华师数学建模考试资料

合集下载

《第三章 数学建模活动(二)》试卷及答案_高中数学必修_北师大版_2024-2025学年

《第三章 数学建模活动(二)》试卷及答案_高中数学必修_北师大版_2024-2025学年

《第三章数学建模活动(二)》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、某工厂生产一批产品,原计划每天生产100件,10天完成。

后来由于提高效率,每天多生产了20件,实际用了8天完成。

设提高效率后每天生产的件数为x件,那么x的值是:A、60B、80C、100D、1202、在解决实际问题时,建立数学模型的一般步骤不包括以下哪一项?()A. 确定问题背景和目标B. 收集和整理数据C. 建立数学模型D. 进行实验验证3、某工厂生产一批产品,已知生产这种产品需要原材料A和B,其中原材料A的用量与原材料B的用量成比例。

若生产100个产品需要原材料A和原材料B分别为10kg 和20kg,那么生产200个产品需要原材料A和原材料B分别为多少kg?A、20kg和40kgB、30kg和60kgC、40kg和80kgD、50kg和100kg4、在解决数学建模问题时,以下哪项步骤是错误的?A、明确问题背景和目标B、建立数学模型C、收集和分析数据D、求解数学模型,得到结果但不进行验证5、某工厂计划生产一批产品,已知生产这批产品需要投入的原材料费用为3000元,人工费用为1000元,其他费用为500元。

如果每件产品的利润为10元,要使得利润总额达到10000元,至少需要生产多少件产品?A. 500件B. 1000件C. 1500件D. 2000件6、在解决数学建模问题时,以下哪种方法不是常用的策略?()A、建立数学模型B、分析模型,提出假设C、进行数据收集和整理D、进行数学推导,得出结论7、某市为了改善交通状况,计划在一条长为10公里的主干道上增设若干个公交站点。

根据交通流量分析,每两个站点之间的平均距离不宜小于1公里也不宜大于2公里。

如果这条主干道的起点和终点都设有一个站点,那么最多可以设置多少个站点?最少可以设置多少个站点?A. 最多11个站点,最少6个站点B. 最多12个站点,最少5个站点C. 最多11个站点,最少5个站点D. 最多10个站点,最少6个站点8、下列关于函数模型y=ae^(bx)+c(a、b、c为常数,且a>0,b≠0)的说法中,正确的是:A. 当a=1,b=0,c=0时,该函数表示一个常数函数B. 当a=1,b=1,c=0时,该函数表示一个指数函数C. 当a=1,b=0,c=1时,该函数表示一个一次函数D. 当a=1,b=-1,c=1时,该函数表示一个二次函数二、多选题(本大题有3小题,每小题6分,共18分)1、以下哪些选项属于数学建模的基本步骤?()A. 提出问题B. 收集数据C. 建立模型D. 求解模型E. 验证模型F. 模型应用2、某工厂为了提高产品质量,计划对生产流程进行优化。

数学建模复习资料参考答案

数学建模复习资料参考答案

《数学建模》复习资料参考答案一、不定项选择1、建模能力包括 A、B、C、D 。

A、理解实际问题的能力B、抽象分析问题的能力C、运用工具知识的能力D、试验调试的能力2、按照模型的应用领域分的模型有 A、E 。

A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型3、对黑箱系统一般采用的建模方法是 C 。

A、机理分析法B、几何法C、系统辩识法D、代数法4、一个理想的数学模型需满足 A、B 。

A、模型的适用性B、模型的可靠性C、模型的复杂性D、模型的美观性5、按照建立模型的数学方法分的模型有 B、C、D 。

A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型6、下列说法正确的有 A、C 。

A、评价模型优劣的唯一标准是实践检验。

B、模型误差是可以避免的。

C、生态模型属于按模型的应用领域分的模型。

D、白箱模型意味着人们对原型的内在机理了解不清楚。

7、力学中把 A 的量纲作为基本量纲。

A、质量、长度、时间B、密度、时间、长度C、质量、密度D、时间、长度8、下列说法错误的有 B 。

A、评价模型优劣的唯一标准是实践检验。

B、模型误差是可以避免的。

C、生态模型属于按模型的应用领域分的模型。

D、白箱模型意味着人们对原型的内在机理了解清楚。

9、建立数学模型的方法和步骤有ABCDE。

A、模型假设。

B、模型求解。

C、模型构成。

D、模型建立。

E、模型分析。

10、模型按照替代原型的方式可以简单分为AB。

A、形象模型B、抽象模型C、生态模型D、白箱模型11、形象模型可以具体分为ABC。

A.直观模型B、物理模型C、分子结构模型等;12、抽象模可以具体分为ABC。

A 思维模型B符号模型C数学模型D分子结构模型13建模的一般原则为ABCD。

A目的性原则B简明性原则C真实性原则D全面性原则;14 模型的结构大致分为ABC。

A、灰箱模型B、白箱模型C、黑箱模型15A、建立递阶层次结构模型;B、构造出各层次中的所有判断矩阵;C、层次单排序及一致性检验;D、层次总排序及一致性检验。

华东师范大学第二届数学建模竞赛赛题

华东师范大学第二届数学建模竞赛赛题

华东师范大学第二届数学建模竞赛赛题(2005. 5)为迎接2010年世博会的召开,设想在上海东方明珠电视塔内标出上海到世界35个大城市之间的距离. 这些大城市(按英语字典序排)是:1阿姆斯特丹2安卡拉3雅典4奥克兰5曼谷(最短距离)6巴萨罗那7北京8柏林9布鲁塞尔 10布达佩斯11开罗 12哥本哈根 13哈瓦那14赫尔辛基15香港16约翰内斯堡 17吉隆坡 18伦敦 19澳门 20墨西哥城21莫斯科 22新德里 23纽约 24奥斯陆 25巴黎26罗马 27斯德哥尔摩28悉尼 29台北 30东京31多伦多 32维也纳 33华沙 34惠灵顿 35苏黎世1. 计算上海市到以上各大城市间的距离(最短连线的长度),并填在以上表格的空格内(数值单位为千米,舍入到千米).2. 分别求出从上海到北京、伦敦、莫斯科、纽约、巴黎这五条最短路线上所经过(或最近)的其他一个大城市的名称(英文名或中文名皆可)、经纬度(单位度.分)、离开最短路线的距离(数值单位为千米,舍入到0.1千米),最短路线上与最近大城市距离最近的点的经纬度,(数值单位:度.分,舍入到分)并填入以下表格:北京伦敦莫斯科纽约巴黎(城市名)(城市经纬度)(距离)(最短线上点)注:1. 已知地球的平均半径为R = 6371千米.2. 大城市的范围及其经纬度见下表城市 纬度 度 分 经度 度 分(纬度中负号表示南纬, 经度中负号表示西经) Amsterdam, 52 22 4 53 (1)Ankara, 39 55 32 55 (2)Athens, 37 58 23 43 (3)Auckland, -36 52 174 45 (4)Bangkok, 13 45 100 30 (5)Barcelona, 41 23 2 9 (6)Beijing, 39 55 116 25 (7)Berlin, 52 30 13 25 (8)Brussels, 50 52 4 22 (9)Budapest, 47 30 19 5 (10)Cairo, 30 2 31 21 (11)Copenhagen, 55 40 12 34 (12)Havana, 23 8 -82 23 (13)Helsinki, 60 10 25 0 (14)Hong Kong, 22 20 114 11 (15)Johannesburg, -26 12 28 4 (16)Kuala Lumpur, 3 8 101 42 (17)London, 51 32 -0 5 (18)Macao, 22 13 113.36 (19)Mexico City, 19 26 -99 7 (20)Moscow, 55 45 37 36 (21)New Delhi, 28 35 77 12 (22)New York 40 47 -73 58 (23)Oslo, 59 57 10 42 (24)Paris, 48 48 2 20 (25)Rome, 41 54 12 27 (26)Stockholm, 59 17 18 3 (27)Sydney, -34 0 151 0 (28)Taipei, 25 05 121 32 (29)Tokyo, 35 40 139 45 (30)Toronto, 43 39 -79 23 (31)Vienna, 48 14 16 20 (32)Warsaw, 52 14 21 0 (33)Wellington, -41 17 174 47 (34)Zürich, 47 21 8 31 (35)Shanghai, 31 10 121 28 (36)(以上括号中的数字是题目中城市的编号, 以下是其他城市的纬度和经度)城市 纬度 度 分 经度 度 分 BRISBANE, -27 28 153 02 CANBERRA, -35 17 149 08 DARWIN, -12 28 130 50 DERBY, -17 19 123 38 NADI, -17 47 177 29 NEWMAN, -23 20 119 34 PERTH, -31 56 115 50 TOWNSVILLE, -19 13 146 48 BANGALORE, 12 58 77 35 BOMBAY, 18 56 -74 35 CALCUTTA, 22 30 88 20 COLOMBO, 6 55 79 52 DELHI, 28 40 77 14 HANOI, 21 01 105 52 HARBIN, 45 45 126 41 城市 纬度 度 分 经度 度 分 JINAN, 36 41 117 00 HO CHI MINH, 10 46 106 43 ISLAMABAD, 33 40 73 08 JAKARTA, -6 08 106 45 KAGOSHIMA, 31 37 130 32 KANDLA, 23 03 70 11 KARACHI, 24 51 67 02 KATHMANDU, 27 42 85 19 GUNUNGSITOLI, -6 03 116 32 KOTA, 2 33 102 10 KUALA LUMPUR, 3 08 101 42 KUNMING, 25 04 102 41 MALANG, -7 59 112 45 MANDALAY, 21 57 96 04 MANILA, 14 35 120 59NAGPUR, 21 10 79 12 PADANG, -6 12 120 27 PALU, -8 19 121 44 PENANG, 5 30 100 28 PONTIANAK, -0 05 109 16 RANGOON, 16 47 96 10 SAPPORO, 43 05 141 21 SEOUL, 37 30 127 00 SINGAPORE 1 18 103 50 SORONG, -0 50 131 17 THIMBU, 27 32 89 43 TONHIL, 46 19 93 54 ULAANBAATAR, 47 54 106 52 URUMQI, 43 43 87 38 WUHAN, 30 35 108 54 XIAN, 34 16 108 54 YUMEN, 39 54 97 43 ANADYR, 64 50 177 50 ARKHANGELSK, 64 32 40 40 ASHKHABAD, 37 58 58 24 BAKU, 40 22 49 53 BARNAUL, 53 21 83 45 CHITA, 52 03 113 35 IGARKA, 67 31 86 33 INARIGDA, 63 15 107 40 KIEV, 50 25 133 43 KRASNODAR, 45 02 39 00 MAGDAGACHI, 53 27 125 44 OKHOTSK, 59 20 143 15 PERM, 58 01 56 10 PETROPAVLOVSK, 54 53 69 13 TASHKENT, 41 16 69 13 TULUN, 54 32 100 35 VANINO, 49 05 140 14 VLADIVOSTOK, 43 09 131 53 VORKUTA, 67 27 64 00 YAKUTSK, 62 10 129 50 KUWAIT, 29 20 48 00 RUH RIYADH, 24 39 46 46 BAGHDAD, 33 20 44 26 HALAB, 36 14 37 10 HERAT, 34 20 62 12 JERUSALEM, 31 47 35 13 KABUL, 34 31 69 12 MASHAD, 36 16 59 34 NAZWA, 22 56 57 33 SALALAH, 17 00 54 04 SANAA, 15 24 44 14 SHIRAZ, 29 38 52 34 TABRIZ, 38 05 46 18 TARIM, 16 08 45 58 TEHRAN, 35 40 51 26 ABIDJAN, 5 19 -0 05 ALGIERS, 36 50 3 00 ANTANANARIVO, -18 52 47 30 ASWAN, 24 05 32 56 BAMAKO, 12 39 -8 00 BENGHAZI, 32 07 20 04 BANGUI, 4 22 18 35 BEIRA, -19 49 34 52 CAPETOWN, -35 55 18 22 DAKAR, 14 40 17 26 FREETOWN, 8 30 -13 15 HARARE, -17 50 31 30 KABWE, -14 29 28 25 KAMPALA, 0 19 35 25 KANO, 12 00 8 31 KHARTOUM, 15 36 32 32 KINSHASA, -4 18 15 18 KISANGANI, 0 33 25 14 LOS LAGOS, 6 27 3 24 LOBITO, -12 20 13 34 LUBUMBASHI, -11 41 27 29 LUDERITZ, -26 38 15 10 LUZAMBA, -4 59 23 26 MAPUTO, -25 58 32 35 MASERU, -29 19 27 29 MOGADISHU, 2 02 45 21 MONROVIA, 6 18 -10 47 MWANZA, -7 51 26 43 NAIROBI, -1 17 36 49 NAMIBE, -15 10 12 09 NOUAKCHOTT, 18 09 -15 58 OUAGADOUGOU, 12 22 -1 31 POINTE NOIRE, -4 46 11 53 SEBHA, 27 02 14 26 SERONERA, -22 25 26 44 TOMBOUCTOU, 16 49 -2 59TRIPOLI, 32 54 13 11TSUMEB, -19 13 17 42TUNIS, 36 48 10 11WINHOEK, -22 34 17 06YAOUNDE, 3 52 11 31ZANZIBAR, -6 10 39 20BERNE, 46 57 7 26BORDEAUX, 44 50 -0 34BUCHAREST, 44 26 26 06GDANSK, 54 23 18 40GLASGOW, 55 53 -4 15HAMBURG, 53 33 9 59ISTANBUL, 41 01 28 58LONGYEARBYEN, 78 12 15 40MADRID, 40 24 -3 41MILAN, 45 27 9 17NAPLES, 40 51 14 17NICE, 43 42 7 15NUUGAATSIAQ, 71 30 -53 00 REYKJAVIK, 64 09 -21 51 SCORESBYSUND, 70 30 -22 00 STENSELE, 65 05 17 10 TORSHAVN 62 02 -6 47 TRABZON, 41 00 39 43 VARDOE, 60 16 20 20 ANTOFAGASTA, -23 40 -70 23 AREQUIPA, -16 25 -71 32 BELEM, -1 27 -48 29 BOGOTA, 4 36 -74 05 BRASILIA, -15 47 -47 55 CARACAS, 10 30 -66 56 CAYENNE, 4 56 -52 20 CHIHUAHUA, 28 40 -106 06 CHURCHILL, 58 45 -94 00 COMODORO, -45 50 -67 30 COPPERMINE, 67 49 115 21 CORDOBA, 18 55 -96 55 CUIABA, -7 15 -58 25 GEORGETOWN, 6 48 -58 10 GUADALAJARA, 20 40 -103 20 GUANTANAMO, 20 09 -75 14 GUATEMALA CITY, 14 38 -90 31 GUAYAQUIL, -2 10 -79 50 ILHEUS, -14 50 -39 06IQUITOS, -3 51 -73 13 LABRADOR CITY, 52 56 -66 52 LIMA, -12 03 -77 03 MANAGUA, 12 06 -86 18 MANAUS, -3 06 -60 00 MERIDA, 8 24 -71 08 MONTEVIDEO, -34 53 -56 11 PANAMA CITY, 8 58 -79 32 QUEBEC, 46 50 -71 15 RIO DE JANEIRO, -22 54 -43 14 TIJUANA, 32 32 -117 01 VALPARAISO, -21 16 -50 54 VANCOUVER, 49 16 -123 07 VERACRUZ, 19 12 -96 08 WINNIPEG, 49 53 -97 09 SAMOA, -14 20 -170 00 HONOLULU, 21 18 -157 51。

《数学建模》试卷及答案_高中数学选择性必修第三册_人教A版_2024-2025学年

《数学建模》试卷及答案_高中数学选择性必修第三册_人教A版_2024-2025学年

《数学建模》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、一个长方体的长、宽、高分别为3, 4, 5,求其体积。

A、60B、20C、12D、92、在建立数学模型时,以下哪种方法通常用于确定数学模型的形式?()A. 观察法B. 理论分析法C. 统计分析法D. 模拟法3、在建立数学模型的过程中,以下哪个步骤不是必须的?A、收集数据B、提出假设C、建立方程D、验证模型4、某中学数学建模小组对某一社区的家用车流量进行了模型分析。

若该社区每小)],其中(t)时通过的家用车流量(单位:辆/h)满足以下关系:[f(t)=100+5sin(πt12(单位:小时)是从12:00开始的时间,那么该社区15:00至16:00之间通过的家用车流量估计为多少辆?A、105B、103C、101D、995、在数学建模过程中,以下哪种方法被用于解决实际问题中的系统优化问题?A. 逻辑推理法B. 据统计法C. 线性规划法D. 递归分析法6、某工厂生产某种产品,已知每生产x件产品,需要原材料费1000元,生产成本每件30元。

若工厂以每件50元售出,问工厂至少要生产多少件产品才能保证不亏损?A)25件B)30件C)35件D)40件7、(2019·江苏卷)某校学生在校参加社团活动的频率与每周用于社团活动的平均时间如下表所示:次数1次2次3次4次5次及5次以上时间(小时) 5.5810.51317根据上述数据,若该生下周参加1次社团活动,则其下周用于社团活动的平均时间为 ______ 小时。

A. 9B. 10C. 11D. 128、某城市出租车计费规则如下:起步价为10元,包含前3公里;超过3公里后,每增加1公里加收2元,不足1公里按1公里计算。

若乘客乘坐出租车行驶了x公里(x > 3),则乘客应付的车费y(元)与行驶距离x(公里)之间的函数关系式为:A. y = 10 + 2(x - 3)B. y = 10 + 2xC. y = 2x - 6D. y = 12 + 2(x - 3)二、多选题(本大题有3小题,每小题6分,共18分)1、(5分)以下关于数学建模的说法中,正确的是:A. 数学建模是一种将实际问题转化为数学问题的过程B. 数学建模只适用于数学专业,其他专业无需涉及C. 数学建模需要运用数学知识、计算机技术以及实际应用背景D. 数学建模的目的是为了找到问题的最优解2、某市计划在城市中心建立一个大型公园,以提高市民的生活质量。

2010年华南师范大学第九届数学建模竞赛题目

2010年华南师范大学第九届数学建模竞赛题目

2010年华南师范大学第九届数学建模竞赛题目(请先阅读“华南师范大学数学建模竞赛论文格式规范”)A题疾走食肉恐龙问题有一种疾走食肉恐龙(Velociraptor mongoliensis)生活在距今约7500万年前的白垩纪晚期。

古生物学家认为它是顽强的捕猎者,可能成群地、并且一对一对地进行捕猎。

可惜不可能像观察现代的食肉哺乳动物那样观察疾走食肉恐龙在野外的捕猎行为。

古生物学家请你们队帮助对疾走食肉恐龙的捕猎行为进行建模。

古生物学家希望将你们的结果与研究狮子、老虎以及类似的食肉动物的生物学家所报告的野外调查数据进行比较。

成年的疾走食肉恐龙一般身长3米,髋高0.5米,重约45公斤,据估计奔跑非常快,以每小时60公里的速度可持续奔跑约15秒钟,但是在以这样的速度冲刺之后,它需要停下来,通过在肌肉里增加乳酸使得体力恢复。

假定疾走食肉恐龙捕食与自己体型几乎相同的一种双足食草恐龙(Thescelosaurus neglectus)。

对化石的生命力学分析揭示双足食草恐龙能以每小时50公里的速度长时间奔跑。

第一问:假设疾走食肉恐龙是孤单的捕猎者,建立数学模型,描述一只疾走食肉恐龙潜随和追猎一只双足食草恐龙的捕猎策略,以及被捕食者的逃避策略。

假设双足食草恐龙在相距15米之内一定能觉察到疾走食肉恐龙,依赖于环境和气候条件可以在更大的范围内(一直到50米)觉察到。

另外,由于身体结构和力量的缘故,疾走食肉恐龙在全速奔跑时的转弯半径是有限的,据估计,该半径是髋高的三倍。

而双足食草恐龙却极其灵活,转弯半径仅为0.5米。

第二问:更符合实际地假设疾走食肉恐龙成对地去捕猎,建立新的模型,描述两只疾走食肉恐龙潜随和追猎一只双足食草恐龙的捕猎策略,以及被捕食者的逃避策略。

继续使用第一问给出的其他假设。

组委会对A题的说明:本题来自美国数学建模竞赛,在书刊、网络可以找到一些优秀论文或解法介绍,请同学们引用这些资料时务必给出参考文献标注,否则会被评委认定为抄袭而失去评奖资格。

练习,数学建模2019华师在线

练习,数学建模2019华师在线

名词解释1、名词解释:(1)线性规划模型;(2)线性规划模型的可行域;(3)线性规划模型的最优解和最优值;(4)不可行的线性规划模型;(5)无界的线性规划模型.(4 分)2、名词解释:二阶差分方程参考答案问答题3、数学模型按照表现特性可以分成哪些类型?参考答案数学模型可以按照表现特性来分类,例如:线性模型与非线性模型(取决于模型的基本数量关系是否是线性的)、离散模型与连续模型(取决于模型中的变量(主要是时间)是离散的还是连续的)、静态模型与动态模型(取决于是否考虑时间引起的变化)、确定性模型与随机性模型(取决于是否考虑随机因素的影响).4、参考答案5、什么是灵敏性分析?为什么需要做灵敏性分析?哪些参数需要做灵敏性分析?哪些参数不需要做灵敏性分析?参考答案灵敏性(sensitivity)是指当数学模型的某个参数改变时模型解答的变化程度,变化越大,模型解答对该参数的就越灵敏.在建立数学模型解决实际问题的时候,人们自然期待模型解答对参数不算灵敏,因为在灵敏的情况下,一旦参数发生微小变化,模型的解答就会发生显著的变化,会给模型检验和模型应用带来困难.但事实上,在科学技术各个领域广泛存在着灵敏性和临界值问题,在数学上很多数学模型也存在着灵敏性和临界值问题,当参数处于临界值附近时,模型解答会对参数高度灵敏.人们对此非常关注又非常感兴趣.所以不论建立什么样的数学模型,都需要仔细的做灵敏度分析.在数学建模的实践中,没必要对所有参数都进行灵敏度分析,需要对哪些参数进行灵敏度分析要从实际意义出发考虑参数的不确定程度.有些参数实际上是稳定的,其观测值是准确可靠的;另一些参数实际上经常变动,观测、估计或预测所得的参数值往往会包含不小的误差.显然,前一种参数没有做灵敏度分析的必要,而后一种参数的不确定性会影响模型解答的可信性,所以灵敏度分析非常有必要.6、社会学家研究一种称为社会扩散的现象:在人群中传播信息、技术或文化时尚.人群可分成两类:已知道该信息的人和不知道该信息的人.建立数学模型,描述已知道该信息的人数的变化过程.参考答案7、请回答以下问题:(1)写出阻滞增长方程及其满足初始条件的解函数;(2)阻滞增长方程的模型假设是什么?(3)阻滞增长方程包含有哪些参数?这些参数的实际意义是什么?根据实际数据拟合这些参数的思路是什么?(4)在实际应用中,阻滞增长方程满足初始条件的解函数的函数图象是S 形曲线,请说明该曲线的性质.参考答案8、什么是数学建模?数学建模有哪些步骤?请简述这些步骤。

华师数学建模考试资料

华师数学建模考试资料

数学建模名词解释:一阶差分方程标准答案:2.第9题名词解释:数学模型标准答案:数学模型(Mathematical Model)是由数字、字母或者其他数学符号组成的,描述现实对象数量规律的数学公式、图形或算法.3.第10题名词解释:二阶差分方程4.第15题名词解释:(1)线性规划模型;(2)线性规划模型的可行域;(3)线性规划模型的最优解和最优值;(4)不可行的线性规划模型;(5)无界的线性规划模型.标准答案:5.第4题标准答案:6.第11题司机在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到车完全停住汽车行驶的距离称为刹车距离,车速越快,刹车距离越长. 请问刹车距离与车速之间具有怎样的数量关系7.第12题考虑弹簧-质量系统,收集弹簧伸长的长度与弹簧末端悬挂的质量的实验数据,记录在表1(单位省略). 请计算出伸长与质量的函数关系的经验公式.表1 弹簧伸长和质量的测量数据伸长 5.675 6.5007.2508.0008.750标准答案:8.第14题(接续47 酶促反应(1)和48酶促反应(2))请分析Michaelis-Menten模型非线性拟合和线性化拟合的结果有何区别?原因是什么?标准答案:您的答案:题目分数:4.0此题得分:0.09.第1题阅读材料电声器材厂在生产扬声器的过程中,有一道重要的工序:使用AB胶粘合扬声器中的磁钢与夹板. 长期以来,由于对AB胶的用量没有一个确定的标准,经常出现用胶过多,胶水外溢;或用胶过少,产生脱胶,影响了产品质量. 表1是一些恰当用胶量的具体数据.2设自变量x为磁钢面积,因变量y为恰当用胶量,用以下MATLAB脚本做一元线性回归分析的计算:x=[11.0;19.4;26.2;46.6;56.6;67.2;125.2;189.0;247.1;443.4];y=[0.164;0.396;0.404;0.664;0.812;0.972;1.688;2.86;4.076;7.332];X=[ones(size(x)),x]; [b,bint,r,rint,stat]=regress(y,X)命令窗口显示的计算结果:b =-0.101210.016546bint =-0.24763 0.0452090.015728 0.017365r =0.08320.176210.071696-0.0058489-0.023312-0.038703-0.28239-0.166040.0886160.096575rint =-0.2348 0.4012-0.11393 0.46635-0.2522 0.39559-0.33976 0.32806-0.35828 0.31166-0.37408 0.29667-0.51782 -0.046954-0.46895 0.13686-0.2249 0.40213-0.077904 0.27105stat =0.99633 2174 4.948e-011 0.02121问题请将计算结果整理成表格,并进行分析.标准答案:10.第6题标准答案:您的答案:题目分数:5.0 此题得分:0.011.第7题标准答案:您的答案:题目分数:9.0 此题得分:0.012.第8题标准答案:您的答案:题目分数:8.0此题得分:0.013.第16题某营养师要为某个儿童预定午餐和晚餐,已知一个单位的午餐含12个单位的碳水化合物,6个单位蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C. 另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C. 如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?标准答案:您的答案:题目分数:8.0 此题得分:0.014.第2题标准答案:您的答案:题目分数:4.0此题得分:0.0教师未批改15.第5题写出以下公式:按照最小二乘法,由样本数据计算一元线性回归模型的回归系数的点估计.标准答案:您的答案:题目分数:5.0此题得分:0.0教师未批改16.第13题请概括数学软件MATLAB的特点。

(完整版)数学建模复习内容带习题答案

(完整版)数学建模复习内容带习题答案

考试内容分布:1、线性规划2题,有1题需编程;2、非线性规划2题,有1题需编程;3、微分方程1题,需编程;4、差分方程2题,纯计算,不需编程;5、插值2题,拟合1题,纯计算,不需编程;;6、综合1题(4分),纯计算,不需编程。

一、列出下面线性规划问题的求解模型,并给出matlab计算环境下的程序1.某车间有甲、已两台机床,可用于加工三种工件,假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400,600和500,且已知用两种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。

问怎样分配车床的加工任务,才能即满足加工工件的要求,又使加工费用最低。

(答案见课本P35, 例1)2.有两个煤厂A,B,每月进煤分别不少于60t、100t,它们负责供应三个居民区的用煤任务,这三个居民区每月需用煤分别为45t, 75t, 40t。

A厂离这三个居民区分别为10km, 5km, 6km,B厂离这三个居民区分别为4km, 8km, 15km,问这两煤厂如何分配供煤,才能使总运输量最小?(1)问题分析设A煤场向这三个居民区供煤分别为x1,x2,x3;B煤场向这三个居民区供煤分别为x4,x5,x6,则min f=10*x1+5*x2+6*x3+4*x4+8*x5+15*x6,再根据题目约束条件来进行解题。

(2) 模型的求解>> f=[10 5 6 4 8 15];>> A=[-1 -1 -1 0 0 00 0 0 -1 -1 -1-1 0 0 -1 0 00 -1 0 0 -1 00 0 -1 0 0 -1];>> b=[-60;-100;-45;-75;-40];>> Aeq=[];>> beq=[];>> vlb=zeros(6,1);>> vub=[];>> [x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub)Optimization terminated.(3) 结果分析x =0.0000 20.0000 40.0000 45.0000 55.0000 0.0000 fval = 960.0000即A 煤场分别向三个居民区供煤0t,20t,40t ;B 煤场分别向三个居民区供煤45t,55t,0t 可在满足条件下使得总运输量最小。

华东师大数模第1章答案01~ch1_solutions

华东师大数模第1章答案01~ch1_solutions

1. An automobile manufacturer makes a profit of $1,500 on the sale of a certain model. It is estimated that for every $100 of rebate, sales increase by 15%.(a) What amount of rebate will maximize profit? Use the five-step method, and model as a one-variable optimization problem.Step 1: Ask the question.Variables:r = rebate ($)s = number of cars soldP= profit ($)Assumptions:s= s_0 (1+0.15(r/100))P= (1500-r) ss>= 0 , 0<= r <=1500where the constant s_0 is the number of sales without any rebate Objective:Maximize P.Step 2: Select the modeling approach.We will model this problem as a one variable optimization problem. See text p. 6.Step 3: Formulate the model.Let x=r and y=P, and writey = f(x) = (1500-x) s_0 (1+0.15(x/100)).Our goal is to maximize f(x) over the interval [0, 1,500].Step 4: Solve the model.Compute f '(x) = 1500 s_0 (0.0015) + (-1) s_0 (1+0.15(x/100)) = 0 at x = 416.6667,f(x) = 1760.42 and since the graph of f(x) is a parabola we know this is the global maximum.Step 5: Answer the question.According to this model, the optimal policy is to offer a rebate of around $420, which should result in about a 17% increase in profits as compared to no rebate.(b) Compute the sensitivity of your answer to the 15% assumption. Consider both the amount of rebate and the resulting profit.Generalize the model from part (a) and lety = f(x) = (1500-x) s_0 (1+e x)where currently e = 0.0015. Compute thatf '(x) = 1500 s_0 e + (-1) s_0 (1+e x) = 0at x = 750-1/(2e). Then dx/de = 1/(2 e^2), and soS(x,e) = (dx/de) (e/x) = 1/(2*0.0015^2) (0.0015/416.6667) = 0.8so if the rebate is 10% more effective then we thought, then the optimal rebate will be 8% bigger. A similar computation yields S(y,e) = 0.38 so that if the rebate is 10% more effective than we thought, then our optimal profit will be 4% greater.(c) Suppose that rebates actually generate only a 10% increase in sales per $100. What is the effect? What if the response is somewhere between 10 and 15% per $100 of rebate?Using the results of part (b), if e decreases by 33% to 0.0010 then we expect the optimal rebate to decrease by (0.8) 33% = 27% to around $310. We would also expect profits to go down by (0.38) 33% = 13% to around $1530. A direct computation (solve the entire problem again using e=0.0010) yields a similar result: a 40% decrease in the optimal rebate (to $250) and an 11% decrease in profit (to 1562.50).(d) Under what circumstances would a rebate offer cause a reduction in profit?Using the sensitivity results of part (b), if every $100 of rebate results in a sales increase of less than 8.3% then the optimal policy is to offer no rebate. To see this, note that currently the optimal profit is 17% higher than with no rebate, and (0.38) 44.7% = 17%. The current rebate effectiveness is e = 0.0015 and so a 44.7% decrease yields 0.00083. Exact calculations yield a similar result: if every $100 of rebate results in a sales increase of less than 6.7% then the optimal policy is to offer no rebate. To see this, note that by the formula derived in part (b), the optimal rebate is x = 750-1/(2e), which decreases to zero as e decreases to 1/(2*750) = 0.00067.2. In the pig problem, perform a sensitivity analysis based on the cost per day of keeping the pig. Consider both the effect on the best time to sell and on the resulting profit. If a new feed costing 60 cents/day would let the pig grow at a rate of 7 lbs/day, would it be worth switching feed? What is the minimum improvement in growth rate that would make this new feed worthwhile?In this case we havey = f (x) = (0.65 - 0.01 x) (200 + 7 x) - 0.60 xand so f '(x) = (195 - 14 x) / 100 = 0 at around x = 13.9, f (x) = 143.58. This is the global maximum since f (x) is a parabola. Since this is considerably more than the old maximum of 133.20, it is worth while to switch to the new feed.More generally we havey = f (x) = (0.65 - 0.01 x) (200 + g x) - 0.60 xwhere currently g = 7. Compute that f '(x) = (65 (g - 4) - 2 g x) / 100 = 0 when x = 65 (g - 4) / (2 g)and substitute this back into the expression for y to obtainy = 13 (13 g^2 + 56 g + 208) / (16 g)which is equal to 133.20 when g = 5.26. Thus the new feed would be worth 60 cents per day as long as it produced a growth rate of at least 5.26 pounds per day.3. Reconsider the pig problem, of Example 1.1, but now assume that the price for pigs is starting to level off. Letp = 0.65 - 0.01t + 0.00004 t^2(4)represent the price for pigs (cents/lb) after t days.(a) Graph Eq. (4) along with our original price equation. Explain why our original price equation could be considered as an approximation to Eq. (4) for values of t near zero. The following graph shows the new, nonlinear price function along with the original, linear price function. The original equation is the tangent line to the new equation at t = 0, and so the original equation may be considered as an approximation of the new equation for values of t near zero.GRAPHING UTILITYp = 0.65 - 0.01t + 0.00004 t^2ptnew p(t)original p(t)(b) Find the best time to sell the pig. Use the five-step method, and model as a one-variable optimization problem.Step 1: Ask the question.Exactly the same as in the text p. 5, but now we assume p = 0.65 - 0.01 t + 0.00004 t^2. Step 2: Select the modeling approach.We will model this problem as a one variable optimization problem. See text p. 6. Step 3: Formulate the model.Let x=t and y=P, and writey = f(x) = (0.65 - 0.01 x + 0.00004 x^2) (200 + 5 x) - 0.45 x.Our goal is to maximize f(x) over the set of all x >= 0.Step 4: Solve the model.Compute that f '(x) = (3 x^2 - 420 x + 4000)/5000 which equals zero at x = 70-10*SQRT(321)/3 and at x = 70+10*SQRT(321)/3, or at around x = 10.28 and x =129.72. As shown in the following graph, the maximum is at x = 10.28. Although f(x)increases to infinity as x gets large, this is beyond the range where our model makes sense.GRAPHING UTILITYy = f(x)-40-202040608010012014020406080100120140160y x Step 5: Answer the question.According to this model, the optimal policy is to sell the pig after 10 days, for a net profit of about $134.(c) The parameter 0.00004 represents the rate at which price is leveling off. Conduct a sensitivity analysis on this parameter. Consider both the optimal time to sell and the resulting profit.Generalize the model from part (b) and lety = f(x) = (0.65 - 0.01 x + a x^2) (200 + 5 x) - 0.45 xwhere currently a = 0.00004. Compute thatf '(x) = (150*a*x^2+x*(4000*a-1)+8)/10 = 0atx = -(SQRT(16000000*a^2-12800*a+1)+4000*a-1)/(300*a).Thendx/de = -(SQRT(16000000*a^2-12800*a+1)+ 6400*a-1)/(300*a^2*SQRT(16000000*a^2-12800*a+1))and so S(x,e) = (dx/de) (e/x) = 0.31. If price is leveling off 10% faster then we thought, then we should wait 3.1% longer to sell the pig . A similar computation yields S(y,e) = 0.008 so that if price is leveling off 1000% faster then we thought, then we should wait 8% longer to sell the pig.(d) Compare the results of part (b) to the optimal solution contained in the text. Comment on the robustness of our assumptions about price.There is not much difference between the results in part (b) and the results in the text. Our model is reasonably robust with respect to the assumption that price is a linear function of time. Given this, the added computational difficulty associated with the quadratic price model is probably not justified.4. An oil spill has fouled 200 miles of Pacific shoreline. The oil company responsible has been given 14 days to clean up the shoreline, after which a fine will be levied in the amount of $10,000/day. The local clean-up crew can scrub 5 miles of beach per week at a cost of $500/day. Additional crews can be brought in at a cost of $18,000 plus$800/day for each crew.(a) How many additional crews should be brought in to minimize the total cost to the company? Use the five-step method. How much will the clean-up cost?Step 1: Ask the question.Variables: c = number of additional crewst = time to clean up spill (days)T= total cost of clean-up ($)F= fine ($)Assumptions:T= 500 t + (18000 + 800 t) c + F200= (5 / 7) (c + 1) tF= 0if t <= 14F= 10,000 (t - 14)if t > 14c is a nonnegative integer, and t >= 0Objective:Minimize T.Step 2: Select the modeling approach.We will model this problem as a one variable optimization problem. See text p. 6.Step 3: Formulate the model.Let x = c and y = T, and writey = f(x) = 500 (280 / (x+1)) +(18,000 + 800 (280 / (x+1))) xif x >= 19 ory = f(x) = 500 (280 / (x+1)) +(18,000 + 800 (280 / (x+1))) x+ 10,000 (280 / (x + 1) - 14)if x < 19. Our goal is to maximize f(x) over the set of nonnegative integers x.Step 4: Solve the model.One way to solve is to minimize over the nonnegative reals, and then specialize to the integers. On 0 <= x < 19 we havef '(x) = 2000*(9*x^2+18*x-1349)/(x+1)^2which is negative on [0, 11.28) and positive on (11.28, 19), so x = 11.28 is the minimum. Then the minimum over the integers occurs at either x = 11 or at x = 12, and we can check that x = 11, f (x) = 508333 is smaller. On x >= 19 we havef '(x) = 6000*(3*x^2+6*x+17)/(x+1)^2which is always positive, and so on this interval the minumum occurs at x = 19, f (x) = 561800. Then the global minimum occurs at x = 11.GRAPHING UTILITYy = f(x)yxStep 5: Answer the question.According to this model, the optimal policy is to bring in 11 additional crews, resulting in a total clean-up cost of around $510,000. Clean-up will take around 23.3 days and the resulting fine will be around $93,000.(b) Examine the sensitivity to the rate at which a crew can clean up the shoreline. Consider both the optimal number of crews and the total cost to the company. Generalize the model in part (a) to obtain the assumption200= r (c + 1) twhere currently r = (5 / 7) miles per day per crew. Then we havey = f(x) = 500 (200 / (r (x+1))) +(18,000 + 800 * 200 / (r (x+1))) xif x >= 19 ory = f(x) = 500 (200 / (r (x+1))) +(18,000 + 800 * 200 / (r (x+1))) x+ 10,000 (200 / (r (x+1)) - 14)if x < 19. For values of r near (5 / 7) the minimum should still occur on the interval (0, 19). Solving0 = f '(x) = 2000*(9*r*x^2+18*r*x+9*r-970)/(r*(x+1)^2)yieldsx = (SQRT(970)-3*SQRT(r))/(3*SQRT(r))and sodx / dr = -SQRT(970)/(6*r^(3/2)).Substituting r = (5 / 7) we obtainS(x, r) = (dx / dr) (r / x) = -0.54so that if the cleanup crews are 10% faster than expected, the optimal number of crews decreases by about 5.4%. If we substitute the formula for the optimal x in terms of r into the formula for y = f(x) in the case x < 19, we obtainy = -2000*(79*r-6*SQRT(970)*SQRT(r)-80)/rand then we can also calculatedy / dr = -2000*SQRT(10)*(3*SQRT(97)*SQRT(r)+8*SQRT(10))/r^2 Substituting r = (5 / 7) we obtainS(y, r) = (dy / dr) (r / y) = -0.88so that if the cleanup crews are 10% faster than expected, the total cost of clean-up decreases by about 8.8%.(c) Examine the sensitivity to the amount of the fine. Consider the number of days the company will take to clean up the spill and the total cost to the company.Generalize the model in part (a) to obtain the assumptionF= a (t - 14)if t > 14where currently a = 10,000 dollars per day. Then for values of a near 10,000 we havey = f(x) = 500 (280 / (x+1)) +(18,000 + 800 (280 / (x+1))) x+ a (280 / (x + 1) - 14)if x < 19. The optimal number of crews is x = SQRT(14)*SQRT(a-300)/30-1 and so the time to finish the clean-up ist = 280 / (x+1) = 600*SQRT(14)/SQRT(a-300)and then we can compute that at a=10,000 we haveS(t,a) = (dt/da)(a/t) = (-300*SQRT(14)/(a-300)^(3/2))*(a/t) = -0.52so that if the fine is raised by 2% then the cleanup time should decrease by about 1%. Substituting the optimal formula for x in terms of a into the equation for y above, we obtainy = 2*(600*SQRT(14)*SQRT(a-300)-7*a+103000)dy/da = 2*SQRT(7)*(300*SQRT(2)-SQRT(7)*SQRT(a-300))/SQRT(a-300)so that at a = 10,000 we haveS(y,a) = (dy/da)(a/y) = 0.17which means that if the fine is increased then the total cleanup cost to the company will go up by about 1.7% for each additional $1,000 per day of fine.(d) The company has filed an appeal on the grounds that the amount of the fine is excessive. Assuming that the only purpose of the fine is to motivate the company to clean up the oil spill in a timely manner, is the fine excessive?Reasonable answers will differ on this question. On the one hand, the fine is only 19% of the total cost, and if the fine were reduced by 50% then the number of days to clean up the spill would increase by about 25% and it would only save the company about 8.5% of the total cost. So the amount of the fine does not seem excessive. On the other hand, if the 14 day limit were extended to 21 days, cleanup would proceed exactly as before, only the company would save $70,000. So in this case the 14 day limit does seem excessive.5. It is estimated that the growth rate of the fin whale population (per year) isr x (1 - x / K), where r = 0.08 is the intrinsic growth rate, K = 400,000 is the maximum sustainable population, and x is the current population, now around 70,000. It is further estimated that the number of whales harvested per year is about .00001 E x, where E is the level of fishing effort in boat-days. Given a fixed level of effort, population will eventually stabilize at the level where growth rate equals harvest rate.(a) What level of effort will maximize the sustained harvest rate? Model as a one-variable optimization problem using the five-step method.Step 1: Ask the question.Variables:x = population (whales)E = level of effort (boat-days)g= growth rate (whales per year)h= harvest rate (whales per year)Assumptions:g= 0.08 x (1 - x / 400,000)h= .00001 E xg= h,x >= 0,E >= 0Objective:Maximize h.Step 2: Select the modeling approach.We will model this problem as a one variable optimization problem. See text p. 6.Step 3: Formulate the model.Let y = h, and writey = f(x) = 0.08 x (1 - x / 400,000).Our goal is to maximize f(x) over the interval x >= 0.Step 4: Solve the model.Compute f '(x) = 0 at x = 200,000, f(x) = 8000 and since the graph of f(x) is a parabola we know this is the global maximum.Step 5: Answer the question.According to this model, the optimal policy is to harvest 8000 whales per year, which requires controlling the level of effort at 4000 boat-days per year. This will maintain the population of whales at 200,000 which is higher than the current population. This indicates that in the past the harvesting rate has exceeded the optimum level according to this model.(b) Examine the sensitivity to the intrinsic growth rate. Consider both the optimum level of effort and the resulting population level.Generalize the model in part (a) to obtain the assumptiong= r x (1 - x / 400,000)where currently r = 0.08. Then we havey = f(x) = r x (1 - x / 400,000)and the optimum is still at x = 200,000 but now f(x) = 100,000 r which leads toE = 50,000 r. ThenS(x , r) = 0S(E , r) = 1because x does not depend on r, and E is proportional to r.(c) Examine the sensitivity to the maximum sustainable population. Consider both the optimum level of effort and the resulting population level.Generalize the model in part (a) to obtain the assumptiong= 0.08 x (1 - x / K)where currently K = 400,000. Then we havey = f(x) = 0.08 x (1 - x / K)and the optimum is at x = K / 2, f(x) = 0.02 K which leads toE = 4000. ThenS(x , K) = 1S(E , K) = 0because E does not depend on K, and x is proportional to K.6. In problem 5, suppose that the cost of whaling is $500 per boat-day, and the price of a fin whale carcass is $6,000.(a) Find the level of effort that will maximize profit over the long term. Model as a one-variable optimization problem using the five-step method.Step 1: Ask the question.Variables:x = population (whales)E = level of effort (boat-days)g= growth rate (whales per year)h= harvest rate (whales per year)R = revenue (dollars per year)C = cost (dollars per year)P = profit (dollars per year)Assumptions:g= 0.08 x (1 - x / 400,000)h= .00001 E xR= 6000 hC= 500 EP = R - Cg= h,x >= 0,E >= 0Objective:Maximize P.Step 2: Select the modeling approach.We will model this problem as a one variable optimization problem. See text p. 6.Step 3: Formulate the model.Setting g = h we see thatE = 0.08 (1 - x / 400,000) / .00001= 8000 - .02 xLet y = P, and writey = f(x) = 6000 (.00001 E x) - 500 E= (.06 x - 500) E= -.0012 x^2 + 490 x - 4,000,000.Our goal is to maximize f(x) over the interval x >= 0.Step 4: Solve the model.Compute f '(x) = 0 at x = 204,167, f(x) = 4.60208*10^7 and since the graph of f(x) is a parabola we know this is the global maximum.Step 5: Answer the question.According to this model, the optimal policy is to harvest 7997 whales per year, which requires controlling the level of effort at 3917 boat-days per year. This will maintain the population of whales at 204,167 and will net the industry an annual profit of around 46 million dollars.(b) Examine the sensitivity to the cost of whaling. Consider both the eventual profit in $ / year and the level of effort.Generalize the model in part (a) to obtain the assumptiony = f(x) = 6000 (.00001 E x) - w E= (.06 x - w) E= -.0012 x^2 + (480+.02 w) x - 8000 w.where currently w = 500. Then the optimum is at x = 200,000 + 25w/3,P = f(x) = (1/12) (w - 24000)^2 which leads to E = (24000 - w)/6. ThenS(P , w) = (dP/dw) (w/P) = -0.04S(E , w) = (dE/dw) (w/E) = -0.02so if the cost of whaling goes up by 10% then the optimal profit decreases by 0.4% and the optimal level of effort decreases by 0.2 %.(c) Examine the sensitivity to the price of a fin whale carcass. Consider both profit and level of effort.Generalize the model in part (a) to obtain the assumptiony = f(x) = c (.00001 E x) - 500 E= (.00001 c x - 500) E= -(c/5,000,000) x^2 + (2c/25 + 10) x - 4,000,000.where currently c = 6000. Then the optimum is at x = 200,000 (c + 125)/c,f(x) = 8000 ( c^2 - 250 c + 15625) / c which leads to E = 4000(c-125)/c. Then S(P , c) = (dy/dc) (c/y) = 1.04S(E , c) = (dE/dc) (c/E) = 0.02so if the price of a fin whale carcass goes up by 10% then the optimal profit increases by about 10.4% and the optimal level of effort increases by 0.2 % .(d) Over the past 30 years there have been several unsuccessful attempts to ban whaling worldwide. Examine the economic incentives for whalers to continue harvesting. In particular, determine the conditions (values of the two parameters: cost per boat-day and price per fin whale carcass) under which harvesting the fin whale produces a sustained profit over the long term.From part (b) we see that the optimal profit is P = f(x) = (1/12) (w - 24000)^2 at $6000per carcass, so that the industry makes a profit whenever the cost of whaling is below $24,000 per boat-day. From part (c) we see that P = 8000 ( c^2 - 250 c + 15625) / c at $500 per boat-day, in which case the industry makes a profit whenever the price per carcass exceeds $125. It is difficult analytically to consider the optimal P as a function of both c and w together, but using our sensitivity results we have approximately thatP = 46,000,000 + 1.04 (46,000/6) (c-6,000) - 0.04 (460,000/5) (w-500)and then P>0 whenever c > 6w/13 or in other words the industry makes a profit as long as the price of a fin whale carcass is a bit more than half of the cost per boat-day of whaling.Thus there is a very strong profit motive to continue whaling.7. Reconsider the pig problem of Example 1.1, but now suppose that our objective is to maximize our profit rate ($/day). Assume that we have already owned the pig for 90 days and have invested $100 in this pig to date.(a) Find the best time to sell the pig. Use the five-step method, and model as a one-variable optimization problem.Step one is the same as in figure 1.1 of the text, except that we add a new variable Q =profit per day ($/day), we assume C = 100 + 0.45 t, Q = P / (t + 90), and our objective is to optimize profit per day. This is a one variable optimization problem. Letting x = t and y = f (x) = Q we are to find the maximum of the functionf (x) = ((200 + 5 x) (0.65 - 0.01 x) - (100+ 0.45 x)) / (x + 90)over the set of all nonnegative x. The graph indicates a maximum around x = 4.5,f (x) = 0.345.GRAPHING UTILITYy = f(x)0.3300.3320.3340.3360.3380.3400.3420.3440.34612345678910y x Computef '(x) = -(x^2+180*x-840)/(20*(x+90)^2) = 0at x = 2*SQRT(2235)-90 or approximately x = 4.55. Then the farmer should sell the pig in 4 or 5 days to maximize profit per day, or the rate at which the farmer earns income.(b) Examine the sensitivity to the growth rate of the pig. Consider both the best time to sell and the resulting profit rate.Let g denote the growth rate of the pig, where currently we assume g = 5 lbs / day. Now we are to find the maximum of the functionf (x) = ((200 +g x) (0.65 - 0.01 x) - (100+ 0.45 x)) / (x + 90)over the set of all nonnegative x. Computef '(x) = -(g*x^2+180*g*x-150*(39*g-167))/(100*(x+90)^2) = 0atx = 5*SQRT(6)*(SQRT(93*g-167)-3*SQRT(6)*SQRT(g))/SQRT(g)and then at g = 5 we haveS(x, g) = (dx / dg) (g / x) = 4.82so that if the pig grows 1% faster than expected, we should wait 5% longer to sell the pig. Substituting into y = f(x) we can also compute thatS(y, g) = (dy / dg) (g / y) = 0.42so that if the pig grows 10% faster then expected we should gain an additional 4% profit per day.(c) Examine the sensitivity to the rate at which the price for pigs is dropping. Consider both the best time to sell and the resulting profit rate.Let r denote the rate at which price is falling, where currently r = 0.01 ($/day). Then we are to maximizef (x) = ((200 + 5 x) (0.65 - r x) - (100+ 0.45 x)) / (x + 90)over the set of all nonnegative x. Computef '(x) = -(5*r*x^2+900*r*x+6*(3000*r-37))/(x+90)^2 = 0atx = SQRT(30)*(SQRT(3750*r+37)-15*SQRT(30)*SQRT(r))/(5*SQRT(r))and then at r = 0.01 we haveS(x, r) = (dx / dr) (r / x) = -5.16so that if the price drops 1% faster than expected, we should sell the pig 5% sooner. Substituting into y = f(x) we can also compute thatS(y, r) = (dy / dr) (r / y) = -0.31so that if the price drops 10% faster then expected then we will lose about 3% of our expected profit per day.8. Reconsider the pig problem of Example 1.1, but now take into account the fact that the growth rate of the pig decreases as the pig gets older. Assume that the pig will be fully grown in another five months.(a) Find the best time to sell the pig in order to maximize profit. Use the five-step method, and model as a one-variable optimization problem.The results of step one are the same as in figure 1.1 of the text, except that now we assume the growth rate of the pig is r (lbs/day) where r = 5 - t / 30 so that the weightw (lbs) of the pig after t days is w = 200 + (5 - t / 30) t. Then we need to maximizef (x) = (200 + (5 - x / 30) x) (0.65 - 0.01 x) - 0.45 xover the set of all nonnegative x. The graph indicates a maximum around x = 6,f (x) = 132.GRAPHING UTILITYy = f (x)132.5132.0131.5y131.0130.5130.0xWe compute thatf '(x) = (3*x^2-430*x+2400)/3000 = 0at x = 215/3-5*SQRT(1561)/3 = 5.82 so that f (x) = 132.29. Then the farmer should sell the pig after 6 days, and the expected net profit will be about $132.(b) Examine the sensitivity to the time it will take until the pig is fully grown. Consider both the best time to sell and the resulting profit.We generalize our previous model. Let a denote the rate at which the growth of the pig slows. Currently a = 1.0 lbs/day per month. Now the problem is to maximizef (x) = (200 + (5 - a x / 30) x) (0.65 - 0.01 x) - 0.45 xover the set of all nonnegative x. For values of a near 1.0 the maximum should occur at a point near x = 6 where f '(x) = 0. We compute thatf '(x) = (3*a*x^2-10*x*(13*a+30)+2400)/3000 = 0at x = -5*(SQRT(169*a^2+492*a+900)-13*a-30)/(3*a). Then at a = 1.0 we haveS(x, a) = (dx / da) (a / x) = -0.28so that if the pig stops growing 10% sooner than expected, then we should sell the pig 3% sooner. Substituting into the formula for y = f (x) we may also compute thatS(y, a) = (dy / da) (a / y) = -0.005so that the resulting profit is almost totally insensitive to the rate at which the pig stops growing. This makes sense because the growth rate of the pig will not change much in the 6 or so days until we sell.9. A local daily newspaper with a circulation of 80,000 subscribers is thinking of raising its subscription price. Currently the price is $1.50 per week, and it is estimated that the paper would lose 5,000 subscribers if the rate were to be raised by 10 cents/week.(a) Find the subscription price that maximizes profit. Use the five-step method, and model as a one-variable optimization problem.Step 1: Ask the question.Variables:p = subscription price ($/paper)s = number of subscriptions (papers)P= profit ($)Assumptions:s= 80000 - 50000 (p - 1.50)P= p ss>= 0p >= 0Objective:Maximize P.Step 2: Select the modeling approach.We will model this problem as a one variable optimization problem. See text p. 6.Step 3: Formulate the model.Let x = p and y = P, and writey = f(x) = x (80000 - 50000 (x - 1.50)).Our goal is to maximize f(x) over the interval [0, 3.10] since these are the only values of x that satisfy both s >= 0 and p >= 0. In other words, price cannot be negative, and according to our model the number of subscriptions drops to zero when price is raised to $3.10.Step 4: Solve the model.A graph of the function f (x) shows that the maximum occurs at around x = 1.5 andf (x) = 120,000.GRAPHING UTILITYy = f (x)-200000200004000060000800001000001200001400000.00.5 1.0 1.52.0 2.53.0 3.5y xCompute f '(x) = 5000*(31-20*x) = 0 at x = 31/20 = 1.55, f(x) = 120125 which is the global maximum.Step 5: Answer the question.According to this model, the optimal policy is to raise the price of the paper by 5 cents to $1.55 per week. The resulting profit (actually it is revenue since we have not accounted for any costs in our model) is $120,125 per week as opposed to $120,000 currently.(b) Examine the sensitivity of your answer in part (a) to the assumption of 5,000 lost subscribers. Calculate the optimal subscription rate assuming that this parameter is 3,000, 4,000, 5,000, 6,000, or 7,000.We repeat the above procedure with the parameter 10 n = 50000 replaced by 30000, ...to obtain the following results:n x y3000 2.081302104000 1.751224905000 1.551201256000 1.421204107000 1.32122220(c) Let n = 5,000 denote the number of subscribers lost when the subscription price increases by 10 cents. Calculate the optimal subscription price p as a function of n, and use this formula to determine the sensitivity S(p,n).Now we need to maximizef (x) = x (80000 - 10 n (x - 1.50))where currently n = 5000. For values of n near 5000 the maximum should occur at the point near x = 1.50 where f '(x) = 0. We calculate thatf '(x) = -5*(4*n*x-3*n-16000) = 0at p = x = (3*n+16000)/(4*n). Then at n = 5000 we find thatS(p, n) = (dp / dn) ( n / p) = -16000/(3*n+16000) = -16/31 = -0.52so that if the number n of lost subscriptions for a 10 cent price increase is 20% higher than expected, then the optimal price is about 10% lower. This is in rough agreement with the results of part (b) above.(d) Should the paper change its subscription price? Justify your conclusions in plain English.The newspaper should not make a change in its subscription price based on the results of this model. The chart in part (b) shows that for current estimate of n = 5000 we are already very close to the optimal subscription price. In fact the results of part (a) show that we are within 5 cents. If we did raise the price by 5 cents we would only increase our revenue by an estimated $125 or about 0.10 percent. The likely magnitude of error in our estimate of n is probably at least 10 or 20 percent, and so in fact the optimal price may be slightly higher or lower than the current price of $1.50 per week.。

华东师大数模第2章答案02~ch2_solutions

华东师大数模第2章答案02~ch2_solutions

> > > > >
dxdK1:=diff(x,K1): dydK1:=diff(y,K1): assign(K1=150000); sxK1:=dxdK1*(K1/x); syK1:=dydK1*(K1/y); sxK1 := 1.001502253 syK1 := -.01760602687
Then S(x, K_1) = +1.0015 and S(y, K_1) = -0.0176 so that if the carrying capacity for Blue whales increases by 10% then the optimal population for Blue whales increases by about 10% and the optimal population for Fin whales stays about the same. Now compute that > restart: > z:=0.05*x*(1 - x / 150000) - 10^(-8)* x* y + 0.08* y* (1 - y / K2) - 10^(-8)* x*y; 1 1 y z := .05 x x x y + .08 y 1 − − 1 − 150000 50000000 K2 > dzdx:=diff(z,x); > dzdy:=diff(z,y); dzdx := .05 − .6666666666 10-6 x − dzdy := − 1 x + .08 − 1 50000000 .16 y K2 y
{ y = 196544.8172, x = 69103.65549 }

数学建模试卷(答案)讲解学习

数学建模试卷(答案)讲解学习

数学建模试卷2009(答案)华中科技大学《数学建模》考试卷(半开卷)2009~2010学年度第一学期成绩学号专业班级姓名一、选择题(每题2分,共10分)(1)建模预测天气。

在影响天气的诸多因素及相互关系中,既有已知的又有许多未知的非确定的信息。

这类模型属于( b )。

a.白箱模型b.灰箱模型c.黑箱模型(2)在城镇供水系统模型中,水箱的尺寸是( c )。

a.常量b.变量c.参数(3)在整理数据时,需处理和分析观测和实验数据中的误差,异常点来源于( c )。

a.随机误差b.系统误差c.过失误差(4)需对一类动物建立身长与体重关系的模型。

在对模型的参数进行估计时,如已有30组数据,且参数估计精度要求较高,应采用( b )估计参数。

a.图解法b.统计法c.机理分析法(5)在求解模型时,为了简化方程有时会舍弃高价小量(如一阶近似、二阶近似等),由此带来一定的误差,此误差是( a )。

a.截断误差b.假设误差c.舍入误差二、填空题 (每空1分,共10分)(1)已知函数 ()()22y 1a sin x a cos x ωωω=++,当a 很小时,一阶近似为( ()y 1a sin x ω=+ ),当ω很小时,二阶近似为( 22y 1a x a ωω=++ ),而当x 很小时,一阶近似为( 22y 1a x a ωω=++ ),二阶近似为( 222421y 1a x a a x 2ωωω=++- )。

(2)学校共有3个系, 甲系103人,乙系63人,丙系34人。

学生会共设有20个成员,按Hamilton 方法分配名额为(10 ,6 ,4 ),按Q 值法分配名额为( 11 ,6 ,3 )。

(3)使用三次样条函数()()3n 123j j 23301j 1x x xxS x x 2!3!3!βαααα-+=-=++++∑进行插值,在两节点间()3S x 是( 3 )次多项式,在每个节点上()3S x 既连续又( 光滑 )。

数学建模题库

数学建模题库

数学建模题库数学建模知识竞赛试题库一、填空题1. 随着电子计算机的出现和科学技术的迅猛发展,数学的应用已不再局限于传统的物理领域,而正以空前的广度和深度逐步渗透到人类活动的各个领域。

生物、医学、军事、社会、经济、管理,, ,各学科、各行业都涌现出大量的实际课题,亟待人们去研究、去解决。

2. 数学是研究现实世界数量关系和空间形式的科学。

3. 数和形是数学研究的最基本的对象,自然界无不可以用数和形以及它们的发展和变化形态及规律加以描述的,因此数学是无时不在,无处不在的。

4. “科学技术是生产力”,而数学是生产力发展的基石和源泉。

5. 当今信息时代的一个重要特点是数学的应用向一切领域渗透,高科技与数学的关系关系日益密切,产生了许多与数学相结合的新科学,如数学化学、数学生物学、数学地质学、数学社会学等。

6. “信息时代高科技的竞争本质上是数学的竞争”,“当今如此受到称颂的‘高科技'本质上是一种数学技术”7. 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决" 实际问题的一种强有力的数学手段。

8. 数学模型具有预测、判别、解释三大作用,其中预测功能是数学模型价值的最重要的体现。

9. 数学模型的预测功能就是用数学模型的知识和规律预测未来的发展,为人们的行为提供指导。

10. 数学模型的判别功能就是用数学模型来判断原来知识、认识的可靠性。

11. 数学模型的解释功能就是用数学模型说明事物发生的原因。

12. 一般来说,数学建模时为了构建数学模型而进行的准备、假设、建立、求解、分析、检验和应用的全过程。

13. 数学建模的基本方法有:1) 机理分析法2)数值分析法3)构造分析法4) 现成数学法5) 直观分析法14. 建立数学模型的主要步骤是:(1) 准备(2) 假设(3) 建模(4) 求解(5) 分析(6) 检验(7)应用15. 鉴别所建立数学模型好坏的方法就是让它接受实践的检验。

2023高中数学数学建模与应用复习 题集附答案

2023高中数学数学建模与应用复习 题集附答案

2023高中数学数学建模与应用复习题集附答案2023高中数学数学建模与应用复习题集附答案本文为高中数学数学建模与应用复习题集,涵盖了相关题目及其解答。

以下是题目与解答的具体内容:一、单选题1. 已知函数$f(x)=\frac{1}{2}x^2+3x+2$,则$f(-3)=$A. 4B. 5C. 6D. 7解答:将$x=-3$代入函数$f(x)$,得到:$$f(-3)=\frac{1}{2}(-3)^2+3(-3)+2=7$$因此,答案为D. 7。

2. 设数列$\{a_n\}$的通项公式为$a_n=n^2-3n+5$,则$a_5=$A. 11B. 14D. 25解答:将$n=5$代入数列通项公式,得到:$$a_5=5^2-3\times5+5=11$$因此,答案为A. 11。

二、多选题1. 函数$f(x)$在区间$(a,b)$上连续,则必定在该区间上必存在一点$c$,使得$f(c)$等于下列哪些值?A. $f(a)$B. $f(b)$C. $\frac{f(a)+f(b)}{2}$D. $f(\frac{a+b}{2})$解答:根据连续函数的性质,若函数$f(x)$在区间$(a,b)$上连续,则必定在该区间上存在介于最大值和最小值之间的所有值。

因此,答案为A、B、C、D。

2. 以下哪些数对应的立方根是有理数?A. 2C. 8D. 27解答:立方根是有理数的条件是原数是一个整数的立方。

根据选项,只有8是另一个整数的立方,因此答案为C. 8。

三、填空题1. 若正方形的面积为16平方米,则它的边长是\_\_\_米。

解答:设该正方形的边长为$x$,根据题意可得:$$x^2=16$$解得$x=4$,因此答案为4米。

2. 已知函数$f(x)$的定义域为$[-1, 1]$,则$f(-1)=$\_\_\_。

解答:将$x=-1$代入函数$f(x)$,得到:$$f(-1)=-1$$因此,答案为-1。

四、解答题1. 某校有男生和女生各500人,其中30%的男生和20%的女生是学习数学建模的,那么同时学习数学建模的学生有多少人?解答:男生学习数学建模的人数为$0.3\times500=150$人,女生学习数学建模的人数为$0.2\times500=100$人,因此,同时学习数学建模的学生共有150+100=250人。

华师题库《数学建模》

华师题库《数学建模》

某成功人士向学院捐献20万元设立优秀本科生奖学金,学院领导打算将这笔捐款以整存整取一年定期的形式存入银行,第二年一到期就支取,取出一部分作为当年的奖学金,剩下的继续以整存整取一年定期的形式存入银行……请你研究这个问题,并向学院领导写一份报告.解:记存款的年利息为r ,由于一开始存入银行的本金为x0,第k 年存入银行的钱为X k,并且每年取出当奖金的钱为b,则它们之间存在的关系有:每年利息=本年存入款项⨯ 年利息每年取出款项=上一年存入款项+每年利息每年存入款项=每年取出款项- 奖金列式得:由上式解得由实际情况,已知x0=20(万元),r在近10多年的变化幅度在2%~4%之间,我们取3个值,分别为2%,3%,4%,(1)当年利率为2%时,每年存入款项随奖金数变化如下年数\奖金数额 2千元 4千元 6千元0 20.0000 20.0000 20.00001.0000 20.2000 20.0000 19.80002.0000 20.4040 20.0000 19.59603.0000 20.6121 20.0000 19.38794.0000 20.8243 20.0000 19.17575.0000 21.0408 20.0000 18.95926.0000 21.2616 20.0000 18.73847.0000 21.4869 20.0000 18.51318.0000 21.7166 20.0000 18.28349.0000 21.9509 20.0000 18.049110.0000 22.1899 20.0000 17.810111.0000 22.4337 20.0000 17.566312.0000 22.6824 20.0000 17.317613.0000 22.9361 20.0000 17.063914.0000 23.1948 20.0000 16.805215.0000 23.4587 20.0000 16.541316.0000 23.7279 20.0000 16.272117.0000 24.0024 20.0000 15.997618.0000 24.2825 20.0000 15.717519.0000 24.5681 20.0000 15.431920.0000 24.8595 20.0000 15.140521.0000 25.1567 20.0000 14.843322.0000 25.4598 20.0000 14.540223.0000 25.7690 20.0000 14.231024.0000 26.0844 20.0000 13.915625.0000 26.4061 20.0000 13.593926.0000 26.7342 20.0000 13.265827.0000 27.0689 20.0000 12.931128.0000 27.4102 20.0000 12.589829.0000 27.7584 20.0000 12.2416 30.0000 28.1136 20.0000 11.8864①当年利率为2%,学金定为4千元时,因为0,100><<x r , 经验算得知rb x x k ==0,因此存款的数额将趋于稳定.②当年利率为2%,奖学金的数额大于4 千元时,k x 单调递减并且将在某一年变为零.同理,当奖学金的数额小于4 千元时,存款的数额将会无限增长. (2) 当年利率为3%时,每年存入款项随奖金数变化如下年数\奖金数额4千元6千元8千元0 20.0000 20.0000 20.00001.0000 20.2000 20.0000 19.80002.0000 20.4060 20.0000 19.59403.0000 20.6182 20.0000 19.38184.0000 20.8367 20.0000 19.16335.0000 21.0618 20.0000 18.93826.0000 21.2937 20.0000 18.70637.0000 21.5325 20.0000 18.46758.0000 21.7785 20.0000 18.22159.0000 22.0318 20.0000 17.968210.0000 22.2928 20.0000 17.707211.0000 22.5616 20.0000 17.438412.0000 22.8384 20.0000 17.161613.0000 23.1236 20.0000 16.876414.0000 23.4173 20.0000 16.582715.0000 23.7198 20.0000 16.280216.0000 24.0314 20.0000 15.968617.0000 24.3523 20.0000 15.647718.0000 24.6829 20.0000 15.317119.0000 25.0234 20.0000 14.976620.0000 25.3741 20.0000 14.625921.0000 25.7353 20.0000 14.264722.0000 26.1074 20.0000 13.892623.0000 26.4906 20.0000 13.509424.0000 26.8853 20.0000 13.114725.0000 27.2919 20.0000 12.708126.0000 27.7106 20.0000 12.289427.0000 28.1419 20.0000 11.858128.0000 28.5862 20.0000 11.413829.0000 29.0438 20.0000 10.956230.0000 29.5151 20.0000 10.4849①年利率为3%,学金定为6千元时,因为0,100><<x r , 经验算得知r b x x k ==0,因此存款的数额将趋于稳定. ② 当年利率为3%,奖学金的数额大于6 千元时,k x 单调递减并且将在某一年变为零.同理,当奖学金的数额小于6 千元时,存款的数额将会无限增长.(3) 当年利率为4%时,每年存入款项随奖金数变化如下 年数\奖金数额 6千元 8千元 1万元0 20.0000 20.0000 20.00001.0000 20.2000 20.0000 19.80002.0000 20.4080 20.0000 19.59203.0000 20.6243 20.0000 19.37574.0000 20.8493 20.0000 19.15075.0000 21.0833 20.0000 18.91676.0000 21.3266 20.0000 18.67347.0000 21.5797 20.0000 18.42038.0000 21.8428 20.0000 18.15729.0000 22.1166 20.0000 17.883410.0000 22.4012 20.0000 17.598811.0000 22.6973 20.0000 17.302712.0000 23.0052 20.0000 16.994813.0000 23.3254 20.0000 16.674614.0000 23.6584 20.0000 16.341615.0000 24.0047 20.0000 15.995316.0000 24.3649 20.0000 15.635117.0000 24.7395 20.0000 15.260518.0000 25.1291 20.0000 14.870919.0000 25.5342 20.0000 14.465820.0000 25.9556 20.0000 14.044421.0000 26.3938 20.0000 13.606222.0000 26.8496 20.0000 13.150423.0000 27.3236 20.0000 12.676424.0000 27.8165 20.0000 12.183525.0000 28.3292 20.0000 11.670826.0000 28.8623 20.0000 11.137727.0000 29.4168 20.0000 10.583228.0000 29.9935 20.0000 10.006529.0000 30.5933 20.0000 9.406730.0000 31.2170 20.0000 8.7830①年利率为4%,学金定为8千元时,因为0,100><<x r , 经验算得知r b x x k ==0,因此存款的数额将趋于稳定. ② 当年利率为4%,奖学金的数额大于8 千元时,k x 单调递减并且将在某一年变为零.同理,当奖学金的数额小于8 千元时,存款的数额将会无限增长.某种山猫在较好、中等及较差的自然环境下,年平均增长率分别为1.68%、0.55%和-4.5%. 假设开始时有100只山猫,按以下情况分别讨论山猫数量逐年变化的过程及趋势:(1) 三种自然环境下25年的变化过程,结果要列表并图示;(2) 如果每年捕获3只,山猫数量将如何变化?会灭绝吗?如果每年只捕获1只呢?(3) 在较差的自然环境下,如果要使山猫数量稳定在60只左右,每年要人工繁殖多少只?①解记第k年山猫x k,设自然坏境下的年平均增长率为r,则列式得x k+1=(1+r)x k, k=0,1,2…其解为等比数列x k=x0(1+r)k, k=0,1,2…当分别取r=0.0168 , 0.0055和-0.0450时,山猫的数量在25年内不同的环境下的数量演变为年较好中等较差0 100 100 1001 102 101 962 103 101 913 105 102 874 107 102 835 109 103 796 111 103 767 112 104 728 114 104 699 116 105 6610 118 106 6311 120 106 6012 122 107 5813 124 107 5514 126 108 5215 128 109 5016 131 109 4817 133 110 4618 135 110 4419 137 111 4220 140 112 4021 142 112 3822 144 113 3623 147 113 3524 149 114 3325 152 115 32从上可以得出结论:(1)在较好的自然环境下即r=0.0168时,x k单调增趋于无穷大,山猫的数量将无限增长;(2)在中等的自然环境下即r=0.0055时,x k单调增并且趋于稳定值;(3)在较差的环境中即r=-0.0450时,x k单调衰减趋于0,山猫将濒临灭绝。

《第1部分 数学建模活动案例》试卷及答案_高中数学必修第四册_沪教版_2024-2025学年

《第1部分 数学建模活动案例》试卷及答案_高中数学必修第四册_沪教版_2024-2025学年

《第1部分数学建模活动案例》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、在解决数学建模问题时,以下哪个步骤是首要的?()A、收集数据B、建立数学模型C、求解模型D、验证模型2、在数学建模活动中,以下哪个步骤不属于模型求解阶段?A. 模型建立B. 模型求解C. 模型检验D. 模型分析3、已知某班级有40名学生,男生人数为x,女生人数为y,则以下哪个方程可以表示这个班级的性别比例关系?A. x + y = 40B. x - y = 0C. x / y = 1 / 2D. 2x + y = 404、已知某校高一学生参加数学建模活动的比例为30%,若随机抽取10名学生,则预计参加数学建模活动的学生人数约为()A. 3人B. 4人C. 5人D. 6人5、某工厂生产一批产品,计划每天生产200个,但实际生产效率比计划高,5天内就完成了生产任务。

如果每天多生产50个,则可以在4天内完成任务。

设实际每天生产的产品数量为x个,则根据题意可以列出方程:200 * 5 = x * 4 + 50 * 4请选择下列选项中正确的一个:A. x = 150B. x = 175C. x = 200D. x = 2256、已知某校计划在校园内种植树木,考虑到美观和绿化,决定在道路两侧种植一定数量的树木。

若在每侧种植5棵树,则道路的总长度为50米;若在每侧种植6棵树,则道路的总长度为60米。

设道路的宽度为x米,每棵树的间隔为y米,则下列方程中正确的是()A. 5(x+y)=50B. 6(x+y)=50C. 5(x+2y)=50D. 6(x+2y)=607、某城市为了优化公共交通系统,计划在人口密集区域增设公交线路。

假设每增加一条公交线路可以服务的人口数呈递减趋势,即第一条线路可服务1000人,第二条线路可服务900人,以此类推,每新增一条线路,服务人数减少100人。

如果该市计划通过增加公交线路来覆盖3000人的出行需求,那么至少需要增加几条公交线路?A. 2B. 3C. 4D. 58、在解决实际问题时,建立数学模型的第一步是:A、确定数学模型的形式B、收集相关数据C、分析问题,提出假设D、选择合适的数学工具二、多选题(本大题有3小题,每小题6分,共18分)1、某城市交通管理部门为了研究城市交通拥堵情况,收集了早高峰时段某主要干道上通过车辆的数量数据,并假设这些数据服从正态分布。

华师数学建模考试资料

华师数学建模考试资料

数学建模名词解释:一阶差分方程标准答案:2.第9题名词解释:数学模型标准答案:数学模型(Mathematical Model)就是由数字、字母或者其她数学符号组成得,描述现实对象数量规律得数学公式、图形或算法、3.第10题名词解释:二阶差分方程4。

第15题名词解释:(1)线性规划模型;(2)线性规划模型得可行域;(3)线性规划模型得最优解与最优值;(4)不可行得线性规划模型;(5)无界得线性规划模型、标准答案:5。

第4题标准答案:6。

第11题司机在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到车完全停住汽车行驶得距离称为刹车距离,车速越快,刹车距离越长、请问刹车距离与车速之间具有怎样得数量关系7.第12题考虑弹簧-质量系统,收集弹簧伸长得长度与弹簧末端悬挂得质量得实验数据,记录在表1(单位省略)、请计算出伸长与质量得函数关系得经验公式、表1 弹簧伸长与质量得测量数据质量50100150200250300伸长1、0001、8752、7503、2504、3754、875质量350400450500550伸长5、6756、5007、2508、0008、750标准答案:8.第14题(接续47 酶促反应(1)与48酶促反应(2))请分析Michaelis—Menten模型非线性拟合与线性化拟合得结果有何区别?原因就是什么?标准答案:您得答案:题目分数:4、0此题得分:0、09.第1题阅读材料电声器材厂在生产扬声器得过程中,有一道重要得工序:使用AB胶粘合扬声器中得磁钢与夹板、长期以来,由于对AB胶得用量没有一个确定得标准,经常出现用胶过多,胶水外溢;或用胶过少,产生脱胶,影响了产品质量、表1就是一些恰当用胶量得具体数据、2设自变量x为磁钢面积,因变量y为恰当用胶量,用以下MATLAB脚本做一元线性回归分析得计算:x=[11、0;19、4;26、2;46、6;56、6;67、2;125、2;189、0;247、1;443、4];y=[0、164;0、396;0、404;0、664;0、812;0、972;1、688;2、86;4、076;7、332];X=[ones(size(x)),x];[b,bint,r,rint,stat]=regress(y,X)命令窗口显示得计算结果:b =-0、101210、016546bint =-0、24763 0、0452090、015728 0、017365r =0、08320、176210、071696—0、0058489-0、023312-0、038703-0、28239-0、166040、0886160、096575rint =-0、2348 0、4012-0、11393 0、46635—0、2522 0、39559-0、33976 0、32806-0、35828 0、31166-0、374080、29667-0、51782 -0、046954—0、468950、13686—0、2249 0、40213-0、077904 0、27105stat =0、99633 2174 4、948e-011 0、02121问题请将计算结果整理成表格,并进行分析、标准答案:10。

数学建模 复习资料

数学建模 复习资料

数学建模模拟复习资料一、单项选择题1、建模预测天气。

在影响天气的诸多因素及相互关系中,既有已知的又有许多未知的非确定的信息。

这类模型属于( B )。

A 、白箱模型B 、灰箱模型C 、黑箱模型 2、在城镇供水系统模型中,水箱的尺寸是( C )。

A 、常量B 、变量C 、参数 3、对黑箱系统一般采用的建模方法是 ( C ) 。

A 、机理分析法 B 、几何法 C 、系统辩识法D 、代数法4、在整理数据时,需处理和分析观测和实验数据中的误差,异常点来源于( C )。

A 、随机误差B 、系统误差C 、过失误差5、需对一类动物建立身长与体重关系的模型。

在对模型的参数进行估计时,如已有30组数据,且参数估计精度要求较高,应采用( B )估计参数。

A 、图解法B 、统计法C 、机理分析法6、在求解模型时,为了简化方程有时会舍弃高价小量(如一阶近似、二阶近似等),由此带来一定的误差,此误差是( A )。

A 、截断误差B 、假设误差C 、舍入误差 二、填空题 1、若,,x z z y ∝∝则y 与x 的函数关系是 k kx y ,=是比例常数 .2、在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 )()(2211t n p m t n p m +<+ .3、马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了 增长率是常数还是人口的递减函数 。

4、在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 类比 的方法建立了模型.5、力学中把质量、长度、时间的量纲作为 基本量纲 。

6、一个理想的数学模型需满足模型的适用性和模型的可靠性。

三、简答题1、一般情况下,建立数学模型要经过哪些步骤?答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模名词解释:一阶差分方程标准答案:2.第9题名词解释:数学模型标准答案:数学模型(Mathematical Model)是由数字、字母或者其他数学符号组成的,描述现实对象数量规律的数学公式、图形或算法.3.第10题名词解释:二阶差分方程4.第15题名词解释:(1)线性规划模型;(2)线性规划模型的可行域;(3)线性规划模型的最优解和最优值;(4)不可行的线性规划模型;(5)无界的线性规划模型.标准答案:5.第4题标准答案:6.第11题司机在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到车完全停住汽车行驶的距离称为刹车距离,车速越快,刹车距离越长. 请问刹车距离与车速之间具有怎样的数量关系7.第12题考虑弹簧-质量系统,收集弹簧伸长的长度与弹簧末端悬挂的质量的实验数据,记录在表1(单位省略). 请计算出伸长与质量的函数关系的经验公式.表1 弹簧伸长和质量的测量数据伸长 5.675 6.5007.2508.0008.750标准答案:8.第14题(接续47 酶促反应(1)和48酶促反应(2))请分析Michaelis-Menten模型非线性拟合和线性化拟合的结果有何区别?原因是什么?标准答案:您的答案:题目分数:4.0此题得分:0.09.第1题阅读材料电声器材厂在生产扬声器的过程中,有一道重要的工序:使用AB胶粘合扬声器中的磁钢与夹板. 长期以来,由于对AB胶的用量没有一个确定的标准,经常出现用胶过多,胶水外溢;或用胶过少,产生脱胶,影响了产品质量. 表1是一些恰当用胶量的具体数据.2设自变量x为磁钢面积,因变量y为恰当用胶量,用以下MATLAB脚本做一元线性回归分析的计算:x=[11.0;19.4;26.2;46.6;56.6;67.2;125.2;189.0;247.1;443.4];y=[0.164;0.396;0.404;0.664;0.812;0.972;1.688;2.86;4.076;7.332];X=[ones(size(x)),x]; [b,bint,r,rint,stat]=regress(y,X)命令窗口显示的计算结果:b =-0.101210.016546bint =-0.24763 0.0452090.015728 0.017365r =0.08320.176210.071696-0.0058489-0.023312-0.038703-0.28239-0.166040.0886160.096575rint =-0.2348 0.4012-0.11393 0.46635-0.2522 0.39559-0.33976 0.32806-0.35828 0.31166-0.37408 0.29667-0.51782 -0.046954-0.46895 0.13686-0.2249 0.40213-0.077904 0.27105stat =0.99633 2174 4.948e-011 0.02121问题请将计算结果整理成表格,并进行分析.标准答案:10.第6题标准答案:您的答案:题目分数:5.0 此题得分:0.011.第7题标准答案:您的答案:题目分数:9.0 此题得分:0.012.第8题标准答案:您的答案:题目分数:8.0此题得分:0.013.第16题某营养师要为某个儿童预定午餐和晚餐,已知一个单位的午餐含12个单位的碳水化合物,6个单位蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C. 另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C. 如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?标准答案:您的答案:题目分数:8.0 此题得分:0.014.第2题标准答案:您的答案:题目分数:4.0此题得分:0.0教师未批改15.第5题写出以下公式:按照最小二乘法,由样本数据计算一元线性回归模型的回归系数的点估计.标准答案:您的答案:题目分数:5.0此题得分:0.0教师未批改16.第13题请概括数学软件MATLAB的特点。

标准答案:MATLAB具有强大的数值计算和图形功能,兼具符号计算功能. MATLAB的特点可以概括为:(1)以矩阵计算为基础;(2)计算功能强,编程效率高;(3)方便的绘图功能;(4)集成环境,融计算、可视化和编程功能于一体;(5)众多工具箱,使用简便,易于扩充.您的答案:题目分数:2.0此题得分:0.0教师未批改17.第17题请简述函数M文件的语法格式。

标准答案:函数M文件总是以关键字function开始,先说明函数名、输入和输出,语法格式如下:function [output-name, ……]=function-name(input-name, ……)输出变量名列表用一对方括号括住,变量名之间用逗号分隔。

输入变量名列表用一对圆括号括住,变量名之间也用逗号分隔。

接着函数说明的是语句体。

您的答案:题目分数:4.0此题得分:0.0教师未批改18.第18题MATLAB规定逗号有哪些用途?标准答案:命令之后加一个逗号,MATLAB执行命令,并显示结果。

创建数值数组时,同一行的元素用逗号或空格分隔。

输入或输出变量名之间用逗号分隔。

您的答案:题目分数:2.0此题得分:0.0教师未批改19.第19题什么是强健性分析?为什么要做强健性分析?“强健的模型”有什么含义?标准答案:强健性就是模型假设相对于实际情况的精确程度对模型解答的影响. 从现实对象到数学模型,需要提出一些模型假设,假设相对于实际情况的精确程度,会影响数学模型能否取得符合或近似现实对象信息的解答. 如果模型假设相对于实际情况的精确程度对模型解答的影响不大,就称该数学模型是强健的(robust);反之,如果数学模型的解答很依赖于某个假设相对于实际情况的精确程度,就称该数学模型是脆弱的(fragile).由于在数学建模的过程中都要对实际情况作出一定的简化假设,所以对数学模型进行强健性分析是很有必要的.强健的模型就是说:虽然模型建立在较强的假设上,假设对实际情况做出了较多的简化,但是模型解答已经符合或近似现实对象的信息,已经获得预期的建模效果.1.第3题名词解释:测试分析标准答案:测试分析,就是当研究对象内部机理无法直接寻求的时候,可以测量系统的输入、输出数据,运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型.您的答案:题目分数:2.0此题得分:0.02.第9题名词解释:二阶差分方程标准答案:您的答案:题目分数:3.0此题得分:0.03.第10题名词解释:机理分析标准答案:机理分析,就是根据对现实对象特性的认识,分析其因果关系,尤其是从变化率、守恒律等角度入手分析,找出反映内部机理的数量规律,从而建立数学模型. 采用机理分析方法建立的数学模型常有明确的物理或现实意义.您的答案:题目分数:2.0此题得分:0.04.第11题名词解释:线性模型标准答案:如果待数据拟合的函数模型关于全体待定参数都是线性的,就称为线性模型。

您的答案:题目分数:3.0此题得分:0.05.第5题司机在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到车完全停住汽车行驶的距离称为刹车距离,车速越快,刹车距离越长. 请问刹车距离与车速之间具有怎样的数量关系?标准答案:您的答案:题目分数:5.0 此题得分:0.06.第6题标准答案:您的答案:题目分数:7.0 此题得分:0.07.第17题标准答案:您的答案:题目分数:9.0此题得分:0.08.第18题考虑弹簧-质量系统,收集弹簧伸长的长度与弹簧末端悬挂的质量的实验数据,记录在表1(单位省略). 请计算出伸长与质量的函数关系的经验公式.标准答案:您的答案:题目分数:9.0此题得分:0.0 9.第7题标准答案:您的答案:题目分数:9.0此题得分:0.010.第13题离散形式的阻滞增长模型是一阶非线性差分方程,请回答以下问题:(1)写出其表达式;(2)以研究种群数量演变为背景,说明其模型假设;(3)以研究种群数量演变为背景,解释模型的参数的数学意义和实际意义;(4)求出平衡点;(5)说明平衡点渐进稳定的条件.标准答案:11.第14题骰子呈正方体,有6面,点数分别是1、2、3、4、5、6,如果骰子是质地均匀的,那么掷骰子掷出每一个点数的机会都是1/6.设计算法,编写MATLAB程序,模拟掷质地均匀的骰子这种随机行为.标准答案:您的答案:题目分数:9.0此题得分:0.012.第16题请详细阐述一次函数的最小二乘数据拟合的原理。

13.第19题硬币有正反两面,抛质地均匀的硬币,正面和反面朝上的机会都是二分之一,请设计算法,编写MATLAB程序,模拟抛质地均匀的硬币这种随机行为标准答案:14.第1题请分别说明两个数组之间以及数组与数之间的数组运算的规则。

标准答案:数组运算可以在规模相同的两个数组之间进行,相同位置的元素之间做运算,得到的结果也是数组,而且结果的规模与参与运算的数组相同.数组运算也可以在数值数组和数值之间进行,比如数组A和数k之间,这时系统会在数组A的每个元素和数k之间做运算,结果是规模和数组A相同的数组.15.第2题标准答案:16.第4题标准答案:17.第8题MATLAB系统有哪几个主要部分?标准答案:MATLAB系统包括五个主要部分:(1)桌面工具和开发环境,这里集成了处理MATLAB函数和文件的工具和功能,多数都有图形用户界面,包括:MATLAB 桌面、命令窗口i、编辑器及内置的调试器、帮助文件浏览器、工作空间、命令历史、当前目录、文件和路径搜索、开始等.(2)MATLAB数学函数库,这里有数量巨大的计算算法,包括基本数学函数(例如求和、三角、复数计算)、矩阵函数(例如逆矩阵、特征值)、特殊数学函数(例如Bessel函数、快速Fourier变换)等.(3)MATLAB语言,这是高级的矩阵/数组语言,有控制流语句、函数、数据结构、输入/输出、面向对象编程等功能.(4)图形,MATLAB具有把矩阵和向量显示成图形、以及注释和打印图形的丰富功能,包括:用于2 维和三维数据可视化、图像处理、动画和演示的高级函数、用于个性化图形外观以及建立完善的图形用户界面的低级函数.(5)MATLAB外部界面和应用编程接口.18.第12题写出以下公式:按照最小二乘法,由样本数据计算一元线性回归模型的回归系数的点估计.标准答案:19.第15题什么是函数M文件?函数M文件的变量有什么特点?标准答案:接受输入变量,执行一系列MATLAB语句,然后产生输出的程序文件叫做函数M文件。

相关文档
最新文档