上海市徐汇区届中考数学一模及答案

合集下载

真题解析2022年上海市徐汇区中考数学一模试题(含答案详解)

真题解析2022年上海市徐汇区中考数学一模试题(含答案详解)

2022年上海市徐汇区中考数学一模试题 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如图所示是根据某班级40名同学一周的体育锻炼情况绘制的统计图,由图像可知该班40同学一周参加体育锻炼时间的中位数,众数分别是( )A .10.5,16B .9,8C .8.5,8D .9.5,162、下列图形中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D . ·线○封○密○外3、等腰三角形的一边等于3,一边等于6,则它的周长为()A.12 B.12或15 C.15或18 D.154、某厂前5个月生产的总产量y(件)与时间x(月)的关系如图所示,则下列说法正确的是()A.1﹣3月的月产量逐月增加,4、5两月产量逐月减少B.1﹣3月的月产量逐月增加,4、5两月产量与3月持平C.1﹣3月的月产量逐月增加,4、5两月停产D.1﹣3月的月产量逐月持平,4、5两月停产5、如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=28°,则∠ACB的度数是()A.28°B.30°C.31°D.32°6、在式子1a ,20yπ,334ab c,56x+,78x y+,109xy+中,分式的个数有()A.2 B.3 C.4 D.57、将矩形ABCD按如图所示的方式折叠,得到菱形AECF.若BC=BE的长是()A.1 BC.12D.28、如图,在平面直角坐标系中,△ABC与△DEF关于直线m:x=1对称,M,N分别是这两个三角形中的对应点.如果点M的横坐标是a,那么点N的横坐标是( )A.-a B.-a+1 C.a+2 D.2-a9、下列命题中,假命题是()A.如果|a|=a,则a≥0B.如果a2=b2,那么a=b或a=﹣bC.如果ab>0,则a>0,b>0D.若a3<0,则a是一个负数10、如图,抛物线y = x2 + 1与双曲线y =kx的交点A的横坐标是1,则关于x的不等式210kxx++<的解集是( ).·线○封○密○外A .1x >B .1x <-C .01x <<D .10x -<<第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,////AB GH CD ,点H 在BC 上,AC 与BD 交于点G ,2AB =,3CD =,则GH 的长为 .2、8点15分,时针与分针的夹角是______________。

2021届徐汇区中考数学一模(含答案)

2021届徐汇区中考数学一模(含答案)

上海市徐汇区2021届初三一模数学试卷2021.01一. 选择题(本大题共6题,每题4分,共24分)1. 将抛物线22(1)y x 先向右平移3个单位,再向下平移2个单位,所得抛物线的表达 式是( )A. 22(2)2y xB. 22(2)2y xC. 22(4)2y xD. 22(4)2y x2. 在Rt △ABC 中,90A ,6AB ,10BC ,那么下列结论正确的是( ) A. 4tan 3CB. 4cot 5CC. 3sin 4CD. 4cos 5C 3. 已知抛物线24y x x c 经过点(4,3),那么下列各点中,该抛物线必经过的点是 ( )A. (0,2)B. (0,3)C. (0,4)D. (0,5)4. 已知海面上一艘货轮A 在灯塔B 的北偏东30°方向,海监船C 在灯塔B 的正东方向5海 里处,此时海监船C 发现货轮A 在它的正北方向,那么海监船C 与货轮A 的距离是( )A. 10海里B. 海里C. 5海里D. 海里 5. 下列说法中,正确的是( )A. 两个矩形必相似B. 两个含45°角的等腰三角形必相似C. 两个菱形必相似D. 两个含30°角的直角三角形必相似6. 定义:[]x 表示不超过实数x 的最大整数,例如:[1.7]1 ,3[05 ,1[2]34,根据 你学习函数的经验,下列关于函数[]y x 的判断中,正确的是( )A. 函数[]y x 的定义域是一切整数B. 函数[]y x 的图像是经过原点的一条直线C. 点2(2,2)5在函数[]y x 图像上 D. 函数[]y x 的函数值y 随x 的增大而增大二. 填空题(本大题共12题,每题4分,共48分) 7. 如果:2:3a b ,那么代数式b aa的值是8. 如图,AB ∥CD ∥EF ,如果2AC ,2CE ,1.5BD ,那么BF 的长是9. 已知点P 在线段AB 上,如果2AP AB BP ,4AB ,那么AP 的长是10. 已知二次函数23(12y a x 的图像在直线32x 的左侧部分是下降的,那么a 的 取值范围是11. 如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,如果△AED 和四边形DECB 的面积相等,BC ,那么DE 的长是12. 在坡度为1:3i 的山坡上种树,要求株距(相邻两棵树间的水平距离)是6米,那么 斜坡上相邻两棵树间的坡面距离是 米13. 已知甲、乙两楼相距30米,如果从甲楼底看乙楼顶,测得仰角为45°,从乙楼顶看 甲楼顶,测得俯角为30°,那么甲楼高是 米14. 如图,点P 在线段BC 上,AB BC ,DP AP ,CD DP ,如果10BC ,2AB ,1tan 2C,那么DP 的长是 15. 如图,已知△ABC 是边长为2 的等边三角形,正方形DEFG 的顶点D 、E 分别在边AC 、AB 上,点F 、G 在边BC 上,那么AD 的长是16. 《周髀算经》中的“赵爽弦图”(如图),图中的四个直角三角形都全等,如果正方 形ABCD 的面积是正方形EFGH 的面积的13倍,那么ABE 的余切值是17. 如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,将△ADE 沿直线DE 翻折后与△FDE 重合,DF 、EF 分别与边BC 交于点M 、N ,如果8DE ,23AD AB ,那么MN 的长是18. 如图,在△ABC 中,120ABC ,12AB ,点D 在边AC 上,点E 在边BC 上,4sin 5ADE,5ED ,如果△ECD 的面积是6,那么BC 的长是三. 解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19. 计算:sin 45cot 45tan 60|2cos 45cot 30| .20. 如图:在ABCD 中,AE 平分BAD ,AE 与BD 交于点F , 1.2AB , 1.8BC .(1)求:BF DF 的值;(2)设AB a,BC b ,求向量DF (用向量a 、b 表示).21. 已知抛物线2y x bx c 与y 轴交于点(0,2)C ,它的顶点为M ,对称轴是直线1x . (1)求此抛物线的表达式及点M 的坐标;(2)将上述抛物线向下平移(0)m m 个单位,所得新抛物线经过原点O ,设新抛物线的顶点为N ,请判断△MON 的形状,并说明理由.22. 为加强对市内道路交通安全的监督,王警官利用无人机进行检测,某高架路有一段限速每小时60千米的道路AB (如图所示),当无人机在限速道路的正上方C 处时,测得限速道路的起点A 的俯角是37°,无人机继续向右水平飞行220米到达D 处,此时又测得起点A 的俯角是30°,同时测得限速道路终点B 的俯角是45°(注:即四边形ABDC 是梯形). (1)求限速道路AB 的长(精确到1米);(2)如果李师傅在道路AB 上行驶的时间是1分20秒,请判断他是否超速?并说明理由.【参考数据:sin 370.06 ,cos370.80 ,tan 370.75 1.73 】23. 如图,在△ACB 中,点D 、E 分别在边BC 、AC 上,AD AB ,BE CE ,AD 与BE 交于点F ,且AF DF BF EF .求证:(1)ADC BEC ;(2)AE CD EF AC .24. 已知二次函数224(0)y ax ax a a 的大致图像如图所示,这个函数图像的顶点 为点D .(1)求该函数图像的开口方向、对称轴及点D 的坐标;(2)设该函数图像与y 轴正半轴交于点C ,与x 轴正半轴交于点B ,图像的对称轴与x 轴 交于点A ,如果DC BC ,1tan 3DBC,求该二次函数的解析式; (3)在(2)的条件下,设点M 在第一象限该函数的图像上,且点M 的横坐标为(1)t t ,如果△ACM 的面积是258,求点M 的坐标.25. 如图,在Rt △ABC 中,90ACB ,12AC ,5BC ,点D 是边AC 上的动点,以CD 为边在△ABC 外作正方形CDEF ,分别联结AE 、BE ,BE 与AC 交于点G . (1)当AE BE 时,求正方形CDEF 的面积;(2)延长ED 交AB 于点H ,如果△BEH 和△ABG 相似,求sin ABE 的值; (3)当AG AE 时,求CD 的长.参考答案一. 选择题1. A2. D3. B4. B5. D6. C二. 填空题7.12 8. 1549. 2 10. 0a11. 2 12. 13. 30 14.15. 6 16. 3217. 4 18. 6三. 解答题19. 220.(1)23BF DF ;(2)3355DF a b .21.(1)222y x x ,(1,1)M ;(2)△MON 是等腰直角三角形. 22.(1)1507AB 米;(2)超速. 23.(1)证明略;(2)证明略.24.(1)开口向下,对称轴:1x ,顶点为(1,4);(2)223y x x ;(3)57(,)24M .25.(1)494CDEF S ;(2)119sin 169ABE ;(3)12CD .。

上海市徐汇区2022-2023学年九年级上学期数学期末(中考一模)试卷(解析版)

上海市徐汇区2022-2023学年九年级上学期数学期末(中考一模)试卷(解析版)
B、单位向量 与单位向量 方向相同时,该等式才成立,故该选项错误,不符合题意;
C、 ,故该选项错误,不符合题意;
D、单位向量 与单位向量 方向相同时,该等式才成立,故该选项错误,不符合题意;
故选:A.
【点睛】本题主要考查了平面向量,注意:平面向量既有大小,又有方向.
4.已知P,Q是线段AB的两个黄金分割点,且AB=10,则PQ长为()
【详解】解:如图:过点C作 于点M,交 于点N,
中, , , ,


∴ ,
∵正方形 内接于 ,
, ,

, ,
解得: ,
故答案为: .
【点睛】本题考查的是相似三角形的判定和性质、正方形的性质、勾股定理等知识;正确作出辅助线、灵活运用相似三角形的判定定理和性质定理是解题的关键.
17.在 中, , , ,以 为边在 外作等边 ,设点 、 分别是 和 的重心,则两重心 与 之间的距离是______.
15.如图,△ABC为等边三角形,点D、E分别在边BC、AC上,∠ADE=60°,如果BD:DC=1:2,AD=2,那么DE的长等于________.
【答案】
【分析】根据一线三等角证明 ,列出比例式代入数值计算即可.
【详解】 △ABC为等边三角形,

∠ADE=60°,
,
BD:DC=1:2,AD=2,
【详解】解: ,
该二次函数的顶点坐标为 ,
又 ,
该二次函数图像的开口向上,
该二次函数图像上的最低点的纵坐标为 ,
故答案为: .
【点睛】本题考查了求二次函数的顶点坐标及二次函数的性质,熟练掌握和运用二次函数的性质是解决本题的关键.
11.如果两个相似三角形的面积之比为 ,这两个三角形的周长的和是 ,那么较小的三角形的周长为______ .

初中数学 上海市徐汇区中考模拟数学一模考试题含答案

初中数学 上海市徐汇区中考模拟数学一模考试题含答案

xx 学校xx 学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:如果2x=3y,那么下列各式中正确的是()A.= B.=3 C.= D.=试题2:如果一斜坡的坡比是1:2.4,那么该斜坡坡角的余弦值是()A. B. C . D.试题3:如果将某一抛物线向右平移2个单位,再向上平移2各单位后所得新抛物线的表达式是y=2(x﹣1)2,那么原抛物线的表达式是()A.y=2(x﹣3)2﹣2 B.y=2(x﹣3)2+2 C.y=2(x+1)2﹣2 D.y=2(x+1)2+2试题4:在△ABC中,点D、E分别在边AB、AC上,联结DE,那么下列条件中不能判断△ADE和△ABC相似的是()A.DE∥BC B.∠AED=∠B C.AE:AD=AB:AC D.AE:DE=AC:BC试题5:一飞机从距离地面3000米的高空测得一地面监测点的俯角是60°,那么此时飞机与监测点的距离是()A.6000米 B.1000米 C.2000米 D.3000米已知二次函数y=﹣2x2+4x﹣3,如果y随x的增大而减小,那么x的取值范围是()A.x≥1 B.x≥0 C.x≥﹣1 D.x≥﹣2试题7:已知线段a=9,c=4,如果线段b是a、c的比例中项,那么b= .试题8:点C是线段AB延长线的点,已知=,=,那么= .试题9:如图,AB∥CD∥EF,如果AC=2,AE=5.5,DF=3,那么BD= .试题10:如果两个相似三角形的对应中线比是:2,那么它们的周长比是.试题11:如果点P是线段AB的黄金分割点(AP>BP),那么请你写出一个关于线段AP、BP、AB之间的数量关系的等式,你的结论是:.试题12:在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,如果CD=4,BD=3,那么∠A的正弦值是.试题13:正方形ABCD的边长为3,点E在边CD的延长线上,连接BE交边AD于F,如果DE=1,那么AF= .试题14:已知抛物线y=ax2﹣4ax与x轴交于点A、B,顶点C的纵坐标是﹣2,那么a= .如图,矩形ABCD的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果AB:BC=3:4,那么AB的长是.试题16:在梯形ABCD中,AD∥BC,AC、BD相交于O,如果△BOC、△ACD的面积分别是9和4,那么梯形ABCD的面积是.试题17:在Rt△ABC中,∠ABC=90°,AC=5,BC=3,CD是∠ACB的平分线,将△ABC沿直线CD翻折,点A落在点E处,那么AE的长是.试题18:如图,在▱ABCD中,AB:BC=2:3,点E、F分别在边CD、BC上,点E是边CD的中点,CF=2BF,∠A=120°,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,那么的值为.试题19:计算:2sin60°﹣|cot30°﹣cot45°|+.试题20:将抛物线y=x2﹣4x+4沿y轴向下平移9个单位,所得新抛物线与x轴正半轴交于点B,与y轴交于点C,顶点为D.求:(1)点B、C、D坐标;(2)△BCD的面积.试题21:如图,已知梯形ABCD中,AD∥BC,AB=4,AD=3,AB⊥AC,AC平分∠DCB,过点DE∥AB,分别交AC、BC于F、E,设=,=.求:(1)向量(用向量、表示);(2)tanB的值.试题22:如图,一艘海轮位于小岛C的南偏东60°方向,距离小岛120海里的A处,该海轮从A处正北方向航行一段距离后,到达位于小岛C北偏东45°方向的B处.(1)求该海轮从A处到B处的航行过程中与小岛C之间的最短距离(记过保留根号);(2)如果该海轮以每小时20海里的速度从B处沿BC方向行驶,求它从B处到达小岛C的航行时间(结果精确到0.1小时).(参考数据:=1.41,=1.73)试题23:如图,已知△ABC中,点D在边BC上,∠DAB=∠B,点E在边AC上,满足AE•CD=AD•CE.(1)求证:DE∥AB;(2)如果点F是DE延长线上一点,且BD是DF和AB的比例中项,联结AF.求证:DF=AF.试题24:如图,已知抛物线y=﹣x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.(1)求点D的坐标;(2)联结CD、BC,求∠DBC余切值;(3)设点M在线段CA延长线,如果△EBM和△ABC相似,求点M的坐标.试题25:如图,已知△ABC中,AB=AC=3,BC=2,点D是边AB上的动点,过点D作DE∥BC,交边AC于点E,点Q是线段DE上的点,且QE=2DQ,连接BQ并延长,交边AC于点P.设BD=x,AP=y.(1)求y关于x的函数解析式及定义域;(2)当△PQE是等腰三角形时,求BD的长;(3)连接CQ,当∠CQB和∠CBD互补时,求x的值.试题1答案:B【考点】比例的性质.【专题】推理填空题.【分析】根据比例的性质逐项判断,判断出各式中正确的是哪个即可.【解答】解:∵2x=3y,∴=,∴选项A不正确;∵2x=3y,∴=,∴==3,∴选项B正确;∵2x=3y,∴=,∴==,∴选项C不正确;∵2x=3y,∴=,∴==,∴∴选项D不正确.故选:B.【点评】此题主要考查了比例的性质和应用,要熟练掌握.试题2答案:D【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比=坡角的正切值,设竖直直角边为5x,水平直角边为12x,由勾股定理求出斜边,进而可求出斜坡坡角的余弦值.【解答】解:如图所示:由题意,得:tanα=i==,设竖直直角边为5x,水平直角边为12x,则斜边==13x,则cosα==.故选D.【点评】此题主要考查坡比、坡角的关系以及勾股定理;熟记坡角的正切等于坡比是解决问题的关键.试题3答案:C【考点】二次函数图象与几何变换.【分析】根据图象反向平移,可得原函数图象,根据图象左加右减,上加下减,可得答案.【解答】解:一条抛物线向右平移2个单位,再向上平移2个单位后所得抛物线的表达式为y=2(x﹣1)2,抛物线的表达式为y=2(x﹣1)2,左移2个单位,下移2个单位得原函数解析式y=2(x+1)2﹣2,故选:C.【点评】本题考查了二次函数图象与几何变换,利用了图象左加右减,上加下减的规律.试题4答案:D【考点】相似三角形的判定.【分析】根据题意画出图形,再由相似三角形的判定定理进行解答即可.【解答】解:如图,A、∵DE∥BC,∴△ADE∽△ABC,故本选项错误;B、∵∠AED=∠B,∠A=∠A,∴△ADE∽△ACB,故本选项错误;C、∵AE:AD=AB:AC,∠A=∠A,∴△ADE∽△ACB,故本选项错误;D、AE:DE=AC:BC不能使△ADE和△ABC相似,故本选项正确.故选D.【点评】此题考查了相似三角形的判定,属于基础题,关键是掌握相似三角形的几种判定定理.试题5答案:C【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意可构造直角三角形,利用所给角的正弦函数即可求解.【解答】解:如图所示:由题意得,∠CAB=60°,BC=3000米,在Rt△ABC中,∵sin∠A=,∴AC===2000米.故选C.【点评】本题考查了解直角三角形的应用,解答本题的关键是借助俯角构造直角三角形,并结合三角函数解直角三角形.试题6答案:A【考点】二次函数的性质.【分析】把抛物线化为顶点式可求得开口方向及对称轴,再利用增减性可得到关于x的不等式,可求得答案.【解答】解:∵y=﹣2x2+4x﹣3=﹣2(x﹣1)2﹣1,∴抛物线开口向下,对称轴为x=1,∴当x≥1时,y随x的增大而减小,故选A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).试题7答案:6 .【考点】比例线段.【分析】根据比例中项的定义,若b是a,c的比例中项,即b2=ac.即可求解.【解答】解:若b是a、c的比例中项,即b2=ac.则b===6.故答案为:6.【点评】本题主要考查了线段的比例中项的定义,注意线段不能为负.试题8答案:﹣.【考点】*平面向量.【分析】根据向量、的方向相反进行解答.【解答】解:如图,向量、的方向相反,且=,=,所以=+=﹣.故答案是:﹣.【点评】本题考查了平面向量,注意向量既有大小,又有方向.试题9答案:.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可得到结论.【解答】解:∵AC=2,AE=5.5,∴CE=3.5,AB∥CD∥EF,∴,∴BD=,故答案为:.【点评】本题考查平行线分线段成比例定理,用到的知识点是平行线分线段成比例定理,关键是找准对应关系,列出比例式.试题10答案::2 .【考点】相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵两个相似三角形的对应中线比是:2,∴它们的周长比为:2.故答案为::2.【点评】本题考查的是相似三角形的性质,熟知相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比等于相似比是解答此题的关键.试题11答案:AP2=BP•AB .【考点】黄金分割.【分析】根据黄金分割的概念解答即可.【解答】解:∵点P是线段AB的黄金分割点,∴AP2=BP•AB,故答案为:AP2=BP•AB.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.试题12答案:.【考点】锐角三角函数的定义.【分析】求出∠A=∠BCD,根据锐角三角函数的定义求出tan∠BCD即可.【解答】解:∵CD⊥AB,∴∠CDB=90°,∵∠ACB=90°,∴∠A+∠B=90°,∠BCD+∠B=90°,∴∠A=∠BCD,∴tanA=tan∠BCD==,故答案为:.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=,cosA=,tanA=.试题13答案:.【考点】相似三角形的判定与性质;正方形的性质.【分析】由四边形ABCD为正方形即可得出∠A=∠ADC=90°、AB∥CD,根据平行线的性质以及邻补角即可得出∠EDF=∠A、∠ABF=∠DEF,从而得出△ABF∽△DEF,再根据相似三角形的性质即可得出==3,结合AF+DF=AD=3即可求出AF的长度,此题得解.【解答】解:依照题意画出图形,如图所示.∵四边形ABCD为正方形,∴∠A=∠ADC=90°,AB∥CD,∴∠EDF=180°﹣∠ADC=90°=∠A,∠ABF=∠DEF,∴△ABF∽△DEF,∴==3,∵AF+DF=AD=3,∴AF=AD=.故答案为:.【点评】本题考查了相似三角形的判定与性质、正方形的性质、平行线的性质以及邻补角,通过两组相等的角证出△ABF ∽△DEF是解题的关键.试题14答案:.【考点】抛物线与x轴的交点.【分析】首先利用配方法确定函数的顶点坐标,根据顶点C的纵坐标是﹣2,即可列方程求得a的值.【解答】解:y=ax2﹣4ax=a(x2﹣4x+4)﹣4a=a(x﹣2)2﹣4a,则顶点坐标是(2,﹣4a),则﹣4a=﹣2,解得a=.故答案是:.【点评】本题考查了配方法确定函数的顶点坐标,正确进行配方是关键.试题15答案:.【考点】相似三角形的判定与性质;平行线之间的距离;矩形的性质.【分析】作辅助线,构建相似三角形,证明△ABE∽△BCF,列比例式求BE的长,利用勾股定理可以求AB的长.【解答】解:过A作AE⊥BM于E,过C作CF⊥BM于F,则CF=1,AE=2,∴∠AEB=∠BFC=90°,∴∠ABE+∠BAE=90°,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠BAE=∠CBE,∴△ABE∽△BCF,∴,∴,∴BE=,在Rt△ABE中,AB==,故答案为:.【点评】本题考查了矩形的性质、相似三角形的判定与性质、两平行线的距离以及勾股定理;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.试题16答案:16 .【考点】相似三角形的判定与性质;梯形.【分析】如图,设△AOD的面积为x,则△ODC的面积为4﹣x.由AD∥BC,推出△AOD∽△COB,可得=()2,因为=,得到=()2,解方程即可.【解答】解:如图,设△AOD的面积为x,则△ODC的面积为4﹣x.∵AD∥BC,∴△AOD∽△COB,∴=()2,∵=,∴=()2,解得x=1或16(舍弃),∵S△ABD=S△ADC=1,∴S△AOB=S△DOC=3,∴梯形ABCD的面积=1+3+3+9=16,故答案为16.【点评】本题考查相似三角形的判定和性质、梯形的性质等知识,解题的关键是熟练掌握相似三角形的性质,学会用方程的思想思考问题,属于中考常考题型.试题17答案:2.【考点】翻折变换(折叠问题);勾股定理.【分析】由勾股定理求AB=4,再根据旋转的性持和角平分线可知:点A的对应点E在直线CB上,BE=2,利用勾股定理可求AE的长.【解答】解:∵CD是∠ACB的平分线,∴将△ABC沿直线CD翻折,点A的对应点E在直线CB上,∵∠ABC=90°,AC=5,BC=3,∴AB=4,由旋转得:EC=AC=5,∴BE=5﹣3=2,在Rt△ABE中,由勾股定理得:AE===2,故答案为:2.【点评】本题考查了翻折变换的性质、勾股定理,明确折叠前后的两个角相等,两边相等;在图形中确定直角三角形,如果知道了一个直角三角形的两条边,可以利用勾股定理求第三边.试题18答案:.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】如图,连接AE、AF,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,作DH⊥BC于H,EG⊥BC于G,设AB=2a.BC=3a.根据•AP•BE=•DF•AQ,利用勾股定理求出BE、DF即可解决问题.【解答】解:如图,连接AE、AF,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,作DH⊥BC于H,EG⊥BC于G,设AB=2a.BC=3a.∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∠BAD=∠BCD=120°,∴S△ABE=S△ADF=S平行四边形ABCD,在Rt△CDH中,∵∠H=90°,CD=AB=2a,∠DCH=60°,∴CH=a,DH=a,在Rt△DFH中,DF===2a,在Rt△ECG中,∵CE=a,∴CG=a,GE=a,在Rt△BEG中,BE===a,∴•AP•BE=•DF•AQ,∴==,故答案为.【点评】本题考查平行四边形的性质、勾股定理,三角形的面积等知识,解题的关键是利用面积法求线段的长,学会添加常用辅助线,学会利用参数解决问题,属于中考常考题型.试题19答案:【考点】实数的运算;特殊角的三角函数值.【分析】首先根据特殊角的三角函数进行代入,然后再根据绝对值的性质计算绝对值,然后合并同类二次根式即可.【解答】解:原式=2×﹣|1|+,=+1+,=﹣2﹣3.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.试题20答案:【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)首先求得抛物线y=x2﹣4x+4沿y轴向下平移9个单位后解析式,利用配方法求得D的坐标,令y=0求得C 的横坐标,令y=0,解方程求得B的横坐标;(2)过D作DA⊥y轴于点A,然后根据S△BCD=S梯形AOBD﹣S△BOC﹣S△ADC求解.【解答】解:(1)抛物线y=x2﹣4x+4沿y轴向下平移9个单位后解析式是y=x2﹣4x+4﹣9,即y=x2﹣4x﹣5.y=x2﹣4x﹣5=(x﹣2)2﹣9,则D的坐标是(2,﹣9).在y=x2﹣4x﹣5中令x=0,则y=﹣5,则C的坐标是(0,﹣5),令y=0,则x2﹣4x﹣5=0,解得x=﹣1或5,则B的坐标是(5,0);(2)过D作DA⊥y轴于点A.则S△BCD=S梯形AOBD﹣S△BOC﹣S△ADC=(2+5)×9﹣×2×4﹣×5×5=15.【点评】本题考查了配方法确定二次函数的顶点坐标,以及函数与x轴、y轴的交点的求法,正确求得抛物线y=x2﹣4x+4沿y轴向下平移9个单位后解析式是关键.试题21答案:【考点】*平面向量;梯形;解直角三角形.【分析】(1)首先证明四边形ABED是平行四边形,推出DE=AB,推出==,==,=+.(2)由△DFC∽△BAC,推出==,求出BC,在Rt△BAC中,∠BAC=90°,根据AC===2,由tanB=,即可解决问题.【解答】解:∵AD∥BC,∴∠DAC=∠ACB,∴AC平分∠DCB,∴∠DCA=∠ACB,∴∠DAC=∠DCA,∴AD=DC,∵DE∥AB,AB⊥AC,∴DE⊥AC,∴AF=CF,∴BE=CE,∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴DE=AB,∴==,==,∴=+.(2)∵∠DCF=∠ACB,∠DFC=∠BAC=90°,∴△DFC∽△BAC,∴==,∵CD=AD=3,∴BC=6,在Rt△BAC中,∠BAC=90°,∴AC===2,∴tanB===.【点评】本题考查平面向量、梯形、解直角三角形、平行四边形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识,属于基础题.试题22答案:【考点】解直角三角形的应用-方向角问题.【分析】(1)首先过点C作CD⊥AB于D,构建直角△ACD,通过解该直角三角形得到CD的长度即可;(2)通过解直角△BCD来求BC的长度.【解答】解:(1)如图,过点C作CD⊥AB于D,由题意,得∠ACD=30°.在直角△ACD中,∠ADC=90°,∴cos∠ACD=,∴CD=AC•cos30°=120×=60(海里);(2)在直角△BCD中,∠BDC=90°,∠DCA=45°,∴cos∠BCD=,∴BC===60≈60×2.44=146.4(海里),∴146.4÷20=7.32≈7.3(小时).答:(1)求该海轮从A处到B处的航行过程中与小岛C之间的最短距离是60海里;(2)如果该海轮以每小时20海里的速度从B处沿BC方向行驶,求它从B处到达小岛C的航行时间约为7.3小时.【点评】此题考查了方向角问题.此题难度适中,注意将方向角问题转化为解直角三角形的知识求解是解此题的关键,注意数形结合思想的应用.试题23答案:【考点】相似三角形的判定与性质.【分析】(1)根据已知条件得到,根据等腰三角形的判定定理得到AD=BD,等量代换即可得到结论;(2)由BD是DF和AB的比例中项,得到BD2=DF•AB,等量代换得到AD2=DF•AB,推出=,根据相似三角形的性质得到==1,于是得到结论.【解答】证明:(1)∵AE•CD=AD•CE,∴,∵∠DAB=∠B,∴AD=BD,∴,∴DE∥AB;(2)∵BD是DF和AB的比例中项,∴BD2=DF•AB,∵AD=BD,∴AD2=DF•AB,∴=,∵DE∥AB,∴∠ADF=∠BAD,∴△ADF∽△DBA,∴==1,∴DF=AF.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.试题24答案:【考点】二次函数综合题.【分析】(1)根据题意求出点C的坐标、点B的坐标,利用待定系数法求出抛物线的解析式,根据二次函数的性质求出顶点坐标;(2)根据等腰直角三角形的性质得到∠DCB=90°,根据余切的定义计算即可;(3)运用待定系数法求出直线CA的解析式,设点M的坐标为(x,3x+3),根据相似三角形的性质得到∠ACB=∠BME,根据等腰三角形的性质得到BM=BC,根据勾股定理列出方程,解方程即可.【解答】解:(1)∵已知抛物线y=﹣x2+bx+3与y轴交于点C,∴点C的坐标为:(0,3),∵OB=OC,∴点B的坐标为:(3,0),∴﹣9+3b+3=0,解得,b=2,∴抛物线的解析式为:y=﹣x2+2x+3,y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)如图1,作DH⊥y轴于H,则CH=DH=1,∴∠HCD=∠HDC=45°,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠DCB=90°,∴cot∠DBC===3;(3)﹣x2+2x+3=0,解得,x1=﹣1,x2=3,∴点A的坐标为:(﹣1,0),∴=,又=,∴=,∴Rt△AOC∽Rt△DCB,∴∠ACO=∠DBC,∵∠ACB=∠ACO+45°=∠DBC+∠E,∴∠E=45°,∵△EBM和△ABC相似,∠E=∠ABC=45°,∴∠ACB=∠BME,∴BM=BC,设直线CA的解析式为:y=kx+b,则,解得,,则直线CA的解析式为:y=3x+3,设点M的坐标为(x,3x+3),则(x﹣3)2+(3x+3)2=18,解得,x1=0(舍去),x2=﹣,x2=﹣时,y=﹣,∴点M的坐标为(﹣,﹣).【点评】本题考查的是二次函数的综合运用、相似三角形的判定和性质,掌握二次函数的性质、待定系数法求函数解析式的一般步骤是解题的关键.试题25答案:【考点】三角形综合题;等腰梯形的性质;平行线分线段成比例;相似三角形的判定与性质.【专题】压轴题.【分析】(1)过点D作DF∥AC,交BP于F,根据平行线分线段成比例定理,可得EC=BD=x,PE=3﹣x﹣y,DF=,进而根据DF∥AC,求得y=,定义域为:0<x<3;(2)当△PEQ为等腰三角形时,△PBC也为等腰三角形,分三种情况讨论:①当PB=BC时,②当PC=BC=2时,③当PC=PB 时,分别求得BD的长即可;(3)先根据已知条件判定四边形BCED是等腰梯形,判定△BDQ∽△QEC,得出=,即2DQ2=x2,再根据DE∥BC,得出=,即=,求得x的值即可.【解答】解:(1)如图所示,过点D作DF∥AC,交BP于F,则根据QE=2DQ,可得==,又∵DE∥BC,∴==1,∴EC=BD=x,PE=3﹣x﹣y,DF=,∵DF∥AC,∴=,即=,∴y=,定义域为:0<x<3;(2)∵DE∥BC,∴△PEQ∽△PBC,∴当△PEQ为等腰三角形时,△PBC也为等腰三角形,①当PB=BC时,△ABC∽△BPC,∴BC2=CP•AC,即4=3(3﹣y),解得y=,∴=,解得x==BD;②当PC=BC=2时,AP=y=1,∴=1,解得x==BD;③当PC=PB时,点P与点A重合,不合题意;(3)∵DE∥BC,∴∠BDQ+∠CBD=180°,又∵∠CQB和∠CBD互补,∴∠CQB+∠CBD=180°,∴∠CQB=∠BDQ,∵BD=CE,∴四边形BCED是等腰梯形,∴∠BDE=∠CED,∴∠CQB=∠CED,又∵∠DQB+∠CQB=∠ECQ+∠CED,∴∠DQB=∠ECQ,∴△BDQ∽△QEC,∴=,即2DQ2=x2,∴DQ=,DE=,∵DE∥BC,∴=,即=,解得x=.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰梯形的判定与性质的综合应用,解决问题的关键是作辅助线构造相似三角形,运用相似三角形的对应边成比例进行求解.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.。

2021年上海市徐汇区中考一模数学试卷(含详细解析)

2021年上海市徐汇区中考一模数学试卷(含详细解析)

2021年上海市徐汇区中考一模数学试卷(含详细解析)2021年上海市徐汇区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的1.以下两个图形一定相近的就是()a.两个菱形b.两个矩形c.两个正方形d.两个等腰梯形2.例如图,如果ab∥cd∥ef,那么以下结论恰当的就是()a.3.将抛物线y=2(x+1)2向右位移2个单位,再向上位移2个单位税金崭新抛物线的表达式就是()2222a.y=2(x+3)b.y=(x+3)c.y=(x1)d.y=2(x1)4.点g是△abc的重心,如果ab=ac=5,bc=8,那么ag的长是()a.1b.2c.3d.45.如果从甲船看看乙船,乙船在甲船的北偏东30°方向,那么从乙船看看甲船,甲船在乙船的()a.南偏西30°方向b.南偏西60°方向c.南偏东30°方向d.南偏东60°方向6.如图,梯形abcd中,ad∥bc,∠bac=90°,ab=ac,点e是边ab上的一点,∠ecd=45°,那么下列结论错误的是()2=b.=c.=d.=a.∠aed=∠ecbb.∠ade=∠acec.be=二、填空题(本大题共12题,每题4分,满分48分)7.计算:2(2+3)8.如果=,那么=.+=.add.bc=ce9.已知二次函数y=2x1,如果y随x的增大而增大,那么x的取值范围是.10.如果两个相近三角形的面积比是4:9,那么它们对应低的比是.11.如图所示,一皮带轮的坡比是1:2.4,如果将货物从地面用皮带轮送到离地10米的平台,那么该货物经过的路程是米.12.未知点m(1,4)在抛物线y=ax4ax+1上,如果点n和点m关于该抛物线的对称轴等距,那么点n的座标就是.13.点d在△abc的边ab上,ac=3,ab=4,∠acd=∠b,那么ad的长是.14.例如图,在?abcd中,ab=6,ad=4,∠bad的平分线ae分别交bd、cd于f、e,那么=.2215.如图,在△abc中,ah⊥bc于h,正方形defg内接于△abc,点d、e分别在边ab、ac上,点g、f在边bc上.如果bc=20,正方形defg的面积为25,那么ah的长是.16.例如图,在rt△abc中,∠acb=90°,cd⊥ab,像距为d,tan∠acd=,ab=5,那么cd的短就是.17.如图,在梯形abcd中,ad∥bc,bc=2ad,点e是cd的中点,ac与be交于点f,那么△abf和△cef的面积比是.18.例如图,在rt△abc中,∠bac=90°,ab=3,cosb=,将△abc绕着点a转动得△ade,点b的对应点d落到边bc上,连结ce,那么ce的短就是.三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.计算:4sin45°2tan30°cos30°+20.抛物线y=x2x+c经过点(2,1).(1)谋抛物线的顶点座标;2(2)将抛物线y=x2x+c沿y轴向上位移后,税金崭新抛物线与x轴处设a、b两点,如果ab=2,力争上游抛物线的表达式.21.如图,在△abc中,点d、e分别在边ab、ac上,(1)求de的长;(2)过点d作df∥ac交bc于f,设立=,=,谋向量(用向量、表示)=,ae=3,ce=1,bc=6.2.22.例如图,热气球在距地面800米的a处为,在a处测得两大楼顶c的俯角就是30°,热气球沿着水平方向向此大楼飞行器400米后达至b处为,从b处为再次测出此大楼楼顶c的俯角就是45°,求该大楼cd的高度.参考数据:≈1.41,≈1.73.23.例如图,在△abc中,ac=bc,点d在边ac上,ab=bd,be=ed,且∠cbe=∠abd,de与cb处设点f.澄清:(1)bd=ad?be;(2)cd?bf=bc?df.224.例如图,在rt△aob中,∠aob=90°,未知点a(1,1),点b在第二象限,ob=2物线y=x+bx+c经过点a和b.(1)谋点b的座标;(2)求抛物线y=x+bx+c的对称轴;(3)如果该抛物线的对称轴分别和边ao、bo的延长线处设点c、d,设点e在直线ab上,当△b oe和△bcd相近时,轻易写下点e的座标.22,抛25.例如图,四边形abcd中,∠c=60°,ab=ad=5,cb=cd=8,点p、q分别就是边ad、bc上的动点,aq和bp处设点e,且∠beq=90°∠bad,设a、p两点的距离为x.(1)谋∠beq的正弦值;(2)设立=y,求y关于x的函数解析式及定义域;(3)当△aep就是等腰三角形时,谋b、q两点的距离.。

上海市徐汇区2020届中考数学一模试题有答案精析

上海市徐汇区2020届中考数学一模试题有答案精析

2020年上海市徐汇区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.如果2x=3y,那么下列各式中正确的是()A. = B. =3 C. = D. =2.如果一斜坡的坡比是1:2.4,那么该斜坡坡角的余弦值是()A. B. C. D.3.如果将某一抛物线向右平移2个单位,再向上平移2各单位后所得新抛物线的表达式是y=2(x ﹣1)2,那么原抛物线的表达式是()A.y=2(x﹣3)2﹣2 B.y=2(x﹣3)2+2 C.y=2(x+1)2﹣2 D.y=2(x+1)2+24.在△ABC中,点D、E分别在边AB、AC上,联结DE,那么下列条件中不能判断△ADE和△ABC相似的是()A.DE∥BC B.∠AED=∠B C.AE:AD=AB:AC D.AE:DE=AC:BC5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是60°,那么此时飞机与监测点的距离是()A.6000米B.1000米C.2000米D.3000米6.已知二次函数y=﹣2x2+4x﹣3,如果y随x的增大而减小,那么x的取值范围是()A.x≥1 B.x≥0 C.x≥﹣1 D.x≥﹣2二、填空题:(本大题共12题,每题4分,满分48分)7.已知线段a=9,c=4,如果线段b是a、c的比例中项,那么b= .8.点C是线段AB延长线的点,已知=, =,那么= .9.如图,AB∥CD∥EF,如果AC=2,AE=5.5,DF=3,那么BD= .10.如果两个相似三角形的对应中线比是:2,那么它们的周长比是.11.如果点P是线段AB的黄金分割点(AP>BP),那么请你写出一个关于线段AP、BP、AB之间的数量关系的等式,你的结论是:.12.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,如果CD=4,BD=3,那么∠A的正弦值是.13.正方形ABCD的边长为3,点E在边CD的延长线上,连接BE交边AD于F,如果DE=1,那么AF= .14.已知抛物线y=ax2﹣4ax与x轴交于点A、B,顶点C的纵坐标是﹣2,那么a= .15.如图,矩形ABCD的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果AB:BC=3:4,那么AB的长是.16.在梯形ABCD中,AD∥BC,AC、BD相交于O,如果△BOC、△ACD的面积分别是9和4,那么梯形ABCD的面积是.17.在Rt△ABC中,∠ABC=90°,AC=5,BC=3,CD是∠ACB的平分线,将△ABC沿直线CD翻折,点A落在点E处,那么AE的长是.18.如图,在▱ABCD中,AB:BC=2:3,点E、F分别在边CD、BC上,点E是边CD的中点,CF=2BF,∠A=120°,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,那么的值为.三、解答题:(本大题共7题,第19-22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.计算:2sin60°﹣|cot30°﹣cot45°|+.20.将抛物线y=x2﹣4x+4沿y轴向下平移9个单位,所得新抛物线与x轴正半轴交于点B,与y轴交于点C,顶点为D.求:(1)点B、C、D坐标;(2)△BCD的面积.21.如图,已知梯形ABCD中,AD∥BC,AB=4,AD=3,AB⊥AC,AC平分∠DCB,过点DE∥AB,分别交AC、BC于F、E,设=, =.求:(1)向量(用向量、表示);(2)tanB的值.22.如图,一艘海轮位于小岛C的南偏东60°方向,距离小岛120海里的A处,该海轮从A处正北方向航行一段距离后,到达位于小岛C北偏东45°方向的B处.(1)求该海轮从A处到B处的航行过程中与小岛C之间的最短距离(记过保留根号);(2)如果该海轮以每小时20海里的速度从B处沿BC方向行驶,求它从B处到达小岛C的航行时间(结果精确到0.1小时).(参考数据: =1.41, =1.73)23.如图,已知△ABC中,点D在边BC上,∠DAB=∠B,点E在边AC上,满足AE•CD=AD•CE.(1)求证:DE∥AB;(2)如果点F是DE延长线上一点,且BD是DF和AB的比例中项,联结AF.求证:DF=AF.24.如图,已知抛物线y=﹣x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.(1)求点D的坐标;(2)联结CD、BC,求∠DBC余切值;(3)设点M在线段CA延长线,如果△EBM和△ABC相似,求点M的坐标.25.如图,已知△ABC中,AB=AC=3,BC=2,点D是边AB上的动点,过点D作DE∥BC,交边AC于点E,点Q是线段DE上的点,且QE=2DQ,连接BQ并延长,交边AC于点P.设BD=x,AP=y.(1)求y关于x的函数解析式及定义域;(2)当△PQE是等腰三角形时,求BD的长;(3)连接CQ,当∠CQB和∠CBD互补时,求x的值.2020年上海市徐汇区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.如果2x=3y,那么下列各式中正确的是()A. = B. =3 C. = D. =【考点】比例的性质.【专题】推理填空题.【分析】根据比例的性质逐项判断,判断出各式中正确的是哪个即可.【解答】解:∵2x=3y,∴=,∴选项A不正确;∵2x=3y,∴=,∴==3,∴选项B正确;∵2x=3y,∴=,∴==,∴选项C不正确;∵2x=3y,∴=,∴==,∴∴选项D不正确.故选:B.【点评】此题主要考查了比例的性质和应用,要熟练掌握.2.如果一斜坡的坡比是1:2.4,那么该斜坡坡角的余弦值是()A. B. C. D.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比=坡角的正切值,设竖直直角边为5x,水平直角边为12x,由勾股定理求出斜边,进而可求出斜坡坡角的余弦值.【解答】解:如图所示:由题意,得:tanα=i==,设竖直直角边为5x,水平直角边为12x,则斜边==13x,则cosα==.故选D.【点评】此题主要考查坡比、坡角的关系以及勾股定理;熟记坡角的正切等于坡比是解决问题的关键.3.如果将某一抛物线向右平移2个单位,再向上平移2各单位后所得新抛物线的表达式是y=2(x ﹣1)2,那么原抛物线的表达式是()A.y=2(x﹣3)2﹣2 B.y=2(x﹣3)2+2 C.y=2(x+1)2﹣2 D.y=2(x+1)2+2【考点】二次函数图象与几何变换.【分析】根据图象反向平移,可得原函数图象,根据图象左加右减,上加下减,可得答案.【解答】解:一条抛物线向右平移2个单位,再向上平移2个单位后所得抛物线的表达式为y=2(x ﹣1)2,抛物线的表达式为y=2(x﹣1)2,左移2个单位,下移2个单位得原函数解析式y=2(x+1)2﹣2,故选:C.【点评】本题考查了二次函数图象与几何变换,利用了图象左加右减,上加下减的规律.4.在△ABC中,点D、E分别在边AB、AC上,联结DE,那么下列条件中不能判断△ADE和△ABC相似的是()A.DE∥BC B.∠AED=∠B C.AE:AD=AB:AC D.AE:DE=AC:BC【考点】相似三角形的判定.【分析】根据题意画出图形,再由相似三角形的判定定理进行解答即可.【解答】解:如图,A、∵DE∥BC,∴△ADE∽△ABC,故本选项错误;B、∵∠AED=∠B,∠A=∠A,∴△ADE∽△ACB,故本选项错误;C、∵AE:AD=AB:AC,∠A=∠A,∴△ADE∽△ACB,故本选项错误;D、AE:DE=AC:BC不能使△ADE和△ABC相似,故本选项正确.故选D.【点评】此题考查了相似三角形的判定,属于基础题,关键是掌握相似三角形的几种判定定理.5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是60°,那么此时飞机与监测点的距离是()A.6000米B.1000米C.2000米D.3000米【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意可构造直角三角形,利用所给角的正弦函数即可求解.【解答】解:如图所示:由题意得,∠CAB=60°,BC=3000米,在Rt△ABC中,∵sin∠A=,∴AC===2000米.故选C.【点评】本题考查了解直角三角形的应用,解答本题的关键是借助俯角构造直角三角形,并结合三角函数解直角三角形.6.已知二次函数y=﹣2x2+4x﹣3,如果y随x的增大而减小,那么x的取值范围是()A.x≥1 B.x≥0 C.x≥﹣1 D.x≥﹣2【考点】二次函数的性质.【分析】把抛物线化为顶点式可求得开口方向及对称轴,再利用增减性可得到关于x的不等式,可求得答案.【解答】解:∵y=﹣2x2+4x﹣3=﹣2(x﹣1)2﹣1,∴抛物线开口向下,对称轴为x=1,∴当x≥1时,y随x的增大而减小,故选A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k 中,对称轴为x=h,顶点坐标为(h,k).二、填空题:(本大题共12题,每题4分,满分48分)7.已知线段a=9,c=4,如果线段b是a、c的比例中项,那么b= 6 .【考点】比例线段.【分析】根据比例中项的定义,若b是a,c的比例中项,即b2=ac.即可求解.【解答】解:若b是a、c的比例中项,即b2=ac.则b===6.故答案为:6.【点评】本题主要考查了线段的比例中项的定义,注意线段不能为负.8.点C是线段AB延长线的点,已知=, =,那么= ﹣.【考点】*平面向量.【分析】根据向量、的方向相反进行解答.【解答】解:如图,向量、的方向相反,且=, =,所以=+=﹣.故答案是:﹣.【点评】本题考查了平面向量,注意向量既有大小,又有方向.9.如图,AB∥CD∥EF,如果AC=2,AE=5.5,DF=3,那么BD= .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可得到结论.【解答】解:∵AC=2,AE=5.5,∴CE=3.5,AB∥CD∥EF,∴,∴BD=,故答案为:.【点评】本题考查平行线分线段成比例定理,用到的知识点是平行线分线段成比例定理,关键是找准对应关系,列出比例式.10.如果两个相似三角形的对应中线比是:2,那么它们的周长比是:2 .【考点】相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵两个相似三角形的对应中线比是:2,∴它们的周长比为:2.故答案为::2.【点评】本题考查的是相似三角形的性质,熟知相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比等于相似比是解答此题的关键.11.如果点P是线段AB的黄金分割点(AP>BP),那么请你写出一个关于线段AP、BP、AB之间的数量关系的等式,你的结论是:AP2=BP•AB.【考点】黄金分割.【分析】根据黄金分割的概念解答即可.【解答】解:∵点P是线段AB的黄金分割点,∴AP2=BP•AB,故答案为:AP2=BP•AB.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.12.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,如果CD=4,BD=3,那么∠A的正弦值是.【考点】锐角三角函数的定义.【分析】求出∠A=∠BCD,根据锐角三角函数的定义求出tan∠BCD即可.【解答】解:∵CD⊥AB,∴∠CDB=90°,∵∠ACB=90°,∴∠A+∠B=90°,∠BCD+∠B=90°,∴∠A=∠BCD,∴tanA=tan∠BCD==,故答案为:.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=,cosA=,tanA=.13.正方形ABCD的边长为3,点E在边CD的延长线上,连接BE交边AD于F,如果DE=1,那么AF= .【考点】相似三角形的判定与性质;正方形的性质.【分析】由四边形ABCD为正方形即可得出∠A=∠ADC=90°、AB∥CD,根据平行线的性质以及邻补角即可得出∠EDF=∠A、∠ABF=∠DEF,从而得出△ABF∽△DEF,再根据相似三角形的性质即可得出==3,结合AF+DF=AD=3即可求出AF的长度,此题得解.【解答】解:依照题意画出图形,如图所示.∵四边形ABCD为正方形,∴∠A=∠ADC=90°,AB∥CD,∴∠EDF=180°﹣∠ADC=90°=∠A,∠ABF=∠DEF,∴△ABF∽△DEF,∴==3,∵AF+DF=AD=3,∴AF=AD=.故答案为:.【点评】本题考查了相似三角形的判定与性质、正方形的性质、平行线的性质以及邻补角,通过两组相等的角证出△ABF∽△DEF是解题的关键.14.已知抛物线y=ax2﹣4ax与x轴交于点A、B,顶点C的纵坐标是﹣2,那么a= .【考点】抛物线与x轴的交点.【分析】首先利用配方法确定函数的顶点坐标,根据顶点C的纵坐标是﹣2,即可列方程求得a的值.【解答】解:y=ax2﹣4ax=a(x2﹣4x+4)﹣4a=a(x﹣2)2﹣4a,则顶点坐标是(2,﹣4a),则﹣4a=﹣2,解得a=.故答案是:.【点评】本题考查了配方法确定函数的顶点坐标,正确进行配方是关键.15.如图,矩形ABCD的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果AB:BC=3:4,那么AB的长是.【考点】相似三角形的判定与性质;平行线之间的距离;矩形的性质.【分析】作辅助线,构建相似三角形,证明△ABE∽△BCF,列比例式求BE的长,利用勾股定理可以求AB的长.【解答】解:过A作AE⊥BM于E,过C作CF⊥BM于F,则CF=1,AE=2,∴∠AEB=∠BFC=90°,∴∠ABE+∠BAE=90°,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠BAE=∠CBE,∴△ABE∽△BCF,∴,∴,∴BE=,在Rt△ABE中,AB==,故答案为:.【点评】本题考查了矩形的性质、相似三角形的判定与性质、两平行线的距离以及勾股定理;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.16.在梯形ABCD中,AD∥BC,AC、BD相交于O,如果△BOC、△ACD的面积分别是9和4,那么梯形ABCD的面积是16 .【考点】相似三角形的判定与性质;梯形.【分析】如图,设△AOD的面积为x,则△ODC的面积为4﹣x.由AD∥BC,推出△AOD∽△COB,可得=()2,因为=,得到=()2,解方程即可.【解答】解:如图,设△AOD的面积为x,则△ODC的面积为4﹣x.∵AD∥BC,∴△AOD∽△COB,∴=()2,∵=,∴=()2,解得x=1或16(舍弃),∵S△ABD=S△ADC=1,∴S△AOB=S△DOC=3,∴梯形ABCD的面积=1+3+3+9=16,故答案为16.【点评】本题考查相似三角形的判定和性质、梯形的性质等知识,解题的关键是熟练掌握相似三角形的性质,学会用方程的思想思考问题,属于中考常考题型.17.在Rt△ABC中,∠ABC=90°,AC=5,BC=3,CD是∠ACB的平分线,将△ABC沿直线CD翻折,点A落在点E处,那么AE的长是 2 .【考点】翻折变换(折叠问题);勾股定理.【分析】由勾股定理求AB=4,再根据旋转的性持和角平分线可知:点A的对应点E在直线CB上,BE=2,利用勾股定理可求AE的长.【解答】解:∵CD是∠ACB的平分线,∴将△ABC沿直线CD翻折,点A的对应点E在直线CB上,∵∠ABC=90°,AC=5,BC=3,∴AB=4,由旋转得:EC=AC=5,∴BE=5﹣3=2,在Rt△ABE中,由勾股定理得:AE===2,故答案为:2.【点评】本题考查了翻折变换的性质、勾股定理,明确折叠前后的两个角相等,两边相等;在图形中确定直角三角形,如果知道了一个直角三角形的两条边,可以利用勾股定理求第三边.18.如图,在▱ABCD中,AB:BC=2:3,点E、F分别在边CD、BC上,点E是边CD的中点,CF=2BF,∠A=120°,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,那么的值为.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】如图,连接AE、AF,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,作DH⊥BC于H,EG⊥BC于G,设AB=2a.BC=3a.根据•AP•BE=•DF•AQ,利用勾股定理求出BE、DF即可解决问题.【解答】解:如图,连接AE、AF,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,作DH⊥BC于H,EG⊥BC于G,设AB=2a.BC=3a.∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∠BAD=∠BCD=120°,∴S△ABE=S△ADF=S平行四边形ABCD,在Rt△CDH中,∵∠H=90°,CD=AB=2a,∠DCH=60°,∴CH=a,DH=a,在Rt△DFH中,DF===2a,在Rt△ECG中,∵CE=a,∴CG=a,GE=a,在Rt△BEG中,BE===a,∴•AP•BE=•DF•AQ,∴==,故答案为.【点评】本题考查平行四边形的性质、勾股定理,三角形的面积等知识,解题的关键是利用面积法求线段的长,学会添加常用辅助线,学会利用参数解决问题,属于中考常考题型.三、解答题:(本大题共7题,第19-22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.计算:2sin60°﹣|cot30°﹣cot45°|+.【考点】实数的运算;特殊角的三角函数值.【分析】首先根据特殊角的三角函数进行代入,然后再根据绝对值的性质计算绝对值,然后合并同类二次根式即可.【解答】解:原式=2×﹣|1|+,=+1+,=﹣2﹣3.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.20.将抛物线y=x2﹣4x+4沿y轴向下平移9个单位,所得新抛物线与x轴正半轴交于点B,与y轴交于点C,顶点为D.求:(1)点B、C、D坐标;(2)△BCD的面积.【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)首先求得抛物线y=x2﹣4x+4沿y轴向下平移9个单位后解析式,利用配方法求得D 的坐标,令y=0求得C的横坐标,令y=0,解方程求得B的横坐标;(2)过D作DA⊥y轴于点A,然后根据S△BCD=S梯形AOBD﹣S△BOC﹣S△ADC求解.【解答】解:(1)抛物线y=x2﹣4x+4沿y轴向下平移9个单位后解析式是y=x2﹣4x+4﹣9,即y=x2﹣4x﹣5.y=x2﹣4x﹣5=(x﹣2)2﹣9,则D的坐标是(2,﹣9).在y=x2﹣4x﹣5中令x=0,则y=﹣5,则C的坐标是(0,﹣5),令y=0,则x2﹣4x﹣5=0,解得x=﹣1或5,则B的坐标是(5,0);(2)过D作DA⊥y轴于点A.则S△BCD=S梯形AOBD﹣S△BOC﹣S△ADC=(2+5)×9﹣×2×4﹣×5×5=15.【点评】本题考查了配方法确定二次函数的顶点坐标,以及函数与x轴、y轴的交点的求法,正确求得抛物线y=x2﹣4x+4沿y轴向下平移9个单位后解析式是关键.21.如图,已知梯形ABCD中,AD∥BC,AB=4,AD=3,AB⊥AC,AC平分∠DCB,过点DE∥AB,分别交AC、BC于F、E,设=, =.求:(1)向量(用向量、表示);(2)tanB的值.【考点】*平面向量;梯形;解直角三角形.【分析】(1)首先证明四边形ABED是平行四边形,推出DE=AB,推出==, ==, =+.(2)由△DFC∽△BAC,推出==,求出BC,在Rt△BAC中,∠BAC=90°,根据AC===2,由tanB=,即可解决问题.【解答】解:∵AD∥BC,∴∠DAC=∠ACB,∴AC平分∠DCB,∴∠DCA=∠ACB,∴∠DAC=∠DCA,∴AD=DC,∵DE∥AB,AB⊥AC,∴DE⊥AC,∴AF=CF,∴BE=CE,∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴DE=AB,∴==, ==,∴=+.(2)∵∠DCF=∠ACB,∠DFC=∠BAC=90°,∴△DFC∽△BAC,∴==,∵CD=AD=3,∴BC=6,在Rt△BAC中,∠BAC=90°,∴AC===2,∴tanB===.【点评】本题考查平面向量、梯形、解直角三角形、平行四边形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识,属于基础题.22.如图,一艘海轮位于小岛C的南偏东60°方向,距离小岛120海里的A处,该海轮从A处正北方向航行一段距离后,到达位于小岛C北偏东45°方向的B处.(1)求该海轮从A处到B处的航行过程中与小岛C之间的最短距离(记过保留根号);(2)如果该海轮以每小时20海里的速度从B处沿BC方向行驶,求它从B处到达小岛C的航行时间(结果精确到0.1小时).(参考数据: =1.41, =1.73)【考点】解直角三角形的应用-方向角问题.【分析】(1)首先过点C作CD⊥AB于D,构建直角△ACD,通过解该直角三角形得到CD的长度即可;(2)通过解直角△BCD来求BC的长度.【解答】解:(1)如图,过点C作CD⊥AB于D,由题意,得∠ACD=30°.在直角△ACD中,∠ADC=90°,∴cos∠ACD=,∴CD=AC•cos30°=120×=60(海里);(2)在直角△BCD中,∠BDC=90°,∠DCA=45°,∴cos∠BCD=,∴BC===60≈60×2.44=146.4(海里),∴146.4÷20=7.32≈7.3(小时).答:(1)求该海轮从A处到B处的航行过程中与小岛C之间的最短距离是60海里;(2)如果该海轮以每小时20海里的速度从B处沿BC方向行驶,求它从B处到达小岛C的航行时间约为7.3小时.【点评】此题考查了方向角问题.此题难度适中,注意将方向角问题转化为解直角三角形的知识求解是解此题的关键,注意数形结合思想的应用.23.如图,已知△ABC中,点D在边BC上,∠DAB=∠B,点E在边AC上,满足AE•CD=AD•CE.(1)求证:DE∥AB;(2)如果点F是DE延长线上一点,且BD是DF和AB的比例中项,联结AF.求证:DF=AF.【考点】相似三角形的判定与性质.【分析】(1)根据已知条件得到,根据等腰三角形的判定定理得到AD=BD,等量代换即可得到结论;(2)由BD是DF和AB的比例中项,得到BD2=DF•AB,等量代换得到AD2=DF•AB,推出=,根据相似三角形的性质得到==1,于是得到结论.【解答】证明:(1)∵AE•CD=AD•CE,∴,∵∠DAB=∠B,∴AD=BD,∴,∴DE∥AB;(2)∵BD是DF和AB的比例中项,∴BD2=DF•AB,∵AD=BD,∴AD2=DF•AB,∴=,∵DE∥AB,∴∠ADF=∠BAD,∴△ADF∽△DBA,∴==1,∴DF=AF.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.24.如图,已知抛物线y=﹣x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.(1)求点D的坐标;(2)联结CD、BC,求∠DBC余切值;(3)设点M在线段CA延长线,如果△EBM和△ABC相似,求点M的坐标.【考点】二次函数综合题.【分析】(1)根据题意求出点C的坐标、点B的坐标,利用待定系数法求出抛物线的解析式,根据二次函数的性质求出顶点坐标;(2)根据等腰直角三角形的性质得到∠DCB=90°,根据余切的定义计算即可;(3)运用待定系数法求出直线CA的解析式,设点M的坐标为(x,3x+3),根据相似三角形的性质得到∠ACB=∠BME,根据等腰三角形的性质得到BM=BC,根据勾股定理列出方程,解方程即可.【解答】解:(1)∵已知抛物线y=﹣x2+bx+3与y轴交于点C,∴点C的坐标为:(0,3),∵OB=OC,∴点B的坐标为:(3,0),∴﹣9+3b+3=0,解得,b=2,∴抛物线的解析式为:y=﹣x2+2x+3,y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)如图1,作DH⊥y轴于H,则CH=DH=1,∴∠HCD=∠HDC=45°,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠DCB=90°,∴cot∠DBC===3;(3)﹣x2+2x+3=0,解得,x1=﹣1,x2=3,∴点A的坐标为:(﹣1,0),∴=,又=,∴=,∴Rt△AOC∽Rt△DCB,∴∠ACO=∠DBC,∵∠ACB=∠ACO+45°=∠DBC+∠E,∴∠E=45°,∵△EBM和△ABC相似,∠E=∠ABC=45°,∴∠ACB=∠BME,∴BM=BC,设直线CA的解析式为:y=kx+b,则,解得,,则直线CA的解析式为:y=3x+3,设点M的坐标为(x,3x+3),则(x﹣3)2+(3x+3)2=18,解得,x1=0(舍去),x2=﹣,x2=﹣时,y=﹣,∴点M的坐标为(﹣,﹣).【点评】本题考查的是二次函数的综合运用、相似三角形的判定和性质,掌握二次函数的性质、待定系数法求函数解析式的一般步骤是解题的关键.25.如图,已知△ABC中,AB=AC=3,BC=2,点D是边AB上的动点,过点D作DE∥BC,交边AC于点E,点Q是线段DE上的点,且QE=2DQ,连接BQ并延长,交边AC于点P.设BD=x,AP=y.(1)求y关于x的函数解析式及定义域;(2)当△PQE是等腰三角形时,求BD的长;(3)连接CQ,当∠CQB和∠CBD互补时,求x的值.【考点】三角形综合题;等腰梯形的性质;平行线分线段成比例;相似三角形的判定与性质.【专题】压轴题.【分析】(1)过点D作DF∥AC,交BP于F,根据平行线分线段成比例定理,可得EC=BD=x,PE=3﹣x﹣y,DF=,进而根据DF∥AC,求得y=,定义域为:0<x<3;(2)当△PEQ为等腰三角形时,△PBC也为等腰三角形,分三种情况讨论:①当PB=BC时,②当PC=BC=2时,③当PC=PB时,分别求得BD的长即可;(3)先根据已知条件判定四边形BCED是等腰梯形,判定△BDQ∽△QEC,得出=,即2DQ2=x2,再根据DE∥BC,得出=,即=,求得x的值即可.【解答】解:(1)如图所示,过点D作DF∥AC,交BP于F,则根据QE=2DQ,可得==,又∵DE∥BC,∴==1,∴EC=BD=x,PE=3﹣x﹣y,DF=,∵DF∥AC,∴=,即=,∴y=,定义域为:0<x<3;(2)∵DE∥BC,∴△PEQ∽△PBC,∴当△PEQ为等腰三角形时,△PBC也为等腰三角形,①当PB=BC时,△ABC∽△BPC,∴BC2=CP•AC,即4=3(3﹣y),解得y=,∴=,解得x==BD;②当PC=BC=2时,AP=y=1,∴=1,解得x==BD;③当PC=PB时,点P与点A重合,不合题意;(3)∵DE∥BC,∴∠BDQ+∠CBD=180°,又∵∠CQB和∠CBD互补,∴∠CQB+∠CBD=180°,∴∠CQB=∠BDQ,∵BD=CE,∴四边形BCED是等腰梯形,∴∠BDE=∠CED,∴∠CQB=∠CED,又∵∠DQB+∠CQB=∠ECQ+∠CED,∴∠DQB=∠ECQ,∴△BDQ∽△QEC,∴=,即2DQ2=x2,∴DQ=,DE=,∵DE∥BC,∴=,即=,解得x=.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰梯形的判定与性质的综合应用,解决问题的关键是作辅助线构造相似三角形,运用相似三角形的对应边成比例进行求解.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.。

2020年上海市徐汇区中考数学一模试卷含答案.pdf

2020年上海市徐汇区中考数学一模试卷含答案.pdf

x

0
1
2
3
4

y

3
0
﹣1
0
m

( 1)请写出该二次函数图象的开口方向、对称轴、顶点坐标和
m 的值;
( 2)设该二次函数图象与 x 轴的左交点为 B,它的顶点为 A,该图象上点 C 的横坐标为
4,求△ ABC 的面积. 21.( 10 分)如图,一艘游艇在离开码头 A 处后,沿南偏西 60°方向行驶到达 B 处,此时
23.( 12 分)如图,在△ ABC 中,点 D ,E, F,G 分别在 AB、 AC、 BC 上, AB= 3AD, CE = 2AE, BF= FG= CG, DG 与 EF 交于点 H. ( 1)求证: FH ?AC=HG?AB;
第 3页(共 22页)
( 2)联结 DF , EG,求证:∠ A=∠ FDG +∠ GEF .
ABC,点 G、F 分别在边 AC、BC 上,点 D 、E 在斜边 AB 上,那么正方形 DEFG 的边长


16.(4 分)如图,在△ ABC 中,点 D 在边 BC 上, AD⊥AC ,∠ BAD=∠ C, BD= 2,CD =
64 分)我们把有两条中线互相垂直的三角形称为“中垂三角形”
B .凡有内角为 45°的等腰三角形都相似
C.凡有内角为 60°的直角三角形都相似
D .凡有内角为 90°的等腰三角形都相似 二、填空题
7.( 4 分)计算: 2sin60°﹣ cot30°?tan45°=

8.( 4 分)如果线段 a= 4 厘米, c= 9 厘米,那么线段 a、 c 的比例中项 b=
B .cosA=
C. cotA=

2019~2020学年上海市徐汇区九年级一模数学试卷及参考答案

2019~2020学年上海市徐汇区九年级一模数学试卷及参考答案

2019~2020学年上海市徐汇区九年级一模数学试卷(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.已知二次函数223y x x=-+-,那么下列关于该函数的判断正确的是()(A)该函数图像有最高点(0,3)-;(B)该函数图像有最低点(0,3)-;(C)该函数图像在x轴的下方;(D)该函数图像在对称轴左侧是下降的.2.如图,AB//CD//EF,AC=2,AE=5,BD=1.5,那么下列结论正确的是()(A)154DF=;(B)154EF=;(C)154CD=;(D)154BF=.3.已知点P是线段AB上的点,且2AP BP AB=⋅,那么AP : AB的值是()(A(B;(C(D.4.在Rt△ABC中,△B=90°,BC=3,AC=5,那么下列结论正确的是()(A)3sin4A=;(B)4cos5A=;(C)5cot4A=;(D)4tan3A=.5.跳伞运动员小李在200米的空中测得地面上的着落点A的俯角为60°,那么此时小李离着陆点A的距离是()(A)200米;(B)400米;(C米;(D米.6.下列命题中,假命题的是()(A)凡有内角为30°的直角三角形都相似;(B)凡有内角为45°的等腰三角形都相似;(C)凡有内角为60°的直角三角形都相似;(D)凡有内角为90°的等腰三角形都相似.二、填空题(本大题共12题,每题4分,满分24分)7.计算:2sin60cot30tan45︒-︒⋅︒=___________.8.已知线段a = 4厘米,c = 9厘米,那么线段a、c的比例中项b =________厘米.9.2,那么它们的相似比是___________.10. 四边形ABCD 和四边形A′B′C′D′是相似图形,那么A 、B 、C 、D 分别与点A′、B′C′、D′对应,已知BC = 3,CD = 2.4,B′C′ = 2,那么C′D′的长是__________. 11. 已知二次函数22(2)y x =+,如果2x >-,那么y 随x 的增大而__________. 12. 同一时刻,高为12米的学校旗杆的影长为9米,一座铁塔的影长为21米,那么此铁塔的高为__________米.13. 一山坡的颇高i = 1 : 3小刚从山坡脚下点P 处上坡走了N 处,那么他上升的高度是__________米.14. 在△ABC 中,点D 、E 分别在边AB 、AC 上,AB = 6,AC = 4,BC = 5,AD = 2,AE= 3,那么DE 的长为__________.15. 如图,在Rt △ABC 中,∠C=90°,AC=2,BC=1,正方形DEFG 内接于△ABC ,点G 、F 分别在边AC 、BC 上,点D 、E 在斜边AB 上,那么正方形DEFG 的边长是_______. 16. 如图,在△ABC 中,点D 在边BC 上,AD ⊥AC ,∠BAD=∠C ,BD=2,CD=6,那么tan C的值是__________.17. 我们把有两条中线互相垂直的三角形叫做“中垂三角形”,如图,△ABC 是“中垂三角形”,其中△ABC 的中线BD 、CE 互相垂直于点G ,如果BD=9,CE=12,那么D 、E 两点间的距离是__________.18. 如图,在矩形ABCD 中,AB=3,AD=4,将矩形ABCD 绕着点B 顺时针旋转后得到矩形A ′B ′C ′D ′,点A 的对应点A ′在对角线AC 上,点C 、D 的对应点分别与点C ′、D ′对应,A ′D ′与边BC 交于点E ,那么BE 的长是__________.三、解答题(本大题共7题,满分78分) 19. (本题满分10分)已知:a : b : c = 2 : 3 : 5.(1)求代数式323a b ca b c-++-的值;(2)如果324a b c -+=,求a 、b 、c 的值.已知二次函数2(0)y ax bx c a =++≠的自变量x 的值和它对应的函数值y 如下表所示:(2)设该二次函数图像与x 轴的左交点为B ,它的顶点为A ,该图像上点C 的横坐标为4,求△ABC 的面积.21. 如图,一艘游轮在离开码头A 处后,沿南偏西60°方向行驶到达B 处,此时从B 处发现灯塔C 在游轮的东北方向,已知灯塔C 在码头A 的正西方向200米处,求此时游轮与灯塔C 的距离(精确到1米).1.414 1.7322.449】22. (本题满分10分)如图,在△ABC 中,AD 、BE 是△ABC 的角平分线,BE=CE ,AB=2,AC=3. (1)设AB a =,BC b =,求向量BE (用向量a 、b 表示);(2)将△ABC 沿直线AD 翻折后,点B 与边AC 上的点F 重合,联结DF ,求:CDF CEBS S △△的值.如图,在△ABC 中,点D 、E 、F 、G 分别在边AB 、AC 、BC 上,AB=3AD ,CE=2AE ,BF=FG=CG ,DG 与EF 交于点H .(1)求证:FH AC HG AB ⋅=⋅;(2)联结DF 、EG ,求证:∠A=∠FDG +∠GEF .24. (本题满分12分)如图,将抛物线2443y x =-+平移后,新抛物线经过原抛物线的顶点C ,新抛物线与x轴正半轴交于点B ,联结BC ,tan 4B =,设新抛物线与x 轴的用另一个交点是A ,新抛物线的顶点是D .(1)求点D 的坐标;(2)设点E 在新抛物线上,联结AC 、DC ,如果CE 平分∠DCA ,求点E 的坐标;(3)在(2)条件下,将抛物线2443y x =-+沿x 轴左右平移,点C 的对应点为F ,当△DEF 与△ABC 相似时,请直接写出平移后所得抛物线的表达式.如图,在△ABC中,AB=AC=5,BC=6,点D是边AB上的动点(点D不与点A、B 重合),点G在边AB的延长线上,∠CDE=∠A,∠GBE=∠ABC,DE与边BC交于点F.(1)求cos A的值;(2)当∠A=2∠ACD时,求AD的长;点D在边AB上运动的过程中,AD : BE的值是否会发生变化?如果不变化,请求出AD : BE的值;如果变化,请说明理由.2019~2020学年上海市徐汇区九年级一模数学试卷参考答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017学年第一学期徐汇区学习能力诊断卷
初三数学 试卷
(考试时间100分钟,满分150分) 2018.1
一、选择题:(本大题共6题,每题4分,满分24分)
1.已知
34x y =,那么下列等式中,不成立的是 (A )37x x y =+; (B)14x y y -=; (C)3344
x y +=+; (D )4x =3y . 2.在比例尺是1:40000的地图上,若某条道路长约为5cm ,则它的实际长度约为
(A)0.2km; (B )2km; (C)20km; (D )200km.
3.在△AB C中,点D 、E 分别在边AB 、AC 上,如果AD =1,BD =3,那么由下列条件能够判断DE ∥B C的是 (A)13DE BC =; (B)14DE BC =; (C)13AE AC =; (D )14
AE AC =. 4.在R t△ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B、∠C 的对边,下列等式正确的是
(A )sin b A c =; (B )cos c B a =; (C)tan a A b =; (D )cot b B a
=. 5.下列关于向量的说法中,不正确的是
(A )3()33a b a b -=-; (B )若3a b =,则33或a b a b ==-;
(C)33a a =; (D)()()m na mn a =.
6.对于抛物线2(2)3y x =-++,下列结论中正确结论的个数为
①抛物线的开口向下; ②对称轴是直线x=-2;
③图像不经过第一象限; ④当x >2时,y 随x 的增大而减小.
(A)4; (B)3; (C)2; (D )1.
二、填空题:(本大题共12题,每题4分,满分48分)
7.已知线段b 是线段a、c 的比例中项,且a =2,c =8,那么b= .
8.计算:3(24)5()a b a b ---= .
9.若点P 是线段A B的黄金分割点,AB =10cm ,则较长线段AP 的长是 cm .
10.如图,在梯形ABC D中,AD ∥B C,E、F 分别为A B、DC 上的点,若CF =4,且E F∥AD ,
11.如图,在梯形A BCD 中,AB ∥D C,AD=2,BC =6,若△A OB 的面积等于6,则△A OD 的面积等于 .
12.如图,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,若,AB a BC b ==,则用、OD a b 可
表示为 .
13.已知抛物线C 的顶点坐标为(1,3),如果平移后能与抛物线21232
y x x =
++ 重合,那么抛物线C 的表达式是 .
14.sin60tan 45cos60cot30=⋅-⋅ .
15.如果抛物线22y ax ax c =-+与x 轴的一个交点为(5,0),那么与x轴的另一个交点的坐标
是 .
16.如图,在△ABC 中,A B=AC ,BE 、AD 分别是边AC 、BC 上的高,CD =2,AC =6,那么C E
= .
17.如图,是将一正方体货物沿坡面AB 装进汽车货厢的平面示意图,已知长方体货厢的高度BC
为2.6米,斜坡A B的坡比为1:2.4,现把图中的货物继续向前平移,当货物顶点D与C 重合时,仍可把货物放平装进货厢,则货物的高度BD 不能超过 米.
18.在△AB C中,∠C =90°,AC =3,BC =4(如图),将△ACB 绕点A 顺时针方向旋转得△AD E(点C 、B 的对应点分别为D、E ),点D 恰好落在直线BE 上和直线AC 交于点F ,则线段A F的长为 .
19.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)
如图,在△ABC中,∠ACD=∠B,AD=4,DB=5.
(1)求AC的长;
(2)若设,
==,试用、
CA a CB b
a b的线性组合表示向量CD.
20.(本题共2小题,第(1)小题5分,第(2)小题5分,满分10分)已知一个二次函数的图像经过A(0,-6)、B(4,-6)、C(6,0)
三点.
(1)求这个二次函数的解析式;
(2)分别联结AC、BC,求tan∠ACB.
21.(本题满分10分)
如图所示,巨型广告牌AB背后有一看台CD,台阶每层高0.3米,且AC=17米,现有一只小狗睡在台阶的FG这,层上晒太阳,设太阳光线与水平地面的夹角为α,当α=60°时,测得广告牌AB 在地面上的影长AE=10米,过了一会,当α=45°,问
小狗在FG这层是否还能晒到太阳?请说明理由(3
取1.73).
22.(本题满分10分)
如图,在△ABC中,AB=AC,BC=12,sin C=4
5
,点G是△ABC的重心,线段BG的延长线交
边AC于点D,求∠CBD的余弦值.
23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)
如图在△ABC 中,AB =A C,点D、E、F 分别在边B C、AB 、AC上,且∠ADE =∠B , ∠ADF =∠C ,线段EF 交线段AD于点G .
(1)求证:AE =AF ;
(2)若DF CF DE AE
=,求证:四边形EBDF 是平行四边形.
24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,在平面直角坐标系xO y中,直线y =kx(k ≠0)沿着y 轴向上平移3个单位长度后,与x 轴
交于点B (3,0),与y 轴交于点C ,抛物线2y x bx c =++过点B、C 且与x 轴的另一个交点为A .
(1)求直线BC 及该抛物线的表达式;
(2)设该抛物线的顶点为D ,求△DBC 的面积;
(3)如果点F 在y 轴上,且∠CDF =45°,求点F 的坐标.
25.(本题满分14分,第(1)小题3分,第(2)小题7分,第(3)小题4分) 已知,在梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,在射线BC任取一点M,联结DM,作∠MDN=∠BDC,∠MDN的另一边DN交直线BC于点N(点N在点M的左侧).(1)当BM的长为10时,求证:BD⊥DM;
(2)如图(1),当点N在线段BC上时,设BN=x,BM=y,求y关于x的函数关系式,并写出它的定义域;
(3)如果△DMN是等腰三角形,求BN的长.
参考答案:
1、B ;
2、B ;3、D ;4、C ;5、B ;6、A ;
7
、4;8、7a b -;9、5;10、203;11、2;12、1122
b a -; 13、21(1)32y x =-+;14、0;15、(-3,0);16、43;17、125;18、757。

19、(1)AC=6;(2)5499
CD a b =+; 20、(1)21262y x x =--;(2)1tan 2
ACB ∠=; 21、能晒到太阳;
22、cos CBD ∠=
; 23、略; 24、(1)BC :y=-x +3,243y x x =-+;(2)3;(3)1(0,)3
F -;
25、(1)∠B DM =90°;(2)20(04)4y x x
=≤<-;(3)4,1。

相关文档
最新文档