2016上海各区初三数学一模18题解析

合集下载

2016年上海市闸北区中考数学一模试卷含答案解析

2016年上海市闸北区中考数学一模试卷含答案解析

2016年上海市闸北区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( ) A.B.C.D.2.抛物线y=﹣2x2+3的顶点在( )A.x轴上B.y轴上C.第一象限 D.第四象限3.如图,已知点D、E分别在△ABC的边BA、CA的延长上,下列给出的条件中,不能判定DE∥BC的是()A.BD:AB=CE:AC B.DE:BC=AB:AD C.AB:AC=AD:AE D.AD:DB=AE:EC4.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A. B.C. D.5.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,CD⊥AB于点D,则cot∠BCD的值为()A.B.C.D.6.已知,二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下说法不正确的是( )A.根据图象可得该函数y有最小值B.当x=﹣2时,函数y的值小于0C.根据图象可得a>0,b<0D.当x<﹣1时,函数值y随着x的增大而减小二、填空题(本大题共12题,每题4分,满分48分)7.已知,则的值是__________.8.如图,在△ABC中,DE∥BC,当△ADE与△ABC的周长比为1:3时,那么DE:BC=__________.9.如图,已知在梯形ABCD中,AB∥CD,点E和点F分别在AD和BC上,EF是梯形ABCD的中位线,若,,则用表示=__________.10.求值:sin60°﹣tan30°=__________.11.汽车沿着坡度为1:7的斜坡向上行驶了50米,则汽车升高了__________米.12.已知抛物线y=(m﹣1)x2+4的顶点是此抛物线的最高点,那么m的取值范围是__________.13.周长为16的矩形的面积y与它的一条边长x之间的函数关系式为y=__________.(不需要写出定义域)14.在直角坐标系中,已知点P在第一象限内,点P与原点O的距离OP=2,点P与原点O 的连线与x轴的正半轴的夹角为60°,则点P的坐标是__________.15.如图,正方形CDEF内接于Rt△ABC,点D、E、F分别在边AC、AB和BC上,当AD=2,BF=3时,正方形CDEF的面积是__________.16.如图,在梯形ABCD中,AD∥BC,AC平分∠BCD,∠BAC=∠D,若AD=4,BC=10,则AC=__________.17.如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么=__________.18.如图,将一张矩形纸片ABCD沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D 重合,此时折痕交DC于点G,则CG:GD的值为__________.三、解答题(本大题共7题,满分78分)19.解方程:.20.已知二次函数的图象的顶点在原点O,且经过点A(1,).(1)求此函数的解析式;(2)将该抛物线沿着y轴向上平移后顶点落在点P处,直线x=2分别交原抛物和新抛物线于点M和N,且S△PMN=,求:MN的长以及平移后抛物线的解析式.21.如图,已知平行四边形ABCD的对角线相交于点O,点E是边BC的中点,联结DE交AC于点G.设=,=,(1)试用、表示向量;(2)试用、表示向量.22.如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、C、E在同一条直线上,点F、A、D也在同一条直线上.求这棵大树没有折断前的高度.(参考数据:sin53°≈0.8,cos53°≈0。

上海市2016杨浦区初三数学一模试卷(含答案)

上海市2016杨浦区初三数学一模试卷(含答案)

九年级中考数学(模拟一)杨浦区2015学年度第一学期期末考试初三数学试卷 2016.1(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.将抛物线向上平移2个单位后所得抛物线的表达式是……………(▲)(A);(B);(C);(D).2.以下图形中一定属于互相放缩关系的是………………………………………(▲)(A)斜边长分别是10和5的两直角三角形;(B)腰长分别是10和5的两等腰三角形;(C)边长分别为10和5的两菱形;(D)边长分别为10和5的两正方形.3.如图,已知在△ABC中,D是边BC的中点,,,那么等于…(▲)(A);(B);(C);(D).4.坡比等于1∶的斜坡的坡角等于……………………………………………(▲)(A);(B);(C);(D).5.下列各组条件中,一定能推得△ABC与△DEF相似的是…………………(▲)(A)∠A=∠E且∠D=∠F;(B)∠A=∠B且∠D=∠F;(C)∠A=∠E且;(D)∠A=∠E且.6.下列图像中,有一个可能是函数的图像,它是…(▲)(A)(B)(C)(D)二、填空题:(本大题共12题,每题4分,满分48分)7.如果,那么▲.8.如图,已知点G为△ABC的重心,DE过点G,且DE//BC,EF//AB,那么▲.9.已知在△ABC中,点D、E分别在边AB和BC上,AD=2,DB=1,BC=6,要使DE∥AC,那么BE= ▲.10.如果△ABC与△DEF相似,△ABC的三边之比为3:4:6,△DEF的最长边是10cm,那么△DEF的最短边是▲ cm.11.如果AB//CD,,与的方向相反,那么= ▲.12.计算:= ▲ .13.在△ABC中,∠C=90°,如果,AB=6,那么BC= ▲.14.如果二次函数配方后为,那么c的值是▲ .15.抛物线的对称轴是直线▲.16.如果,是二次函数图像上的两个点,那么y1 ▲ y2(请填入“”或“”).17.请写出一个二次函数的解析式,满足:图像的开口向下,对称轴是直线,且与y轴的交点在x轴下方,那么这个二次函数的解析式可以是▲.18.如图,已知将△ABC沿角平分线BE所在直线翻折,点A恰好落在边BC的中点M处,且AM=BE,那么∠EBC的正切值为▲.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)如图,已知两个不平行的向量、.先化简,再求作:.(不要求写作法,但要指出所作图中表示结论的向量)20.(本题满分10分,其中第(1)小题6分,第(2)小题4分)已知二次函数的图像上部分点的横坐标x与纵坐标y的对应值如下表所示: x…-124…y…-511m…求:(1)这个二次函数的解析式;(2)这个二次函数图像的顶点坐标及上表中m的值.21.(本题满分10分,其中每小题各5分)如图,梯形ABCD中,AD//BC,BC=2AD,点E为边DC的中点,BE交AC于点F.求:(1)AF:FC的值;(2)EF:BF的值.22.(本题满分10分,其中第(1)小题6分,第(2)小题4分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点处测得该塔顶端F的仰角分别为和,矩形建筑物宽度AD=20 m,高度DC=33 m.(1)试用和的三角比表示线段CG的长;(2)如果,请求出信号发射塔顶端到地面的高度FG的值(结果精确到1m).(参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)23.(本题满分12分,其中每小题各6分)已知:如图,在△ABC中,点D、E分别在边AB、AC上,DE//BC,点F在边AB上,,CF与DE 相交于点G.(1)求证:;(2)当点E为AC中点时,求证:.24.(本题满分12分,其中每小题各4分)已知在平面直角坐标系中,抛物线与轴交于点A、B,与轴交于点C,直线经过A、C两点.(1)求抛物线的表达式;(2)如果点P、Q在抛物线上(P点在对称轴左边),且PQ//AO,PQ=2AO.求点P、Q的坐标;(3)动点M在直线上,且△ABC与△COM相似,求点M的坐标.25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)已知菱形ABCD的边长为5,对角线AC的长为6(如图1),点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图形,并求BM的长;(3)当点M在边AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.杨浦区2015学年度第一学期期末考试初三数学答案 2016.1一、选择题:(本大题共6题,每题4分,满分24分)1. A; 2. D; 3. B; 4. A; 5. C; 6. C;二、填空题:(本大题共12题,每题4分,满分48分)7.; 8.; 9.2;10. 5; 11.; 12.;13.2; 14.5; 15.x=1;16.; 17.等; 18.;三、解答题:(本大题共7题,满分78分)19.解:-----------------------(1分)----------------------------------------------------------------------(4分)画图正确4分(方法不限),结论1分.20.(本题满分10分,其中第(1)小题6分,第(2)小题4分)解:(1)由题意可得:-----------------------------------(3分)解得:,即解析式为---------------------------(3分)(2)∵,∴顶点坐标是(1,3), ------(2分)∴当x=4时,y=-15,即m=-15. ------------------------------(2分)21.(本题满分10分,其中每小题各5分)解:(1)延长BE交AD的延长线于点M,∵AD//BC,∴,-------------------------------------------(2分)∵点E为边DC的中点,∴DM=BC,∵BC=2AD,∴DM=2AD,∴AM=AD+DM=3AD, ----------------------------------(1分)∴------------------------------------------------------------------(2分)(2)∵AD//BC,∴,,-------------(1分,1分)∴,∴,---------------------------------------(1分)∴-----------------------------------------------------------------------(2分)22.(本题满分10分,其中第(1)小题6分,第(2)小题4分)解:(1)如图,延长AD交FG于点E.在Rt△FCG中,tanβ=,∴----------------------(2分)在Rt△FAE中,tanα=,∴------------------------(1分)∵FG-FE=EG=DC=33,∴-----------------------------------------------(1分)∵AE=AD+DE=AD+CG=20+CG,∴,∴.----------------------------------------------------------(2分)(2)∵,∴-------(1分)∴ = 115.5≈116.--------------------------(2分)答:该信号发射塔顶端到地面的高度FG约是116 m.-------------------------(1分)23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)(1)证明:∵,∴,------------------------------------(1分)又∵∠B=∠B,∴△BCF∽△BAC,------------------------------------------(2分)∵DE//BC,∴△FDG∽△FBC,----------------------------------------------(1分)∴△FDG∽△CBA,--------------------------------------------------------------(1分)∴,即.----------------------------------(1分)(2) 证明:∵,∴,∵△BCF∽△BAC,∴,----------------------------------------------------(1分)。

2016年上海中考数学一模试卷和答案含奉贤,浦东,青浦,静安,闸北,嘉定,宝山,虹口,黄浦9区试卷和答案

2016年上海中考数学一模试卷和答案含奉贤,浦东,青浦,静安,闸北,嘉定,宝山,虹口,黄浦9区试卷和答案

2016年奉贤区调研测试九年级数学2016.01(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)1.用一个4倍放大镜照△ABC ,下列说法错误的是(▲) A .△ABC 放大后,∠B 是原来的4倍; B .△ABC 放大后,边AB 是原来的4倍; C .△ABC 放大后,周长是原来的4倍; D .△ABC 放大后,面积是原来的16倍2.抛物线()212y x =-+的对称轴是(▲)A .直线2x =;B .直线2x =-;C .直线1x =;D .直线1x =-.3.抛物线223y x x =--与x 轴的交点个数是(▲) A . 0个 ; B .1个; C . 2个 ; D . 3个.4.在△ABC 中,点D 、E 分别是边AB 、AC 上的点,且有12AD AE DB EC ==,BC =18,那么DE 的值为(▲)A .3 ;B .6 ;C .9 ;D .12. 5.已知△ABC 中,∠C =90°,BC =3,AB =4,那么下列说法正确的是(▲) A .3sin 5B =; B . 3cos 4B = ; C .4tan 3B =; D .3cot 4B =6.下列关于圆的说法,正确的是(▲) A .相等的圆心角所对的弦相等;B .过圆心且平分弦的直线一定垂直于该弦;C .经过半径的端点且垂直于该半径的直线是圆的切线;D .相交两圆的连心线一定垂直且平分公共弦.二.填空题:(本大题共12题,每题4分,满分48分) 7.已知3x =2y ,那么xy=▲; . 8.二次函数342+=x y 的顶点坐标为▲;9. 一条斜坡长4米,高度为2米,那么这条斜坡坡比i =▲;10.如果抛物线k x k y -+=2)2(的开口向下,那么k 的取值范围是▲;11.从观测点A 处观察到楼顶B 的仰角为35°,那么从楼顶B 观察观测点A 的俯角为▲; 12.在以O 为坐标原点的直角坐标平面内有一点A (-1,3),如果AO 与y 轴正半轴的夹角为α,那么角α的余弦值为▲;13.如图,△ABC 中,BE 平分∠ABC ,DE//BC ,若DE =2AD ,AE=2,那么EC =▲; 14.线段AB 长10cm ,点P 在线段AB 上,且满足BP APAP AB=,那么AP 的长为▲cm ;. 15.⊙O 1的半径11r =,⊙O 2的半径22r =,若此两圆有且仅有一个交点,那么这两圆的圆心距d =▲;16.已知抛物线(4)y ax x =+,经过点A (5,9)和点B (m,9),那么m =▲;17.如图,△ABC 中,AB =4,AC =6,点D 在BC 边上,∠DAC =∠B ,且有AD =3,那么BD的长为▲;18.如图,已知平行四边形ABCD 中,AB=AD =6,cotB =21,将边AB 绕点A 旋转,使得点B 落在平行四边形ABCD 的边上,其对应点为B ’(点B ’不与点B 重合),那么 sin ∠CAB ’=▲. 三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:︒+︒--︒+︒60sin 260tan 2130cos 45sin 422.第13题图BA DC E第17题图B ADC第18题图B20.(本题满分10分,每小题5分)如图,已知AB//CD//EF ,AB:CD:EF=2:3:5,=. (1)=BD (用a 来表示);(2)求作向量AE 在AB 、BF 方向上的分向量. (不要求写作法,但要指出所作图中表示结论的向量)21.(本题满分10分,每小题5分)为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB 进行改造,在斜坡中点D 处挖去部分坡体(阴影表示),修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(1)若修建的斜坡BE 的坡角为36°,则平台DE 的长约为多少米?(2)在距离坡角A 点27米远的G 处是商场主楼,小明在D 点测得主楼顶部H 的仰角为30°,那么主楼GH 高约为多少米?(结果取整数,参考数据:sin 36°=0.6,cos 36°=22.(本题满分10分,每小题5分)如图,在⊙O 中,AB 为直径,点B 为CD 的中点,CD =AE =5. (1)求⊙O 半径r 的值;(2)点F 在直径AB 上,联结CF ,当∠FCD =∠DOB 时,求AF 的长.E AB F第20题图CD第21题图F E ABOCD23.(本题满分12分,第(1)小题6分,第(2)小题6分) 已知:在梯形ABCD 中,AD //BC ,AB ⊥BC ,∠AEB =∠ADC . (1)求证:△ADE ∽△DBC ;(2)联结EC,若2CD AD BC =⋅,求证:∠DCE =∠ADB .24.(本题满分12分,第(1)小题4分,第(2)小题8分)如图,二次函数2y x bx c =++图像经过原点和点A (2,0),直线AB 与抛物线交于点B , 且∠BAO =45°.(1)求二次函数解析式及其顶点C 的坐标; (2)在直线AB 上是否存在点D ,使得△BCD为直角三角形.若存在,求出点D 的坐标, 若不存在,说明理由.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 已知:如图,Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,垂足为点C ,联结DE ,使得∠EDC =∠A ,联结BE . (1)求证:AC BE BC AD ⋅=⋅;(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式及x 的取值范围; (3)当ABC BDE S S ∆=41△时,求tan ∠BCE 的值.EA B第20题图CDAE第25题备用图A2016学年九年级第一学期期末测试参考答案与评分标准 2016.01一、选择题:(本大题共6题,每题4分,满分24分)1.A ; 2.C ; 3.C ; 4.B ; 5.B ; 6.D . 二、填空题:(本大题共12题,每题4分,满分48分)7.23; 8.(0,3);9.2k <-; 10.1 11.35°; 12.10103; 13.4; 14.5; 15.1或3; 16.-9; 17.72; 18.1010或2.三、解答题:(本大题共7题,满分78分)19.(1)原式=2+24222⎛⨯ ⎝⎭...................................(4分)=(13+244-+(4分) = -1 .......................(2分) 20.解:(1)13a …………………………………………………(5分)(2)向量AE 在AB 、BF 方向上的分向量分别为GE 、AG.图形准确……………………………………………(3分) 结论正确……………………………………………(2分)21.解:(1)由题意得,AB =60米,∠BAC =30°,∠BEF =36°,FM//CG∵点D 是AB 的中点 ∴BD =AD =12AB =30................................................(1分) ∵DF//AC 交BC 、HG 分别于点F 、M , ∴∠BDF =∠A=30°,∠BFE =∠C=90° 在Rt △BFD 中,∠BFD =90°,cos BDF DF BD ∠=,30DF =, 25.5DF =≈............(1分) sin BF BDF BD∠=1230BF =. 15BF =…………………………(1分)在Rt △BFE 中,∠BFE =90°,tan BEF BFEF ∠=,0.715EF =,EF =21.4………(1分) ∴DE=DF-EF =25.5-21.4=4.1≈4(米)答:平台DE 的长约为4米. ………………………………………………………(1分)(2)由题意得,∠HDM =30°,AG =27米,过点D 作DN ⊥AC 于点N在Rt △DNA 中,∠DNA =90°cos DAC AN AD ∠=30AN =AN =(1分)sin DN DAN AD∠= 1230DN = 15DN =...................(1分)∴27DM NG AN AG ==+=……………………………………(1分)在Rt △HMD 中,∠HMD =90° tan HDM HMDM ∠=15HM =+453930153915≈+=++=+=MG HM HG 米…(1分)答:主楼GH 的高约为45米………………………………………………………(1分) 22.解:(1) ∵OB 是半径,点B 是CD 的中点∴OB ⊥CD ,CE=DE =12CD =…(2分)∴222ODED OE =+ ∴()()2225-5r r =+ 解得 r =3…………(3分)(2) ∵OB ⊥CD ∴∠OEC=∠OED =90°……………………………………………(1分) 又∵∠FCE=∠DOE ∴△FCE ∽△DOE ∴EF CEED OE=…………………………(2分)= 得52EF =……………………………………………………(1分)∴ 52AF AE EF =-=……………………………………………………………(1分) 23.(1)证明:∵AD ∥BC ∴∠ADB =∠DBC ………………………………………(2分) ∵ ∠ADC+∠C=180° ∠AEB+∠AED=180°又∵∠AEB =∠ADC ∴∠C =∠AED …………………………………………(2分) ∴△ADE ∽△DBC ……………………………………………………………(2分) (2) ∵△ADE ∽△DBC∴AD DBDE BC =∴AD BC DB DE ⋅=⋅…………………………………………(1分) ∵2CD AD BC =⋅ ∴2CD DB DE =⋅∴CD DEDB CD =………………………………………………………………………(1分) ∵∠CDB =∠CDE∴△CDE ∽△BDC ………………………………………………………………(2分) ∴ ∠DCE =∠DBC ………………………………………………………………(1分) ∵∠ADB =∠DBC∴∠DCE =∠ADB ………………………………………………………………(1分)24.解:(1)将原点(0,0)和点A (2,0)代入2y x bx c =++中0042cb c=⎧⎨=++⎩ 解得20b c =-⎧⎨=⎩ 22y x x =-………………………(3分)∴顶点C 的坐标为(1,﹣1(2)过点B 作BG ⊥x 轴,垂足为点G ∵∠BGA =90°,∠A =45° ∴∠GBA=45° 设点A (x ,22x x -) 则22x x -=2-x ∴点B (-1,3设直线AB : 0y kx b k =+≠() 将点A (2,0)、B (-1,3)代入203k b k b +=⎧⎨-+=⎩解得12k b =-⎧⎨=⎩ 直线AB :y =设点D (x ,2x -+)则BC =CD =BD 若△BCD 为直角三角形①∠BCD =90° ∴222BC CD BD += 即(222+= 解得73x =∴7133D ⎛⎫⎪⎝⎭点,-……………………………………………(2分)② ∠BDC =90°∴222BDCD BC += 即(222+=解得 1221x x ==-,(舍去) ∴点D (2,0)…………………(2分)综上所述:()712,033D ⎛⎫ ⎪⎝⎭点,-或25.解:(1)∵CE ⊥CD ∴∠DCE =∠BCA =90︒∵∠EDC =∠A ∴△EDC ∽△BAC ∴EC BCDC AC=……………(2分) ∵∠DCE =∠BCA ∴∠DCE -∠BCD =∠BCA -∠BCD 即∠BCE=∠DCA ……(1分)∵ECBCDC AC = ∴△BCE ∽△ACD ………………………………(1分)∴BCACBEAD= 即AC BE BC AD ⋅=⋅………………………………………(1分) (2)∵△BCE ∽△ACD ∴∠CBE =∠A ∵∠BCA=90° ∴4AC ,∠ABC+∠A=90°∴∠CBE+∠ABC=90°即∠DBE=90°……………………(1分)∴DE ==∵BC AC BE AD =,34BE x = ∴ 3=4BE x ()2113153==52248BDE x x S BD BE x x ∆-⋅-⋅=……………………………………(1分) ∵ △CDE ∽△CAB ∴22121165CDE ABC S DE x x S AB ∆∆⎛⎫==-+ ⎪⎝⎭ ∵11==43=622ABC S BC AC ∆⋅⨯⨯ ∴2312=685CDE S x x ∆-+……………………(1分) 即()21=S 60540BDE CDE S S x x ∆∆+=-<<……………………………(2分) (3)11==43=622ABC S BC AC ∆⋅⨯⨯ 由14ABC S S ∆=得 21531684x x -=⨯ ∴2540x x -+=1214x x ==,…………………………(1分)过点D 作DF ⊥AC 于点F ∴∠DFA=∠BCA =90°∴ DF ∥BC ∴DF AD AFBC AB AC == 当x =1时,3455DF AF ==,,165CF AC AF =-=………………………………(1分) 在Rt △DFC 中,∠DFC =90° t a n 3DF DCF ==∠∵∠BCE=∠DCA ∴3an 16t BCE =∠当x =4时,得121655DF AF ==, CF =3tan DCF DFCF∠==,即tan ∠∴综上所述:6an 331t BCE =∠或.2016浦东一模一. 选择题1. 如果两个相似三角形对应边之比是1:4,那么它们的对应边上的中线之比是( ) A. 1:2; B. 1:4; C. 1:8; D. 1:16;2. 在Rt △ABC 中,90C ︒∠=,若5AB =,4BC =,则sin A 的值为( )A.34; B. 35; C. 45; D. 43; 3. 如图,点D 、E 分别在AB 、AC 上,以下能推得DE ∥BC 的条件是( ) A. ::AD AB DE BC =; B. ::AD DB DE BC =; C. ::AD DB AE EC =; D. ::AE AC AD DB =;4. 已知二次函数2y ax bx c =++的图像如图所示,那么a 、b 、c 的符号为( ) A. 0a <,0b <,0c >; B. 0a <,0b <,0c <; C. 0a >,0b >,0c >; D. 0a >,0b >,0c <;5. 如图,Rt △ABC 中,90ACB ︒∠=,CD AB ⊥于点D ,下列结论中错误的是( )A. 2AC AD AB =⋅;B. 2CD CA CB =⋅; C. 2CD AD DB =⋅; D. 2BC BD BA =⋅; 6. 下列命题是真命题的是( )A. 有一个角相等的两个等腰三角形相似;B. 两边对应成比例且有一个角相等的两个三角形相似;C. 四个内角都对应相等的两个四边形相似;D. 斜边和一条直角边对应成比例的两个直角三角形相似;二. 填空题7. 已知13x y =,那么x x y =+ ; 8. 计算:123()3a ab -+=;9. 上海与杭州的实际距离约200千米,在比例尺为1:5000000的地图上,上海与杭州的图 上距离约 厘米;10. 某滑雪运动员沿着坡比为100米,则运动员下降的垂直高度为 米;11. 将抛物线2(1)y x =+向下平移2个单位,得到新抛物线的函数解析式是 ; 12. 二次函数2y ax bx c =++的图像如图所示,对称轴为直线2x =,若此抛物线与x 轴的 一个交点为(6,0),则抛物线与x 轴的另一个交点坐标是 ;13. 如图,已知AD 是△ABC 的中线,点G 是△ABC 的重心,AD a = ,那么用向量a表示向量AG为 ;14. 如图,△ABC 中,6AC =,9BC =,D 是△ABC 的边BC 上的点,且CAD B ∠=∠, 那么CD 的长是 ;15. 如图,直线1AA ∥1BB ∥1CC ,如果13AB BC =,12AA =,16CC =,那么线段1BB 的 长是 ;16. 如图是小明在建筑物AB 上用激光仪测量另一建筑物CD 高度的示意图,在地面点P 处 水平放置一平面镜,一束激光从点A 射出经平面镜上的点P 反射后刚好射到建筑物CD 的 顶端C 处;已知AB BD ⊥,CD BD ⊥,且测得15AB =米,20BP =米,32PD =米,B 、P 、D 在一条直线上,那么建筑物CD 的高度是 米;17. 若抛物线2y ax c =+与x 轴交于点(,0)A m 、(,0)B n ,与y 轴交于点(0,)C c ,则称 △ABC 为“抛物三角形”;特别地,当0mnc <时,称△ABC 为“正抛物三角形”;当0mnc > 时,称△ABC 为“倒抛物三角形”;那么,当△ABC 为“倒抛物三角形”时,a 、c 应分 别满足条件 ;18. 在△ABC 中,5AB =,4AC =,3BC =,D 是边AB 上的一点,E 是边AC 上的 一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE = ;三. 解答题19. 456tan302cos30︒︒︒+-;20. 二次函数2y ax bx c =++的变量x 与变量y 的部分对应值如下表:(1)求此二次函数的解析式; (2)写出抛物线顶点坐标和对称轴;21. 如图,梯形ABCD 中,AD ∥BC ,点E 是边AD 的中点,联结BE 并延长交CD 的延 长线于点F ,交AC 于点G ;(1)若2FD =,13ED BC =,求线段DC 的长; (2)求证:EF GB BF GE ⋅=⋅;22. 如图,l 为一条东西方向的笔直公路,一辆小汽车在这段限速为80千米/小时的公路上 由西向东匀速行驶,依次经过点A 、B 、C ,P 是一个观测点,PC l ⊥,PC =60米,4tan 3APC ∠=,45BPC ︒∠=,测得该车从点A 行驶到点B 所用时间为1秒; (1)求A 、B 两点间的距离;(2)试说明该车是否超过限速;23. 如图,在△ABC 中,D 是BC 边的中点,DE BC ⊥交AB 于点E ,AD AC =,EC 交AD 于点F ;(1)求证:△ABC ∽△FCD ; (2)求证:3FC EF =;24. 如图,抛物线22y ax ax c =++(0)a >与x 轴交于(3,0)A -、B 两点(A 在B 的左侧), 与y 轴交于点(0,3)C -,抛物线的顶点为M ;(1)求a 、c 的值; (2)求tan MAC ∠的值;(3)若点P 是线段AC 上一个动点,联结OP ; 问是否存在点P ,使得以点O 、C 、P 为顶点的 三角形与△ABC 相似?若存在,求出P 点坐标; 若不存在,请说明理由;25. 如图,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与点A 、D 不重合),45EBM ︒∠=,BE 交对角线AC 于点F ,BM 交对角线AC 于点G ,交CD 于点M ;(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)联结EG ,如图2,设AE x =,EG y =,求y 关于x 的函数解析式,并写出定义域; (3)当M 为边DC 的三等分点时,求EGF S 的面积;21、22、23、24、25、2016青浦、静安一模一. 选择题 1.的相反数是( )A.B. C.2; D. 2-; 2. 下列方程中,有实数解的是( )A. 210x x -+=; B. 1x =-;C.210x x x -=-; D. 211xx x-=-; 3. 化简11(1)x ---的结果是( ) A.1x x -; B. 1xx -; C. 1x -; D. 1x -; 4. 如果点(2,)A m 在抛物线2y x =上,将此抛物线向右平移3个单位后,点A 同时平移到 点A ',那么A '坐标为( )A. (2,1);B. (2,7);C. (5,4);D. (1,4)-;5. 在Rt △ABC 中,90C ∠=︒,CD 是高,如果AD m =,A α∠=,那么BC 的长为( )A. tan cos m αα⋅⋅;B. cot cos m αα⋅⋅;C.tan cos m αα⋅; D. tan sin m αα⋅;6. 如图,在△ABC 与△ADE 中,BAC D ∠=∠,要使△ABC 与△ADE 相似,还需满 足下列条件中的( )A. AC AB AD AE =;B. AC BC AD DE =;C. AC AB AD DE =;D. AC BCAD AE=;二. 填空题7. 计算:23(2)a -= ; 8. 函数3()2x f x x -=+的定义域为 ;9. 1x =-的根为 ;10. 如果函数(3)1y m x m =-+-的图像经过第二、三、四象限,那么常数m 的取值范围为 ;11. 二次函数261y x x =-+的图像的顶点坐标是 ;12. 如果抛物线225y ax ax =-+与y 轴交于点A ,那么点A 关于此抛物线对称轴的对称点坐标是 ;13. 如图,已知D 、E 分别是△ABC 的边AB 和AC 上的点,DE ∥BC ,BE 与CD 相交于点F ,如果1AE =,2CE =,那么:EF BF 等于 ;14. 在Rt △ABC 中,90C ∠=︒,点G 是重心,如果1sin 3A =,2BC =,那么GC 的长 等于 ;15. 已知在梯形ABCD 中,AD ∥BC ,2BC AD =,设AB a = ,BC b = ,那么CD =(用向量a 、b的式子表示);16. 在△ABC 中,点D 、E 分别在边AB 、AC 上,AED B ∠=∠,6AB =,5BC =,4AC =,如果四边形DBCE 的周长为10,那么AD 的长等于 ;17. 如图,在平行四边形ABCD 中,AE BC ⊥,垂足为E ,如果5AB =,8BC =,4sin 5B =,那么tan CDE ∠= ; 18. 将平行四边形ABCD (如图)绕点A 旋转后,点D 落在边AB 上的点D ',点C 落到C ',且点C '、B 、C 在一直线上,如果13AB =,3AD =,那么A ∠的余弦值为 ;三. 解答题19. 化简:222266942x x x x x x x---++--,并求当123x =时的值;20. 用配方法解方程:22330x x --=;21. 如图,直线43y x =与反比例函数的图像交于点(3,)A a ,第一象限内的点B 在这个反比 例函数图像上,OB 与x 轴正半轴的夹角为α,且1tan 3α=:(1)求点B 的坐标;(2)求OAB ∆的面积;22. 如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是26.6°,向 前走30米到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是45°和33.7°,求该电 线杆PQ 的高度(结果精确到1米);(备用数据:sin 26.60.45︒=,cos 26.60.89︒=,tan 26.60.50︒=,cot 26.6 2.00︒=,sin 33.70.55︒=,cos33.70.83︒=,tan 33.70.67︒=,cot 33.7 1.50︒=)23. 已知,如图,在△ABC 中,点D 、E 分别在边BC 、AB 上,BD AD AC ==,AD 与CE 相交于点F ,2AE EF EC =⋅; (1)求证:ADC DCE EAF ∠=∠+∠;(2)求证:AF AD AB EF ⋅=⋅;2124. 如图,直线112y x =+与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相 交于点C ,与直线112y x =+相交于点A 、D ,CD ∥x 轴,CDA OCA ∠=∠;(1)求点C 的坐标;(2)求这个二次函数的解析式;25. 已知:在梯形ABCD 中,AD ∥BC ,10AC BC ==,4cos 5ACB ∠=,点E 在对角 线AC 上,且CE AD =,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G ,设AD x =,△AEF 的面积为y ;(1)求证:DCA EBC ∠=∠;(2)如图,当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积;22静安区2015学年第一学期期末教学质量调研 九年级数学试卷参考答案及评分说明2016.1一、选择题:1.D ; 2.D ; 3.A ; 4.C ; 5.C ; 6.C . 二、填空题:7.68a -; 8.2-≠x ; 9.4=x ; 10.31<<m ; 11.(3, -8); 12.(2, 5); 13.31; 14.2; 15.b a 21--; 16.2; 17.21; 18.135. 三、解答题:19.解:原式= )2()3()2)(2()3)(2(2--÷-+-+x x x x x x x ············································································ (4分) =)3()2()2)(2()3)(2(--⋅-+-+x x x x x x x ··············································································· (1分) =3-x x. ········································································································ (2分) 当3321==x时,原式=231311333+-=-=-. ································· (3分) 20.解:023232=--x x , ····································································································· (1分) 23232=-x x , ············································································································ (1分) 16923)43(2322+=+-x x , ······················································································· (2分) 1633)43(2=-x , ·········································································································· (2分) 43343±=-x , ········································································································· (2分)433231+=x ,433232-=x . ·············································································· (2分)2321.解:(1)∵直线x y 34=与反比例函数的图像交于点A (3,a ), ∴334⨯=a =4,∴点的坐标A (3,4). ······························································ (1分) 设反比例函数解析式为xky =, ············································································· (1分)∴12,34==k k ,∴反比例函数解析式为xy 12=. ··········································· (1分)过点B 作BH ⊥x 轴,垂足为H , 由31tan ==OB BH α,设BH =m ,则OB =m 3,∴B (m 3,m ) ························ (1分) ∴mm 312=,2±=m (负值舍去), ······································································ (1分) ∴点B 的坐标为(6,2). ······················································································ (1分)(1) ····································· 过点A 作AE ⊥x 轴,垂足为E ,OBH AEHB OAE OAB S S S S ∆∆∆-+=梯形············································································ (1分) =BH OH EH BH AE OE AE ⋅-⋅++⋅21)(2121 ··············································· (1分) ==⨯⨯-⨯++⨯⨯26213)24(2143219. ······················································ (2分)22.解:延长PQ 交直线AB 于点H ,由题意得.由题意,得PH ⊥AB ,AB =30,∠PAH =26 .6°,∠PBH =45°,∠Q BH =33.7°, 在Rt △QBH 中,50.1cot ==∠QHBHQBH ,设QH =x ,BH =x 5.1, ···················· (2分) 在Rt △PBH 中,∵∠PBH =45°,∴PH = BH =x 5.1,··············································· (2分) 在Rt △PAH 中,00.2cot ==∠PHAHPAH ,AH =2PH =x 3, ··································· (2分) ∵AH –BH =AB ,∴305.13=-x x ,20=x . ························································· (2分) ∴PQ =PH –QH =105.05.1==-x x x . ····································································· (1分) 答:该电线杆PQ 的高度为10米. ················································································· (1分)2423.证明:(1)∵EC EF AE ⋅=2,∴AEECEF AE =. ·························································· (1分) 又∵∠AEF =∠CEA ,∴△AEF ∽△CEA . ······················································· (2分) ∴∠EAF =∠ECA , ··························································································· (1分) ∵AD =AC ,∴∠ADC =∠ACD , ······································································· (1分) ∵∠ACD =∠DCE +∠ECA =∠DCE +∠EAF . ····················································· (1分)(2)∵△AEF ∽△CEA ,∴∠AEC =∠ACB . ······························································· (1分)∵DA =DB ,∴∠EAF =∠B . ················································································ (1分) ∴△EAF ∽△CBA . ····························································································· (1分)∴ACEFBA AF =. ··································································································· (1分) ∵AC =AD ,∴ADEFBA AF =. ················································································ (1分) ∴EF AB AD AF ⋅=⋅. ···················································································· (1分)24.解:(1)∵直线121+=x y 与x 轴、y 轴分别相交于点A 、B , ∴A (–2,0)、B (0,1).∴OA =2,OB =1. ······················································ (2分) ∵CD //x 轴,∴∠OAB =∠CDA ,∵∠CDA =∠OCA ,∴∠OAB =∠OCA . ············· (1分) ∴tan ∠OAB =tan ∠OCA , ························································································· (1分) ∴OCOA OA OB =,∴OC 221=, ·················································································· (1分) ∴4=OC ,∴点C 的坐标为(0,4). ································································ (1分) (2)∵CD //x 轴,∴BOBCAO CD =. ················································································· (1分) ∵BC =OC –OB=4–1=3,∴132=CD ,∴CD =6,∴点D (6,4). ························ (1分) 设二次函数的解析式为42++=bx ax y , ···························································· (1分)⎩⎨⎧++=+-=,46364,4240b a b a ………………(1分) ⎪⎩⎪⎨⎧=-=.23,41b a ········································· (1分) ∴这个二次函数的解析式是423412++-=x x y . ················································· (1分)25.解:(1)∵AD ∥BC ,∴∠DAC =∠ECB . ········································································ (1分)又∵AD =CE ,AC =CB ,∴△DAC ≌△ECB . ······························································ (2分) ∴∠DCA =∠EBC . ··································································································· (1分) (2)过点E 作EH ⊥BC ,垂足为H .AE =AC –CE =x -10.。

2016上海市各区县初三一模数学试题及答案

2016上海市各区县初三一模数学试题及答案

2016上海市各区县初三一模数学试题及答案2016上海长宁区初三数学一模试题(满分150分) 2016.1.6一、选择题。

(本题共6个小题,每题4分,共24分)1、如果两个三角形的相似比是1:2,那么他们的面积比是( ).A.1:2B.1:4C.1:2D.2:1 2、如图,在△ABC 中,∠ADE=∠B ,DE:BC=2:3,则下列结论正确的是( ).A.AD:AB=2:3B.AE:AC=2:5C.AD:DB=2:3D.CE:AE=3:23、在Rt △ABC 中,∠C=90°,AB=2,AC=1,则sinB 的值是( ).A.22B.23C.21 D.2 4、在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ).A.直角三角形B.等腰三角形C.钝角三角形 D.锐角三角形5、已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O O 21为1cm ,则这两个圆的位置关系的( ).A.相交B.内含C.内切D.外切6二次函数1)2(2-+=x y 的图像可以由二次函数2x y =的图像平移得到,下列平移正确的是( ).A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位二、填空题。

(本大题共12小题,每题4分,满分48分)7、已知抛物线12+=x y 的顶点坐标是( ).8、已知抛物线32++=bx x y 的对称轴为直线x=1,则实数b 的值为( ) 9、已知二次函数bxax y +=2,阅读下面表格信息,由此可知y 与x 的函数关系式是( ).10、已知二次函数2)3(-=x y 图像上的两点A (3,a )和B(x,b),则a和b的大小关系是a()b.11、圆是轴对称图形,它的对称轴是().12、已知⊙O的弦AB=8cm,弦心距OC=3cm,那么该圆的半径是()cm.13、如图,AB是⊙O的直径,弦CD垂直AB,已知AC=1,BC=22,那么sin∠ACD的值是().14、王小勇操纵一辆遥控汽车从A处沿北偏西60°方向走10m到B处,再从B处向正南方走20m到C处,此时遥控汽车离A处()m.15、已知△ABC中,AD是中线,G是重心,设mAD ,那么用表示=().16、如图,已知AB⊥BD,ED⊥BD,C是线段BD 的中点,且AC⊥CE,ED=1,BD=4,那么AB=( ).17、如果把两条邻边中较短边与较长边的比值为215-的矩形称作黄金矩形。

2016学年上海静安区初三数学一模试卷含答案

2016学年上海静安区初三数学一模试卷含答案

静安区2016学年第一学期期末教学质量教研九年级数学试卷 2017.01(完成时间:100分钟,满分:150分)一、选择题: 1.等于)0(21>-a a( )A.aB.a -C.a a D.aa - 2.下列多项式中,在实数范围不能分解因式的是( )A.y x y x 2222+++B.2222-++xy y xC.y x y x 4422++-D.4422-+-y y x 3.在ABC ∆中,点D 、E 分别在边AB 、AC 上,21=BD AD ,要使DE//BC,还要满足下列条件 中的( ) A.21=BC DE B.31=BC DE C.21=AC AE D.31=AC AE 4.在ABC Rt ∆中,,90=∠C 如果m AB =,,α=∠A 那么AC 的长为( )A.αsin ⋅mB.αcos ⋅mC.αtan m ⋅D.αcot ⋅m 5.如果锐角α的正弦值为33,那么下列结论中正确的是( ) A.30=α B.60=α C.30<α<45 D.6045<<α6.将抛物线12-=ax y 平移后与抛物线2)1(-=x a y 重合,抛物线12-=ax y 上的点A(2,3)同时平移到点'A ,那么点'A 的坐标为( )A.(3,4)B.(1,2)C.(3,2)D.(1,4) 二、选择题:7. 16的平方根是_________. 8. 如果代数式23+-x x 有意义,那么x 的取值范围为___________. 9. 方程112152=-+--x x x 的根为___________. 10. 如果一次函数()23-+-=m x m y 的图像经过第三、四象限,那么常数m 的取值范围为_________.11. 二次函数1082+-=x x y 的图像的顶点坐标是________.12. 如果)4,1(-A 、)4,(m B 在抛物线h x a y +-=2)1(上,那么m 的值为_________.13. 如果DEF ABC ∆∆∽,且A B C ∆与DEF ∆相似比为4:1,那么ABC ∆与DEF ∆面积比为_________.14. 在ABC ∆中,如果10==AC AB ,54cos =B ,那么ABC ∆的重心到底边的距离为________. 15. 已知在ABCD 中,点E 是边BC 的中点,DE 与AC 相交于点F ,设−→−−→−=a AB ,−→−−→−=b BC ,那么._______=−→−FD16. 在ABC ∆,点E D 、分别在AC AB 、上,ABC ADE ∆∆∽,如果3654====AD AC BC AB ,,,,那么ADE ∆的周长为_________.17. 如图,在ABC ∆,点E D 、分别在边AC AB 、上,BC DE //,CED BDC ∠=∠,如果64==CD DE ,,那么AE AD :等于__________.18.一张直角三角形纸片ABC,90=∠C ,AB=24,tanB=32(如图),将它折叠使直角顶点C 与斜边AB 的中点重合,那么折痕的长为。

【数学】2016年上海市浦东新区中考一模数学试卷含解析

【数学】2016年上海市浦东新区中考一模数学试卷含解析

A.AC2=AD•AB B.CD2=CA•CB
C.CD2=AD•DB D.BC2=BD•BA
第 1 页(共 24 页)
6. (4 分)下列命题是真命题的是(

A.有一个角相等的两个等腰三角形相似 B.两边对应成比例且有一个角相等的两个三角形相似 C.四个内角都对应相等的两个四边形相似 D.斜边和一条直角边对应成比例的两个直角三角形相似 二、填空题(本大题共 12 小题,每题 4 分,满分 48 分)7.已知,那么. 7. (4 分)已知 ,那么 = + )= . .
25. (14 分)如图,在边长为 6 的正方形 ABCD 中,点 E 为 AD 边上的一个动点 (与点 A、D 不重合) ,∠EBM=45°,BE 交对角线 AC 于点 F,BM 交对角 线 AC 于点 G,交 CD 于点 M. (1)如图 1,联结 BD,求证:△DEB∽△CGB,并写出 DE:CG 的值; (2)联结 EG,如图 2,若设 AE=x,EG=y,求 y 关于 x 的函数解析式,并写 出函数的定义域; (3)当 M 为边 DC 的三等分点时,求 S△EGF 的面积.
23. (12 分)如图,在△ABC 中,D 是 BC 边的中点,DE⊥BC 交 AB 于点 E, AD=AC,EC 交 AD 于点 F. (1)求证:△ABC∽△FCD; (2)求证:FC=3EF.
第 4 页(共 24 页)
24. (12 分)如图,抛物线 y=ax2+2ax+c(a>0)与 x 轴交于 A(﹣3,0) 、B 两 点(A 在 B 的左侧) ,与 y 轴交于点 C(0,﹣3) ,抛物线的顶点为 M. (1)求 a、c 的值; (2)求 tan∠MAC 的值; (3)若点 P 是线段 AC 上一个动点,联结 OP.问:是否存在点 P,使得以点 O、 C、P 为顶点的三角形与△ABC 相似?若存在,求出 P 点的坐标;若不存在, 请说明理由.

2016上海市各区一模分类整理(阅读理解与第18题填空压轴)

2016上海市各区一模分类整理(阅读理解与第18题填空压轴)

2016年初三一模知识点分类整理——阅读理解与填空压轴1. (宝山)如图1-1,抛物线322--=x x y 交x 轴于A(-1,0)、B (3,0),交y 轴于C (0,-3),M 是抛物线的顶点,现将抛物线沿平行于y 轴的方向向上平移三个单位,则曲线CMB 在平移过程中扫过的面积为 (面积单位).2. (崇明)新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”,如图1-2所示,△ABC 中,AF 、BE 是中线,且AF BE ⊥,垂足为P ,像△ABC 这样的三角形称为“中垂三角形”,如果30ABE ∠=︒, 4AB =,那么此时AC 的长为 ;3. (崇明)如图1-3,等边△ABC 中,D 是边BC 上的一点,且:1:3BD DC =,把△ABC 折叠,使点A 落在边BC 上的点D 处,那么AM AN的值为 ; 4. (奉贤)如图1-4,已知平行四边形ABCD 中,AB=AD =6,cotB =21, 将边AB 绕点A 旋转,使得点B 落在平行四边形ABCD 的边上,其对应点为B ’(点B ’不与点B 重合),那么sin ∠CAB ’= .5. (虹口)如图1-5,在矩形ABCD 中,6AB =,10AD =,点E 是边BC 的中点,联结AE ,若将△ABE 沿AE 翻折, 点B 落在点F 处,联结FC ,则cos ECF ∠= ;6. (黄浦)已知抛物线12()y a x m k =-+与22()y a x m k =++()0m ≠关于y 轴对称,我们称1y 与2y 互为“和谐抛物线”.请写出抛物线2467y x x =-++的“和谐抛物线” . 7. (黄浦)如图1-7,在梯形ABCD 中,AD ∥BC ,∠B =45°,点E 是AB 的中点,DE =DC ,∠EDC =90°,若AB =2,则AD 的长是 .8. (嘉定)将一个矩形沿着一条对称轴翻折,如果所得到的矩形与这个矩形相似,那么我们就将这样的矩形定义为“白银矩形”,事实上,“白银矩形”在日常生活中随处可见,我们常见的4A 纸就是一 个“白银矩形”,请根据上述信息求4A 纸的较长边和较短边的比值,这个比值是 ;1-2 1-31-4 BC 1-5A B CD E 1-79. (嘉定)在梯形ABCD 中,AD ∥BC ,90ABC ∠=︒,AB CB =,4tan 3C ∠=(如图1-9),点E 在边CD 上运动,联结BE ,如果 EC EB =,那么DE CD的值是 ; 10. (闵行)将一副三角尺如图1-10摆放,其中在Rt △ABC 中,90ACB ∠=︒,60B ∠=︒,在Rt △EDF 中,90EDF ∠=︒,45E ∠=︒,点D 为边AB的中点,DE 交AC 于点P ,DF 经过点C ,将△EDF 绕点D 顺时针方向旋转角α(060α︒<<︒)后得到△E DF '',DE '交AC 于点M ,DF '交BC 于点N ,那么PM CN的值为 ; 11. (浦东)若抛物线2y ax c =+与x 轴交于点(,0),(,0),A m B n 与y 轴交于点(0,)C c ,则称ABC ∆为“抛物线三角形”。

2016年上海各区数学一模18题汇编(含解析)(1)

2016年上海各区数学一模18题汇编(含解析)(1)

2016年上海各区县一模数学第18题汇编(含分析)例2016年上海市崇明县中考一模第18题如图I.等边•二角形中,。

是8r边上的一点,E BD : DC= 1 :3.把AdBr折都使点d落在6C边上的点D处,那么_ 的佗为如图2,因为/A/Z>C=/B+/l=6(r +/1, NA/DC=/A/PN+/2=6(r +/2, 所以Nl = /2.又因为NE = NC=6(r ,所以△MBD S ADCN.由3 DM 413/向周长TB + BD所以 --- = -------------- = ----------ND △ZXW的周长JC+DC如图3,设等边三角形ABC的边长为4, "1BD :。

「=1 :3时,—=—AM ND 4 + 3 7图图例 2016年上海市奉贤区中考一模第18题如图1.已知平行四边形,45。

[)中,.48:2/,,3=6.8由='.将边绕点」旋*)转,使得点B 落在平行四边形ABCD 的边上,其对应点为F (点£不与点S 瓯合),那么 sin ZC-fB r = .如图2.在Rtzk/HE 中,由T5=2,7, covB- 1 .可得2E=3 .正=4.在RlA/fCE 中,由.dE=4. CE=BC-BE=6-2-4.可得/C= 4应.乙4CE75 .①如图3,当点用在灰:,边上时,B 任=BE=2.在等腰直角—.用形中,B fC=2.所以8H=CH=J 三. 管1△ABH R'H= JI, AH=AC-CH = 372 .所以-虫?'=26.此时向“用=型=£=巫. AB' 2V5 10②如图4.当点?在HD 边上时,ZCJ5r=45 .此时sin/CH3=^. ?图12016年上海市虹口区中考一模第18题如图1,在矩形JBCD中,.48=6,初=10,点E是SC的中点,联结HE.若将&4的沿HE翻折,点8落在点广处,联结FC.贝iJco$NECF= __________ .B E图I如图2.由EB=EC=EF.可知N3尸C=90 .又因为.在戊直平分BF.所以NRO£=90° .所以如O/JE所以NECF=N8E4.在R【ZLd%?I。

上海市静安区2016届中考数学一模试卷含答案解析

上海市静安区2016届中考数学一模试卷含答案解析

2016年上海市静安区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.的相反数是()A.B.﹣C.D.﹣2.下列方程中,有实数解的是()A.x2﹣x+1=0 B.=1﹣x C.=0 D.=13.化简(x﹣1﹣1)﹣1的结果是()A.B.C.x﹣1 D.1﹣x4.如果点A(2,m)在抛物线y=x2上,将抛物线向右平移3个单位后,点A同时平移到点A′,那么A′坐标为()A.(2,1) B.(2,7) C.(5,4) D.(﹣1,4)5.在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC的长为()A.m•tanα•cosαB.m•cotα•cosαC. D.6.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=二、填空题:(本大题共12题,每题4分,满分48分)7.化简:(﹣2a2)3=.8.函数的定义域是.9.方程=x﹣1的根为.10.如果函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,那么常数m的取值范围为.11.二次函数y=x2﹣6x+1的图象的顶点坐标是.12.如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是.13.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.14.在Rt△ABC中,∠C=90°,点G是重心,如果sinA=,BC=2,那么GC的长等于.15.已知在梯形ABCD中,AD∥BC,BC=2AD,设=,=,那么=.(用向量,的式子表示)16.在△ABC中,点D、E分别在边AB、AC上,∠AED=∠B,AB=6,BC=5,AC=4,如果四边形DBCE的周长为10,那么AD的长等于.17.如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,BC=8,sinB=,那么tan∠CDE=.18.将▱ABCD(如图)绕点A旋转后,点D落在边AB上的点D′,点C落到C′,且点C′、B、C 在一直线上.如果AB=13,AD=3,那么∠A的余弦值为.三、解答题:(本大题7题,满分78分)19.化简:÷,并求当x=时的值.20.用配方法解方程:2x2﹣3x﹣3=0.21.如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求点B的坐标;(2)求△OAB的面积.22.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是26.6°,向前走30米到达B点,测得杆顶端点P和杆底端点Q的仰角分别是45°和33.7°,求该电线杆PQ的高度(结果精确到1米)(备用数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50,cot26.6°=2.00;sin33.7°=0.55,cos33.7°=0.83,tan33.7°=0.67,cot33.7°=1.50)23.已知:如图,在△ABC中,点D、E分别在边BC、AB上,BD=AD=AC,AD与CE相交于点F,AE2=EF•EC.(1)求证:∠ADC=∠DCE+∠EAF;(2)求证:AF•AD=AB•EF.24.如图,直线y=x+1与x轴、y轴分别相交于点A、B,二次函数的图象与y轴相交于点C,与直线y=x+1相交于点A、D,CD∥x轴,∠CDA=∠OCA.(1)求点C的坐标;(2)求这个二次函数的解析式.25.已知:在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC上,且CE=AD,BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,△AEF的面积为y.(1)求证:∠DCA=∠EBC;(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3)如果△DFG是直角三角形,求△AEF的面积.2016年上海市静安区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.的相反数是()A.B.﹣C.D.﹣【考点】实数的性质.【专题】计算题.【分析】符号不同的两个数互为相反数,因此的相反数为﹣,分母有理化得﹣.【解答】解:根据相反数定义得:的相反数为:﹣,分子分母同乘得:﹣.故选:D.【点评】题目考查了相反数和最简二次根式的定义,学生在进行相反数转换后,不要忘记对二次根式进行化简.2.下列方程中,有实数解的是()A.x2﹣x+1=0 B.=1﹣x C.=0 D.=1【考点】根的判别式;无理方程;分式方程的解.【分析】A、根据△的值判断即可,B、根据二次根式的意义判断即可;C、根据分式方程的解的定义判断即可;D、根据分式方程的解的定义判断即可.【解答】解:A、∵△=1﹣4=﹣3<0,∴原方程无实数根,B、当1﹣x<0,即x>1时,原方程无实数根,C、当x2﹣x=0,即x=1,或x=0时,原方程无实数根,D、∵=1,∴x=﹣1.故选D.【点评】本题考查了一元二次方程的根得判别式,无理方程的解,分式方程的解,正确的解方程是解题的关键.3.化简(x﹣1﹣1)﹣1的结果是()A.B.C.x﹣1 D.1﹣x【考点】负整数指数幂.【分析】根据a﹣p=(a≠0,p为正整数)先计算x﹣1,再计算括号里面的减法,然后再次计算()﹣1即可.【解答】解:原式=(﹣1)﹣1=()﹣1=.故选:A.【点评】此题主要考查了负整数指数幂,关键是掌握负整数指数为正整数指数的倒数.4.如果点A(2,m)在抛物线y=x2上,将抛物线向右平移3个单位后,点A同时平移到点A′,那么A′坐标为()A.(2,1) B.(2,7) C.(5,4) D.(﹣1,4)【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先把A(2,m)代入y=x2得m=4,于是得到A点坐标为(2,4),由于抛物线向右平移3个单位,则抛物线上所有点都右平移3个单位,然后根据点平移的规律可确定点A′坐标.【解答】解:把A(2,m)代入y=x2得m=4,则A点坐标为(2,4),把点A(2,4)向右平移3个单位后所得对应点A′的坐标为(5,4).故选C.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC的长为()A.m•tanα•cosαB.m•cotα•cosαC. D.【考点】解直角三角形.【专题】探究型.【分析】根据在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,可以用含m和α的三角函数值表示出CD,通过角相等,它们的三角函数值也相等,可以解答本题.【解答】解:∵在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,∴tanα=,∴CD=m•tanα,∵∠ACB=∠A+∠B=90°,∠BDC=∠B+∠BCD=90°,∠A=α,∴∠BCD=α,∴cos∠BCD=,即cos,CD=.故选C.【点评】本题考查解直角三角函数,解题的关键是明确各个三角函数值的意义,利用转化的思想找到所求问题需要的条件.6.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=【考点】相似三角形的判定.【专题】证明题.【分析】本题中已知∠BAC=∠D,则对应的夹边比值相等即可使△ABC与△ADE相似,结合各选项即可得问题答案.【解答】解:∵∠BAC=∠D,,∴△ABC∽△ADE.故选C.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似,熟记各种判定相似三角形的方法是解题关键.二、填空题:(本大题共12题,每题4分,满分48分)7.化简:(﹣2a2)3=﹣8a6.【考点】幂的乘方与积的乘方.【分析】根据积得乘方与幂的乘方的运算法则计算即可.【解答】解:(﹣2a2)3=(﹣2)3•(a2)3=﹣8a6.故答案为:﹣8a6.【点评】本题主要考查的是积得乘方与幂的乘方的运算,掌握积得乘方与幂的乘方的运算法则是解题的关键.8.函数的定义域是x≠﹣2.【考点】函数自变量的取值范围;分式有意义的条件.【专题】计算题.【分析】分式有意义,分母不能为0,故分母x+2≠0,解得x的范围.【解答】解:根据题意得:x+2≠0解得x≠﹣2.故答案为x≠﹣2.【点评】本题考查了函数自变量取值范围的求法.分式有意义,分母不能为0.9.方程=x﹣1的根为4.【考点】无理方程.【专题】计算题.【分析】首先根据二次根式的基本性质得出x的取值范围,将无理方程两边平方取消二次根号,整理得一元二次方程,解一元二次方程,将解代回x的取值范围验算即可得出答案.【解答】解:由二次根式性质得:x+5≥0,∴x≥5.将=x﹣1两边平方得:x+5=x2﹣2x+1,整理得:x2﹣3x﹣4=0,分解因式:(x﹣4)(x+1)=0,得:x1=4,x2=﹣1,∵x≥5,∴x=4.故答案为:4.【点评】题目考查了无理方程的求解和二次根式的性质,求解无理方程常用的方法是平方法,不过求出的解一定要带回无理方程进行验算,看是否符合二次根式的性质.10.如果函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,那么常数m的取值范围为1<m<3.【考点】一次函数图象与系数的关系.【分析】根据一次函数的性质列出关于m的不等式组,求出m的取值范围即可.【解答】解:∵函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,∴,解得1<m<3.故答案为:1<m<3.【点评】本题考查的是一次函数的图象上与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过第二、三、四象限是解答此题的关键.11.二次函数y=x2﹣6x+1的图象的顶点坐标是(3,﹣8).【考点】二次函数的性质.【分析】利用配方法将一般式转化为顶点式,即可得出顶点坐标.【解答】解:∵y=x2﹣6x+1=(x﹣3)2﹣8,∴抛物线顶点坐标为(3,﹣8).故答案为:(3,﹣8).【点评】本题考查了二次函数的性质,掌握抛物线的顶点式y=a(x﹣h)2+k,顶点坐标为(h,k)是解决问题的关键.12.如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是(2,5).【考点】二次函数图象上点的坐标特征.【分析】首先求得点A的坐标为(0,5),抛物线y=ax2﹣2ax+5对称轴为x=﹣=1,进一步利用二次函数的对称性求得点A关于此抛物线对称轴的对称点坐标是即可.【解答】解:∵抛物线y=ax2﹣2ax+5与y轴交于点A坐标为(0,5),对称轴为x=﹣=1,∴点A(0,5)关于此抛物线对称轴的对称点坐标是(2,5).故答案为:(2,5).【点评】本题考查了二次函数图象上点的坐标特征,二次函数的对称性,求得对称轴,掌握二次函数的对称性是解决问题的关键.13.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.【考点】相似三角形的判定与性质.【分析】由DE∥BC,证得△ADE∽△ABC,根据相似三角形的性质得到=,由于△DEF∽△BCF,根据相似三角形的性质即可得到结论.【解答】解:∵AE=1,CE=2,∴AC=3,∵DE∥BC,∴△ADE∽△ABC,∴=,∵DE∥BC,∴△DEF∽△BCF,∴=,故答案为:1:3.【点评】本题考查了相似三角形的判定和性质,熟练正确相似三角形的判定和性质是解题的关键.14.在Rt△ABC中,∠C=90°,点G是重心,如果sinA=,BC=2,那么GC的长等于2.【考点】三角形的重心.【分析】根据题意画出图形,根据sinA=,BC=2可得出AB=3BC=6,利用直角三角形的性质求出CE的长,根据三角形重心的性质即可得出结论.【解答】解:如图所示,∵在Rt△ABC中,∠C=90°,sinA=,BC=2,∴AB=3BC=6.∵点G是重心,∴CD为△ABC的中线,∴CD=AB=3,∴CG=CD=×3=2.故答案为:2.【点评】本题考查的是三角形的重心,根据题意画出图形,由锐角三角函数的定义求出AB的长是解答此题的关键.15.已知在梯形ABCD中,AD∥BC,BC=2AD,设=,=,那么=﹣﹣.(用向量,的式子表示)【考点】*平面向量.【分析】首先根据题意画出图形,然后过点D作DE∥AB,交BC于点E,易得四边形ABCD是平行四边形,则可求得与,再利用三角形法则求解即可求得答案.【解答】解:如图,过点D作DE∥AB,交BC于点E,∵AD∥BC,∴四边形ABCD是平行四边形,∴BE=AD,DE=AB,∵BC=2AD,=,=,∴==,==,∴=﹣=﹣(+)=﹣(+)=﹣﹣.故答案为:﹣﹣.【点评】此题考查了平面向量的知识以及平行四边形的判定与性质.注意结合题意画出图形,利用图形求解是关键.16.在△ABC中,点D、E分别在边AB、AC上,∠AED=∠B,AB=6,BC=5,AC=4,如果四边形DBCE的周长为10,那么AD的长等于4.【考点】相似三角形的判定与性质.【专题】计算题;图形的相似.【分析】由两对角相等的三角形相似,得到三角形AED与三角形ABC相似,由相似得比例,表示出AD,AE,DE,根据四边形DBCE周长求出AD的长即可.【解答】解:∵∠A=∠A,∠AED=∠B,∴△AED∽△ABC,∴==,∵AB=6,BC=5,AC=4,∴==,设AD=4k,AE=6k,DE=5k,∵四边形DBCE周长DB+DE+EC+BC=10,∴6﹣4k+5k+4﹣6k+5=10,解得:k=1,则AD=4.故答案为:4.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.17.如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,BC=8,sinB=,那么tan∠CDE=.【考点】平行四边形的性质;解直角三角形.【分析】首先由已知条件和勾股定理计算CE=5,所以CD=AB,进而得到∠CDE=∠CED=∠ADE,所以tan∠CDE=tan∠ADE,于是得到结论.【解答】解:在△ABE中,AE⊥BC,AB=5,sinB=,∴BE=3,AE=4.∴EC=BC﹣BE=8﹣3=5.∵平行四边形ABCD,∴CD=AB=5.∴△CED为等腰三角形.∴∠CDE=∠CED.∵AD∥BC,∴∠ADE=∠CED.∴∠CDE=∠ADE.在Rt△ADE中,AE=4,AD=BC=8,∴tan∠CDE==,故答案为:.【点评】本题考查了解直角三角形的运用、勾股定理的运用、平行四边形的性质和等腰三角形的判定和性质,解题的关键是找到图形中相等的角.18.将▱ABCD(如图)绕点A旋转后,点D落在边AB上的点D′,点C落到C′,且点C′、B、C 在一直线上.如果AB=13,AD=3,那么∠A的余弦值为.【考点】旋转的性质;平行四边形的性质.【专题】计算题.【分析】根据平行四边形的性质得∠DAB=∠D′AB′,AB=AB′=C′D′=13,再由AB′∥C′D′得∠D′AB′=∠BD′C′,加上∠C=∠DAB,则∠C=∠BD′C′,接着由点C′、B、C在一直线上,AB∥CD 得到∠C=∠C′BD′,所以∠C′BD′=∠BD′C′,可判断△C′BD′为等腰三角形,作C′H⊥D′B,根据等腰三角形的性质得BH=D′H,由于BD′=10得到D′H=5,然后根据余弦的定义得到cos∠HD′C′=,由此得到∠A的余弦值.【解答】解:∵▱ABCD绕点A旋转后得到▱AB′C′D′,∴∠DAB=∠D′AB′,AB=AB′=C′D′=13,∵AB′∥C′D′,∴∠D′AB′=∠BD′C′,∵四边形ABCD为平行四边形,∴∠C=∠DAB,∴∠C=∠BD′C′,∵点C′、B、C在一直线上,而AB∥CD,∴∠C=∠C′BD′,∴∠C′BD′=∠BD′C′,∴△C′BD′为等腰三角形,作C′H⊥D′B,则BH=D′H,∵AB=13,AD=3,∴BD′=10,∴D′H=5,∴cos∠HD′C′==,即∠A的余弦值为.故答案为.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的性质.解决本题的关键是证明△C′BD′为等腰三角形.三、解答题:(本大题7题,满分78分)19.化简:÷,并求当x=时的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•=,当x=时,原式==﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.用配方法解方程:2x2﹣3x﹣3=0.【考点】解一元二次方程-配方法.【分析】首先把方程的二次项系数化为1,移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.【解答】解:2x2﹣3x﹣3=0,x2﹣x﹣=0,x2﹣x+=+,(x﹣)2=,x﹣=±,解得:x1=,x2=.【点评】此题考查利用配方法解一元二次方程,用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求点B的坐标;(2)求△OAB的面积.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)用直线求出点A坐标为(3,4),反比例函数解析式y=,设点B坐标为(x,),tanα=,得出=,x=6,得出B点坐标(6,2);(2)过A点做AC⊥x轴,交OB于点C,将三角形OAB分为两个三角形,分别求解即可.【解答】解:(1)∵直线y=x与反比例函数的图象交于点A(3,a),∴A(3,4),反比例函数解析式y=,∵点B在这个反比例函数图象上,设B(x,),∵tanα=,∴=,解得:x=±6,∵点B在第一象限,∴x=6,∴B(6,2).答:点B坐标为(6,2).(2)设直线OB为y=kx,(k≠0),将点B(6,2)代入得:k=,∴OB直线解析式为:y=x,过A点做AC⊥x轴,交OB于点C,如下图:则点C坐标为:(3,1),∴AC=3S△OAB的面积=S△OAC的面积+S△ACB的面积,=×|AC|×6=9.△OAB的面积为9.【点评】题目考查了一次函数与反比例函数的基本性质.求函数解析式及函数交点是函数常见问题.题目整体较为简单,学生在解决(2)中的面积问题可以利用多种方法求解.22.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是26.6°,向前走30米到达B点,测得杆顶端点P和杆底端点Q的仰角分别是45°和33.7°,求该电线杆PQ的高度(结果精确到1米)(备用数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50,cot26.6°=2.00;sin33.7°=0.55,cos33.7°=0.83,tan33.7°=0.67,cot33.7°=1.50)【考点】解直角三角形的应用-仰角俯角问题.【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.【解答】解:延长PQ交直线AB于点E,设PE=x米.在直角△ABE中,∠PBE=45°,则BE=PE=x米;∵∠PAE=26.6°在直角△APE中,AE=PE•cot∠PAE≈2x,∵AB=AE﹣BE=30米,则2x﹣x=30,解得:x=30.则BE=PE=30米.在直角△BEQ中,QE=BE•tan∠QBE=30×tan33.7°=30×0.67≈20.1米.∴PQ=PE﹣QE=30﹣20=10(米).答:电线杆PQ的高度是10米.【点评】本题考查解直角三角形的应用,注意掌握当两个直角三角形有公共边时,先求出这条公共边的长是解答此类题的一般思路.23.已知:如图,在△ABC中,点D、E分别在边BC、AB上,BD=AD=AC,AD与CE相交于点F,AE2=EF•EC.(1)求证:∠ADC=∠DCE+∠EAF;(2)求证:AF•AD=AB•EF.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)根据等腰三角形的性质得到∠B=∠BAD,∠ADC=∠ACD,推出△EAF∽△ECA,根据相似三角形的性质得到∠EAF=∠ECA,于是得到∠ADC=∠ACD=∠ACE+∠ECB=∠DCE+∠EAF;(2)根据相似三角形的性质得到,即,推出△FAE∽△ABC,根据相似三角形的性质得到,于是得到FA•AC=EF•AB,等量代换即可得到结论.【解答】证明:(1)∵BD=AD=AC,∴∠B=∠BAD,∠ADC=∠ACD,∵AE2=EF•EC,∴,∵∠E=∠E,∴△EAF∽△ECA,∴∠EAF=∠ECA,∴∠ADC=∠ACD=∠ACE+∠ECB=∠DCE+∠EAF;(2)∵△EAF∽△ECA,∴,即,∵∠EFA=∠BAC,∠EAF=∠B,∴△FAE∽△ABC,∴,∴FA•AC=EF•AB,∵AC=AD,∴AF•AD=AB•EF.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,三角形的外角的性质,证得△EAF∽△ECA是解题的关键.24.如图,直线y=x+1与x轴、y轴分别相交于点A、B,二次函数的图象与y轴相交于点C,与直线y=x+1相交于点A、D,CD∥x轴,∠CDA=∠OCA.(1)求点C的坐标;(2)求这个二次函数的解析式.【考点】二次函数综合题.【分析】(1)首先利用一次函数解析式计算出A、B两点坐标,然后再根据平行线的性质可得∠ACO=∠BAO,再利用三角函数可得CO长,进而可得C点坐标;(2)首先证明△CBD∽△OBA,根据相似三角形的性质可得=,然后可得D点坐标,再设出二次函数解析式,利用待定系数法求出解析式即可.【解答】解:(1)∵函数y=x+1中,当y=0时,x=﹣2,∴A(﹣2,0),∵函数y=x+1中,当x=0时,y=1,∴B(0,1),∵CD∥x轴,∴∠BAO=∠ADC,∵∠CDA=∠OCA,∴∠ACO=∠BAO,∴tan∠ACO=tan∠BAO=,∴CO=4,∴C(0,4);(2)∵∠AOB=∠OCD=90°,∠BAO=∠BDC=90°,∴△CBD∽△OBA,∴=,∴=,∴CD=6,∴D(6,4),设二次函数的解析式为y=ax2+bx+c,∵图象经过A(﹣2,0),D(6,4),C(0,4),∴,解得:.∴二次函数的解析式为y=﹣x2+x+4.【点评】此题主要考查了一次函数、二次函数以及相似三角形和三角函数的综合应用,关键是掌握一次函数与坐标轴交点的求法,以及待定系数法求二次函数解析式的方法.25.已知:在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC上,且CE=AD,BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,△AEF的面积为y.(1)求证:∠DCA=∠EBC;(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3)如果△DFG是直角三角形,求△AEF的面积.【考点】相似形综合题.【专题】压轴题;数形结合.【分析】(1)由AD与BC平行,得到一对内错角相等,再由AD=CE,AC=BC,利用SAS可得△DCA≌△ECB,由全等三角形的性质可得结论;(2)由AD与BC平行,得到三角形AEF与三角形CEB相似,由相似得比例表示出AF,过E作EH垂直于AF,根据锐角三角函数定义表示出EH,进而表示出y与x的函数解析式,并求出x的范围即可;(3)分两种情况考虑:①当∠FDG=90°时,如图2所示,在直角三角形ACD中,利用锐角三角函数定义求出AD的长,即为x的值,代入求出y的值,即为三角形AEF面积;②当∠DGF=90°时,过E作EM⊥BC于点M,如图3所示,由相似列出关于x的方程,求出方程的解得到x的值,进而求出y的值,即为三角形AEF面积.【解答】(1)证明:∵AD∥BC,∴∠DAC=∠ECB,在△DCA和△ECB中,,∴△DCA≌△ECB(SAS),∴∠DCA=∠EBC;(2)∵AD∥BC,∴△AEF∽△CEB,∴,即,解得:AF=,作EH⊥AF于H,如图1所示,∵cos∠ACB=,∴EH=AE=(10﹣x),∴y=S△AEF=×(10﹣x)×=,∴y=,∵点G在线段CD上,∴AF≥AD,即≥x,∴x≤5﹣5,∴0<x≤5﹣5,∴y关于x的函数解析式为:y=,(0<x≤5﹣5);(3)分两种情况考虑:①当∠FDG=90°时,如图2所示:在Rt△ADC中,AD=AC×=8,即x=8,∴S△AEF=y==;②当∠DGF=90°时,过E作EM⊥BC于点M,如图3所示,由(1)得:CE=AF=x,在Rt△EMC中,EM=x,MC=x,∴BM=BC﹣MC=10﹣x,∵∠GCE=∠GBC,∠EGC=∠CGB,∴△CGE∽△BGC,∴=,即=,∵∠EBM=∠CBG,∠BME=∠BGC=90°,∴△BME∽△BGC,∴==,∴=,即x=5,此时y==15,综上,此时△AEF的面积为或15.【点评】此题属于相似型综合题,涉及的知识有:平行线的判定,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数定义,利用了分类讨论的思想,熟练掌握相似三角形的判定与性质是解本题的关键.。

2016年上海市松江区中考数学一模试卷含答案解析

2016年上海市松江区中考数学一模试卷含答案解析

2016年上海市松江区中考数学一模试卷一.选择题1.如果两个相似三角形的面积比是1:4,那么它们的周长比是( )A.1:16 B.1:4 C.1:6 D.1:22.以下函数中,属于二次函数的是( )A.y=2x+1 B.y=〔x﹣1〕2﹣x2C.y=2x2﹣7 D.3.在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则以下结论正确的选项是( ) A.B.C.D.4.假设四边形ABCD的对角线交于点O,且有,则以下结论正确的选项是( ) A.B.C.D.5.如果二次函数y=ax2+bx+c〔a≠0〕的图象如下图,那么( )A.a<0,b>0,c>0 B.a>0,b<0,c>0 C.a>0,b>0,c<0 D.a<0,b<0,c<06.P是△ABC一边上的一点〔P不与A、B、C重合〕,过点P的一条直线截△ABC,如果截得的三角形与△ABC相似,我们称这条直线为过点P的△ABC的“相似线”.Rt△ABC中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线”最多有几条?( ) A.1条B.2条C.3条D.4条二.填空题7.假设a:b:c=1:3:2,且a+b+c=24,则a+b﹣c=__________.8.已知线段a=2cm,b=8cm,那么线段a和b的比例中项为__________cm.9.二次函数y=﹣2x2﹣x+3的图象与y轴的交点坐标为__________.10.在Rt△ABC中,∠C=90°,如果AC=4,sinB=,那么AB=__________.11.一位运发动投掷铅球,如果铅球运行时离地面的高度为y〔米〕关于水平距离x〔米〕的函数解析式为y=﹣,那么铅球运动过程中最高点离地面的距离为__________米.12.如图,直线AD∥BE∥CF,,DE=6,那么EF的值是__________.13.在一个斜坡上前进5米,水平高度升高了1米,则该斜坡坡度i=__________.14.假设点A〔﹣3,y1〕、B〔0,y2〕是二次函数y=﹣2〔x﹣1〕2+3图象上的两点,那么y1与y2的大小关系是__________〔填y1>y2、y1=y2或y1<y2〕.15.将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是__________.16.如图,已知DE∥BC,且DE经过△ABC的重心G,假设BC=6cm,那么DE等于__________cm.17.已知二次函数的图象经过〔0,3〕、〔4,3〕两点,则该二次函数的图象对称轴为直线__________.18.已知在△ABC中,∠C=90°,BC=3,AC=4,点D是AB边上一点,将△ABC沿着直线CD翻折,点A落在直线AB上的点A′处,则sin∠A′CD=__________.三.解答题19.已知抛物线y=x2+bx+3经过点A〔﹣1,8〕,顶点为M;〔1〕求抛物线的表达式;〔2〕设抛物线对称轴与x轴交于点B,连接AB、AM,求△ABM的面积.20.〔16分〕如图,已知平行四边形ABCD,点M、N是边DC、BC的中点,设=,=;〔1〕求向量〔用向量、表示〕;〔2〕在图中求作向量在、方向上的分向量;〔不要求写作法,但要指出所作图中表示结论的向量〕21.如图,小明所在教学楼的每层高度为3.5米,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B处测得M的仰角为31°,已知每层楼的窗台离该层的地面高度均为1米,求旗杆MN的高度;〔结果保留两位小数〕〔参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60〕22.如图,已知△ABC中,∠C=90°,tanA=,点D在边AB上,AD:DB=3:1,求cot∠DCB 的值.23.已知如图,在△ABC中,BD平分∠ABC交AC于点D,点E在AB上,且BD2=BE•BC;〔1〕求证:∠BDE=∠C;〔2〕求证:AD2=AE•AB.24.如图,已知抛物线y=ax2+bx﹣3与x轴交于A、B两点,与y轴交于点C,O是坐标原点,已知点B的坐标是〔3,0〕,tan∠OAC=3;〔1〕求该抛物线的函数表达式;〔2〕点P在x轴上方的抛物线上,且∠PAB=∠CAB,求点P的坐标;〔3〕点D是y轴上一动点,假设以D、C、B为顶点的三角形与△ABC相似,求出符合条件的点D的坐标.25.〔18分〕已知,等腰梯形ABCD中,AD∥BC,∠B=∠BCD=45°,AD=3,BC=9,点P 是对角线AC上的一个动点,且∠APE=∠B,PE分别交射线AD和射线CD于点E和点G;〔1〕如图1,当点E、D重合时,求AP的长;〔1〕如图2,当点E在AD的延长线上时,设AP=x,DE=y,求y关于x的函数解析式,并写出它的定义域;〔3〕当线段DG=时,求AE的值.2016年上海市松江区中考数学一模试卷一.选择题1.如果两个相似三角形的面积比是1:4,那么它们的周长比是( )A.1:16 B.1:4 C.1:6 D.1:2【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:3,故选:D.【点评】此题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方是解题的关键.2.以下函数中,属于二次函数的是( )A.y=2x+1 B.y=〔x﹣1〕2﹣x2C.y=2x2﹣7 D.【考点】二次函数的定义.【分析】根据一次函数、反比例函数、二次函数的定义判断各选项即可得出答案.【解答】解:A、是一次函数,故本选项错误;B、整理后是一次函数,故本选项错误;C、y=2x2﹣7是二次函数,故本选项正确;D、y与x2s是反比例函数关系,故本选项错误.故选:C.【点评】此题考查了二次函数的定义,关键是掌握二次函数的定义条件:二次函数y=ax2+bx+c的定义条件是:a、b、c为常数,a≠0,自变量最高次数为2.3.在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则以下结论正确的选项是( ) A.B.C.D.【考点】锐角三角函数的定义.【分析】首先利用勾股定理求得AC的长,然后利用三角函数的定义求解,即可作出判断.【解答】解:在直角△ABC中,AC===.则sinA==,故A错误;cosA==,故B正确;tanA===,故C错误;cotA===,故D错误.故选B.【点评】此题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.假设四边形ABCD的对角线交于点O,且有,则以下结论正确的选项是( ) A.B.C.D.【考点】*平面向量.【分析】首先根据题意画出图形,然后由,可得AB∥CD,AB=2DC即可证得△OAB∽△OCD,然后由相似三角形的对应边成比例,证得OA:OC=OB:OD=AB:CD=2:1,继而求得答案.【解答】解:A、∵,∴AB∥CD,AB=2DC,∴△OAB∽△OCD,∴OA:OC=AB:DC=2:1,∴OA=2OC,∴=2;故正确;B、||不一定等于||;故错误;C、≠,故错误;D、=;故错误.故选A.【点评】此题考查了平面向量的知识以及相似三角形的判定与性质.注意掌握证得△AOB∽△COD是解此题的关键.5.如果二次函数y=ax2+bx+c〔a≠0〕的图象如下图,那么( )A.a<0,b>0,c>0 B.a>0,b<0,c>0 C.a>0,b>0,c<0 D.a<0,b<0,c<0 【考点】二次函数图象与系数的关系.【专题】数形结合.【分析】利用抛物线开口方向确定a的符号,利用对称轴方程可确定b的符号,利用抛物线与y轴的交点位置可确定c的符号.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0.故选A.【点评】此题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c〔a≠0〕,二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时〔即ab >0〕,对称轴在y轴左;当a与b异号时〔即ab<0〕,对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于〔0,c〕;抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.P是△ABC一边上的一点〔P不与A、B、C重合〕,过点P的一条直线截△ABC,如果截得的三角形与△ABC相似,我们称这条直线为过点P的△ABC的“相似线”.Rt△ABC中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线”最多有几条?( ) A.1条B.2条C.3条D.4条【考点】相似三角形的判定.【专题】新定义.【分析】根据相似三角形的判定方法分别利用平行线以及垂直平分线的性质得出对应角相等即可得出.【解答】解:如下图:当PD∥BC时,△APD∽△ACB;当PE∥AC时,△BPE∽△BAC;当PF⊥AB时,△APD∽△ABC故过点P的△ABC的相似线最多有3条.故选:C.【点评】此题主要考查了相似三角形的判定,正确掌握相似三角形的判定方法作出辅助线是解题关键.二.填空题7.假设a:b:c=1:3:2,且a+b+c=24,则a+b﹣c=8.【考点】比例的性质.【分析】设a=k,则b=3k,c=2k,根据a+b+c=24即可代入求得k,然后代入求得所求代数式的值.【解答】解:∵a:b:c=1:3:2,∴设a=k,则b=3k,c=2k,又∵a+b+c=24,∴k+3k+2k=24,∴k=4,∴a+b﹣c=k+3k﹣2k=2k=2×4=8.故答案是:8.【点评】此题考查了比例的性质,根据a:b:c=1:3:2正确设出未知数是解决此题的关键.8.已知线段a=2cm,b=8cm,那么线段a和b的比例中项为4cm.【考点】比例线段.【分析】比例的基本性质:两外项之积等于两内项之积.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.设它们的比例中项是x,则x2=2×8,x=±4〔线段是正数,负值舍去〕.故答案为4.【点评】考查了比例中项的概念,注意:求两条线段的比例中项的时候,应舍去负数.9.二次函数y=﹣2x2﹣x+3的图象与y轴的交点坐标为〔0,3〕.【考点】二次函数图象上点的坐标特征.【分析】把x=0代入即可求得.【解答】解:把x=0代入y=﹣2x2﹣x+3得,y=3,所以二次函数y=﹣2x2﹣x+3的图象与y轴的交点坐标为〔0,3〕,故答案为〔0,3〕.【点评】此题考查了二次函数图象上点的坐标特征,y轴上的点的横坐标为0是解题的关键.10.在Rt△ABC中,∠C=90°,如果AC=4,sinB=,那么AB=6.【考点】锐角三角函数的定义.【分析】根据正弦函数的定义即可直接求解.【解答】解:∵sinB=,∴AB===6.故答案是:6.【点评】此题考查了正弦函数的定义,是所对的直角边与斜边的比,理解定义是关键.11.一位运发动投掷铅球,如果铅球运行时离地面的高度为y〔米〕关于水平距离x〔米〕的函数解析式为y=﹣,那么铅球运动过程中最高点离地面的距离为3米.【考点】二次函数的应用.【分析】直接利用配方法求出二次函数最值即可.【解答】解:由题意可得:y=﹣=﹣〔x2﹣8x〕+=﹣〔x﹣4〕2+3,故铅球运动过程中最高点离地面的距离为:3m.故答案为:3.【点评】此题主要考查了二次函数的应用,正确利用配方法求出最值是解题关键.12.如图,直线AD∥BE∥CF,,DE=6,那么EF的值是4.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得到,即可得出结果.【解答】解:∵AD∥BE∥CF,,∴=,即,解得:EF=4故答案为:4.【点评】此题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.13.在一个斜坡上前进5米,水平高度升高了1米,则该斜坡坡度i=1:2.【考点】解直角三角形的应用-坡度坡角问题.【专题】推理填空题.【分析】根据在一个斜坡上前进5米,水平高度升高了1米,可以计算出此时的水平距离,水平高度与水平距离的比值即为坡度,从而可以解答此题.【解答】解:设在一个斜坡上前进5米,水平高度升高了1米,此时水平距离为x米,根据勾股定理,得x2+12=52,解得,〔舍去〕,故该斜坡坡度i=1:2.故答案为:1:2.【点评】此题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是明确什么是坡度.14.假设点A〔﹣3,y1〕、B〔0,y2〕是二次函数y=﹣2〔x﹣1〕2+3图象上的两点,那么y1与y2的大小关系是y1<y2〔填y1>y2、y1=y2或y1<y2〕.【考点】二次函数图象上点的坐标特征.【分析】分别计算自变量为﹣2、3时的函数值,然后比较函数值的大小即可.【解答】解:当x=﹣3时,y1=﹣2〔x﹣1〕2+3=﹣29;当x=0时,y2=﹣2〔x﹣1〕2+3=1;∵﹣29<1,∴y1<y2,故答案为:y1<y2.【点评】此题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.15.将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=〔x﹣2〕2.【考点】二次函数图象与几何变换.【分析】直接根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将抛物线y=x2向右平移2个单位,所得函数解析式为:y=〔x﹣2〕2.故答案为:y=〔x﹣2〕2.【点评】此题考查的是函数图象平移的法则,根据“上加下减,左加右减”得出是解题关键.16.如图,已知DE∥BC,且DE经过△ABC的重心G,假设BC=6cm,那么DE等于4cm.【考点】三角形的重心.【分析】利用重心到顶点的距离与重心到对边中点的距离之比为2:1,进而求出答案.【解答】解:连接AG并延长到BC上一点N,∵△ABC的重心G,DE∥BC,∴△ADG∽△ABN,BN=CN,DG=GE,∴==,∴=,解得:DG=2,∴DE=4.故答案为:4.【点评】此题主要考查了重心的定义以及相似三角形的判定与性质,得出DG的长是解题关键.17.已知二次函数的图象经过〔0,3〕、〔4,3〕两点,则该二次函数的图象对称轴为直线x=2.【考点】二次函数的性质.【专题】推理填空题.【分析】根据二次函数图象具有对称性,由二次函数的图象经过〔0,3〕、〔4,3〕两点,可以得到该二次函数的图象对称轴,从而可以解答此题.【解答】解:∵二次函数的图象经过〔0,3〕、〔4,3〕两点,∴该二次函数的图象对称轴为直线:x=,故答案为:x=2.【点评】此题考查二次函数的性质,解题的关键是明确二次函数的性质,二次函数的图象关于对称轴对称.18.已知在△ABC中,∠C=90°,BC=3,AC=4,点D是AB边上一点,将△ABC沿着直线CD翻折,点A落在直线AB上的点A′处,则sin∠A′CD=.【考点】翻折变换〔折叠问题〕.【分析】点A落在直线AB上的点A′处,则CD⊥AB,D就是垂足,根据三角形的面积公式求得CD的长,然后在直角△ACD中利用勾股定理求得AD,再根据sin∠A′CD=sin∠ACD 求解.【解答】解:作CD⊥AB于点D.在直角△ABC中,AB===5,∵S△ABC=AB•CD=BC•AC,∴CD===,在直角△ACD中,AD==,∴sin∠A′CD=sin∠ACD===.故答案是:.【点评】此题考查了图形的折叠以及勾股定理的应用,正确理解∠ACD=∠A′CD是关键.三.解答题19.已知抛物线y=x2+bx+3经过点A〔﹣1,8〕,顶点为M;〔1〕求抛物线的表达式;〔2〕设抛物线对称轴与x轴交于点B,连接AB、AM,求△ABM的面积.【考点】待定系数法求二次函数解析式;抛物线与x轴的交点.【分析】〔1〕把点A的坐标代入函数解析式,列出关于系数b的方程,通过解方程求得b 的值即可;〔2〕由〔1〕中函数解析式得到对称轴为x=2,然后结合三角形的面积公式进行解答即可.【解答】解:〔1〕∵抛物线y=x2+bx+3经过点A〔﹣1,8〕,∴8=〔﹣1〕2﹣b+3,解得b=﹣4,∴所求抛物线的表达式为y=x2﹣4x+3;〔2〕作AH⊥BM于点H,∵由抛物线y=x2﹣4x+3解析式可得,点M的坐标为〔2,﹣1〕,点B的坐标为〔2,0〕,∴BM=1,∵对称轴为直线x=2,∴AH=3,∴△ABM的面积=.【点评】此题考查了待定系数法求二次函数解析式,抛物线与x轴的交点.解题的关键是正确求出抛物线的解析式.20.〔16分〕如图,已知平行四边形ABCD,点M、N是边DC、BC的中点,设=,=;〔1〕求向量〔用向量、表示〕;〔2〕在图中求作向量在、方向上的分向量;〔不要求写作法,但要指出所作图中表示结论的向量〕【考点】*平面向量.【分析】〔1〕由四边形ABCD是平行四边形,可得,又由点M、N是边DC、BC的中点,根据三角形中位线的性质,即可求得向量;〔2〕首先平移向量,然后利用平行四边形法则,即可求得答案.【解答】解:〔1〕方法一:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,AB=DC,AD=BC,∵,,∴,,∵点M、N分别为DC、BC的中点,∴,,∴.方法二:∵,,∴,∵点M、N分别为DC、BC的中点,∴;〔2〕作图:结论:、是向量分别在、方向上的分向量.【点评】此题考查了平面向量的知识、平行四边形的性质以及三角形的中位线的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.21.如图,小明所在教学楼的每层高度为3.5米,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B处测得M的仰角为31°,已知每层楼的窗台离该层的地面高度均为1米,求旗杆MN的高度;〔结果保留两位小数〕〔参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60〕【考点】解直角三角形的应用-仰角俯角问题.【分析】过点M的水平线交直线AB于点H,设MH=x,则AH=x,结合等腰直角三角形的性质和解直角三角形ABH得到AB=AH﹣BH=x﹣0.60x=0.4x=3.5,由此求得MH的长度,则MN=AB+BH.【解答】解:过点M的水平线交直线AB于点H,由题意,得∠AMH=∠MAH=45°,∠BMH=31°,AB=3.5,设MH=x,则AH=x,BH=xtan31°=0.60x,∴AB=AH﹣BH=x﹣0.60x=0.4x=3.5,解得x=8.75,则旗杆高度MN=x+1=9.75〔米〕答:旗杆MN的高度度约为9.75米.【点评】此题考查了解直角三角形﹣﹣仰角俯角问题.要求学生能借助仰角构造直角三角形并解直角三角形.22.如图,已知△ABC中,∠C=90°,tanA=,点D在边AB上,AD:DB=3:1,求cot∠DCB 的值.【考点】解直角三角形.【专题】探究型.【分析】作辅助线DH⊥BC,根据,∠C=90°,tanA=,点D在边AB上,AD:DB=3:1,可知△BDH∽△BAC,从而可以得到各边之间的关系,从而可以得到cot∠DCB的值.【解答】解:过D点作DH⊥BC于点H,如以下图所示:∵∠ACB=90°,∴DH∥AC,∴△BDH∽△BAC,∴∠BDH=∠A,∵AD:DB=3:1,∴BH:BC=BD:BA=1:4,设BH=x,则BC=4x,CH=3x,∵∠C=90°,,∠BDH=∠A,∴DH=2x,∵DH⊥BC,∴cot∠DCB=,即cot∠DCB=.【点评】此题考查解直角三角形,解题的关键是找出各边之间的关系,然后求出所求角的三角函数值.23.已知如图,在△ABC中,BD平分∠ABC交AC于点D,点E在AB上,且BD2=BE•BC;〔1〕求证:∠BDE=∠C;〔2〕求证:AD2=AE•AB.【考点】相似三角形的判定与性质.【专题】证明题.【分析】〔1〕根据角平分线的定义得到∠ABD=∠CBD,由BD2=BE•BC,得到,推出△EBD∽△DBC,根据相似三角形的性质即可得到结论;〔2〕由∠BDE=∠C,推出∠DBC=∠ADE,等量代换得到∠ABD=∠ADE,证得△ADE∽△ABD,根据相似三角形的性质即可得到结论.【解答】证明:〔1〕∵BD平分∠ABC,∴∠ABD=∠CBD,∵BD2=BE•BC,∴,∴△EBD∽△DBC,∴∠BDE=∠C;〔2〕∵∠BDE=∠C,∠DBC+∠C=∠BDE+∠ADE,∴∠DBC=∠ADE,∵∠ABD=∠CBD,∴∠ABD=∠ADE,∴△ADE∽△ABD,∴,即AD2=AE•AB.【点评】此题考查了相似三角形的判定和性质,角平分线的性质,熟练掌握相似三角形的性质即可得到结论.24.如图,已知抛物线y=ax2+bx﹣3与x轴交于A、B两点,与y轴交于点C,O是坐标原点,已知点B的坐标是〔3,0〕,tan∠OAC=3;〔1〕求该抛物线的函数表达式;〔2〕点P在x轴上方的抛物线上,且∠PAB=∠CAB,求点P的坐标;〔3〕点D是y轴上一动点,假设以D、C、B为顶点的三角形与△ABC相似,求出符合条件的点D的坐标.【考点】二次函数综合题.【分析】〔1〕根据正切函数,可得A点坐标,根据待定系数法,可得函数解析式;〔2〕根据正切函数,可得P点坐标,根据图象上的点满足函数解析式,可得关于x的方程,根据解方程,可得答案;〔3〕根据两组对边对应成比例且夹角相等的两个三角形相似,可得关于y的方程,根据解方程,可得答案.【解答】解〔1〕∵抛物线y=ax2+bx﹣3与y轴交于点C,∴点C的坐标为〔0,﹣3〕,∴OC=3,∵tan∠OAC=3,∴OA=1,即点A的坐标为〔﹣1,0〕,又点B〔3,0〕,∴,解得,∴抛物线的函数表达式是y=x2﹣2x﹣3;〔2〕∵∠PAB=∠CAB,∴tan∠PAB=tan∠CAB=3,∵点P在x轴上方,设点P的横坐标为x,则点P的纵坐标为3〔x+1〕,∴3〔x+1〕=x2﹣2x﹣3,得x=﹣1〔舍去〕或x=6,当x=6时,y=21,∴点P的坐标为〔6,21〕;〔3〕如图,设点D的坐标为〔0,y〕,易得△ABC为∠ABC=45°的锐角三角形,所以△DCB也是锐角三角形,∴点D在点C的上方,∴∠DCB=45°,∴∠ABC=∠DCB,∵AB=4,BC=,DC=y+3,①如果=,则=,∴y=1,即点D〔0,1〕,②如果=则=,∴y=,即点D1〔0,〕.【点评】此题考查了二次函数综合题,利用待定系数求函数解析式;利用正切函数得出P点坐标是解题关键,又利用图象上的点满足函数解析式得出P点坐标;利用两组对边对应成比例且夹角相等的两个三角形相似得出关于y的方程是解题关键,要分类讨论,以防遗漏.25.〔18分〕已知,等腰梯形ABCD中,AD∥BC,∠B=∠BCD=45°,AD=3,BC=9,点P 是对角线AC上的一个动点,且∠APE=∠B,PE分别交射线AD和射线CD于点E和点G;〔1〕如图1,当点E、D重合时,求AP的长;〔1〕如图2,当点E在AD的延长线上时,设AP=x,DE=y,求y关于x的函数解析式,并写出它的定义域;〔3〕当线段DG=时,求AE的值.【考点】相似形综合题.【专题】综合题;图形的相似.【分析】〔1〕作AH垂直于BC,垂足为H,如图1所示,由∠B=∠BCD=45°,得到三角形ABH为等腰直角三角形,由等腰梯形的两底之差的一半求出BH的长,即为AH的长,由BC﹣BH求出HC的长,利用勾股定理求出AC的长,由AD与BC平行,得到一对内错角相等,再由已知角相等,利用两角相等的三角形相似得到三角形ADP与三角形CAB相似,由相似得比例求出AP的长即可;〔2〕由AD与BC平行,得到一对内错角相等,再由已知角相等,利用两角相等的三角形相似得到三角形ADP与三角形CAB相似,由相似得比例列出y与x的函数解析式,并求出定义域即可;〔3〕分两种情况考虑:当点G在线段CD上时,作DM∥EP交AC于点M,如图2所示,同理求出AM的长,进而求出MC的长,由CD﹣DG求出GC的长,根据GP与MD平行,由平行得比例求出PM的长,由DM与EP平行,根据平行得比例,求出DE的长,根据AD+DE 求出AE的长;②当点G在CD的延长线上时,如图3所示,同理求出DE的长,由AD﹣DE求出AE的长即可.【解答】解:〔1〕作AH⊥BC于点H,如图1所示:∵∠B=∠BCD=45°,AD=3,BC=9,等腰梯形ABCD,AD=3,BC=9,∴BH=AH=〔BC﹣AD〕=×〔9﹣3〕=3,∴BH=AH=3,根据勾股定理得:AB==3,CH=BC﹣BH=9﹣3=6,∴AC==3,∵AD∥BC,∴∠DAP=∠ACB,又∠APE=∠B,∴△ADP∽△CAB,∴=,即=,∴AP=;〔2〕如图2所示,∵AD∥BC,∴∠DAP=∠ACB,∵∠APE=∠B,∴△APE∽△CBA,∴=,即=,∴y=x﹣3〔<x≤3〕;〔3〕分两种情况考虑:①当点G在线段CD上时,作DM∥EP交AC于点M,如图2所示,由〔1〕,同理可得AM=,∴CM=,∵DG=,CD=AB=3,∴CG=2,∵GP∥DM,∴=,即=,∴MP=,∵DM∥EP,∴=,即=,解得:DE=,∴AE=AD+DE=3+=;②当点G在CD的延长线上时,如图3所示,同①可得DE=,∴AE=AD﹣DE=3﹣=.【点评】此题属于相似形综合题,涉及的知识有:平行线等分线段成比例,等腰梯形的性质,等腰直角三角形的判定与性质,勾股定理,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解此题的关键.。

2016年上海市虹口区中考数学一模试卷含答案解析

2016年上海市虹口区中考数学一模试卷含答案解析

2016年上海市虹口区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.1.已知α为锐角,如果sinα=,那么α等于( )A.30°B.45°C.60°D.不确定2.把二次函数y=x2﹣4x+1化成y=a(x+m)2+k的形式是( )A.y=(x﹣2)2+1 B.y=(x﹣2)2﹣1 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣33.若将抛物线平移,得到新抛物线y=(x+3)2,则下列平移方法中,正确的是( ) A.向左平移3个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移3个单位4.若坡面与水平面的夹角为α,则坡度i与坡角α之间的关系是( )A.i=cosαB.i=sinαC.i=cotαD.i=tanα5.如图,▱ABCD对角线AC与BD相交于点O,如果=,=,那么下列选项中,与向量(+)相等的向量是( )A.B.C.D.6.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),若△CDE与△ABC相似,则点E的坐标不可能是( )A.(4,2)B.(6,0)C.(6,4)D.(6,5)二、填空题(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.若x:y=5:2,则(x+y):y的值是__________.8.计算:﹣3(﹣2)=__________.9.二次函数y=x2﹣2x的图象的对称轴是直线__________.10.如果抛物线y=﹣x2+3x﹣1+m经过原点,那么m=__________.11.已知点A(x1,y1)、B(x2,y2)为二次函数y=(x﹣1)2图象上的两点,若x1<x2<1,则y1__________y2.(填“>”、“<”或“=”)12.用“描点法”画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x …﹣2 ﹣10 1 …y …﹣11 ﹣21 ﹣2 …根据表格上的信息回答问题:当x=2时,y=__________.13.如果两个相似三角形的周长的比为1:4,那么周长较小的三角形与周长较大的三角形对应角平分线的比为__________.14.如图,在▱ABCD中,E是边BC上的点,分别联结AE、BD相交于点O,若AD=5,=,则EC=__________.15.如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.若△ABC的边BC长为40厘米,高AH为30厘米,则正方形DEFG的边长为__________厘米.16.如图,在△ABC中,∠ACB=90°,若点G是△ABC的重心,cos∠BCG=,BC=4,则CG=__________.17.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,则CD=__________.18.如图,在矩形ABCD中,AB=6,AD=10,点E是边BC的中点,联结AE,若将△ABE 沿AE翻折,点B落在点F处,联结FC,则cos∠ECF=__________.三、解答题(本大题共7题,满分78分)19.计算:cos245°+tan60°•cos30°﹣3cot260°.20.已知一个二次函数的图象经过A(0,﹣3)、B(2,﹣3)、C(﹣1,0)三点.(1)求这个二次函数的解析式;(2)将这个二次函数图象平移,使顶点移到点P(0,﹣3)的位置,求所得新抛物线的表达式.21.如图,DC∥EF∥GH∥AB,AB=12,CD=6,DE:EG:GA=3:4:5.求EF和GH的长.22.如图,已知楼AB高36米,从楼顶A处测得旗杆顶C的俯角为60°,又从该楼离地面6米的一窗口E处测得旗杆顶C的仰角为45°,求该旗杆CD的高.(结果保留根号)23.如图,点E是四边形ABCD的对角线BD上的一点,∠BAE=∠CBD=∠DAC.(1)求证:DE•AB=BC•AE;(2)求证:∠AED+∠ADC=180°.24.在平面直角坐标系xOy中,抛物线与x轴分别交于点A(2,0)、点B(点B在点A的右侧),与轴交于点C,tan∠CBA=.(1)求该抛物线的表达式;(2)设该抛物线的顶点为D,求四边形ACBD的面积;(3)设抛物线上的点E在第一象限,△BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.25.(14分)如图,在▱ABCD中,E为边BC的中点,F为线段AE上一点,联结BF并延长交边AD于点G,过点G作AE的平行线,交射线DC于点H.设==x.(1)当x=1时,求AG:AB的值;(2)设=y,求关于x的函数关系式,并写出x的取值范围;(3)当DH=3HC时,求x的值.2016年上海市虹口区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.1.已知α为锐角,如果sinα=,那么α等于( )A.30°B.45°C.60°D.不确定【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值求解.【解答】解:∵α为锐角,sinα=,∴α=45°.故选B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.2.把二次函数y=x2﹣4x+1化成y=a(x+m)2+k的形式是( )A.y=(x﹣2)2+1 B.y=(x﹣2)2﹣1 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3 【考点】二次函数的三种形式.【分析】运用配方法把二次函数的一般式化为顶点式即可.【解答】解:y=x2﹣4x+1=x2﹣4x+4﹣3=(x﹣2)2﹣3,故选:D.【点评】本题考查的是二次函数的三种形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键.3.若将抛物线平移,得到新抛物线y=(x+3)2,则下列平移方法中,正确的是( ) A.向左平移3个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移3个单位【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(﹣3,0),然后利用顶点的平移情况确定抛物线的平移情况.【解答】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(﹣3,0),因为点(0,0)向左平移3个单位长度后得到(﹣3,0),所以把抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.若坡面与水平面的夹角为α,则坡度i与坡角α之间的关系是( )A.i=cosαB.i=sinαC.i=cotαD.i=tanα【考点】解直角三角形的应用-坡度坡角问题.【分析】利用把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i==tanα.【解答】解:如图所示:i=tanα.故选:D.【点评】此题主要考查了解直角三角形的应用﹣坡度坡角的定义,正确把握坡角的定义是解题关键.5.如图,▱ABCD对角线AC与BD相交于点O,如果=,=,那么下列选项中,与向量(+)相等的向量是( )A.B.C.D.【考点】*平面向量.【分析】由四边形ABCD是平行四边形根据平行四边形法则,可求得==,然后由三角形法则,求得与,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴==,∴=+=+,=﹣=﹣,∴=﹣=﹣(+),==(+),=﹣=﹣(﹣),==(﹣).故选C.【点评】此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.6.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),若△CDE与△ABC相似,则点E的坐标不可能是( )A.(4,2)B.(6,0)C.(6,4)D.(6,5)【考点】相似三角形的判定;坐标与图形性质.【分析】根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.【解答】解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(4,2)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;C、当点E的坐标为(6,4)时,∠CDE=90°,CD=2,DE=3,则AB:BC≠DE:CD,△EDC 与△ABC不相似,故本选项符合题意;D、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=CD:DE,△CDE∽△ABC 不相似,故本选项不符合题意;故选:C.【点评】本题考查了相似三角形的判定,难度中等.牢记相似三角形的判定定理是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.若x:y=5:2,则(x+y):y的值是.【考点】比例的性质.【分析】根据合比性质:=⇒=,可得答案.【解答】解:由合比性质,得==,故答案为:.【点评】本题考查了比例的性质,利用合比性质是解题关键.8.计算:﹣3(﹣2)=﹣+6.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:﹣3(﹣2)=﹣3+6=﹣+6.故答案为:﹣+6.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.二次函数y=x2﹣2x的图象的对称轴是直线x=1.【考点】二次函数的性质.【分析】先把二次函数y=x2﹣2x写成顶点坐标式y=(x﹣1)2﹣1,进而写出图象的对称轴方程.【解答】解:∵y=x2﹣2x,∴y=(x﹣1)2﹣1,∴二次函数的图象对称轴为x=1.故答案为x=1.【点评】本题主要考查了二次函数的性质,解答本题的关键是把二次函数写出顶点坐标式,此题难度不大.10.如果抛物线y=﹣x2+3x﹣1+m经过原点,那么m=1.【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】把原点坐标代入y=﹣x2+3x﹣1+m中得到关于m的一次方程,然后解一次方程即可.【解答】解:∵抛物线y=﹣x2+3x﹣1+m经过点(0,0),∴﹣1+m=0,∴m=1.故答案为1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.11.已知点A(x1,y1)、B(x2,y2)为二次函数y=(x﹣1)2图象上的两点,若x1<x2<1,则y1>y2.(填“>”、“<”或“=”)【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】先利用顶点式得到抛物线的对称轴为直线x=1,由于抛物线开口向上,在对称轴左侧,y随x的增大而减小,于是可判断y1与y2的大小.【解答】解:∵二次函数y=(x﹣1)2图象的对称轴为直线x=1,而x1<x2<1,∴y1>y2.故答案为>.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.解决本题的关键是运用二次函数的性质比较y1与y2的大小.12.用“描点法”画二次函数y=ax2+bx+c的图象时,列出了下面的表格:0 1 …x …﹣2 ﹣1y …﹣11 ﹣21 ﹣2 …根据表格上的信息回答问题:当x=2时,y=﹣11.【考点】二次函数的性质.【分析】首先根据表格数据得到二次函数图象的对称轴为x=0,然后求出当x=2时y的值.【解答】解:由表格数据可知:当x=﹣1,y=﹣2;x=1,y=﹣2,则二次函数的图象对称轴为x=0,又知x=﹣2和x=2关于x=0对称,当x=﹣2时,y=﹣11,即当x=2时,y=﹣11.故答案为﹣11.【点评】本题主要考查了二次函数的性质的知识,解答本题的关键是根据表格数据得到二次函数图象的对称轴为x=0,此题难度不大.13.如果两个相似三角形的周长的比为1:4,那么周长较小的三角形与周长较大的三角形对应角平分线的比为1:4.【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比、相似三角形对应角平分线的比等于相似比解答即可.【解答】解:∵两个相似三角形的周长的比为1:4,∴两个相似三角形的相似比为1:4,∴周长较小的三角形与周长较大的三角形对应角平分线的比为1:4,故答案为:1:4.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比是解题的关键.14.如图,在▱ABCD中,E是边BC上的点,分别联结AE、BD相交于点O,若AD=5,=,则EC=2.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质得到AD∥BC,AD=BC,推出△BE0∽△DAO,根据相似三角形的性质得到,求得BE=3,即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BE0∽△DAO,∴,∵AD=5,∴BE=3,∴CE=5﹣3=2,故答案为:2.【点评】此题考查了平行四边形的性质以及相似三角形的判定与性质.熟练掌握相似三角形的判定和性质是解题的关键.15.如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.若△ABC的边BC长为40厘米,高AH为30厘米,则正方形DEFG的边长为厘米.【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:设正方形的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴=.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=40,AH=30,DE=DG=x,得,解得x=.故正方形DEFG的边长是.故答案为:.【点评】本题考查了相似三角形的判定与性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,在△ABC中,∠ACB=90°,若点G是△ABC的重心,cos∠BCG=,BC=4,则CG=2.【考点】三角形的重心.【分析】延长CG交AB于D,作DE⊥BC于E,根据重心的概念得到点D为AB的中点,根据直角三角形的性质得到DC=DB,根据等腰三角形的三线合一得到CE=2,根据余弦的概念求出CD,根据三角形的重心的概念得到答案.【解答】解:延长CG交AB于D,作DE⊥BC于E,∵点G是△ABC的重心,∴点D为AB的中点,∴DC=DB,又DE⊥BC,∴CE=BE=BC=2,又cos∠BCG=,∴CD=3,∵点G是△ABC的重心,∴CG=CD=2,故答案为:2.【点评】本题考查的是三角形的重心的概念和性质以及锐角三角函数的定义,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.17.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,则CD=.【考点】解直角三角形.【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【解答】解:延长AD和BC交于点E.∵在直角△ABE中,tanA==,AB=3,∴BE=4,∴EC=BE﹣BC=4﹣2=2,∵△ABE和△CDE中,∠B=∠EDC=90°,∠E=∠E,∴∠DCE=∠A,∴直角△CDE中,tan∠DCE=tanA==,∴设DE=4x,则DC=3x,在直角△CDE中,EC2=DE2+DC2,∴4=16x2+9x2,解得:x=,则CD=.故答案是:.【点评】此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.18.如图,在矩形ABCD中,AB=6,AD=10,点E是边BC的中点,联结AE,若将△ABE沿AE翻折,点B落在点F处,联结FC,则cos∠ECF=.【考点】翻折变换(折叠问题);解直角三角形.【分析】由矩形的性质得出∠B=90°,BC=AD=10,由勾股定理求出AE,由翻折变换的性质得出△AFE≌△ABE,得出∠AEF=∠AEB,EF=BE=5,因此EF=CE,由等腰三角形的性质得出∠EFC=∠ECF,由三角形的外角性质得出∠AEB=∠ECF,cos∠ECF=cos∠AEB=,即可得出结果.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠B=90°,BC=AD=10,∵E是BC的中点,∴BE=CE=BC=5,∴AE===,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=5,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB===.故答案为:.【点评】本题考查了矩形的性质、勾股定理、翻折变换的性质、等腰三角形的判定与性质、三角形的外角性质、三角函数;熟练掌握矩形的性质和翻折变换的性质,证出∠AEB=∠ECF 是解决问题的关键.三、解答题(本大题共7题,满分78分)19.计算:cos245°+tan60°•cos30°﹣3cot260°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=()2+×﹣3×()2=1.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.已知一个二次函数的图象经过A(0,﹣3)、B(2,﹣3)、C(﹣1,0)三点.(1)求这个二次函数的解析式;(2)将这个二次函数图象平移,使顶点移到点P(0,﹣3)的位置,求所得新抛物线的表达式.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)利用待定系数法求抛物线解析式;(2)利用顶点式写出所得新抛物线的表达式.【解答】解:(1)设所求二次函数的解析式为y=ax2+bx+c,由题意得,解得.所以这个二次函数的解析式为y=x2﹣2x﹣3;(2)因为新抛物线是由抛物线y=x2﹣2x﹣3平移得到,而新抛物线的顶点坐标是(0,﹣3),所以新抛物线的解析式为y=x2﹣3.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.21.如图,DC∥EF∥GH∥AB,AB=12,CD=6,DE:EG:GA=3:4:5.求EF和GH的长.【考点】平行线分线段成比例.【专题】计算题.【分析】过C作CQ∥AD,交GH于N,交EF于M,交AB于Q,则可判断四边形AQCD 为平行四边形,所以AQ=CD=6,同理可得EM=EM=CD=6,则BQ=AB﹣AQ=6,再利用平行线分线段成比例定理得到DE:EG:GA=CF:HF:HB=3:4:5,然后根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到MF:BQ=CF:CB=3:(3+4+5),NH:BQ=CH:CB=(3+4):(3+4+5),则可计算出MF和NH,从而得到GH和EF的长【解答】解:过C作CQ∥AD,交GH于N,交EF于M,交AB于Q,如图,∵CD∥AB,∴四边形AQCD为平行四边形,∴AQ=CD=6,同理可得GN=EM=CD=6,∴BQ=AB﹣AQ=6,∵DC∥EF∥GH∥AB,∴DE:EG:GA=CF:HF:HB=3:4:5,∵MF∥NH∥BQ,∴MF:BQ=CF:CB=3:(3+4+5),NH:BQ=CH:CB=(3+4):(3+4+5),∴MF=×6=1.5,NH=×6=3.5,∴EM=EM+MF=6+1.5=7.5,HG=GN+NH=6+3.5=9.5.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.22.如图,已知楼AB高36米,从楼顶A处测得旗杆顶C的俯角为60°,又从该楼离地面6米的一窗口E处测得旗杆顶C的仰角为45°,求该旗杆CD的高.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】过点C作CG⊥AE,垂足为点G,由题意得∠CEF=45°=∠CEG,∠ACG=60°,设CG=x,在Rt△ACG中,AG=CG•tan∠ACG=x,在Rt△ECG中,EG=CG•cot∠CEG=x,根据AG+EG=AE,列方程=36﹣6,得到CF=EG=15﹣15,于是得到结论.【解答】解:过点C作CG⊥AE,垂足为点G,由题意得∠CEF=45°=∠CEG,∠ACG=60°,设CG=x,在Rt△ACG中,AG=CG•tan∠ACG=x,在Rt△ECG中,EG=CG•cot∠CEG=x,∵AG+EG=AE,∴=36﹣6,解得:x=15﹣15,∴CF=EG=15﹣15,∴CD=15﹣15+6=15﹣9.答:该旗杆CD的高为(15﹣9)米.【点评】此题主要考查了仰角与俯角问题,正确应用锐角三角函数关系是解题关键.23.如图,点E是四边形ABCD的对角线BD上的一点,∠BAE=∠CBD=∠DAC.(1)求证:DE•AB=BC•AE;(2)求证:∠AED+∠ADC=180°.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)根据已知条件得到∠BAC=∠EAD,根据三角形额外角的性质得到∠ABC=∠AED,推出△ABC∽△AED,根据三角形的外角的性质得到结论;(2)根据相似三角形的性质得到,推出△ABE∽△ACD,根据相似三角形的性质得到∠AEB=∠ADC,等量代换即可得到结论.【解答】证明:(1)∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠EAD,∵∠ABC=∠ABE+∠CBD,∠AED=∠ABE+∠BAE,∵∠CBD=∠BAE,∴∠ABC=∠AED,∴△ABC∽△AED,∴,∴DE•AB=BC•AE;(2)∵△ABC∽△AED,∴,即,∵∠BAE=∠DAC∴△ABE∽△ACD,∴∠AEB=∠ADC,∵∠AED+∠AEB=180°,∴∠AED+∠ADC=180°.【点评】本题考查了相似三角形的性质和判定,邻补角的定义,三角形外角的性质,熟练掌握相似三角形的判定和性质是解题的关键.24.在平面直角坐标系xOy中,抛物线与x轴分别交于点A(2,0)、点B(点B在点A的右侧),与轴交于点C,tan∠CBA=.(1)求该抛物线的表达式;(2)设该抛物线的顶点为D,求四边形ACBD的面积;(3)设抛物线上的点E在第一象限,△BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)由抛物线解析式和已知条件得出C和B的坐标,(0,3),OC=3,把A(2,0)、B(6,0)分别代入y=ax2+bx+3得出方程组,解方程即可;(2)把抛物线解析式化成顶点式得出顶点坐标,四边形ACBD的面积=△ABC的面积+△ABD的面积,即可得出结果;(3)设点E的坐标为(x,x2﹣2x+3),分两种情况:①当∠CBE=90°时;②当∠BCE=90°时;分别由三角函数得出方程,解方程即可.【解答】解:(1)∵当x=0时,∴C(0,3),OC=3,在Rt△COB中,∵tan∠CBA=,∴=,∴OB=2OC=6,∴点B(6,0),把A(2,0)、B(6,0)分别代入y=ax2+bx+3,得:,解得:∴该抛物线表达式为y=x2﹣2x+3;(2)∵y=x2﹣2x+3=(x﹣4)2﹣1∴顶点D(4,﹣1),∴四边形ACBD的面积=△ABC的面积+△ABD的面积=×4×3+×4×1=8;(3)设点E的坐标为(x,x2﹣2x+3),分两种情况:①当∠CBE=90°时,作EM⊥x轴于M,如图所示:则∠BEM=∠CBA,∴=tan∠BEM=tan∠CBA=,∴EM=2BM,即2(x﹣6)=x2﹣2x+3,解得:x=10,或x=6(不合题意,舍去),∴点E坐标为(10,8);②当∠BCE=90°时,作EN⊥y轴于N,如图2所示:则∠ECN=∠CBA,∴=tan∠ECN=tan∠CBA=,∴CN=2EN,即2x=x2﹣2x+3﹣3,解得:x=16,或x=0(不合题意,舍去),∴点E坐标为(16,35);综上所述:点E坐标为(10,8)或(16,35).【点评】本题考查了抛物线与x轴的交点、抛物线解析式的求法、三角函数的应用、解方程等知识;本题综合性强,有一定难度,求出抛物线解析式是解决问题的关键.25.(14分)如图,在▱ABCD中,E为边BC的中点,F为线段AE上一点,联结BF并延长交边AD于点G,过点G作AE的平行线,交射线DC于点H.设==x.(1)当x=1时,求AG:AB的值;(2)设=y,求关于x的函数关系式,并写出x的取值范围;(3)当DH=3HC时,求x的值.【考点】相似形综合题.【专题】综合题;图形的相似.【分析】(1)由平行四边形ABCD,得到AD与BC平行且相等,由两直线平行得到两对内错角相等,进而确定出三角形BEF与三角形AGF相似,由相似得比例,把x=1代入已知等式,结合比例式得到AG=BE,AD=AB,即可求出所求式子的值;(2)设AB=1,根据已知等式表示出AD与BE,由AD与BC平行,得到比例式,表示出AG与DG,利用两角相等的三角形相似得到三角形GDH与三角形ABE相似,利用相似三角形面积之比等于相似比的平方列出y与x的函数解析式,并求出x的范围即可;(3)分两种情况考虑:①当点H在边DC上时,如图1所示;②当H在DC的延长线上时,如图2所示,分别利用相似得比例列出关于x的方程,求出方程的解即可得到x的值.【解答】解:(1)在▱ABCD中,AD=BC,AD∥BC,∴∠BEF=∠GAF,∠EBF=∠AGF,∴△BEF∽△GAF,∴=,∵x=1,即==1,∴==1,∴AD=AB,AG=BE,∵E为BC的中点,∴BE=BC,∴AG=AB,则AG:AB=;(2)∵==x,∴不妨设AB=1,则AD=x,BE=x,∵AD∥BC,∴==x,∴AG=,DG=x﹣,∵GH∥AE,∴∠DGH=∠DAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠DGH=∠AEB,在▱ABCD中,∠D=∠ABE,∴△GDH∽△EBA,∴=()2,∴y=()2=(x>);(3)分两种情况考虑:①当点H在边DC上时,如图1所示:∵DH=3HC,∴=,∴=,∵△GDH∽△EBA,∴==,即=,解得:x=;②当H在DC的延长线上时,如图2所示:∵DH=3HC,∴=,∴=,∵△GDH∽△EBA,∴==,即=,解得:x=2,综上所述,可知x的值为或2.【点评】此题属于相似型综合题,涉及的知识有:平行四边形的性质,相似三角形的判定与性质,以及平行线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.。

2016上海初三一模18题

2016上海初三一模18题

2016年上海市初三一模数学考试18题解析2016.03一. 普陀区18. 已知(3,2)A 是平面直角坐标中的一点,点B 是x 轴负半轴上一动点,联结AB , 并以AB 为边在x 轴上方作矩形ABCD ,且满足:1:2BC AB =,设点C 的横坐标是a , 如果用含a 的代数式表示点D 的坐标,那么点D 的坐标是 ;【解析】根据题意,可以得出△1CC B ∽△1BA A , ∴11:1:2:BC AB BC AA ==,∴11BC =, ∵1(,0)C a ,∴(1,0)B a +,∴12A B a =-, ∴122a C C -=,∴6(2,)2aD -二. 浦东新区18. 在△ABC 中,5AB =,4AC =,3BC =,D 是边AB 上的一点,E 是边AC 上 的一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE = ;【解析】 如左图,D 为AB 中点, 2.5CD =,2CE =;如中图,D 为AB 中点, 2.5CD =,:4:5CD CE =,∴258CE =;如右图,CD AB ⊥,125CD =,∴3625CE =;三. 奉贤区18. 如图,已知平行四边形ABCD 中,AB =6AD =,1cot 2B =,将边AB 绕 点A 旋转,使得点B 落在平行四边形ABCD 的边上,其对应点为B '(点B '不与点B 重合),那么sin CAB '∠= ;【解析】根据已知条件,2BE EB B C ''===,4AE =,∴sin sin 2CAB ACE ''∠=∠=;作B F AC '⊥,∴B F '=,AB '=∴sin10CAB '∠==四. 长宁区/金山区18. 如图,ABCD 为正方形,E 为BC 上一点,将正方形折叠,使A 点与E 点重合,折痕为MN ,如果1tan 3AEN ∠=,10DC CE +=,那么△ANE 的面积为 ;【解析】 1tan tan 3BE AEN NAE AB ∠=∠==,∴可解得2BE =,4EC =,直角三角形NBE 中使用勾股定理,222(6)2AN AN -+=,解得103AN =,∴103ANES =;五. 闵行区18. 将一副三角尺如图摆放,其中在Rt △ABC 中,90ACB ∠=︒,60B ∠=︒,在 Rt △EDF 中,90EDF ∠=︒,45E ∠=︒,点D 为边AB 的中点,DE 交AC 于点P ,DF 经过点C ,将△EDF 绕点D 顺时针方向旋转角α(060α︒<<︒)后得到△E DF '',DE '交AC 于点M ,DF '交BC 于点N ,那么PMCN的值为 ;【解析】 取特殊情况30α︒=,如右图所示,∴30PDM ︒∠=,∵60DPM ︒∠=,∴90PMD ︒∠=,∴3PM PM CN MD ==;六. 松江区18. 已知在△ABC 中,90C ∠=︒,3BC =,4AC =,点D 是AB 边上一点,将△ABC 沿着直线CD 翻折,点A 落在直线AB 上的点A '处,则sin A CD '∠= ; 【解析】 根据已知条件,CD AB ⊥,AD A D '=,∴△ACD ≌△A CD ',∴sin sin A CD ACD '∠=∠=4sin 5ABC ∠=;七. 徐汇区18. 如图,在Rt △ABC 中,90BAC ∠=︒,3AB =,3cos 5B =,将△ABC 绕着点 A 旋转得△ADE ,点B 的对应点D 落在边BC 上,联结CE ,那么CE 的长是 ;【解析】作AF EC ⊥,∵3AB AD ==,4AC AE ==,BAD CAE ∠=∠,∴△BAD ∽△CAE ,∴3cos cos 5CF B ACF CA =∠==,即125CF =,∴245CE =;八. 虹口区18. 如图,在矩形ABCD 中,6AB =,10AD =,点E 是边BC 的中点,联结AE , 若将△ABE 沿AE 翻折,点B 落在点F 处,联结FC ,则cos ECF ∠= ;【解析】作EM FC ⊥,∵5EF EC ==,∴FEM CEM ∠=∠,∵AEB AEF ∠=∠,∴90AEB MEC ︒∠+∠=,即AEB MCE ∠=∠,∴cos cos ECF AEB ∠=∠=九. 崇明县18. 如图,等边△ABC 中,D 是边BC 上的一点,且:1:3BD DC =,把△ABC 折 叠,使点A 落在边BC 上的点D 处,那么AMAN的值为 ; 【解析】设1BD =,∴3CD =,4AB AC ==,∵60MDN A ︒∠=∠=,∴120MDB NDC ︒∠+∠=, ∵120MDB BMD ︒∠+∠=,∴BMD NDC ∠=∠, ∵B C ∠=∠,∴△BMD ∽△CDN , ∴MD BM DB DN CD NC ==,即4134AM AM AN AN -==- 解得57AM AN =;18. 如图,在梯形ABCD 中,AD ∥BC ,45B ∠=︒,点E 是AB 的中点,DE DC =,90EDC ∠=︒,若2AB =,则AD 的长是 ;【解析】延长DE 、CB 交于点F ,根据条件可知△AED ≌△BEF ,45F FEB ︒∠+∠=,45F FCE ︒∠+∠=,∴FEB FCE ∠=∠,可知△FEB ∽△FCE ,∴FB FEBE EC=,即1AD ED EC ==2AD =;十一. 宝山区18. 如图,抛物线223y x x =--交x 轴于(1,0)A -、(3,0)B ,交y 轴于(0,3)C -,M 是抛物线的顶点,现将抛物线沿平行于y 轴的方向向上平移三个单位,则曲线CMB 在平移 过程中扫过的面积为 (面积单位);【解析】曲线CMB 扫过区域如中图所示,经割补后与右图OCEB 面积相同,面积为9;十二. 静安区/青浦区18. 将平行四边形ABCD (如图)绕点A 旋转后,点D 落在边AB 上的点D ',点C 落 到C ',且点C '、B 、C 在一直线上,如果13AB =,3AD =,那么A ∠的余弦值为 ; 【解析】连结BC ',∵BD C D AB DAB ''''∠=∠=∠C D BC ''=∠=∠,∴13D C BC DC AB '''====,∵3AD AD '==,∴10D B '=,作C E D B ''⊥, ∴5D E EB '==,∴cos cos 513A EBC '∠==18. 如图,已知将△ABC 沿角平分线BE 所在直线翻折,点A 恰好落在边BC 的中点M 处,且AM BE =,那么EBC ∠的正切值为 ;【解析】设AM 、BE 相交于D 点,AM BE ⊥,取BE 中点F ,联结FM ,∴FM ∥AC , ∴AEF MEF EFM ∠=∠=∠,∴ME MF =, ∴DE DF =,∴2BF DM EF DF ===, ∴22tan 33DM DF EBC DB DF ∠===十四. 闸北区18. 如图,将一张矩形纸片ABCD 沿着过点A 的折痕翻折,使点B 落在边AD 上的点F ,折痕交BC 于点E ,将折叠后的纸片再次沿着另一条过点A 的折痕翻折,点E 恰好与点D 重合,此时折痕交DC 于点G ,则:CG GD 的值为 ;【解析】第一次翻折后,可知AB AF =,∴ABEF 为正方形, ∴45AEB ︒∠=,第二次翻折后,可知90ADG AEG ︒∠=∠=,且DG GE =,∴45GEC ︒∠=,sin 45CG CG GD GE ︒===十五. 嘉定区18. 在梯形ABCD 中,AD ∥BC ,90ABC ∠=︒,AB CB =,4tan 3C ∠=(如图), 点E 在边CD 上运动,联结BE ,如果EC EB =,那么DECD的值是 ;【解析】作DG BC ⊥,4tan 3DG C GC ∠==,设3CG =, 4DG =,∴4AB CB ==,1BG =;作EF BC ⊥,∵EC EB =,∴2BF CF ==,∴1GF =, ∴13DE GF CD CG ==(分析整理 谭峰)。

2016学年上海虹口区初三数学一模试卷含答案.

2016学年上海虹口区初三数学一模试卷含答案.

虹口区2016学年度第一学期期终教学质量监控测试初三数学试卷一、选择题(本大题共6题,每题4分,满分24分1、如图,在Rt ABC ∆中,=90C ︒∠,A ∠、B ∠和C ∠的对边分别是a 、b 和c ,下列锐角三角比中,值为bc 的是(.sin A A .cos B A .t a n C A .c o t D A2、如图,在点 B 处测得点A 处的俯角是 (.1A ∠ .B ∠2 .C ∠3 .D ∠43、计算 23(a a b --的结果是(.3A a b -- .3B a b -+ .C a b - .D a b -+4、抛物线2(24y x =+- 顶点的坐标是( .(2,4A .(2,4B - .(2,4C - .(2,4D -- 5、抛物线上221y x =-+有两点11(,x y 、22(,x y ,下列说法中,正确的是( A .若12x x <,则 12y y > .B 若12x x >,则12y y >.C 若120x x <<,则 12y y < .D 若120x x >>,则12y y >6、如图,在ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F 若3DEF S ∆= ,则BC F S ∆为(.3A .6B .9C .12D二、填空题(本大题共12题,每题4分,满分48分7、已知线段4a cm = ,1c cm = ,则线段 a 和c 的比例中项_____b cm =小学初中培优竞赛试题一套都是最新教案可以加我 468 453 607 w e i136********8、如果向量a 与单位向量e 方向相反,且长度为2,那么用向量 e表示_____a =9、如果抛物线2(3y a x =- 开口向下,那么a 的取值范围是_______ 10、如果抛物线21y x m =+- 经过点(0,1,那么_________m = 11、若将抛物线22(1y x =-向左平移3个单位所得到的新抛物线表达式为_________12、如图,抛物线2y x bx c =-++ 对称轴为直线3x = ,如果点(0,4A 为此抛物线上的一点,那么当6x =时,____y =13、已知,111ABC A BC ∆∆∽顶点AB C 、、分别111A B C 、、与对应,11BE B E 、分别是B ∠、 1B ∠的对应角平分线,如果11:2:3AB A B = ,那么11:_____BE B E =14、如图,在ABC ∆中,=90C ︒∠,如果13,5AB AC == ,那么tan ____A = 15、如图,123l l l ∥∥ ,如果4518AF FB CD ===,, ,那么___CE =16、如图,已知点O 为ABC ∆内一点,点D 、E 分别在边AB 和AC 上,且12AD BD =,设,OB b OC c == ,用b 、c向量表示=____DE17、如图,在ABC ∆中,如果AB AC = ,边BC 、AC 上的中线AD 、BE 相交于点G ,如果41cot 3DG C ==, ,那么___ABC S ∆=18、如图,在梯形中ABCD ,1,3AD BC AB BC AD BC ==∥,⊥, ,点P 是边AB 上一点,如果把BCP ∆ 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么sin ADP ∠为_____ 三、解答题(本大题共7题,满分78分 19、(本题满分10分计算:22cot 304sin 452cos 30cos 60︒-︒︒-︒20.(本题满分10分,第(1小题满分6分,第(2小题满分4分已知二次函数c bx ax y ++=2的图像经过(0,1A 、(16,1-B 、(10,0C 三点. (1求该函数解析式;(2用配方法将该函数解析式化为(k m x a y ++=2的形式.21.(本题满分10分如图,在ABCD 中,点G 在边BC 的延长线上,AG 与边CD 交于点E ,与对角线BD 交于点F .求证:2AF EF FG =22.(本题满分10分如图,在大楼AB 的正前方有一斜坡CD 长为13米,坡度为512:1,高为DE ,在斜坡底的点C 处测得楼顶B 的仰角为︒64,在斜坡顶的点D 处测得楼顶B 的仰角为︒45,其中点A 、C 、E 在同一直线上,求斜坡DE 的高与大楼AB 的高度.(参考数据:264tan ,9.064sin ≈︒≈︒23.(本题满分12分,第(1小题满分6分,第(2小题满分6分如图,在ABC ∆中,点D 、E 分别在边AB 、AC 上,AD AEAC AB =,BAC ∠的平分线AG 分别交线段DE BC 、于点F G 、(1求证:ADF ACG ∆∆(2联结DG ,若,1246AGD B AB AD AE ∠=∠===,,,求AG 与AF 的长.24、(本题满分12分,第(1小题4分,第(2小题满分4分,第(3小题满分4分如图,抛物线25y x bx =++与x 轴交于点A 与(5,0B 点,与y 轴交于点C ,抛物线的顶点为点P . (1求抛物线的表达式并写出顶点P 的坐标 (2在x 轴上方的抛物线上有一点D ,若ABD ABP ??,试求点D 的坐标(3设在直线BC 下方的抛物线上有一点Q ,若15BCQ S D =,试写出点Q 坐标25、(本题满分14分,第(1小题4分,第(2小题满分6分,第(3小题满分4分如图在Rt ABC 中,90ACB°?,4,3AC BC ==,点D 为边BC 上一动点,(不与点B 、C 重合,联结AD ,过点C 作CF AD ⊥,分别交AB AD 、于点E F 、,设DC x =,AEyBE =,(1当1x =时,求tan BCE Ð的值(2)求 y 与 x 的函数关系式,并写出 x 的取值范围(3)当 x = 1 时,在边AC 上取点 G ,联结 BG ,分别交 CE、AD 于点 M 、N ,当 MNF ABC时,请直接写出 AG 的长。

2016届上海普陀区初三数学一模试卷+答案(word版)

2016届上海普陀区初三数学一模试卷+答案(word版)

普陀区2015学年度第一学期初三质量调研数 学 试 卷 2016.1(时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1. 如图1,BD 、CE 相交于点A ,下列条件中,能推得DE ∥BC 的条件是( ▲ ) (A )AE ∶EC =AD ∶DB ; (B )AD ∶AB =DE ∶BC ; (C )AD ∶DE =AB ∶BC ; (D )BD ∶AB =AC ∶EC .2.在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DE ∥BC ,如果△ADE 的面积等于3,那么△ABC 的面积等于( ▲ )(A )6; (B )9; (C )12; (D )15.3.如图2,在Rt △ABC 中,∠C =90°,CD 是斜边AB 上的高,下列线段的比值不等于...cos A 的值的是( ▲ ) (A )AD AC; (B )AC AB; (C )BD BC; (D )CD BC.4.如果a 、b 同号,那么二次函数21y ax bx =++的大致图像是( ▲ )5.下列命题中,正确的是( ▲ )(A )圆心角相等,所对的弦的弦心距相等;DCBA图2E DCBA图1(B )三点确定一个圆;(C )平分弦的直径垂直于弦,并且平分弦所对的弧; (D )弦的垂直平分线必经过圆心.6.已知在平行四边形ABCD 中,点M 、N 分别是边BC 、CD 的中点,如果a AB =,b AD =,那么向量MN 关于a 、b 的分解式是( ▲ )(A )1122a b -; (B )1122a b -+; (C )1122a b +; (D )1122a b --.二、填空题:(本大题共12题,每题4分,满分48分) 7.如果:2:5x y =,那么yx xy +-= ▲ . 8.计算:2()()a b a b ++-= ▲ .9.计算: 2sin 45cot 30tan 60+= ▲ .10.已知点P 把线段AB 分割成AP 和PB (AP >PB ) 两段,如果AP 是AB 和PB 的比例中项,那么:AP AB 的值等于 ▲ .11.在函数①c bx ax y ++=2,②22)1(x x y --=,③2255xx y -=,④22+-=x y 中,y 关于x 的二次函数是 ▲ .(填写序号)12.二次函数223y x x =+-的图像有最 ▲ 点.13.如果抛物线n mx x y ++=22的顶点坐标为(1,3), 那么n m +的值等于 ▲ .14.如图3,点G 为△ABC 的重心,DE 经过点G ,DE ∥AC , EF ∥AB ,如果DE 的长是4,那么CF 的长是 ▲ .15.如图4,半圆形纸片的半径长是1cm ,用如图所示的方法将纸片对折,使对折后半圆的中点M 与圆心O 重合,那么折痕CD 的长是 ▲ cm .16.已知在Rt △ABC 中,∠C =90°,点P 、Q 分别在边AB 、AC 上,4AC =,3BC AQ ==,如果△APQ 与△ABC 相似,那么AP 的长等于 ▲ .17.某货站用传送带传送货物.为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB ,图3调整为坡度31:=i 的新传送带AC (如图5所示).已知原传送带AB 的长是24米.那么新传送带AC 的长是 ▲ 米.18.已知A (3,2)是平面直角坐标系中的一点,点B 是x 轴负半轴上一动点,联结AB ,并以AB 为边在x 轴上方作矩形ABCD ,且满足:1:2BC AB =,设点C 的横坐标是a ,如果用含a 的代数式表示点D 的坐标,那么点D 的坐标是 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)已知:如图6,在梯形ABCD 中,AD ∥BC ,13AD BC =,点M 是边BC 的中点,AD a =,AB b =.(1)填空:BM = ▲ ,MA = ▲ .(结果用a 、b 表示).(2)直接在图中画出向量2a b +.(不要求写作法,但要指出图中表示结论的向量)20.(本题满分10分)将抛物线212y x =先向上平移2个单位,再向左平移m (m >0)个单位,所得新抛物线经过点(-1,4),求新抛物线的表达式及新抛物线与y 轴交点的坐标.O图4图5图6MB如图7,已知AD 是⊙O 的直径,AB 、BC 是⊙O 的弦,AD ⊥BC ,垂足是点E ,8BC =, 2DE =.求⊙O 的半径长和sin ∠BAD 的值.22.(本题满分10分)如图8,已知有一块面积等于12002cm 的三角形铁片ABC ,已知底边BC 与底边上的高的和为100cm (底边BC 大于底边上的高),要把它加工成一个正方形铁片,使正方形的一边EF 在边BC 上,顶点D 、G 分别在边AB 、 AC 上,求加工成的正方形铁片DEFG 的边长.23.(本题满分12分)已知:如图9,在四边形ABCD 中,ADB ACB ∠=∠,延长AD 、BC 相交于点E ,求证: (1)△ACE ∽△BDE ; (2)BE DC AB DE =.图7DA图8F G EDCBA图9EDCBA如图10,已知在平面直角坐标系xOy中,二次函数27 3y ax x c=-+的图像经过点A(0, 8)、B(6, 2),C(9, m),延长AC交x轴于点D.(1)求这个二次函数的解析式及m的值;(2)求ADO∠的余切值;(3)过点B的直线分别与y轴的正半轴、x轴、线段AD交于点P(点A的上方)、M、Q,使以点P、A、Q为顶点的三角形与△MDQ相似,求此时点P的坐标.25.(本题满分14分)如图11,已知锐角∠MBN的正切值等于3,△PBD中,∠BDP=90°,点D在∠MBN的边BN上,点P在∠MBN内,PD=3,BD=9.直线l经过点P,并绕点P旋转,交射线BM于点A,交射线DN于点C.设CACP=x,(1)求x=2时,点A到BN的距离;(2)设△ABC的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)当△ABC因l的旋转成为等腰三角形时,求x的值.图10lMAM普陀区2015学年度第一学期九年级数学期终考试试卷参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.(A); 2.(C); 3.(C); 4.(D); 5.(D); 6. (B).二、填空题:(本大题共12题,每题4分,满分48分)7.73; 8. b a +3; 9. 213 ; 10.215-; 11.④; 12. 低; 13.1; 14.2; 15.3;16 17.8; 18.三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解:(1;32MA a b =--. ··········································· (3分+3分) (2)答案略. ·············································································· (4分)20.解:由题意可设新抛物线的表达式是2)(212++=m x y . ·························· (2分) 该图像经过点(-1,4),∴把1-=x ,4=y 代入2)(212++=m x y ,得 2)1(2142++-=m . 解得31=m , 21m =-(不合题意,舍去). ································· (4分) ∴此时新抛物线的表达式是2)3(212++=x y . ································· (1分) 令0=x ,得213=y . ··································································· (2分) ∴新抛物线2)3(212++=x y 与y 轴的交点坐标为(0,213). ··········· (1分)21、解:联结OB . ·················································································· (1分) AD 是⊙O 的直径,BC 是⊙O 的弦,AD ⊥BC ,垂足为点E ,∴∠090=OEB ,BC EC BE 21==. ········································· (2分) 又 8BC =,∴4BE =.························································· (1分) 设⊙O 的半径长是x ,则2OE x =-.在Rt △OEB 中,∠090=OEB ,∴222BO OE BE =+,即2224(2)x x +-=,解得5x =. ··············· (2分)∴⊙O 的半径长是5. ································································· (1分) ∴1028AE AD DE =-=-=. ················································· (1分)由勾股定理得:AB = ······················································· (1分) 在Rt △AEB 中,∠090=AEB ,∴sin ∠5BE BAD AB ===··············································· (1分)22.解法一:过点A 作AH ⊥BC ,垂足为H ,交DG 于P . ······························ (1分)由题意得:11200,2100.BC AH BC AH ⎧=⎪⎨⎪+=⎩ ············································· (1分)解得:60,40.BC AH =⎧⎨=⎩································································ (1分)设正方形DEFG 的边长为x cm .∵四边形DEFG 是正方形,EF 在边BC 上,∴DG ∥BC .得△ADG ∽△ABC . ···························································· (1分)由AH ⊥BC .得AP ⊥DG ,即AP 是△ADG 的高. ····················· (1分) ∴AP DGAH BC=. ································································· (1分) ∵PH ⊥BC ,GF ⊥BC , ∴PH =GF ,AP=AH-PH=AH-GF . ·········· (1分)∴AH GF DGAH BC -=. ························································· (1分) 得404060x x-=, 解得24x =. ··········································· (1分) 答:加工成的正方形铁片DEFG 的边长等于24cm . ··················· (1分)解法二:过点A 作AH ⊥BC ,垂足为H ,交DG 于P . ··························· (1分)设正方形DEFG 的边长是x cm ,AH =h cm ,BC =a cm .由题意得:2400a h =,100a h +=. ································· (1分)∵四边形DEFG 是正方形,EF 在边BC 上,∴DG ∥BC .得△ADG ∽△ABC . ···························································· (1分) 由AH ⊥BC .得AP ⊥DG ,即AP 是△ADG 的高. ····················· (1分) ∴AP DGAH BC=. ································································· (1分) ∵PH ⊥BC ,GF ⊥BC , ∴PH =GF ,AP=AH-PH=AH-GF . ·········· (1分)∴h x xh a-=. ··································································· (1分) 得ah x a h =+=2400100=24. ···················································· (2分)答:加工成的正方形铁片DEFG 的边长等于24cm . ··················· (1分)23. 证明:(1)∵+180ADB BDE ∠∠=,+180ACB ACE ∠∠=, ··············· (2分)又∵ADB ACB ∠=∠, ························································ (1分)∴BDE ACE ∠=∠. ·························································· (1分) ∵AEC BED ∠=∠, ·························································· (1分) ∴△AEC ∽△BED . ························································ (1分) (2)∵△AEC ∽△BED ,∴DE BECE AE =. ·································································· (1分) ∴DE CE BE AE=. ································································ (1分) ∵DEC BEA ∠=∠, ·························································· (1分) ∴△DEC ∽△BEA . ························································ (1分) ∴DC DEAB BE=. ································································· (1分) ∴BE DC AB DE =. ······················································· (1分)24.解:(1)由题意得8,72366.3c a c =⎧⎪⎨=-⨯+⎪⎩解得2,98.a c ⎧=⎪⎨⎪=⎩ ································ (2分) ∴这个二次函数的解析式是227893y x x =-+. ···························· (1分) ∵点C (9, m )在这个二次函数的图像上,∴把9x =,y m =代入解析式,得5m =. ································· (1分) 所以m 的值为5.(2)解一:由(1)得C (9, 5).设直线AC 的表达式是()0y kx b k =+≠, 由题意得8,59.b k b =⎧⎨=+⎩解得1,38.k b ⎧=-⎪⎨⎪=⎩∴直线AC 表达式是183y x =-+. ················································ (2分) ∴点D 的坐标是(24, 0). ··························································· (1分) 在Rt △ADO 中,cot 3ODADO AO∠==. ······································· (1分) 解二:由(1)得C (9, 5).过点C 作CE ⊥x 轴,由CE ∥y 轴,可得CE DEAO DO=. ······················· (1分)得598DO DO-=. ········································································· (1分) 解得24DO =. ·········································································· (1分) 在Rt △ADO 中,cot 3ODADO AO∠==. ······································ (1分) (3)∵AQP MQD ∠=∠, QMD ∠>APQ ∠,∴△APQ 与△MDQ 相似只能APQ MDQ ∠=∠.···························· (1分) 可得cot cot APQ MDQ ∠=∠.过点B 作BF ⊥y 轴,在Rt △FBP 中,cot 3PFAPQ BF∠==, 解得18PF =. ··········································································· (2分) ∴点P 的坐标是(0, 20). ·························································· (1分)25、解:(1)过点A 作AH ⊥BN ,垂足为点H . ············································ (1分)由∠BDP =90°,可得PD ∥AH . ·········································· (1分)∴AH CAPD CP =. ····································································· (1分) ∵CA CP=x , x =2,PD =3, 得:=6AH . ······································································· (1分) (2) 同理得:=3AH x . ······························································· (1分)在Rt △ABH 中,由tan 3MBN ∠=,可得BH x =, ················· (1分) 从而9DH x =-. ∵ PD ∥AH ,∴CH CACD CP=. Hl PNMD C BAword 格式-可编辑-感谢下载支持 得:9=1x CD x --. ·································································· (1分) ∵12ABC S BC AH =, ∴193921x y x x -⎛⎫=+ ⎪-⎝⎭. 化简得:2121x y x =-.(1<x ≤9) ·······································(1分+1分) (3)过点P 作PQ ∥AB ,交BN 于点Q .则△PQC ∽△ABC .由△ABC 是等腰三角形,可得△PQC 是等腰三角形.由PQ ∥AB ,可得tan 3PQD ∠=.∴=1DQ ,PQ .① 如果AB AC =,得PQ PC =.∴1CD DQ ==.∴1052CBx CQ ===. ······························································(1分)②如果AB BC=,得PQ QC =.∴QC =1DC =. ················································ (1分)∴CB x CQ ===. ..................................................... (1分) ③如果AC BC =,得PC QC =.在Rt △PDC 中,由勾股定理得:4CD =. ································ (1分) ∴9413145CBx CQ +===+. ························································(1分)综上所述,当△ABC 因l 的旋转成为等腰三角形时,x 的值等于5、55和135.Q lPN MD C B A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年上海市各区县中考数学一模压轴题图文解析目录第二部分第18题图文解析2016年上海市崇明县中考数学一模第18题/ 12016年上海市奉贤区中考数学一模第18题/ 22016年上海市虹口区中考数学一模第18题/ 32016年上海市黄浦区中考数学一模第18题/ 42016年上海市嘉定区中考数学一模第18题/ 52016年上海市静安区青浦区中考数学一模第18题/ 62016年上海市闵行区中考数学一模第18题/ 72016年上海市浦东新区中考数学一模第17、18题/ 82016年上海市普陀区中考数学一模第18题/ 102016年上海市松江区中考数学一模第18题/ 112016年上海市徐汇区中考数学一模第18题/ 122016年上海市杨浦区中考数学一模第18题/ 132016年上海市闸北区中考数学一模第18题/ 142016年上海市长宁区金山区中考数学一模第18题/ 152016年上海市宝山区中考数学一模第18题/ 16例 2016年上海市崇明县中考一模第18题如图1,等边三角形ABC中,D是BC边上的一点,且BD∶DC=1∶3,把△ABC折叠,使点A落在BC边上的点D处,那么AMAN的值为__________.图1动感体验请打开几何画板文件名“16崇明一模18”,拖动点D在BC边上运动,可以体验到,△MBD与△DCN保持相似.答案57.思路如下:如图2,因为∠MDC=∠B+∠1=60°+∠1,∠MDC=∠MDN+∠2=60°+∠2,所以∠1=∠2.又因为∠B=∠C=60°,所以△MBD∽△DCN.所以DM MBD AB BD ND DCN AC DC+==+△的周长△的周长.如图3,设等边三角形ABC的边长为4,当BD∶DC=1∶3时,415437 AM DMAN ND+===+.图2 图3例 2016年上海市奉贤区中考一模第18题如图1,已知平行四边形ABCD 中,AB =AD =6,cot B =12,将边AB 绕点A 旋转,使得点B 落在平行四边形ABCD 的边上,其对应点为B ′(点B ′不与点B 重合),那么sin ∠CAB ′=________________.图1动感体验请打开几何画板文件名“16奉贤一模18”,可以体验到,点B 旋转以后得到的点B ′可以落在BC 边上,也可以落在AD 边上..思路如下:如图2,在Rt △ABE 中,由AB =cot B =12,可得BE =2,AE =4.在Rt △ACE 中,由AE =4,CE =BC -BE =6-2=4,可得AC =ACE =45°. ①如图3,当点B ′在BC 边上时,B ′E =BE =2.在等腰直角三角形B ′CH 中,B ′C =2,所以B ′H =CH在Rt △A B ′H ,B ′H =AH =AC -CH =AB ′=此时sin ∠CAB ′=''B HAB ==②如图4,当点B ′在AD 边上时,∠CAB ′=45°.此时sin ∠CAB ′=2.图2 图3 图4例 2016年上海市虹口区中考一模第18题如图1,在矩形ABCD 中,AB =6,AD =10,点E 是BC 的中点,联结AE ,若将△ABE 沿AE 翻折,点B 落在点F 处,联结FC ,则cos ∠ECF =__________.图1动感体验请打开几何画板文件名“16虹口一模18”,可以体验到,FC //AE .如图2,由EB =EC =EF ,可知∠BFC =90°. 又因为AE 垂直平分BF ,所以∠BOE =90°. 所以FC //AE .所以∠ECF =∠BEA .在Rt △ABE 中,AB =6,BE =4,所以AE =cos ∠ECF =BE AE图2例 2016年上海市黄浦区中考一模第18题如图1,在梯形ABCD中,AD//BC,∠B=45°,点E是AB的中点,DE=DC,∠EDC =90°,若AB=2,则AD的长是___________.图1动感体验请打开几何画板文件名“16黄浦一模18”,拖动点D可以改变梯形ABCD和直角三角形CDE的形状,可以体验到,△EMD∽△DNC.当DE=DC时,△EMD≌△DNC..思路如下:在Rt△AEM中,AE=1,∠EAM=45°,所以EM=AM=..由△EMD≌△DNC,得MD=NC=2EM=AD=2图2例 2016年上海市嘉定区区中考一模第18题如图1,在梯形ABCD中,AD//BC,∠ABC=90°,AB=CB,tan∠C=43.点E在CD边上运动,联结BE.如果EC=EB,那么DECD的值是_________.图1动感体验请打开几何画板文件名“16嘉定一模18”,拖动点E在CD上运动,可以体验到,点H 是BC的四等分点,当EC=EB时,EG垂直平分BC.答案13.思路如下:如图2,由AB=CB,tan∠C=43,可得DHCH=ABCH=CBCH.所以34CD CF=.如图3,当EC=EB时,EG垂直平分BC,所以E是CF的中点.所以14DE CF=.所以DECD=13.图2 图3例 2016年上海市静安区青浦区中考一模第18题如图1,将平行四边形ABCD 绕点A 旋转后,点D 落在边AB 上的点D ′,点C 落到C ′,且点C ′、B 、C 在一直线上,如果AB =13,AD =3,那么∠A 的余弦值为.图1动感体验请打开几何画板文件名“16静安青浦一模18”,拖动点D 绕着点A 旋转,可以体验到,∠1=∠2=∠3=∠4=∠保持不变(如图2).当点C ′、B 、C 在一直线上时,△C ′D ′B 是等腰三角形(如图3).答案135.思路如下: 如图3,在等腰三角形C ′D ′B 中,C ′D ′=CD =13,BD ′=13-3=10. 在Rt △C ′D ′E 中,ED ′=5,C ′D ′=13,所以cos ∠1=135.例 2016年上海市闵行区中考一模第18题将一副三角尺如图1摆放,其中在Rt △ABC 中,∠ACB =90°,∠B =60°.在Rt △EDF 中,∠EDF =90°,∠E =45°.点D 为边AB 的中点,DE 交AC 于点P ,DF 经过点C .将△EDF 绕点D 顺时针旋转角α(0°<α<60°),后得到△E ′DF ′,DE ′交AC 于点M ,DF ′交BC 于点N ,那么PMCN的值为_________.图1动感体验请打开几何画板文件名“16闵行一模18”,拖动点F ′绕着点D 旋转,可以体验到,△PDM 与△CDN 保持相似,对应边的比等于30°角的直角三角形PDC 的直角边的比..思路如下:如图2,在Rt △PCD 中,∠PCD =∠A =30°,所以3PD CD =如图3,由△PDM ∽△CDN ,得PM PD CN CD ==图2 图3例 2016年上海市浦东新区中考一模第17题若抛物线y=ax2+c与x轴交于A(m, 0)、B(n, 0)两点,与y轴交于点C(0, c),则称△ABC 为“抛物三角形”.特别地,当mnc<0时,称△ABC为“正抛物三角形”;当mnc>0时,称△ABC为“倒抛物三角形”.那么当△ABC为“倒抛物三角形”时,a、c应分别满足条件_________.动感体验请打开几何画板文件名“16浦东一模17”,拖动点C在y轴上运动,可以体验到,当点C在y轴负半轴时,△ABC为“倒抛物三角形”.答案a>0,c<0.思路如下:因为A(m, 0)、B(n, 0)两点关于y轴对称,所以mn<0.当mnc<0时,c>0,这时抛物线开口向下,所以a<0(如图1所示).当mnc>0时,c<0,这时抛物线开口向上,所以a>0(如图2所示).图1 正抛物三角形图2 倒抛物三角形例 2016年上海市浦东新区中考一模第18题在△ABC 中,AB =5,AC =4,BC =3.D 是边AB 上的一点,E 是边AC 上的一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE =_________.动感体验请打开几何画板文件名“16浦东一模18”,拖动点E 在AC 上运动,可以体验到,△CDE 与△ABC 相似存在4种情况,其中有一种情况点E 与点A 重合.答案2,3625或258.思路如下:如图1,当E 为直角顶点,∠DCE =∠A 时,DA =DC ,因此E 是AC 的中点.此时CE =2. 如图2,当E 为直角顶点,∠DCE =∠B 时,CD ⊥AB .此时CE =3625.图1 图2如图3,当D 为直角顶点,∠DCE =∠A 时,DA =DC ,因此点D 在AC 的垂直平分线上, CD 是直角三角形ABC 斜边上的中线.此时CE =258. 如图4,当D 为直角顶点,∠DCE =∠B 时,点E 与点A 重合.图3 图4已知点A (3, 2)是平面直角坐标系中的一点,点B 是x 轴负半轴上一动点,联结AB ,并以AB 为边在x 轴上方作矩形ABCD ,且满足BC ∶AB =1∶2,设点C 的横坐标为a ,如果用含a 的代数式表示点D 的坐标,那么点D 的坐标是__________.动感体验请打开几何画板文件名“16普陀一模18”,可以体验到,△AFD ≌△CHB ∽△BGA .答案1(2,3)2a -.思路如下:如图1,构造矩形ABCD 的外接矩形EFGH ,那么△AFD ≌△CHB ∽△BGA . 设C (a , y ),B (b , 0),根据12CH BH CB BG AG BA ===,得1322y b a b -==-. 解得b =a +1,112y a =-.因此DF =BH =b -a =1,AF =CH =y =112a -. 于是x D =3-1=2,y D =FG =AG +AF =2+112a -=132a -.图1例 2016年上海市松江区中考一模第18题已知在△ABC中,∠C=90°,BC=3,AC=4,点D是AB边上一点,将△ABC沿着直线CD翻折,点A落在直线AB上的点A′处,则sin∠A′CD=_________.动感体验请打开几何画板文件名“16松江一模18”,拖动点D在AB上运动,可以体验到,当点A′落在直线AB上时,CD⊥AB.答案4.思路如下:5如图1,△ACD与△A′CD关于直线DC对称.如图2,当点A′落在直线AB上时,CD⊥AB.此时∠A′CD=∠ACD=∠ABC.图1 图2如图1,在Rt△ABC中,∠BAC=90°,AB=3,cos B=35,将△ABC绕着点A旋转得△ADE,点B的对应点D落在边BC上,联结CE,那么CE的长是________.图1动感体验请打开几何画板文件名“16徐汇一模18”,拖动点E绕着点A旋转,可以体验到,等腰三角形ABD与等腰三角形ACE保持相似(如图2),当点D落在BC上时,△ABD的三边比是5∶5∶6(如图3).答案245.思路如下:在Rt△ABC中,AB=3,cos B=35,所以BC=4,AC=4.如图3,在△ACE中,56ACCE=,所以62455CE AC==.例 2016年上海市杨浦区中考一模第18题如图1,已知△ABC 沿角平分线BE 所在直线翻折,点A 恰好落在BC 边的中点M 处,且AM =BE ,那么∠EBC 的正切值为_________.图1动感体验请打开几何画板文件名“16杨浦一模18”,拖动点A 运动,可以体验到,AB =AD ,点E 是BD 的三等分点,点G 是BD 的中点.答案23.思路如下:如图2,由∠1=∠2=∠3,可得AB =AD .又因为AB =MB ,M 是BC 的中点,所以AD =MB =MC .所以1BG MB DG AD ==,2BE BCDE AD==(如图3). 所以23BE BD =,12BG BD =.所以43BE BG =.当AM =BE 时,12MG BE =.此时tan ∠EBC =1223MG BE BG BG =⨯=.图2 图3如图1,将一张矩形纸片ABCD沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D重合,此时折痕交DC于点G,则CG∶GD的值为________.图1动感体验请打开几何画板文件名“16闸北一模18”,拖动点D可以改变矩形ABCD的形状,可以体验到,△ABE是等腰直角三角形保持不变,EG与E′G保持相等,当点E′与点D重合时,△CEG是等腰直角三角形.答案1如图4,当点E′与点D重合时,△CEG是等腰直角三角形,CG∶EG=1例 2016年上海市长宁区金山区中考一模第18题如图1,四边形ABCD为正方形,E为BC上一点,将正方形折叠,使点A与点E重合,折痕为MN,如果tan∠AEN=13,DC+CE=10,那么△ANE的面积为_________.图1动感体验请打开几何画板文件名“16长宁金山一模18”,可以体验到,根据对称性,∠AEN=∠EAN,AN=EN.答案103.思路如下:如图2,根据对称性,∠AEN=∠EAN,当tan∠AEN=tan∠EAN=13,设BE=m,那么正方形的边长为3m.当DC+CE=10时,2m+3m=10.解得m=2.设AN=EN=n,在Rt△BEN中,由勾股定理,得n2=(6-n)2+22.解得n=103.所以S△ANE=12AN BE=103.图2如图1,抛物线y=x2-2x-3交x轴于A、B两点,交y轴于点C,M是抛物线的顶点.现将抛物线沿平行于y轴的方向向上平移三个单位,则曲线CMB在平移过程中扫过的面积为_____________(面积单位).图1动感体验请打开几何画板文件名“16宝山一模18”,拖动点M ′上下运动,可以体验到,夹在两条抛物线之间的竖直线段的长与MM′保持相等,因此曲线CMB在平移过程中扫过的面积等于平行四边形CMM ′C′和平行四边形BMM ′B′的和.答案9.思路如下:由y=x2-2x-3=(x+1)(x-3),得A(-1, 0),B(3, 0),C(0,-3).如图3,当CC′=3时,S平行四边形CMM ′C′+S平行四边形BMM ′B′=MM ′×OB=9.。

相关文档
最新文档