V V 353222⨯⨯=+ 10.5=.25.(1;(2)∠A =60°【解析】【分析】(1)原式利用特殊角的三角函数值计算即可得到结果;(2)由锐角三角函数定义求出∠A 度数即可.【详解】(1+2322⨯⨯⨯(2)∵90,C AC BC ︒∠===∴tanA =BC AC ==, ∴∠A =60°【点睛】此题考查了实数的运算以及解直角三角形,熟练掌握运算法则是解本题的关键.。

相关文档
最新文档