中考数学二轮精品复习试卷:圆(含答案)

合集下载

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10√5D.12√33.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()A.90°B.100°C.130°D.140°4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()A.46°B.56°C.36°D.26°5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()A.6 √3B.6 √2C.9 √3D.9 √27.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()A.30°B.35°C.45°D.55°8.∠ABC中∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A.95B.125C.185D.3659.如图,AB为∠O的直径,点C在∠O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°10.两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是() A.外离B.内切C.相交D.外切11.已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.B.C.D.12.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π二、填空题13.在Rt∠ABC中∠C=90°,AB=5,BC=4,求内切圆半径14.如图,∠C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则∠C的半径为.15.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为.16.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.17.如图,在直角坐标系中以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是.18.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图①作射线AB;②在射线AB取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;③以C为圆心,OC C为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.请回答:该尺规作图的依据是.三、综合题19.如图,在△ABC中AC=BC=BD,点O在AC边上,OC为⊙O的半径,AB是⊙O 的切线,切点为点D,OC=2,OA=2√2.(1)求证:BC是⊙O的切线;(2)求阴影部分的面积.20.如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD=54,求EFAC的值.21.如图,四边形ABCD 内接于∠O,BD是∠O的直径,过点A作∠O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE∠CD;(2)已知AE=4cm,CD=6cm,求∠O的半径.22.如图,∠O是∠ABC的外接圆,BC为∠O的直径,点E为∠ABC的内心,连接AE并延长交∠O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为∠O的切线.23.公元前5世纪,古希腊哲学家阿那克萨哥拉因“亵渎神灵罪”而被投人监狱,在狱中他对方铁窗和圆月亮产生了兴趣.他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大,于是伟大的古希腊尺规作图几何三大问题之--的化圆为方问题诞生了:作一个正方形,使它的面积等于已知圆的面积(1)设有一个半径为√3的圆,则这个圆的周长为,面积为,作化圆为方得到的正方形的边长为(计算结果保留π)(2)由于对尺规作图的限制(只能有限次地使用没有刻度的直尺和圆规进行作图),包括化圆为方在内的几何三大问题都已被证明是不可能的.但若不受标尺的限制,化圆为方并非难事。

2024河南中考数学复习 与圆有关的计算(含阴影部分面积) 强化精练 (含答案)

2024河南中考数学复习 与圆有关的计算(含阴影部分面积)  强化精练 (含答案)

2024河南中考数学复习与圆有关的计算(含阴影部分面积)强化精练基础题1.(2023兰州)如图①是一段弯管,弯管的部分外轮廓线如图②所示是一条圆弧AB ︵,圆弧的半径OA =20cm ,圆心角∠AOB =90°,则AB ︵=()第1题图A.20πcmB.10πcmC.5πcmD.2πcm2.(2023新疆维吾尔自治区)如图,在⊙O 中,若∠ACB =30°,OA =6,则扇形OAB (阴影部分)的面积是()第2题图A.12πB.6πC.4πD.2π3.(2023鄂州)如图,在△ABC 中,∠ABC =90°,∠ACB =30°,AB =4,点O 为BC 的中点,以O 为圆心,OB 长为半径作半圆,交AC 于点D ,则图中阴影部分的面积是()第3题图A.53-33πB.53-4πC.53-2πD.103-2π4.(2023连云港)如图,矩形ABCD 内接于⊙O ,分别以AB 、BC 、CD 、AD 为直径向外作半圆.若AB =4,BC =5,则阴影部分的面积是()第4题图A.414π-20B.412π-20C.20πD.205.(2023金华)如图,在△ABC 中,AB =AC =6cm ,∠BAC =50°,以AB 为直径作半圆,交BC 于点D ,交AC 于点E ,则弧DE 的长为________cm.第5题图6.如图,在2×3的网格图中,每个小正方形的边长均为1,点A ,B ,C ,D 都在格点上,线段CD 与AC ︵交于点E ,则图中AE ︵的长度为________.第6题图7.(2023重庆A 卷)如图,⊙O 是矩形ABCD 的外接圆,若AB =4,AD =3,则图中阴影部分的面积为________.(结果保留π)第7题图8.(2023包头)如图,正方形ABCD的边长为2,对角线AC,BD相交于点O,以点B为圆心,对角线BD的长为半径画弧,交BC的延长线于点E,则图中阴影部分的面积为________.第8题图9.(万唯原创)如图,在Rt△ABC中,∠BAC=90°,∠B=30°,AC=2,以点A为圆心,AC 长为半径作弧,分别交AB,BC于点D,E,则图中阴影部分的周长为________.第9题图10.(2023新乡一模)如图,△ABC中,∠C=90°,AC=BC=2.将△ABC绕着点A顺时针旋转90度到△AB1C1的位置,则边BC扫过区域的面积为________.第10题图11.(2023驻马店二模)如图,将扇形OAB沿OA方向平移得到对应扇形CDE,线段CE交AB︵于点F,当OC=CF时平移停止.若∠O=60°,OB=3,则阴影部分的面积为________.第11题图拔高题12.(2023通辽)如图,在扇形AOB中,∠AOB=60°,OD平分∠AOB交AB︵于点D,点C是半径OB 上一动点,若OA =1,则阴影部分周长的最小值为()A.2+π6B.2+π3C.22+π6 D.22+π3第12题图13.如图,两个半径长均为2的直角扇形的圆心分别在对方的圆弧上,扇形CFD 的圆心C 是AB ︵的中点,且扇形CFD 绕着点C 旋转,半径AE ,CF 交于点G ,半径BE ,CD 交于点H ,则图中阴影部分面积等于()第13题图A.π2-1B.π2-2C.π-1D.π-214.如图,AB 为⊙O 的直径,将BC ︵沿BC 翻折,翻折后的弧交AB 于点D.若BC =45,sin ∠ABC =55,则图中阴影部分的面积为()第14题图A.25πB.25πC.8D.1015.如图,在矩形ABCD中,AD=2,AB=22,对角线AC,BD交于点O,以A为圆心,AB的长为半径画弧,交CD于点F,连接FO并延长交AB于点M,连接AF,则图中阴影部分的面积是______.(结果保留π)第15题图参考答案与解析1.B 【解析】∵圆弧的半径OA =20cm ,圆心角∠AOB =90°,∴ AB 的长=90π×20180=10π(cm).2.B 【解析】∵∠ACB =30°,∴∠AOB =2∠ACB =60°,∴S 扇形AOB =60×π×62360=6π.3.C【解析】如解图,连接OD ,BD ,在Rt △ABC 中,tan 30°=AB BC ,∴BC =AB tan 30°=43,∵OC =OD ,∴∠OCD =∠ODC =30°,∴∠BOD =60°,∵BO =DO ,∴△BOD 是等边三角形,∴BD =BO =12BC =23,∠BDO =60°,∴∠BDC =90°,AD =BD ·tan 30°=2.∴S 阴影部分=S △ABD +S △BOD -S 扇形BOD =12×23×2+34×(23)2-60π×(23)2360=53-2π.第3题解图4.D 【解析】如解图,连接AC ,∵矩形ABCD 内接于⊙O ,AB =4,BC =5,∴AC 2=AB 2+BC 2,∴阴影部分的面积为S矩形ABCD +π×(AB 2)2+π×(BC 2)2-π×(AC 2)2=S 矩形ABCD +π×14(AB 2+BC 2-AC 2)=S 矩形ABCD =4×5=20.第4题解图5.56π【解析】如解图,连接OE ,OD ,∵OD =OB ,∴∠B =∠ODB ,∵AB =AC ,∴∠B =∠C ,∴∠C =∠ODB ,∴OD ∥AC ,∴∠EOD =∠AEO ,∵OE =OA ,∴∠OEA =∠BAC =50°,∴∠EOD =∠BAC =50°,∵OD =12AB =12×6=3(cm),∴ DE 的长为50π×3180=56π(cm).6.54π【解析】如解图,连接AC ,AD ,设AC 交网格线于点O ,连接OE .∵AD 2=22+12=5,AC 2=22+12=5,CD 2=12+32=10,∴AD =AC ,AD 2+AC 2=CD 2,∴△ACD 是等腰直角三角形,∴∠ACD =45°,∵∠ABC 是直角,∴AC 是⊙O 的直径,∴∠AOE =90°.∵AC =5,∴OE =OA =12AC =52,∴ AE 的长为90π×52180=54π.第6题解图7.254π-12【解析】如解图,连接BD ,由题知∠BAD =90°,∴BD 是⊙O 的直径,∵AB =4,AD =3,∴BD =AD 2+AB 2=32+42=5,∴S 阴影=S ⊙O -S 矩形ABCD =π×(52)2-3×4=254π-12.第7题解图8.π【解析】∵正方形ABCD 对角线相交于点O ,∴AO =BO ,CO =DO ,∠AOD =∠BOC ,∴△AOD ≌△BOC ,∴阴影部分的面积=扇形DBE 的面积,∵正方形的边长为2,∴由勾股定理得BD =22,∠DBC =45°,∴阴影部分的面积=45360×π·(22)2=π.9.π3+23【解析】如解图,连接AE ,∵在Rt △ABC 中,∠B =30°,∴BC =2AC =4,AB =23.∵ DE 是以点A 为圆心,AC 长为半径的弧,∴AD =AE =AC =2,∴BD =AB -AD=23-2,∠AEC =∠C =60°,∴△AEC 为等边三角形,∴AE =EC =2.,∴BE =2,∠BAE=∠B =30°,∴ DE 的长为30π×2180=π3,∴阴影部分的周长为2+π3+23-2=π3+23.10.π【解析】在△ABC 中,∠ACB =90°,AC =BC =2,由勾股定理得,AB =22+22=22,∵将△ABC 绕着点A 顺时针旋转90度到△AB 1C 1的位置,∴∠CAC 1=90°,∴阴影部分的面积S =S 扇形BAB 1+S △B 1AC 1-S △ACB -S 扇形CAC 1=S 扇形BAB 1-S 扇形CAC 1=90π×(22)2360-90π×22360=π.11.3π4-334【解析】如解图,连接OF ,过点C 作CH ⊥OF 于点H ,由平移性质知,CE ∥OB ,∴∠CFO =∠BOF ,∵CO =CF ,∴∠COF =∠CFO ,∴∠COF =∠BOF =12∠BOC =30°,在等腰△OCF 中,OH =12OF =12OB =32,∴CH =OH ·tan 30°=32×33=32,∴S 阴影=S 扇形AOF -S △COF =30·π×32360-12×3×32=3π4-334.第11题解图12.A 【解析】如解图,作D 点关于直线OB 的对称点E ,连接AE ,OE ,DE ,CE ,AE 与OB 的交点为C 点,则CD =CE ,OD =OE ,∠DOB =∠EOB ,∴AC +CD =AC +CE ≥AE ,当A ,C ,E 三点共线时,AC +CD 取得最小值,此时阴影部分周长最小,在扇形AOB 中,∠AOB =60°,OD 平分∠AOB 交 AB 于点D ,∴∠AOD =∠BOD =30°,由轴对称的性质,∠EOB =∠BOD =30°,OE =OD ,∴∠AOE =90°,∴△AOE 是等腰直角三角形,∵OA =1,∴AE =2, AD 的长=30π×1180=π6,∴阴影部分周长的最小值为2+π6.第12题解图13.D 【解析】两扇形的面积和为180π·(2)2360=π,如解图,过点C 作CM ⊥AE 于点M ,CN ⊥BE 于点N ,连接CE ,则四边形EMCN 是矩形,∵点C 是 AB 的中点,∴EC 平分∠AEB ,∴CM =CN ,∴矩形EMCN 是正方形,∵∠MCG +∠FCN =90°,∠NCH +∠FCN =90°,∴∠MCG =∠NCH ,在△CMG 与△CNH 中,MCG =∠NCH ,=CN ,CMG =∠CNH ,∴△CMG ≌△CNH (ASA),∴中间空白区域面积相当于对角线是2的正方形面积,∴空白区域的面积为12×2×2=1,∴图中阴影部分的面积=π-2.第13题解图14.C 【解析】如解图,连接AC ,CD ,过点C 作CH ⊥AB 于点H ,∵∠ABC =∠DBC ,∴ AC = CD,∴AC =CD ,∵CH ⊥AD ,∴AH =HD ,∵BC =45,sin ∠ABC =55,∴CH =BC ·sin ∠ABC =4,∵AB 为⊙O 的直径,∴∠ACB =90°,∵sin ∠ABC =AC AB =55,∴设AC =5m ,AB =5m ,根据勾股定理,AC 2+BC 2=AB 2,∴5m 2+80=25m 2,∴m =2(负值已舍去),∴AC =CD =25,∴AH =AC 2-CH 2=(25)2-42=2,∴AD =2AH =4,∴S 阴影=S △ACD =12AD ·CH =12×4×4=8.第14题解图15.π-22+2【解析】在矩形ABCD 中,AD =2,AB =22,∴∠ADC =90°,AB ∥CD ,OB =OD ,∴∠ABD =∠CDB ,∵AF =AB =22,AF 2=AD 2+DF 2,∴(22)2=22+DF 2,∴DF =2,∴AD =DF ,∴∠DAF =∠DFA =45°,∴∠BAF =45°,在△BOM 和△DOF 中,MBO =∠FDO=ODBOM =∠DOF ,∴△BOM ≌△DOF (ASA),∴BM =DF =2,∴AM =22-2,∴图中45π×(22)2360-12×(22-2)×2=π-22+2.阴影部分的面积为:。

初三圆的考试题及答案

初三圆的考试题及答案

初三圆的考试题及答案一、选择题1. 圆的半径为r,直径为d,则d与r的关系是()A. d = 2rB. d = rC. d = r/2D. d = 4r答案:A2. 圆的周长公式为()A. C = 2πrB. C = πrC. C = 2rD. C = 4πr答案:A3. 如果一个圆的半径增加1倍,那么它的面积增加()A. 1倍B. 2倍C. 3倍D. 4倍答案:D4. 一个圆的半径为3cm,那么它的直径为()A. 6cmB. 9cmC. 12cmD. 15cm答案:A5. 圆的面积公式为()A. S = πr^2B. S = 2πrC. S = πrD. S = 4πr答案:A二、填空题6. 圆心到圆上任意一点的距离叫做圆的_________。

答案:半径7. 圆上任意两点间的部分叫做圆的_________。

答案:弧8. 圆的周长和它直径的比值,叫做圆周率,用字母_________表示。

答案:π9. 圆的半径为2cm,那么它的周长为_________。

答案:4π cm10. 圆的半径为4cm,那么它的面积为_________。

答案:16π cm²三、解答题11. 已知圆的半径为5cm,求圆的周长和面积。

解:根据圆的周长公式C = 2πr 和面积公式S = πr²,代入半径 r = 5cm,得:周长C = 2π × 5 = 10π cm答案:周长为10π cm,面积为25π cm²。

12. 一个圆的直径为10cm,求圆的半径和面积。

解:已知圆的直径 d = 10cm,根据直径与半径的关系 d = 2r,可得半径 r = d/2 = 10/2 = 5cm。

再根据圆的面积公式S = πr²,代入半径 r = 5cm,得:面积S = π × 5² = 25π cm²答案:半径为5cm,面积为25π cm²。

13. 已知一个圆的周长为12π cm,求圆的半径和面积。

中考数学复习《圆》专题训练-附带有答案

中考数学复习《圆》专题训练-附带有答案

中考数学复习《圆》专题训练-附带有答案一、选择题1.下列有关圆的一些结论:①平分弧的直径垂直于弧所对的弦;②平分弦的直径垂直于弦;③在同圆或等圆中,相等的弦所对的圆周角相等;④同弧或等弧所对的弦相等,其中正确的有()A.①④B.②③C.①③D.②④2.在同一平面内,已知⊙O的半径为3cm,OP=4cm,则点P与⊙O的位置关系是()A.点P在⊙O圆外B.点P在⊙O上C.点P在⊙O内D.无法确定3.如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°()A.66°B.33°C.24°D.30°4.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=118°,则∠C的度数为()A.32°B.33°C.34°D.44°5.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=26°,则∠D等于()A.26°B.48°C.38°D.52°6.如图,四边形ABCD内接于⊙O,∠C=100°,那么∠A是()A.60°B.50°C.80°D.100°7.如图,AB为⊙O的直径,C是⊙O上的一点,若∠BCO=35°,AO=2,则AC⌢的长度为()A.29πB.59πC.πD.79π8.如图,点A、B、C、D、E都是⊙O上的点AC⌢=AE⌢,∠D=130°则∠B的度数为()A.130°B.128°C.115°D.116°二、填空题9.半径为6的圆上,一段圆弧的长度为3π,则该弧的度数为°.10.如图,在△ABC中,∠ACB= 130°,∠BAC=20°,BC=2.以C为圆心,CB为半径的圆交AB于点D,则BD的长为.11.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC.∠ABC的平分线交AC于点D,交⊙O于点E,连结CE.若CE= √2,则BD的长为.12.如图,四边形ABCD为⊙O的内接四边形,若∠ADC=85°,则∠B=.13.如图,在△ABC中∠ACB=90°,O为BC边上一点CO=2.以O为圆心,OC为半径作半圆与AB边交π,则阴影部分的面积为.于E,且OE⊥AB.若弧CE的长为43三、解答题14.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD交AC于点E,OD∥BC(1)求证:AD=CD;(2)若AC=8,DE=2,求BC的长.15.如图,AB是⊙O的直径,F为⊙O上一点,AC平分∠FAB交⊙O于点C.过点C作CD⊥AF交AF的延长线于点D.(1)求证:CD是⊙O的切线.(2)若DC=3,AD=9,求⊙O半径.⌢上一点,AG与DC的延长线交于点F.16.已知,如图,AB是⊙O的直径,弦CD⊥AB于点E,G是AC(1)如CD=8,BE=2,求⊙O的半径长;(2)求证:∠FGC=∠AGD.17.如图,在△ABC中AB=AC,以底边BC为直径的⊙O交两腰于点D,E .(1)求证:BD=CE;⌢的长.(2)当△ABC是等边三角形,且BC=4时,求DE18.如图,在△ABC中,经过A,B两点的⊙O与边BC交于点E,圆心O在BC上,过点O作OD⊥BC交⊙O 于点D,连接AD交BC于点F,且AC=FC.(1)试判断AC与⊙O的位置关系,并说明理由;(2)若FC=√3,CE=1.求图中阴影部分的面积(结果保留π).参考答案1.A2.A3.B4.C5.C6.C7.D8.C9.9010.2√311.2√212.95°π13.4√3−4314.(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OD∥BC∴∠AEO=∠ACB=90°⌢=CD⌢∴AD∴AD=CD;(2)解:∵OD⊥AC,AC=8AC=4∴AE=12设⊙O的半径为r∵DE=2∴OE=OD﹣DE=r﹣2在Rt△AEO中,AE2+OE2=AO2∴16+(r﹣2)2=r2解得:r=5∴AB=2r=10在Rt△ACB中,BC=√AB2−AC2=√102−82=6∴BC的长为6.15.(1)证明:连接OC∵AC平分∠FAB∴∠FAC=∠CAO∵AO=CO∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC∵CD⊥AF∴CD⊥OC∵OC为半径∴CD是⊙O的切线;(2)解:过点O作OE⊥AF于EAF,∠OED=∠EDC=∠OCD=90°∴AE=EF=12∴四边形OEDC为矩形∴CD=OE=3,DE=OC设⊙O的半径为r,则OA=OC=DE=r∴AE=9﹣r∵OA2﹣AE2=OE2∴r2﹣(9﹣r)2=32解得r=5.∴⊙O半径为5.16.(1)解:连接OC.设⊙O的半径为R.∵CD⊥AB∴DE=EC=4在Rt △OEC中,∵OC2=OE2+EC2∴R2=(R−2)2+42解得R=5.(2)解:连接AD∵弦CD⊥AB̂ = AĈ∴AD∴∠ADC=∠AGD∵四边形ADCG是圆内接四边形∴∠ADC=∠FGC∴∠FGC=∠AGD.17.(1)证明:∵AB=AC∴∠B=∠C⌢=BE⌢∴CD⌢=CE⌢∴BD∴BD=CE;(2)解:连接OD、OE∵△ABC 是等边三角形∴∠B =∠C =60°∴∠COD =120°∴∠COD +∠BOE =∠COE +∠DOE +∠BOD +∠DOE =240° ∴∠DOE =240°−180°=60°∵BC =4∴⊙O 的半径为 2∴DE ⌢ 的长 =60π×2180=2π3 .18.(1)解:AC 与⊙O 的相切,理由如下∵AO =DO∴∠D =∠OAD∵CF =CA∴∠CAF =∠CFA又∵∠CFA =∠OFD∴∠CAF =∠OFD∵OD ⊥BC∴∠OFD +∠ODF =90°∴∠CAF +∠OAF =90°∴OA ⊥AC∵OA 是半径∴AC 是⊙O 的切线∴ AC 与⊙O 的相切;(2)解:过A 作AM ⊥BC 于M ,如图设OA=OE=r∵FC=√3,CE=1在Rt△CAO中AO=r,AC=FC=√3,OC=OE+EC=r+1AO2+AC2=OC2∴r2+(√3)2=(r+1)2解得r=1∴OC=OE+EC=2∴AO=12 OC∴∠C=30°∴∠AOC=60°∴∠AOB=180−∠AOC=120°在Rt△CAM中AM=12AC=12FC=√32∴S△AOB=12⋅OB⋅AM=12×1×√32=√34∴S扇形AOB=120360π×1=π3∴S阴影部分=S△AOB−S扇形AOB=π3−√34.。

2020年九年级数学 中考第二轮专题训练 圆 (含答案)

2020年九年级数学 中考第二轮专题训练 圆 (含答案)

2020年九年级数学中考第二轮专题训练圆1、已知:如图,⊙O的直径A B与弦C D相交于E,=,⊙O的切线B F与弦A D的延长线相交于点F.(1)求证:C D∥B F.(2)连接B C,若⊙O 的半径为4,cos∠BCD =,求线段A D、C D的长.2、如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,DE⊥AC,垂足为E.(1)判断D E与⊙O 的位置关系,并证明你的结论;(2)如果⊙O的直径为9,cos B=,求D E的长.3、如图,在Rt△ABC 中,∠ABC=90°,以A B为直径作⊙O,点D 为⊙O上一点,且C D=C B,连接D O并延长交C B的延长线于点E.(1)判断直线C D与⊙O 的位置关系,并说明理由;(2)若BE=2,DE=4,求圆的半径及A C的长.4、如图,BC 是⊙O的直径,CE 是⊙O的弦,过点E 作⊙O 的切线,交C B的延长线于点G,过点B作B F⊥G E于点F,交C E的延长线于点A.(1)求证:∠ABG=2∠C;(2)若G F=33,GB=6,求⊙O的半径.5、如图,点A、B、C分别是⊙O上的点,∠B=60°,CD是⊙O的直径,P是C D延长线上的点,且A P=A C.(1)求证:A P是⊙O的切线;(2)若A C=3,求P D 的长.6、如图,在矩形A B C D中,CD=2,AD =4,点P在B C上,将△A B P沿A P折叠,点B 恰好落在对角线A C上的E点,O为A C上一点,⊙O经过点A,P(1)求证:BC 是⊙O的切线;(2)在边C B上截取C F=C E,点F是线段B C的黄金分割点吗?请说明理由.7、已知:如图,在Rt△ABC 中,∠C=90°,点O在A B上,以O为圆心,O A 长为半径的圆与A C,A B分别交于点D,E,且∠CB D=∠A.(1)判断直线B D与⊙O的位置关系,并证明你的结论;(2)若B C=2,B D=,求的值.8、如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.9、如图,在△A B C中,A B=A C,以A B为直径的⊙O分别交B C、A C于点D、E,连接E B交O D于点F.(1)求证:O D⊥B E;(2)若D E=,A B=,求A E的长.10、如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:直线D F是⊙O的切线;(2)求证:B C2=4C F•A C;(3)若⊙O的半径为 4,∠CDF=15°,求阴影部分的面积.11、如图,A B是⊙O的直径,C是⊙O上一点,D是的中点,E为O D延长线上一点,且∠C A E=2∠C,AC 与B D交于点H,与O E交于点F.(1)求证:AE 是⊙O的切线;(2)若DH=9,tan C=,求直径A B的长.12、已知Rt△ABC 中,∠ABC=90°,以A B为直径作⊙O交A C于点D,连接B D.(1)如图 1,若BD :CD =3:4,AD =3,求⊙O的直径A B的长;(2)如图 2,若E是B C的中点,连接E D,请你判断直线E D与⊙O的位置关系,并证明你的结论.13、如图,△A B C内接于⊙O,A B为直径,作O D⊥A B交A C于点D,延长B C,O D交于点F,过点C作⊙O的切线C E,交O F于点E.(1)求证:E C=E D;(2)如果OA=4,EF=3,求弦A C的长.14、以坐标原点为圆心,1 为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过 1 秒后点P运动到点(2,0),此时P Q 恰好是⊙O的切线,连接O Q.求∠Q O P的大小;(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q 再经过 5 秒后直线PQ被⊙O截得的弦长.15、如图,已知半径为 1 的⊙O1 与x轴交于A,B两点,O M 为⊙O1 的切线,切点为M,圆心O1的坐标为(2,0),二次函数y=﹣x2+b x+c的图象经过A,B两点.(1)求二次函数的解析式;(2)求切线O M的函数解析式;(3)线段O M 上存在一点P,使得以P,O,A为顶点的三角形与△O O1M 相似.请问有几个符合条件的点P 并分别求出它们的坐标.16、(1)方法选择如图①,四边形A B C D是⊙O的内接四边形,连接A C,B D,A B=B C=A C.求证:B D=A D+C D.小颖认为可用截长法证明:在D B上截取D M=A D,连接A M…小军认为可用补短法证明:延长C D至点N,使得D N=A D…请你选择一种方法证明.(2)类比探究【探究 1】如图②,四边形A B C D是⊙O的内接四边形,连接A C,B D,B C是⊙O的直径,A B=A C.试用等式表示线段A D,B D,C D之间的数量关系,井证明你的结论.【探究 2】如图③,四边形A B C D是⊙O的内接四边形,连接A C,B D.若B C是⊙O的直径,∠ABC =30°,则线段A D,B D,C D之间的等量关系式是.(3)拓展猜想如图④,四边形A B C D是⊙O的内接四边形,连接A C,B D.若B C是⊙O的直径,B C:A C:A B=a:b:c,则线段A D,B D,C D之间的等量关系式是.17、如图,Rt△ABC 中,∠ACB=90°,以B C上一点O为圆心作圆与A B相切于点D,与B C分别交于点F、N,连接D F并延长交A C的延长线点E.(1)求证:A E=A D;(2)过点D作D H⊥B C于点B,连接A F并延长交⊙O于点G,连接D G,若D O平分∠G D H.求证:∠A F D=2∠D F N;(3)在(2)的条件下,延长D G交A E的延长线于点P,连接P F并延长交⊙O于点M,若FM=5,FH =9,求O H的长.参考答案1、(1)证明:∵直径A B平分,∴AB⊥CD.∵BF与⊙O相切,AB是⊙O的直径,∴A B⊥B F.∴C D∥B F.(2)解:连接BD,BC.∵AB是⊙O的直径,∴∠ADB=90°.在Rt△ADB中,∵cos∠BAF=c os∠BCD=,AB=4×2=8.∴AD=AB •c o s∠BAF=8×=6.∵AB⊥CD于E,在Rt△AED中,c os∠BAF=c os∠BCD=,sin∠BAF=.∴DE=AD •s i n∠BAF=6×.∵直径A B平分,∴C D=2D E=3.2、解:(1)答:D E是⊙O的切线.证明:连接O D,A D,∵AB是直径,∴∠ADB=90°,即A D⊥B C,∵O D=O A,∴∠O D A=∠O A D,∴∠O A D=∠C A D,∴∠O D A=∠C A D,又∵D E⊥A C,∴∠EDA+∠CAD=90°,∴∠EDA+∠ODA=90°,即:O D⊥D E,∴DE是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ADB=90°,在Rt△ADB中,∵cos∠B==,AB=9,∴B D=C D=3,在Rt△CDE中,∵cos∠C=,∴CE=CD•cos∠C=3•cos∠B=3×=1,∴D E==2.3、(1)证明:连接O C.∵CB=CD,CO=CO,OB=OD,∴△O C B≌△O C D(S S S),∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)解:设⊙O的半径为r.在Rt△O B E中,∵O E2=E B2+O B2,∴(4﹣r)2=r2+22,∴r=1.5,∵tan∠E==,∴=,∴CD=BC=3,在Rt△ABC中,A C===3.∴圆的半径为1.5,AC 的长为3.4、(1)证明:连接O E,∵EG是⊙O的切线,∴O E⊥E G,∵B F⊥G E,∴O E∥A B,∴∠A=∠OEC,∵OE=OC,∴∠O E C=∠C,∴∠A=∠C,∵∠ABG=∠A+∠C,∴∠ABG=2∠C;(2)解:∵BF⊥GE,∴∠BFG=90°,∵GF=3,GB=6,∴B F==3,∵BF∥OE,∴△B G F∽△O G E,∴=,∴=,∴OE=6,∴⊙O的半径为 6.5、解:(1)证明:连接O A,∵∠B=60°,∴∠AOC=2∠B=120°,∵OA=OC,∴∠ACP=∠CAO=30°,∴∠AOP=60°,又∵A P=A C,∴∠P=∠ACP=30°,∴∠OAP=90°,即O A⊥A P,∵点A在⊙O上,∴AP是⊙O的切线.(2)解:连接A D,∵CD是⊙O的直径,∴∠CAD=90°,∴AD=AC∙tan30°=,C D=2A D=2,∴D O=A O=C D=,在Rt△P A O中,由勾股定理得:P A2+A O2=P O2,∴32+()2=(P D+)2,∵PD的值为正数,∴P D=.6、解:(1)连接O P,则∠P A O=∠A P O,而△A E P是由△A B P沿A P折叠而得:故A E=A B=4,∠O A P=∠P A B,∴∠BAP=∠OPA,∴AB∥OP,∴∠OPC=90°,∴BC是⊙O的切线;(2)C F=C E=A C﹣A E=﹣4=2﹣2,=,故:点F是线段B C的黄金分割点. 7、解:(1)直线B D与⊙O相切.证明:如图 1,连接O D.∵OA=OD,∴∠A=∠A D O.∵∠C=90°,∴∠CBD +∠CDB=90°.又∵∠C B D=∠A,∴∠ADO+∠CDB=90°.∴∠ODB=90°.∴直线BD与⊙O相切.(2)解法一:如图 1,连接DE.∵∠C=90°,BC=2,BD=∴.∵AE是⊙O的直径,∴∠ADE=90°.∴.∵∠CBD=∠A,∴==.∵AE=2AO,∴=.解法二:如图 2,过点O作OH⊥AD于点H.∴.∴∵∠C=90°,BC=2,BD=∴.∵∠CBD=∠A,∴==.∴=.8、(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵A O=B O,∴A D=B D,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.9、证明:(1)连接A D.∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∵A B=A C,∴D C=D B.∵O A=O B,∴O D∥A C.∴∠OFB=∠AEB=90°,∴OD⊥BE.(2)设AE=x,∵OD⊥BE,∴可得OD是BE的中垂线,∴DE=DB,∴∠1=∠2,∴B D=E D=,∵O D⊥E B,∴F E=F B.∴O F=A E=,D F=O D﹣O F=.在Rt△DFB 中,;在Rt△OFB 中,;∴=.解得,即.10、解:(1)如图所示,连接O D,∵AB=AC,∴∠ABC=∠C,而OB=OD,∴∠ODB=∠ABC=∠C,∵DF⊥AC,∴∠CDF+∠C=90°,∴∠CDF+∠ODB=90°,∴∠ODF=90°,∴直线DF是⊙O的切线;(2)连接A D,则A D⊥B C,则A B=A C,则D B=D C=,∵∠CDF+∠C=90°,∠C+∠DAC=90°,∴∠CDF=∠DCA,而∠D F C=∠A D C=90°,∴△C F D∽△C D A,∴C D2=C F•A C,即B C2=4C F•A C;(3)连接O E,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△O A E=A E×O E sin∠O E A=×2×O E×cos∠O E A×O E sin∠O E A=4,S =﹣S =×π×42﹣4 =﹣4 .阴影部分S扇形OAE △OAE11、解:(1)∵D是的中点,∴OE⊥AC,∴∠AFE=90°,∴∠E+∠EAF=90°,∵∠AOE=2∠C,∠CAE=2∠C,∴∠CAE=∠AOE,∴∠E+∠AOE=90°,∴∠EAO=90°,∴AE是⊙O的切线;(2)∵∠C=∠B,∵OD=OB,∴∠B=∠O D B,∴∠O D B=∠C,∴tan C=tan∠ODB==,∴设HF=3x,DF=4x,∴DH=5x=9,∴x=,∴D F=,H F=,∵∠C=∠FDH,∠DFH=∠CFD,∴△D F H∽△C F D,∴=,∴C F==,∴A F=C F=,设O A=O D=x,∴O F=x﹣,∵A F2+O F2=O A2,∴()2+(x﹣)2=x2,解得:x=10,∴OA=10,∴直径AB的长为 20.12、解:(1)如图,∵A B是⊙O的直径,∴∠ADB=90°.则∠CDB=∠ADB=90°.∴∠C+∠CBD=90°.∵∠ABC=90°,∴∠ABD+∠CBD=90°.∴∠C=∠A B D.∴△A D B∽△B D C.∴.∵BD:CD=3:4,AD=3,∴BD=4.在Rt△A B D中,A B=;(3 分)(2)直线E D与⊙O相切.证明:如图,连接O D.由(1)得∠BDC=90°.∵E是BC的中点,∴D E=B E=B C,∴∠E D B=∠E B D,∵OB=OD,∴∠ODB=∠OBD.∵∠OBD+∠EBD=90°,∴∠ODB+∠EDB=∠ODE=90°.∵点D在⊙O上,且OD⊥DE∴ED是⊙O的切线.(5 分)13、(1)证明:连接O C,∵CE与⊙O相切,为C是⊙O的半径,∴OC⊥CE,∴∠OCA+∠ACE=90°,∵OA=OC,∴∠A=∠OCA,∴∠ACE+∠A=90°,∵OD⊥AB,∴∠ODA+∠A=90°,∵∠ODA=∠CDE,∴∠CDE+∠A=90°,∴∠CDE=∠ACE,∴EC=ED;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△DCF中,∠DCE+∠ECF=90°,∠DCE=∠CDE,∴∠CDE +∠ECF=90°,∵∠CDE +∠F=90°,∴∠ECF=∠F,∴E C=E F,∵EF=3,∴EC=DE=3,∴O E==5,∴OD=OE﹣DE=2,在Rt△OAD中,A D==2,在Rt△AOD 和Rt△ACB 中,∵∠A=∠A,∠A C B=∠A O D,∴Rt△AOD∽Rt△ACB,∴,即,∵∴O C = = .. ∴A C = .14、解:(1)如图一,连接A Q .由题意可知:O Q =O A =1.∵OP =2,∴A 为 OP 的中点.∵PQ 与⊙O 相切于点 Q ,∴△O Q P 为直角三角形.∴.即△OAQ 为等边三角形.∴∠QOP =60°.(2)由(1)可知点 Q 运动 1 秒时经过的弧长所对的圆心角为 30°,若 Q 按照(1)中的方向和速度继续运动,那么再过 5 秒,则 Q 点落在⊙O 与 y 轴负半轴的交点处(如图二).设 直线 P Q 与⊙O 的另外一个交点为 D ,过 O 作 OC ⊥QD 于点 C ,则 C 为 QD 的中点.∵∠QOP =90°,OQ =1,OP =2,∴Q P =. , ∵O C ⊥Q D ,O Q =1,O C = ,∴Q C == .∴QD =15、解:(1)∵圆心的坐标为O1(2,0),⊙O1 半径为 1,∴A(1,0),B(3,0),∵二次函数y=﹣x2+b x+c的图象经过点A,B,∴可得方程组,解得:,∴二次函数解析式为y=﹣x2+4x﹣3.(2)过点M作M F⊥X轴,垂足为F.∵O M是⊙O1 的切线,M为切点,∴O1M⊥O M(圆的切线垂直于经过切点的半径).在R T△O O1M中,sin∠O1O M==,∵∠O1O M为锐角,∴∠O1O M=30°,∴O M=O O1•cos30°=,在R T△M O F中,OF=OM •cos30°=.MF=O M sin30°=.∴点M坐标为(),设切线O M的函数解析式为y=k x(k≠0),由题意可知=k,∴k=,∴切线O M的函数解析式为y=x(3)两个,①过点A作A P1⊥x轴,与O M交于点P1,可得 Rt△A P1O∽Rt△M O1O(两角对应相等两三角形相似),P1A=O A•tan∠A O P1=,∴P1(1,);②过点A作A P2⊥O M,垂足为,过P2 点作P2 H⊥O A,垂足为H.可得 Rt△O P2A∽Rt△O1 M O(两角对应相等两三角形相似),在Rt△O P2A中,∵OA=1,∴P2=O A•cos30°=,在Rt△O P2 H中,O H=O P2•cos∠A O P2=,P2H=O P2 •sin∠A O P2=,P2(,),∴符合条件的P点坐标有(1,),(,).16、解:(1)方法选择:∵A B=B C=A C,∴∠ACB=∠ABC=60°,如图①,在BD上截取DEMAD,连接AM,∵∠ADB=∠ACB=60°,∴△ADM是等边三角形,∴AM=AD,∵∠ABM=∠ACD,∵∠AMB=∠ADC=120°,∴△A B M≌△A C D(A A S),∴BM=CD,∴BD=BM+DM=CD+AD;(2)类比探究:如图②,∵BC是⊙O的直径,∴∠BAC=90°,∵AB=AC,∴∠ABC=∠ACB=45°,过A作A M⊥A D交B D于M,∵∠ADB=∠ACB=45°,∴△ADM是等腰直角三角形,∴AM=AD,∠AMD=45°,∴D M=A D,∴∠AMB=∠ADC=135°,∵∠ABM=∠ACD,∴△A B M≌△A C D(A A S),∴BM=CD,∴B D=B M+D M=C D+A D;【探究 2】如图③,∵若BC是⊙O的直径,∠ABC=30°,∴∠BAC=90°,∠ACB=60°,过A作A M⊥A D交B D于M,∵∠ADB=∠ACB=60°,∴∠AMD=30°,∴MD=2AD,∵∠ABD=∠ACD,∠AMB=∠ADC=150°,∴△ABM∽△ACD,∴=,∴B M=C D,∴B D=B M+D M=C D+2A D;故答案为:B D=C D+2A D;(3)拓展猜想:B D=B M+D M=C D+A D;理由:如图④,∵若B C是⊙O的直径,∴∠BAC=90°,过A作AM⊥AD交BD于M,∴∠MAD=90°,∴∠B A M=∠D A C,∴△A B M∽△A C D,∴=,∴B M=C D,∵∠ADB=∠ACB,∠BAC=∠NAD=90°,∴△ADM∽△ACB,∴==,∴D M=A D,∴B D=B M+D M=C D+A D.故答案为:B D=C D+A D17、解:(1)证明:∵∠A C B=90°∴∠E+∠CFE=∠ACB=90°∵∠CFE=∠OFD∴∠E+∠OFD=90°∵AB切⊙O于D∴OD⊥AB∴∠ODF+∠ADE=90°∵OD=OF∴∠OFD=∠ODF∴∠E=∠ADE∴AE=AD(2)证明:连接D N∵DO平分∠GDH∴设∠ODG=∠ODH=α,设∠FDG=β,则∠FDH=2α+β∵OF=OD∴∠DFN=∠ODF=α+β∵DH⊥FN∴∠DHF=90°∴∠DFN+∠FDH=90°,即α+β+2α+β=3α+2β=90°∵FN为⊙O直径∴∠FDN=90°∴∠DNF=90°﹣∠DFN=90°﹣(2α+β)=3α+2β﹣(α+β)=2α+β∴∠G=∠DNF=2α+β∵∠AFD=∠G+∠FDG=2α+β+β=2α+2β∴∠AFD=2∠DFN(3)过O作O Q∥A B交F M于点Q∵∠AEF+∠EFC=90°,∠DFN+∠FDH=90°,∠EFC=∠DFN∴∠AEF=∠FDH=2α+β∴∠ADE=∠AEF=2α+β∴∠FAD=180°﹣∠AFD﹣∠ADF=2(3α+2β)﹣(2α+2β)﹣(2α+β)=2α+β 即∠F A D=∠A D F∴AF=DF∴F在AD的垂直平分线上∵∠AEF=∠FGD=2α+β,∠AFE=∠DFG∴∠EAF=∠FDG=β∴∠PAD=∠PDA=β+(2α+β)=2α+2β∴PA=PD∴P在A D的垂直平分线上即P M垂直平分A D∴OQ⊥FM∴∠OQF=90°,FQ=F M=∵OQ∥AB∴∠FOQ=∠B∵∠B+∠DOH=∠DOH+∠ODH=90°∴∠B=∠ODH∴∠F O Q=∠O D H在△F O Q与△O D H中∴△FOQ≌△ODH(AAS)∴OH=FQ=。

中考数学二轮精品复习试卷:圆(含答案)

中考数学二轮精品复习试卷:圆(含答案)

中考数学二轮精品复习试卷:圆学校:___________姓名:___________班级:___________考号:___________1、半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是A.3 B.4 C.D.2、两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是【】A.内含B.内切C.相交D.外切3、如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是A.B.C.D.4、如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是A.90°B.60°C.45°D.30°5、如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=500,则∠DAB等于A.55°B.60°C.65°D.70°6、如图,ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为A.36°B.46°C.27°D.63°7、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是【】A.4B.5C.6D.88、如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为【】A.cm B.cm C.cm D.7πcm9、已知和的半径分别为和,圆心距为,则和的位置关系是【】A.外离B.外切C.相交D.内切10、如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为【】A.40°B.50°C.80°D.100°11、如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为【】A.B.8 C.D.12、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为【】A.cm B.cm C.cm D.4 cm13、如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1)。

湘教版2021年中考数学二轮复习专题24圆【含答案】

湘教版2021年中考数学二轮复习专题24圆【含答案】

湘教版备考2021年中考数学二轮复习专题24圆一、单选题1.如图,已知E 是 的外心,P ,Q 分别是 , 的中点,连接 , ,分别交 于点△ABC AB AC EP EQ BC F ,D.若 , , ,则 的面积为( )BF =10DF =6CD =8△ABCA. 72B. 96C. 120D. 1442.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )A. 不能构成三角形B. 这个三角形是等腰三角形C. 这个三角形是直角三角形D. 这个三角形是钝角三角形3.如图,在△ABC 中,(1)作AB 和BC 的垂直平分线交于点O ;(2)以点O 为圆心,OA 长为半径作圆;(3)⊙O 分别与AB 和BC 的垂直平分线交于点M ,N ;(4)连接AM ,AN ,CM ,其中AN 与CM 交于点P.根据以上作图过程及所作图形,下列四个结论:① =2 ;②AB =2AM ;③点P 是△ABC 的内心;④∠MON +2∠MPN =360°.BC NC 其中正确结论的个数是( )A. 1B. 2C. 3D. 44.如图,将边长为6的正六边形铁丝框ABCDEF (面积记为S 1)变形为以点D 为圆心,CD 为半径的扇形(面积记为S 2),则S 1与S 2的关系为( )A. S 1= S 2B. S 1<S 2C. S 1=S 2D. S 1>S 2π35.如图,半径为2cm ,圆心角为90°的扇形OAB 的弧AB 上有一运动的点P ,从点P 向半径OA 引垂线PH 交OA 于点H 。

设△OPH 的内心为I ,当点P 在弧AB 上从点A 运动到点B 时,内心I 所经过的路径长为( )A. B. C. D. π2π22π24π6.如图,⊙O 上有一个动点A 和一个定点B ,令线段AB 的中点是点P ,过点B 作⊙O 的切线BQ ,且BQ=3,现测得 的长度是 , 的度数是120°,若线段PQ 的最大值是m ,最小值是n ,则mn 的AB 4π3AB 值是( )A. 3B. 2C. 9D. 1010137.如图,AB 是⊙o 直径,M ,N 是 上两点,C 是 上任一点,∠ACB 角平分线交⊙o 于点D ,∠BAC AB MN 的平分线交CD 于点E ,当点C 从M 运动到N 时,C 、E 两点的运动路径长之比为( )A. B. C. D. 2π232528.如图,△ABC 内接于⊙O ,BC=6,AC=2,∠A-∠B=90°,则⊙O 的面积为( )A. 9.6πB. 10πC. 10.8πD. 12π9.正六边形的半径与边心距之比为( ) A. 1: B. :1 C. :2 D. 2: 333310.在 Rt △ABC ,∠C=90°,AB=6.△ABC 的内切圆半径为1,则△ABC 的周长为( )A. 13B. 14C. 15D. 16二、填空题11.如图,将半径为2,圆心角为120°的扇形OAB 绕点B 逆时针旋转60°,得到扇形O'A'B ,其中点A 的运动路径为 ,则图中阴影部分的面积为________. AA ′12.如图所示,将边长为 的正方形 沿直线 向右滚动(不滑动),当正方形滚动两周时(当8cm ABCD l 正方形的四个顶点的位置首次与起始位置相同时,称为正方形滚动一周),正方形的顶点 所经过的路A 线长是________ . cm13.如图,AB 为⊙O 的直径,C 为⊙O 上一点,其中AB =2,∠AOC =120°,P 为⊙O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为________.OQ=6.M ∠AOB=45°,点P 、Q 都在射线OA 上,OP=2,OQ=6.M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为________.15.如图,正六边形 内部有一个正五形 ,且 ,直线 经过 、 A 1A 2A 3A 4A 5A 6B 1B 2B 3B 4B 5A 3A 4//B 3B 4l B 2 ,则直线 与 的夹角 ________ .B 3l A 1A 2α=°16.如图,有一个圆O 和两个正六边形T 1 , T 2 . T 1的6个顶点都在圆周上,T 2的6条边都和圆O 相切(我们称T 1 , T 2分别为圆O 的内接正六边形和外切正六边形).若设T 1 , T 2的边长分别为a ,b ,圆O 的半径为r ,则r :a=________;r :b=________;正六边形T 1 , T 2的面积比S 1:S 2的值是________.17.如图,扇形AOB ,且OB=4,∠AOB=90°,C 为弧AB 上任意一点,过C 点作CD ⊥OB 于点D ,设△ODC 的内心为E ,连接OE 、CE ,当点C 从点B 运动到点A 时,内心E 所经过的路径长为 ________。

2020-2021中考数学二轮 圆的综合 专项培优及详细答案

2020-2021中考数学二轮 圆的综合 专项培优及详细答案

2020-2021中考数学二轮 圆的综合 专项培优及详细答案一、圆的综合1.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠. (1)求证:CE 是半圆的切线; (2)若CD=10,2tan 3B =,求半圆的半径.【答案】(1)见解析;(2)413 【解析】分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.详解:(1)证明:如图,连接CO .∵AB 是半圆的直径, ∴∠ACB =90°.∴∠DCB =180°-∠ACB =90°. ∴∠DCE+∠BCE=90°. ∵OC =OB , ∴∠OCB =∠B. ∵=DCE B ∠∠, ∴∠OCB =∠DCE . ∴∠OCE =∠DCB =90°. ∴OC ⊥CE . ∵OC 是半径, ∴CE 是半圆的切线. (2)解:设AC =2x ,∵在Rt △ACB 中,2tan 3AC B BC ==, ∴BC =3x .∴()()222313AB x x x =+=.∵OD ⊥AB , ∴∠AOD =∠A CB=90°. ∵∠A =∠A , ∴△AOD ∽△ACB . ∴AC AOAB AD=. ∵1132OA AB x ==,AD =2x +10, ∴113221013xx x =+. 解得 x =8. ∴138413OA =⨯=. 则半圆的半径为413.点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.2.如图1,以边长为4的正方形纸片ABCD 的边AB 为直径作⊙O ,交对角线AC 于点E . (1)图1中,线段AE= ;(2)如图2,在图1的基础上,以点A 为端点作∠DAM=30°,交CD 于点M ,沿AM 将四边形ABCM 剪掉,使Rt △ADM 绕点A 逆时针旋转(如图3),设旋转角为α(0°<α<150°),在旋转过程中AD 与⊙O 交于点F . ①当α=30°时,请求出线段AF 的长;②当α=60°时,求出线段AF 的长;判断此时DM 与⊙O 的位置关系,并说明理由; ③当α= °时,DM 与⊙O 相切.【答案】(1)2(2)①2②2,相离③当α=90°时,DM 与⊙O 相切【解析】(1)连接BE ,∵AC 是正方形ABCD 的对角线,∴∠BAC =45°,∴△AEB 是等腰直角三角形,又∵AB=8,∴AE=4;(2)①连接OA、OF,由题意得,∠NAD=30°,∠DAM=30°,故可得∠OAM=30°,∠DAM=30°,则∠OAF=60°,又∵OA=OF,∴△OAF是等边三角形,∵OA=4,∴AF=OA=4;②连接B'F,此时∠NAD=60°,∵AB'=8,∠DAM=30°,∴AF=AB'cos∠DAM=8×=4;此时DM与⊙O的位置关系是相离;③∵AD=8,直径的长度相等,∴当DM与⊙O相切时,点D在⊙O上,故此时可得α=∠NAD=90°.点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点D的位置,有一定难度.3.如图,AB是⊙O的直径,PA是⊙O的切线,点C在⊙O上,CB∥PO.(1)判断PC与⊙O的位置关系,并说明理由;(2)若AB=6,CB=4,求PC的长.【答案】(1)PC是⊙O的切线,理由见解析;(235 2【解析】试题分析:(1)要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.(2)可以连接AC,根据已知先证明△ACB∽△PCO,再根据勾股定理和相似三角形的性质求出PC的长.试题解析:(1)结论:PC是⊙O的切线.证明:连接OC∵CB∥PO∴∠POA=∠B,∠POC=∠OCB∵OC=OB∴∠OCB=∠B∴∠POA=∠POC又∵OA=OC,OP=OP∴△APO≌△CPO∴∠OAP=∠OCP∵PA是⊙O的切线∴∠OAP=90°∴∠OCP=90°∴PC是⊙O的切线.(2)连接AC∵AB是⊙O的直径∴∠ACB=90°(6分)由(1)知∠PCO=90°,∠B=∠OCB=∠POC∵∠ACB=∠PCO∴△ACB∽△PCO∴∴.点睛:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.4.如图,△ABC内接于⊙O,弦AD⊥BC垂足为H,∠ABC=2∠CAD.(1)如图1,求证:AB=BC;(2)如图2,过点B作BM⊥CD垂足为M,BM交⊙O于E,连接AE、HM,求证:AE∥HM;(3)如图3,在(2)的条件下,连接BD交AE于N,AE与BC交于点F,若NH=25,AD=11,求线段AB的长.【答案】(1)证明见解析;(2)证明见解析;(3)AB的长为10.【解析】分析:(1)根据题意,设∠CAD=a,然后根据直角三角形的两锐角互余的关系,推导出∠BAC=∠ACB,再根据等角对等边得证结论;(2)延长AD、BM交于点N,连接ED.根据圆周角定理得出∠N=∠DEN=∠BAN,进而根据等角对等边,得到DE=DN,BA=BN,再根据等腰三角形和直角三角形的性质,求得MH∥AE;(3)连接CE,根据(2)的结论,由三角形全等的判定与性质证得HF=HC,然后结合勾股定理求出AC2-AH2=CD2-DH2,解得CD=5,CH=4,AH=8,最后根据锐角三角函数的性质得到AB.详解:(1)证明:设∠CAD=a,则∠ABC=2a,∠C=90°-a,∠BAD=90°-2a,∴∠BAC=90°-2a+a=90°-a∴∠BAC=∠ACB.∴AB=BC(2)证明:延长AD、BM交于点N,连接ED.∵∠DEN=∠DAB,∠N=∠BCD,∠BCD=∠BAN∴∠N=∠DEN=∠BAN∴DE=DN,BA=BN又∵BH⊥AN,DM⊥EN∴EM=NM,HN=HA,∴MH∥AE(3)连接CE.∠BDA=∠BCA,∠BDM=∠BAC,由(1)知∠BCA=∠BAC∴∠BDA=∠BDM,∴△BDM≌△BDH,∴DH=MH,∠MBD=∠HBD,∴BD⊥MH又∵MH∥AE,∴BD⊥EF,∴△FNB≌△ENB,同理可证△AFH≌△ACH,∴HF=HC,又∵FN=NE∴NH∥EC,EC=2NH,又∵NH=25∴EC=45∠EAC=2∠AEC=2a=∠ABC,可证弧AC=弧EC,∴AC=EC=5设HD=x,AH=11-x,∵∠ADC=2∠CAD,翻折△CHD至△CHG,可证CG=CD=AGAH=CD+DH,CD=AH-DH=11-x-x=11-2x又∵AC 2-AH 2=CD 2-DH 2,∴(45)2-(11-x)2=(11-2x)2-x 2 ∴x 1=3,x 2=272(舍去)∴CD=5,CH=4,AH=8. 又∵tan2AH CHa BH DH==,∴BH=6 ∴AB=22226810BM AH +=+= 点睛:此题主要考查了圆的综合,结合圆周角定理,勾股定理,全等三角形的判定与性质,解直角三角形的性质,综合性比较强,灵活添加辅助线,构造方程求解是解题关键.5.矩形ABCD 中,点C (3,8),E 、F 为AB 、CD 边上的中点,如图1,点A 在原点处,点B 在y 轴正半轴上,点C 在第一象限,若点A 从原点出发,沿x 轴向右以每秒1个单位长度的速度运动,点B 随之沿y 轴下滑,并带动矩形ABCD 在平面内滑动,如图2,设运动时间表示为t 秒,当点B 到达原点时停止运动. (1)当t =0时,点F 的坐标为 ; (2)当t =4时,求OE 的长及点B 下滑的距离; (3)求运动过程中,点F 到点O 的最大距离;(4)当以点F 为圆心,FA 为半径的圆与坐标轴相切时,求t 的值.【答案】(1)F (3,4);(2)8-33)7;(4)t 的值为245或325. 【解析】试题分析:(1)先确定出DF ,进而得出点F 的坐标; (2)利用直角三角形的性质得出∠ABO =30°,即可得出结论;(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,即可得出结论; (4)分两种情况,利用相似三角形的性质建立方程求解即可.试题解析:解:(1)当t =0时.∵AB =CD =8,F 为CD 中点,∴DF =4,∴F (3,4); (2)当t =4时,OA =4.在Rt △ABO 中,AB =8,∠AOB =90°, ∴∠ABO =30°,点E 是AB 的中点,OE =12AB =4,BO =3∴点B 下滑的距离为843-(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,∴FO=OE+EF=7.(4)在Rt △ADF 中,FD 2+AD 2=AF 2,∴AF =22FD AD +=5,①设AO =t 1时,⊙F 与x 轴相切,点A 为切点,∴FA ⊥OA ,∴∠OAB +∠FAB =90°.∵∠FAD +∠FAB =90°,∴∠BAO =∠FAD .∵∠BOA =∠D =90°,∴Rt △FAE ∽Rt △ABO ,∴AB AO FA FE =,∴1853t=,∴t 1=245,②设AO =t 2时,⊙F 与y 轴相切,B 为切点,同理可得,t 2=325. 综上所述:当以点F 为圆心,FA 为半径的圆与坐标轴相切时,t 的值为245或325. 点睛:本题是圆的综合题,主要考查了矩形的性质,直角三角形的性质,中点的意义,勾股定理,相似三角形的判定和性质,切线的性质,解(2)的关键是得出∠ABO =30°,解(3)的关键是判断出当O 、E 、F 三点共线时,点F 到点O 的距离最大,解(4)的关键是判断出Rt △FAE ∽Rt △ABD ,是一道中等难度的中考常考题.6.如图.在△ABC 中,∠C =90°,AC =BC ,AB =30cm ,点P 在AB 上,AP =10cm ,点E 从点P 出发沿线段PA 以2c m/s 的速度向点A 运动,同时点F 从点P 出发沿线段PB 以1c m/s 的速度向点B 运动,点E 到达点A 后立刻以原速度沿线段AB 向点B 运动,在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧,设点E 、F 运动的时间为t (s )(0<t <20).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与△ABC 重叠部分的面积为S .①试求S 关于t 的函数表达式;②以点C 为圆心,12t 为半径作⊙C ,当⊙C 与GH 所在的直线相切时,求此时S 的值.【答案】(1)t=2s或10s;(2)①S=2229?(02) 75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.7.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。

人教中考数学二轮 圆的综合 专项培优及详细答案

人教中考数学二轮 圆的综合 专项培优及详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.【答案】(1)证明见解析;(2)8.【解析】(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.试题解析:连接AD,OA,∵∠ADC=∠B,∠B=60°,∴∠ADC=60°,∵CD是直径,∴∠DAC=90°,∴∠ACO=180°-90°-60°=30°,∵AP=AC,OA=OC,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°-30°-30°-30°=90°,即OA⊥AP,∵OA为半径,∴AP是⊙O切线.(2)连接AD,BD,∵CD是直径,∴∠DBC=90°,∵CD=4,B为弧CD中点,∴BD=BC=,∴∠BDC=∠BCD=45°,∴∠DAB=∠DCB=45°,即∠BDE=∠DAB,∵∠DBE=∠DBA,∴△DBE∽△ABD,∴,∴BE•AB=BD•BD=.考点:1.切线的判定;2.相似三角形的判定与性质.2.如图,A、B两点的坐标分别为(0,6),(0,3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;(2)当⊙M与x轴相切时,求点Q的坐标;(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.【答案】(1)见解析;(2) Q的坐标为(29);(3)63 8.【解析】(1)解:连接AM、BM,∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= 12 PQ,∴A、B、P、Q四点在以M为圆心的同一个圆上。

2024年中考数学复习(全国版)第六章 圆(测试)(解析版)

2024年中考数学复习(全国版)第六章  圆(测试)(解析版)

在 Rt △ 푂� 中,∵ ∠푂 � = 90°,
∴ 푂�2 = � 2 + 푂 2,
∴ �2 = 122 + (� − 8)2,
∴ � = 13,
即⊙ 푂的半径푂�为 13cm. 故选:A. 【点睛】本题考查了垂径定理、勾股定理的应用,设⊙ 푂的半径푂�为�cm,列出关于�的方程是解题的关
键. 5.【创新题】如图,� 是⊙ 푂的直径,弦 则下列结论一定成立的是( )
��,
故选 A
【点睛】本题考查了三角形的内切圆与内心,掌握内切圆的性质是解题的关键.
7.【创新题】如图,△ � 的内切圆⊙ �与 , �,� 分别相切于点 D,E,F,若⊙ �的半径为 r,∠� = �,
在�푡훥 푂中,푂 = ,∠�푂 = ∠�
D.�△ 푂 =
∴tan�= 푂
∴푂 = tan� = 2tan�,故选项 A 错误,不符合题意;
又 sin� = 푂
∴ = 푂 ·sin�
∴ = 2 = 2 ·sin�,故选项 B 正确,符合题意;

cos�
=
푂 푂
∴푂 = 푂 ·cos� = ·cos�
径定理和锐角三角函数的定义.
6.已知△ � 的周长为�,其内切圆的面积为��2,则△ � 的面积为( )
A.12 ��
B.12 ���
C.��
D.���
【答案】A
【分析】由题意可得�△�푂
=
1 2

×푂
=
1 2

× �,�△ 푂
=
1 2
× �,�△�푂
=
1 2

× �,由面
积关系可求解.
【详解】解:如图,设内切圆푂与△ � 相切于点 ,点 ,点�,连接푂�,푂 ,푂 ,푂 ,푂�,푂 ,

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)类型一基本性质有关的1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【答案】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=12BC=6,在Rt△CDE中,即得CE的长是3.本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.(1)求证:CE与⊙O相切;(2)若AD=4,∠D=60°,求线段AB,BC的长.【答案】(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,60°,即得AB=3BD=23,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=2AB= 6,又△AOC是等腰直角三角形,OA=OC=2,得AC=22,故CF=AC2−AF2=2,从而BC=BF+CF=6+2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.3.(2021·山东临沂市·中考真题)如图,已知在⊙O中,==,OC与AD相交于点AB BC CDE.求证:(1)AD∥BC(2)四边形BCDE为菱形.【答案】(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB=∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE=BC ,证明四边形BCDE 为平行四边形,再根据 BCCD =得到BC=CD ,从而证明菱形.【详解】解:(1)连接BD ,∵ AB BCCD ==,∴∠ADB=∠CBD ,∴AD ∥BC ;(2)连接CD ,∵AD ∥BC ,∴∠EDF=∠CBF ,∵ BCCD =,∴BC=CD ,∴BF=DF ,又∠DFE=∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE=BC ,∴四边形BCDE 是平行四边形,又BC=CD ,∴四边形BCDE 是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF .4.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长.【答案】(1)见解析;(2)【分析】(1)先证得△AOB 为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O 作OM ⊥DF 于M ,DN ⊥OC 于N ,利用勾股定理得出AC=30°的直角三角形的性质得出DN ,再根据垂径定理和勾股定理即可求出GF 的长.【详解】(1)证明:∵AB=OA ,OA=OB∴AB=OA=OB∴△AOB 为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC 是⊙O 的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC=∵D 、E 分别为AC 、OA 的中点,∴OE//BC ,DC=过O 作OM ⊥DF 于M ,DN ⊥OC 于N则四边形OMDN 为矩形∴DN=OM在Rt △CDN 中,∠C=30°,∴DN=12DC=∴OM=3连接OG ,∵OM ⊥GF∴GF=2MG=222OG OM -=()22243-=213【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.5.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.【答案】(1)35;(2)见解析.【分析】(1)根据M 是CD 的中点,OM 与圆O 直径共线可得OM CD ⊥,OM 平分CD ,则有6MC =,利用勾股定理可求得半径的长;(2)连接AC ,延长AF 交BD 于G ,根据CE EF =,AE FC ⊥,可得AF AC =,12∠=∠,利用圆周角定理可得2D ∠=∠,可得1D ∠=∠,利用直角三角形的两锐角互余,可证得90AGB ∠=︒,即有AF BD ⊥.【详解】(1)解:连接OC ,∵M 是CD 的中点,OM 与圆O 直径共线∴OM CD ⊥,OM 平分CD ,90OMC ∴∠=︒12CD = 6MC ∴=.在Rt OMC △中.OC ===∴圆O 的半径为(2)证明:连接AC ,延长AF 交BD 于G .CE EF = ,AE FC⊥AF AC∴=又CE EF= 12∠∠∴= BCBC = 2D∴∠=∠1D∴∠=∠中在Rt BED∠+∠=︒90D B∴∠+∠=︒B190AGB∴∠=︒90∴⊥AF BD【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.∠是 AD所对的圆周角,6.(2021·浙江中考真题)如图,已知AB是⊙O的直径,ACD∠=︒.30ACD∠的度数;(1)求DABAB=,求DF的(2)过点D作DE AB⊥,垂足为E,DE的延长线交⊙O于点F.若4长.【答案】(1)60︒;(2)23【分析】(1)连结BD ,根据圆周角性质,得B ACD ∠=∠;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;(2)根据含30°角的直角三角形性质,得12AD AB =;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.【详解】(1)连结BD ,30ACD ∠=︒30B ACD \Ð=Ð=°AB Q 是O 的直径,90ADB ∴∠=︒,9060DAB B ∴∠=︒-∠=︒(2)90ADB ∠=︒ ,30B ∠=︒,4AB =∴122AD AB ==60DAB ∠=︒ ,DE AB ⊥,且AB 是直径sin 60EF DE AD︒∴===2DF DE =∴=.【点睛】本题考查了圆、含30°角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含30°角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.7.(2021·湖南中考真题)如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.【答案】(1)见解析;(2)5CE =.【分析】(1)连接OD ,由点D 是 BC的中点得OD ⊥BC ,由DE//BC 得OD ⊥DE ,由OD 是半径可得DE 是切线;(2)证明△ODE 是等腰直角三角形,可求出OE 的长,从而可求得结论.【详解】解:(1)连接OD 交BC 于点F ,如图,∵点D 是 BC的中点,∴OD ⊥BC ,∵DE//BC∴OD ⊥DE∵OD 是O 的半径∴直线DE 与O 相切;(2)∵AC 是O 的直径,且AB=10,∴∠ABC=90°,152OC OA AB ===∵OD ⊥BC∴∠OFC=90°∴OD//AB 45BAC ∠=︒∴45DOE ∠=︒∵90ODE ∠=︒∴45OED ∠=∴5DE OD OC ===由勾股定理得,OE =∴5CE OE OC =-=.【点睛】此题主要考查了切线的判定与性质的综合运用,熟练掌握切线的判定与性质是解答此题的关键.8.(2021·湖南张家界市·中考真题)如图,在Rt AOB 中,90∠=︒ABO ,30OAB ∠=︒,以点O 为圆心,OB 为半径的圆交BO 的延长线于点C ,过点C 作OA 的平行线,交O 于点D ,连接AD .(1)求证:AD 为O 的切线;(2)若2OB =,求弧CD 的长.【答案】(1)见解析;(2)23π【分析】(1)连接OB ,先根据直角三角形的性质得到∠AOB=60°,再运用平行线的性质结合已知条件可得60AOD ∠=︒,再证明AOB AOD △≌△可得90ADO ABO ∠=∠=︒即可;(2)先求出∠COD ,然后再运用弧长公式计算即可.【详解】(1)证明:连接OD∵30OAB ∠=︒,90B ∠=︒∴60AOB ∠=︒又∵//CD AO∴60C AOB ∠=∠=︒∴2120BOD C ∠=∠=︒∴60AOD ∠=︒又∵,OB OD AO AO==∴()AOB AOD SAS ≌∴90ADO ABO ∠=∠=︒又∵点D 在O 上∴AD 是O 的切线;(2)∵120BOD ∠=︒∴60COD ∠=︒∴602223603l ππ=⨯⨯=.【点睛】本题主要考查了圆的切线的证明、弧长公式等知识点,掌握圆的切线的证明方法成为解答本题的关键.9.(2020•齐齐哈尔)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两个点,AC=CD =DB ,连接AD ,过点D 作DE ⊥AC 交AC 的延长线于点E .(1)求证:DE 是⊙O 的切线.(2)若直径AB =6,求AD 的长.【分析】(1)连接OD ,根据已知条件得到∠BOD =13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【解析】(1)证明:连接OD,=CD =DB ,∵AC∴∠BOD=13×180°=60°,=DB ,∵CD∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=62−32=33.10.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解析】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC•CE,∴CD=6×810=245.11.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=83,可证四边形OAFC是正方形,可得CF=AF=43,由锐角三角函数可求EF=12,即可求解.【解析】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=AB AD==83,∴AD=∴OA=OC=43,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=43,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=EF AF=3,∴EF=3AF=12,∴CE=CF+EF=12+43.类型二与三角形全等、相似有关的12.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【答案】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.13.(2022·北部湾)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线(2)若AE DE=23,AF=10,求⊙O的半径.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线(2)解:连接CF,由(1)知OD⊥DE,∵DE⊥AB,∴OD∥AB,∵OA=OC,∴BD=CD,即OD是△ABC的中位线,∵AC是⊙O的直径,∴∠CFA=90°,∵DE⊥AB,∴∠BED=90°,∴∠CFA=∠BED=90°,∴DE∥CF,∴BE=EF,即DE是△FBC的中位线,∴CF=2DE,∵AE DE=23,∴设AE=2x,DE=3k,CF=6k,∵AF=10,∴BE=EF=AE+AF=2k+10,∴AC=BA=EF+AE=4k+10,在Rt△ACF中,由勾股定理,得AC2=AF2+CF2,即(4k+10)2=102+(6k)2,解得:k=4,∴AC=4k+10=4×4+10=26,∴OA=13,即⊙O的半径为13.【知识点】平行线的判定与性质;等腰三角形的性质;圆周角定理;切线的判定;三角形的中位线定理【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得∠C=∠ODC ,∠B=∠C ,则∠B=∠ODC ,推出OD ∥AB ,由平行线的性质可得∠ODE=∠DEB=90°,即DE ⊥OD ,据此证明;(2)连接CF ,由(1)知OD ⊥DE ,则OD ∥AB ,易得OD 是△ABC 的中位线,根据圆周角定理可得∠CFA=90°,根据垂直的概念可得∠BED=90°,则DE ∥CF ,推出DE 是△FBC的中位线,得CF=2DE ,设AE=2x ,DE=3k ,CF=6k ,则BE=EF=2k+10,AC=BA=4k+10,根据勾股定理可得k 的值,然后求出AC 、OA ,据此可得半径.14.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA Ð=°,40ACD ∠=︒,求证:OAB CDE V V ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵AC 是O 的直径,∴∠ABC=90°,∵PB 切O 于点B ,∴∠OBP=90°,∴90PBA ABO OBC ABO ∠+∠=∠+∠=︒,∴PBA OBC ∠=∠;(2)∵20PBA Ð=°,PBA OBC ∠=∠,∴20OBC ∠=︒,∵OB=OC ,∴20OCB OBC ∠=∠=︒,∴∠AOB=20°+20°=40°,∵OB=OA ,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=12∠AOB=20°,∵AC 是O 的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB ,∵40ACD ∠=︒,∴40ACD AOB ∠=∠=︒,∴OAB CDE V V ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.15.(2020•衢州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出CE AC=AC AB,求出EC即可解决问题.【解析】(1)证明:∵AE=DE,OC是半径,=CD ,∴AC∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC=AC AB,∴CE6=610,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.16.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,BE CE=12,求CD的长.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC=tan∠BCE=BE CE=12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC=CD AD=12,∵AD=8,∴CD=4.17.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD=AD2−AC2==根据相似三角形的性质即可得到结论.【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AE AD=AD AC,108=8AC,∴AC=325,∴CD=AD2−AC2==245,∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴OD AC=BD BC,∴5325=BD BD+245,∴BD=1207.18.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC 于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解析】(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BA=BF BD,∴BD2=BF•BA=2×6=12.∴BD=23.19.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解析】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=12BC,CE=12CD,在Rt△AOP中,OP=62+82=10,由(1)知,△AOP∽△CBD,∴DB OP=BC OA=DC AP,即1210=BC6=DC8,∴BC=365,DC=485,∴OE=185,CE=245,在Rt△AEC中,AC=AE2+CE2==20(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线:(2)若2,33OA BE OD ==,求DA 的长.【答案】(1)见解析;(2)910【分析】(1)连接OC ,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC 是圆O 的切线;(2)根据已知得到OA=2DA ,证明△DCO ∽△DEB ,得到DO CO DB EB =,可得DA=310EB ,即可求出DA 的长.【详解】解:(1)如图,连接OC ,由题意可知:∠ACB 是直径AB 所对的圆周角,∴∠ACB=90°,∵OC ,OB 是圆O 的半径,∴OC=OB ,∴∠OCB=∠ABC ,又∵∠DCA=∠ABC ,∴∠DCA=∠OCB ,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC ⊥DC ,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB+===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.21.(2021·江苏扬州市·中考真题)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =,60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π-【分析】(1)过点B 作BF ⊥CD ,证明△ABD ≌△FBD ,得到BF=BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到∠ABD=30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF ⊥CD ,∵AD ∥BC ,∴∠ADB=∠CBD ,∵CB=CD ,∴∠CBD=∠CDB ,∴∠ADB=∠CDB ,又BD=BD ,∠BAD=∠BFD=90°,∴△ABD ≌△FBD (AAS ),∴BF=BA ,则点F 在圆B 上,∴CD 与圆B 相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=tan30AB ⋅︒=2,∴阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π-.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.22.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC 于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则AE BC=AD DC=23,推出AO OH=AE BH=43,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解析】(1)证明:连接OA.A∵AB=AC,=AC ,∴AB∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C =4∠ABD ,∵∠DBC+∠C+∠CDB =180°,∴10∠ABD =180°,∴∠BCD =4∠ABD =72°.③若DB =DC ,则D 与A 重合,这种情形不存在.综上所述,∠C 的值为67.5°或72°.(3)如图3中,作AE ∥BC 交BD 的延长线于E .则AE BC =AD DC =23,∴AO OH =AE BH =43,设OB =OA =4a ,OH =3a ,∵BH 2=AB 2﹣AH 2=OB 2﹣OH 2,∴25﹣49a 2=16a 2﹣9a 2,∴a 2=2556,∴BH =∴BC =2BH =23.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC是O的切线:(2)若2,33OA BEOD==,求DA的长.【答案】(1)见解析;(2)9 10【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到DO CODB EB=,可得DA=310EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB +===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.类型三与锐角三角函数有关24.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=45,AP=4,求BF的长.【答案】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=12AD,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE= 90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.25.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD ,∠BDC =∠BAD .(1)求证:CD 是⊙O 的切线.(2)若tan∠BED =23,AC =9,求⊙O 的半径.【答案】(1)连接OD ,由圆周角定理得出∠ADB =90°,证出OD ⊥CD ,由切线的判定可得出结论;(2)证明△BDC∽△DAC ,由相似三角形的性质得出CD AC =BC CD =BD DA =23,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.26.(2021·山东菏泽市·中考真题)如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.【答案】(1)见解析;(2)=2BG 【分析】(1)连接OE ,证明OE ⊥EF 即可;(2)由3sin 5F =证得4sin 5G =,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE ,如图,∵OA=OE∴∠OAE=∠OEA .∵EF=PF ,∴∠EPF=∠PEF∵∠APH=∠EPF ,∴∠APH=∠EPF ,∴∠AEF=∠APH .∵CD ⊥AB ,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE ⊥EF .∵OE 是O 的半径∴EF 是圆的切线,(2)∵CD ⊥AB∴FHG ∆是直角三角形∵3sin 5F =∴35GH FG =设3GH x =,则5FG x=由勾股定理得,4FH x=由(1)得,OEG ∆是直角三角形∴4sin 5OE FH x G OG FG x===∴45OE OG =,即45OE OE BG =+∵8OE =∴8485BG =+解得,2BG =【点睛】此题主要考查了圆的切线的判定,勾股定理和解直角三角形等知识,熟练掌握切线的判定是解答此题的关键.27.(2022·黔东南)(1)请在图中作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写作法);的中点,过点B的(2)如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O的半径.【答案】(1)解:如下图所示(2)解:①如下图所示,连接OC、OB∵BD是⊙O的切线∴OB⊥BD对应的圆周角,∠COE是CE 对应的圆心角∵∠CAE是CE∴∠COE=2∠CAE的中点∵点B是CE∴∠COE=2∠BOE∴∠CAE=∠BOE∴∠CAE=∠BOE∴AD//OB∴BD⊥AD②如下图所示,连接CE对应的圆周角∵∠ABC与∠AEC是AC∴∠ABC=∠AEC∵AE是⊙O的直径∴∠ACE=90°∴tan∠AEC=AC CE=34∴CE=8∵AE2=CE2+AC2∴AE=10∴⊙O的半径为5.【知识点】圆周角定理;三角形的外接圆与外心;切线的性质;解直角三角形;作图-线段垂直平分线【解析】【解答】(1)∵△ABC的外接圆⊙O的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,∴做AB、AC的垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到△ABC 的外接圆;【分析】(1)利用尺规作图分别作出AC,AB的垂直平分线,两垂直平分线交于点O,然后以点O为圆心,OB的长为半径画圆即可.(2)①连接OC,OB,利用切线的性质可证得OB⊥BD,利用圆周角定理可证得∠COE=2∠CAE,由点B是弧CE的中点,可推出∠CAE=∠BOE,利用平行线的判定定理可证得AD∥OB,由此可证得结论;②连接CE,利用同弧所对的圆周角相等,可证得∠ABC=∠AEC,利用直径所对的圆周角是直角,可推出∠ACE=90°;再利用解直角三角形求出CE的长,利用勾股定理求出AE的长.28.(2022·鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tanA=12,求△OCD的面积.【答案】(1)解:PC与⊙O相切,理由如下:∵AB是圆O的直径,∴∠ACB=90°,∴∠OCB+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠PCB=∠OAC,∴∠PCB=∠OCA,∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,∴PC与⊙O相切(2)解:∵∠ACB=90°,tanA=12,∴BC AC=12,∵∠PCB=∠OAC,∠P=∠P,∴△PBC∽△PCA,∴PC PA=PB PC=BC CA=12,∴PA=8,PB=2,∴AB=6,∴OC=OB=3,∴OP=5,∵BC∥OD,∴△PBC∽△POD,∴PB OP=PC PD,即25=4PD,∴PD=10,∴CD=6,∴S△OCD=12OC⋅CD=9【知识点】等腰三角形的性质;圆周角定理;切线的判定;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由圆周角定理得∠ACB=90°,根据等腰三角形的性质可得∠OCA=∠OAC,结合∠PCB=∠OAC得PCB=∠OCA,结合∠OCB+∠OCA=90°可得∠PCO=90°,据此证明;(2)根据三角函数的概念可得BC AC=12,易证△PBC∽△PCA,根据相似三角形的性质可得PA、PB,然后求出AB、OP,证明△PBC∽△POD,根据相似三角形的性质可得PD,由PD-PC=CD可得CD,然后根据三角形的面积公式进行计算.29.(2022·毕节)如图,在△ABC中,∠ACB=90∘,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O直径.【答案】(1)证明:连接OE,如下图所示:∵AC为圆O的切线,∴∠AEO=90°,∵AC⊥BC,∴∠ACB=90°,∴OE∥BC,∴∠F=∠DEO,又∵OD=OE,∴∠ODE=∠DEO,∴∠F=∠ODE,∴BD=BF.(2)解:连接BE,如下图所示:由(1)中证明过程可知:∠EDB=∠F,。

中考数学复习《圆》专项测试卷(含参考答案)

中考数学复习《圆》专项测试卷(含参考答案)

中考数学复习《圆》专项测试卷(含参考答案)学校:___________班级:___________姓名:___________考号:___________一、单选题(共11小题)1.如图,点A、B、C、D、E均在⊙O上.∠BAC=15∘,∠CED=30∘则∠BOD的度数为( )A.45∘B.60∘C.75∘D.90∘2.如图,点A、B、C、D在⊙O上∠AOC=120∘,点B是AC⌢的中点,则∠D的度数是( )A.30∘B.40∘C.50∘D.60∘3.如图,AB,CD是⊙O的两条直径,E是BC⏜的中点,连接BC,DE.若∠ABC=22∘,则∠CDE的度数为( )A.22∘B.32∘C.34∘D.44∘4.如图,一件扇形艺术品完全打开后,AB,AC夹角为120∘,AB的长为45cm,扇面BD的长为30cm,则扇面的面积是( )A.375πcm2B.450πcm2C.600πcm2D.750πcm25.如图,在⊙O中,AB是⊙O的直径AB=10AC⏜=CD⏜=DB⏜点E是点D关于AB的对称点,M是AB上的一动∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述点,下列结论:①∠BOE=60∘;②∠CED=12结论中正确的个数是( )A.1B.2C.3D.46.如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在AB⏜上的点C处,图中阴影部分的面积为( )A.3π−3√3B.3π−9√32C.2π−3√3 D.6π−9√327.如图,⊙O的直径AB=8,AM,BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C两点BD,OC相交于点F,若CD=10,则BF的长是( )A.8√179B.10√179C.8√159D.10√1598.如图,在RtABC中∠ACB=90∘,以该三角形的三条边为边向形外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则S1S2的值是( )A. 5π2B. 3π C. 5π D. 11π29.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=√3OD,AB=12,CD的长是( )A.2√3B.2C.3√3D.4√310.如图,在半径为√13的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1则CD的长是( )A.2√6B.2√10C.2√11D.4√311.如图,⊙P与x轴交于点A(−5,0),B(1,0)与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为( )A.√13+√3B.2√2+√3C.4√2D.2√2+2二、填空题(共11小题)12.如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为∘.13.我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为.14. 如图,⊙O与△OAB的边AB相切,切点为B.将△OAB绕点B按顺时针方向旋转得到ΔO′A′B,使点O′落在⊙O上,边A′B交线段AO于点C.若∠A′=25∘,则∠OCB=度.15.如图,在4×4的正方形网格图中已知点A B C D O均在格点上其中A B D又在⊙O上点E是线段CD与⊙O的交点.则∠BAE的正切值为.16.如图AB为⊙O的直径C为⊙O上一点过B点的切线交AC的延长线于点D E为弦AC的中点AD=10BD=6若点P为直径AB上的一个动点连接EP当△AEP是直角三角形时AP的长为.17.如图Rt△ABC中∠C=90°AC=12点D在边BC上CD=5BD=13.点P是线段AD上一动点当半径为6的⊙P与△ABC的一边相切时AP的长为.x+3上的动点18.如图在直角坐标系中⊙A的圆心A的坐标为(−10)半径为1点P为直线y=−34过点P作⊙A的切线切点为Q则切线长PQ的最小值是.19.如图在△ABC中AC=BC∠ACB=90°以点A为圆心AB长为半径画弧交AC延长线于点D的值为.过点C作CE//AB交BD⏜于点E连接BE则CEBE20.如图四边形ABDC中AC=BC∠ACB=90°AD⊥BD于点D.若BD=2CD=4√2则线段AB的长为.21.如图在△ABC中∠BAC=30°∠ACB=45°AB=2点P从点A出发沿AB方向运动到达点B时停止运动连结CP点A关于直线CP的对称点为A′连结A′C A′P.在运动过程中点A′到直线AB距离的最大值是;点P到达点B时线段A′P扫过的面积为.22.如图在正方形ABCD中点O是对角线BD的中点点P在线段OD上连接AP并延长交CD于点E过点P作PF⊥AP交BC于点F连接AF EF AF交BD于G现有以下结论:①AP=PF;②DE+BF=EF;③PB−PD=√2BF;④S△AEF为定值;⑤S\mathrm{四边形PEFG}=S△APG.以上结论正确的有(填入正确的序号即可).三解答题(共9小题)23.如图在△ABC中AB=AC,以AB为直径作⊙O AC与⊙O交于点D BC与⊙O交于点E,过点C作CF/\/AB,且CF=CD,连接BF.(1)求证:BF是⊙O的切线;(2)若∠BAC=45∘,AD=4,求图中阴影部分的面积.24.如图AB为⊙O的直径C为⊙O上一点AD和过点C的切线互相垂直垂足为D.(1)求证:AC平分∠DAB;,求边AC及AB的长.(2)若AD=8,tan∠CAB=3425.如图P为⊙O外一点PA,PB为⊙O的切线切点分别为A,B,直线PO交⊙O于点D,E,交AB于点C.(1)求证:∠ADE=∠PAE;(2)若∠ADE=30∘,求证:AE=PE;(3)若PE=4,CD=6,求CE的长.26.如图四边形ABCD内接于⊙O∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60∘,求tan∠DCB的值.27.如图AB是⊙O的直径过点A作⊙O的切线AC点P是射线AC上的动点连接OP过点B作BD//OP交⊙O于点D连接PD.(1)求证:PD是⊙O的切线.(2)当四边形POBD是平行四边形时求∠APO的度数.28.已知AB为⊙O的直径C为⊙O上一点D为BA的延长线上一点连接CD.(1)如图1若CO⊥AB∠D=30°OA=1求AD的长;(2)如图2若DC与⊙O相切E为OA上一点且∠ACD=∠ACE求证:CE⊥AB.29.如图在半径为5cm的⊙O中AB是⊙O的直径CD是过⊙O上点C的直线且AD⊥DC于点DAC平分∠BAD E是BC的中点OE=3cm.(1)求证:CD是⊙O的切线;(2)求AD的长.30.如图AB是⊙O的直径E C是⊙O上两点且EC⌢=BC⌢连接AE AC过点C作CD⊥AE交AE的延长线于点D.(1)判定直线CD与⊙O的位置关系并说明理由;(2)若AB=4CD=√3求图中阴影部分的面积.31.如图△ABC是⊙O的内接三角形过点C作⊙O的切线交BA的延长线于点F AE是⊙O的直径连接EC(1)求证:∠ACF=∠B;(2)若AB=BC AD⊥BC于点D FC=4FA=2求AD·AE的值.答案与解析1.【答案】D【解析】如图连接BE.∵∠BEC=∠BAC=15∘∠CED=30∘∴∠BED=∠BEC+∠CED=45∘,∴∠BOD=2∠BED=90∘.2.【答案】A【解析】连接OB∵点B是AC⌢的中点∠AOC=60°∴∠AOB=12∠AOB=30°由圆周角定理得∠D=12故选:A .3.【答案】C【解析】连接OE 如图.∵∠ABC =22∘∴∠AOC =2∠ABC =44∘∴∠BOC =180∘−∠AOC =136∘.∵E 是BC ⏜的中点∴CE ⏜=BE ⏜∴∠COE =12×136∘=68∘.由圆周角定理 得∠CDE =12∠COE =12×68∘=34∘.故选C .4.【答案】C【解析】∵AB 的长是45 cm ,扇面BD 的长为30 cm .∴AD =AB −BD =15 cm∵∠BAC =120∘∴扇面的面积:S =S 扇形BAC −S 扇形DAE=120×π×452360−120×π×152360=600π(cm 2)故选C .5.【答案】C【解析】∵AC⏜=CD⏜=DB⏜点E是点D关于AB的对称点∴BD⏜=BE⏜∴∠DOB=∠BOE=∠COD==60∘∴①正确;∠CED=∠COD==30∘=∴②正确;∵BE⏜的度数是60∘∴AE⏜的度数是120∘∴只有当M和A重合时∠MDE=60∘∵∠CED=30∘∴只有M和A重合时DM⊥CE∴③错误;做C关于AB的对称点F连接CF交AB于N连接DF交AB于M此时CM+DM的值最短等于DF长连接CD∵AC⏜=CD⏜=DB⏜=AF⏜并且弧的度数都是60∘∴∠D==60∘∠CFD==30∘∴∠FCD=180∘−60∘−30∘=90∘∴DF是⊙O的直径即DF=AB=10∴CM+DM的最小值是10∴④正确;据此可知答案为:C.本题主要考查了圆周角定理和轴对称图形的相关知识点需要掌握顶点在圆心上的角叫做圆心角;顶点在圆周上且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半;两个完全一样的图形关于某条直线对折如果两边能够完全重合我们就说这两个图形成轴对称这条直线就对称轴才能正确解答此题.6.【答案】B【解析】依题意:△ACB≌△AOB AO=BO=3∴AC=BC=AO=BO=3∴四边形OACB是菱形∴AB⊥CO连接OC∵OC=OB=3∴OC=OB=BC=3∴△OBC是等边三角形同理:△OAC是等边三角形故∠AOB=120∘由三线合一在Rt△OBD中:∠OBD=12∠OBC=30∘OD=12OB=32BD=√3OD=32√3∵S菱形OACB =12×2BD×2OD=12×2×3√32×2×32=9√32S扇形OAB =120×π×32360=3π∴S阴影=S菱形OACB−S扇形AOB=3π−9√32.故选:B.7.【答案】A【解析】如图以点O为原点建立平面直角坐标系过点D作DH⊥BC于点H.∵AB 是直径 AB =8,∴OA =OB =4.∵AD ,BC ,CD 是⊙O 的切线∴∠DAB =∠ABH =∠DHB =90∘,DA =DE ,CE =CB ,∴四边形ABHD 是矩形∴AD =BH ,AB =DH =8,∴CH =√CD 2−DH 2=√102−82=6.设AD =DE =BH =x ,则EC =CB =x +6,∴x +x +6=10,∴x =2,∴D(2,4),C(8,−4),B(0,−4),∴可得直线OC 的函数解析式为y =−12x ,直线BD 的函数解析式为y =4x −4.由{y =−12x ,y =4x −4, 解得{x =89,y =−49, ∴F(89,−49),∴BF =√(89)2+(−49+4)2=8√179.8.【答案】C【解析】如图所示∵正方形的顶点 E,F,G,H,M,N 都在同一个圆上∴圆心O在线段EF,MN的中垂线的交点上即在Rt△ABC斜边AB的中点且AC=MC BC=CG ∴AG=AC+CG=AC+BC BM=BC+CM=BC+AC∴AG=BM又∵OG=OM OA=OB∴△AOG≅△BOM∴∠CAB=∠CBA∵∠ACB=90°∴∠CAB=∠CBA=45°∴OC=12AB∴S2=12AB·OC=12AB·12AB=14AB2∵OF2=AO2+AF2=(12AB)2+AB2=54AB2∴S1=πOF2=54AB2·πS1 S2=54AB2·π14AB2=5π.故答案为:C.9.【答案】A【解析】∵⊙O与AC相切于点D∴AC⊥OD∴∠ADO=90°∵AD=√3OD∴tanA=ODAD =√33∴∠A=30°∵BD平分∠ABC∴∠OBD=∠CBD∵OB=OD∴∠OBD=∠ODB∴∠ODB=∠CBD∴OD/\/BC∴∠C=∠ADO=90°∴∠ABC=60°BC=12AB=6AC=√3BC=6√3∴∠CBD=30°∴CD=√33BC=√33×6=2√3;故选:A.10.【答案】C【解析】过点O作OF⊥CD于点F OG⊥AB于点G连接OB OD如图所示:AB=3则DF=CF AG=BG=12∴EG=AG−AE=2在Rt△BOG中OG=√OB2−BG2=√13−9=2∴EG=OG∴△EOG是等腰直角三角形∴∠OEG=45°OE=√2OG=2√2∵∠DEB=75°∴∠OEF=30°OE=√2∴OF=12在Rt△ODF中DF=√OD2−OF2=√13−2=√11∴CD=2DF=2√11;故选:C.11.【答案】B【解析】如图连接PA,PB,PC,过点P作PD⊥AB于点D,PE⊥OC于点E.∵∠ACB=60∘∴∠APB=120∘.∵PA=PB,∴∠PAB=∠PBA=30∘.∵A(−5,0),B(1,0)∴AB=6,∴AD=BD=3.∴OD=2,PD=√3,PA=PB=PC=2√3∵PD⊥AB,PE⊥OC,∠AOC=90∘∴四边形PEOD是矩形∴OE=PD=√3,PE=OD=2∴CE=√PC2−PE2=√12−4=2√2,∴OC=CE+OE=2√2+√3∴点C的纵坐标为2√2+√3.故选B.12.【答案】1213.【答案】289【解析】如图设内切圆的圆心为O连接OE OD则四边形EODC为正方形∴OE=OD=3=AC+BC−BA2∴AC+BC−AB=6∴AC+BC=AB+6∴(AC+BC)2=(AB+6)2∴BC2+AC2+2BC×AC=AB2+12AB+36而BC2+AC2=AB2∴2BC×AC=12AB+36①∵小正方形的面积为49∴(BC−AC)2=49∴BC2+AC2−2BC×AC=49②把(1)代人(2)中得AB2−12AB−85=0∴(AB−17)(AB+5)=0∴AB=17负值舍去)∴大正方形的面积为289.故答案为:289.14.【答案】85【解析】∵⊙O与△OAB的边AB相切∴OB⊥AB∴∠OBA=90∘连结OO′,如图.∵△OAB绕点B按顺时针方向旋转得到△O′A′B∴∠A=∠A′=25∘∠ABA′=∠OBO′,BO=BO′.∵OB=OO′∴△OO′B为等边三角形∴∠OBO′=60∘∴∠ABA′=60∘∴∠OCB=∠A+∠ABC=25∘+60∘=85∘.故答案为8515.【答案】12【解析】设小正方形的边长为1.由题意可得,∠BDE=∠BAE 在Rt△BDC中,∠DBC=90∘∴tan∠BDC=BCBD =24=12∴tan∠BAE=12.故答案为1216.【答案】4或2.56【解析】考点分析:本题考查了切线的性质勾股定理垂径定理平行线分线段成比例定理.思路分析:根据切线的性质得出△ABD是直角三角形DB2=CD·AD,根据勾股定理求得AB 即可求得AE 然后分两种情况求得AP的长即可.解题过程:∵过B点的切线交AC的延长线于点D∴AB⊥BD∴AB=√AD2−BD2=√102−62=8当∠AEP=90∘时∵AE=EC∴EP经过圆心O∴AP=AO=4;当∠APE=90∘时EP/\/BD∴APAB =AEAD∵DB2=CD·AD∴CD=BD2AD =3610=3.6∴AC=10−3.6=6.4∴AE=3.2∴AP8=3.210∴AP=2.56.综上,AP的长为4或2.56.17.【答案】6.5或3√13【解析】在Rt△ACD中∵∠C=90∘AC=12,CD=5,∴AD=13.又∵BD=13,∴AD=BD,∴∠DAB=∠B.半径为6的⊙P与△ABC的一边相切,可能与AC,BC,AB相切,故分类讨论:①当⊙P与AC相切时,点P到AC的距离为6,但点P在线段AD上运动,距离最大在点D处,为5,故这种情况不存在;②当⊙P与BC相切时,点P到BC的距离为6,如图PE=6,PE⊥BC,∴PE=12AC,PE/\/AC,∴PE为△ACD的中位线,P为AD的中点,∴AP=12AD=132;③当⊙P与AB相切时,点P到AB的距离为6,即PF=6,PF⊥AB, 如图过点D作DG⊥AB于点G,∴△APF∽△ADG∽△BAC,∴PFAC =APAB.其中,PF=6,AC=12,AB=√AC2+BC2=6√13,∴AP=3√13.综上所述,AP的长为132或3√13.18.【答案】2√2 【解析】连接PA PQ AQ.有PQ2=PA2−AQ2PQ=√PA2−AQ2又AQ=1故当AP有最小值时PQ最小.过A作AP′⊥MN则有AP′最小=3此时PQ最小=√32−12=2√2.19.【答案】√22【解析】解:如图过点A作CE的垂线交EC延长线于F过E作EG⊥AB交AB于G连AE∵AC=BC∠ACB=90°∴∠CAB=45°∵CE//AB∴∠FAB=90°∴∠FAC=45°∴△AFC为等腰直角三角形设AF=x则CF=x∴AC=√AF2+CF2=√2x∴AB=√AC2+BC2=√2AC=2x ∵AE AB均为⊙的半径∴AE=2x∴EF=√AE2−AF2=√3x∴CE=(√3−1)x∵∠F=∠FAB=∠AGE=90°∴四边形FAGE为矩形∴AF=EG=x EF=AG=√3x ∴BG=AB−AG=(2−√3)x∴BE=√EG2+BG2=(√6−√2)x∴CEBE =√3−1√6−√2=√22.故答案为:√22.20.【答案】2√26【解析】如图设AD BC交于点F过C作CE⊥AD∵∠ACB=90°AD⊥BD,∴A B C D在以AB为直径的圆上,∵AC=BC∠ACB=90°,∴∠ABC =45°, ∵AC ⌢=AC ⌢,∴∠ADC =ABC =45°, ∵CD =4√2, ∴CE =ED =4, ∵AD ⊥BD,CE ⊥AD , ∴BD//CE , ∴△CEF~△BDF ,DF EF=BD CE=24=12, DFDF+EF =13,∴DF =43,EF =83,在 Rt △CEF 和 Rt △BDF 中, CF =√CE 2+EF 2=√42+(83)2=4√133, BF =√DF 2+BD 2=√(43)2+22=2√133, ∴BC =CF +BF =4√133+2√133=2√13,∵AC =BC ∠ACB =90°, ∴AB =2√26, 故答案为:2√26.21.【答案】√3+12;(1+√32)π−1−√3【解析】如图1 过点B 作BH ⊥AC 于H 点∵∠BAC =30°∴AH =ABcos30°=2×√32=√3 BH =ABsin30°=2×12=1∵∠BCH =45°∴△BCH 为等腰直角三角形 ∴CH =BH =1∴AC =AH +CH =A ′C =1+√3当CA ′⊥AB 时 CK 最短 而A ′C =AC 为定值 则点A ′到直线AB 的距离最大 设CA ′交AB 的延长线于K 在Rt △ACK 中CK =ACsin30°=12(1+√3)=1+√32∴A ′K =A ′C −CK =1+√3−1+√32=1+√32如图2当点P 到达点B 时 线段A ′P 扫过的面积=S 扇形A ′CA −2S △ABC =90π(1+√3)2360−2×12×(1+√3)×1 =(1+√32)π−1−√3故答案为: √3+12(1+√32)π−1−√3 .22.【答案】①②③⑤【解析】∵四边形 ABCD 是正方形 PF ⊥AP∴∠APF =∠ABC =∠ADE =∠C =90° AD =AB ∠ABD =45° ①∵∠ABC +∠APF =180∘∴由四边形内角和可得 ∠BAP +∠BFP =180∘ ∴点A B F P 四点共圆∴∠AFP=∠ABD=45°∴△APF是等腰直角三角形∴AP=PF故①正确;②把△AED绕点A顺时针旋转90°得到△ABH如图所示:∴DE=BH∠DAE=∠BAH∠HAE=90°AH=AE ∴∠HAF=∠EAF=45∘∵AF=AF∴△AEF≅△AHF(SAS)∴HF=EF∵HF=BH+BF∴DE+BF=EF故②正确;③连接AC在BP上截取BM=DP连接AM如图所示:∵点O是对角线BD的中点∴OB=OD BD⊥AC∴OP=OM△AOB是等腰直角三角形∴AB=√2AO由①可得点A B F P四点共圆∴∠APO=∠AFB∵∠ABF=∠AOP=90∘∴△AOP∽△ABF∴OPBF =OAAB=APAF=√22∴OP=√22BF∵BP−DP=BP−BM=PM=2OP ∴PB−PD=√2BF故③正确;④过点A作AN⊥EF于点N如图所示:由②可得∠AFB=∠AFN∵∠ABF=∠ANF=90°AF=AF∴△ABF≅△ANF(AAS)∴AN=AB若△AEF的面积为定值则EF为定值∵点P在线段OD上∴EF的长不可能为定值故④错误;⑤由③可得APAF =√22∵∠AFB=∠AFN=∠APG∠FAE=∠PAG ∴△APG∽△AFE∴GPEF =APAF=√22∴S△AGPS△AEF =(√22)2=12∴S△AGP=12S△AEF∴S四边形PEFG=S△APG故⑤正确;综上所述:以上结论正确的有①②③⑤;故答案为①②③⑤.23.【答案】(1)证明:如图连接BD.∵AB是⊙O的直径∴∠ADB=∠BDC=90∘.∵AB=AC,∴∠ABC=∠ACB.∵AB/\/CF,∴∠ABC=∠FCB,∴∠ACB=∠FCB.在△DCB和△FCB中∵CD=CF,∠DCB=∠FCB,CB=CB,∴△DCB≌△FCB(SAS),∴∠F=∠CDB=90∘.∵AB/\/ CF,∴∠ABF+∠F=180∘,∴∠ABF=90∘,即AB⊥BF.∵AB是⊙O的直径∴BF是⊙O的切线.(2)如图连接OE交BD于点M,连接AE.∵AB是⊙O的直径∴AE⊥BC,AD⊥BD.∵∠BAC=45∘,AD=4,∴△ABD是等腰直角三角形∴BD=AD=4AB=√AD2+BD2=√42+42=4√2,∴OA=OB=2√2.∵AE⊥BC,AB=AC,∴BE=EC,∴OE是△ABC的中位线∴OE/\/AD,∴∠BOE=∠BAC=45∘,OE⊥BD,BMBD =OBAB=12,∴BM=12BD=12×4=2,∴S阴影=S扇形BOE−S△BOE=45×π×(2√2)2360−12×(2√2)×2=π−(2√2)24.【答案】(1)证明:连接OC,如图.∵CD为⊙O的切线∴OC⊥CD.∵AD⊥CD,∴OC/\/AD,∴∠DAC=∠OCA.∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,∴AC平分∠DAB.(2)连接BC,如图.∵∠DAC=∠OAC,∴tan∠DAC=tan∠CAB=34.在Rt△DAC中∵tan∠DAC=CDAD =34,∴CD=34×8=6,∴AC=√CD2+AD2=√62+82=10.∵AB为直径∴∠ACB=90∘,∴tan∠CAB=BCAC =34,∴BC=34×10=152,∴AB=√BC2+AC2=√(152)2+102=252.25.【答案】(1)证明:连接OA,如图.∵PA为⊙O的切线∴AO⊥PA,∴∠OAE+∠PAE=90∘.∵DE是⊙O的直径∴∠DAE=90∘,∴∠ADE+∠AED=90∘.∵OA=OE,∴∠OAE=∠AED,∴∠ADE=∠PAE.(2)证明:由(1)知∠ADE=∠PAE=30∘.∵∠DAE=90∘,∴∠AED=90∘−∠ADE=60∘.∵∠AED=∠PAE+∠APE,∴∠APE=∠PAE=30∘,∴AE=PE.(3)设CE=x,则DE=CD+CE=6+x,∴OA=OE=6+x2,∴OC=OE−CE=6−x2OP=OE+PE=14+x2.如图连接OB.在Rt△OAP和Rt△OBP中∵OA=OB,OP= OP,∴Rt△OAP≌Rt△OBP,∴PA=PB,PO平分∠APB,∴PO⊥AB.∵PA为⊙O的切线∴AO⊥PA,∴∠OAP=∠OCA=90∘.又∵∠AOC=∠POA,∴△OAC∽△OPA,∴OAOP =OCOA,∴6+x214+x2=6−x26+x2,即x2+10x−24=0,解得x=2或x=−12(不合题意舍去) ∴CE=2.26.【答案】(1)证明:∵四边形ABCD内接于⊙O,∴∠A+∠BCD=180∘.∵∠BCD+∠DCE=180∘,∴∠A=∠DCE.∵∠1=∠2,∴AD⌢=DC⌢,∴AD=DC.在△ABD和△CED中AB=CE,∠A=∠DCE,AD= DC,∴△ABD≌△CED(SAS),∴BD=ED.(2)解:如图过点D作DM⊥BE于点M.∵AB=4,BC=6,CE=AB,∴BE=BC+EC=10.∵BD=ED,DM⊥BE,∴BM=ME=12BE=5,∴CM=BC−BM=1.∵∠ABC=60∘,∠1=∠2,∴∠2=30∘,∴DM=BM·tan∠2=5×√33=5√33,∴tan∠DCB=DMCM=5√33.27.【答案】(1)证明:如图①连接OD则OD=OA=OB∵AC是⊙O的切线∴∠A=90∘∵BD//OP.∴∠AOP=∠B∠DOP=∠ODB.又∵OD=OB∴∠B=∠ODB∴∠AOP=∠DOP.在△PAO和△PDO中{OA=OD,∠AOP=∠DOP,OP=OP,∴△PAO≌△PDO(SAS).∴∠PDO=∠A=90∘.∴PD是⊙O的切线.(2)如图②连接OD.∵四边形POBD是平行四边形∴PD=OB PD//OB∵OB=OA∴PD=OA.∴四边形PAOD是平行四边形.又∵OD=OA∴四边形PAOD是菱形.∵∠A= 90∘∴四边形PAOD是正方形∴∠APO=45∘.【解析】(1)连接OD证明△PAO≌△PDO即可;(2)证明四边形PAOD是正方形即可求解.28.【答案】(1)解:∵OA=1=OC CO⊥AB∠D=30°∴CD=2OC=2∴OD=√CD2−OC2=√22−12=√3∴AD=OD−OA=√3−1.(2)证明:∵DC与⊙O相切∴OC⊥CD即∠ACD+∠OCA=90°∵OC=OA∴∠OCA=∠OAC∵∠ACD=∠ACE∴∠OAC+∠ACE=90°∴∠AEC=90°∴CE⊥AB.【解析】(1)根据直角三角形的性质(在直角三角形中30°角所对的直角边等于斜边的一半)及勾股定理可求出OD进而求出AD的长;(2)根据切线的性质可得OC⊥CD根据同一个圆的半径相等及等腰三角形的性质可得∠OCA=∠OAC由各个角之间的关系以及等量代换可得答案.29.【答案】(1)证明:如图连接OC∵OA=OC∴∠OAC=∠OCA,∵AC平分∠DAO,∴∠DAC=∠OAC,∴∠DAC=∠OCA,∴AD//OC∵AD⊥DC,∴OC⊥DC又∵OC是⊙O的半径∴CD是⊙O的切线(2)解:如图连接BC,OE,∵E是BC的中点OE=3cm∴AC=6cm∵AB是⊙O的直径,AD⊥DC,半径OA=5cm∴∠ADC=∠ACB=90°,AB=10cm又∵∠DAC=∠CAB,∴△ADC∽△ACB,则ADAC =ACAB∴AD=AC2AB=6210=185(cm).【解析】(1)连接OC利用等腰三角形的性质和角平分线的定义可证得∠DAC=∠OCA利用平行线的判定定理可证得AD//OC由AD⊥CD可推出OC⊥CD利用切线的判定定理可证得结论.(2)连接BC OE利用垂径定理和三角形的中位线定理可求出AC的长;再利用圆周角定理可证得∠ADC=∠ACB=90°利用相似三角形的判定和性质可求出AD的长.30.【答案】(1)解:直线DC与⊙O相切.理由如下:连接OC如图∵EC⌢=BC⌢∴∠EAC=∠OAC∵OA=OC∴∠ACO=∠OAC∴∠ACO=∠DAC∴OC∥AD∵CD⊥AE∴OC⊥CD ∴DC是⊙O的切线;(2)连接OC OE CB过C作CH⊥AB于H∵CH⊥AB CD⊥AE∴∠ADC=∠AHC∵∠EAC=∠OAC AC=AC∴△ADC≌△AHC∴CH=CD=√3AH=AD∵∠CAH+∠ACH=∠BCH+∠ACH=90°∴∠CAH=∠BCH又∵∠CHA=∠BHC∴△CAH∽△BCH∴CH BH =AHCH∴√34−AH=AH√3∴AH=3或1(舍去1)∴BH=1∴S△ACH=12×3×√3=3√32在Rt△CHB中BH=1HC=√3∴∠BCH=30°=∠CAB∴∠COB=∠EOC=60°∴S阴影=S梯形OCDE−S扇形OCE=S△ACD−S扇形OCE =S△ACH−S扇形OCE=3√32−60×22π360=3√32−23π.【解析】(1)连接OC如图由圆周角的的定理推论得到∠EAC=∠OAC加上∠ACO=∠OAC则∠ACO=∠DAC于是可判断OC∥AD则根据平行线的性质得到OC⊥CD然后根据直线与圆的位置关系的判定方法可判断DC是⊙O的切线;(2)连接OE BC作CH⊥AB于H如图先利用角平分线的性质得到CH=CD=√3求出△ACH的面积再根据三角形全等的判定和性质得出△ADC的面积=△ACHD的面积再利用S阴影=S梯形OCDE −S扇形OCE=S△ACD−S扇形OCE=S△ACH−S扇形OCE即可得出答案.31.【答案】(1)证明:连接OC.∵FC是⊙O的切线AE是⊙O的直径∴∠OCF=∠ACE=90°∴∠ACF+∠ACO=∠ECO+∠ACO=90°,∴∠ACF=∠ECO,又∵OE=OC,∴∠OEC=∠ECO,根据圆周角定理可得:∠OEC=∠B∴∠B=∠ECO∴∠ACF=∠B.(2)解:由(1)可知∠ACF=∠B∵∠AFC=∠CFB∴△AFC~△CFB∴FCFB =FAFC∴FB=FC2FA∵FC=4FA=2∴FB=FC2FA =422=8∴AB=FB−AF=8−2=6∴AB=BC=6又∵△AFC~△CFB中CABC =FAFC∴CA=FA·BCFC=2×64=3如图所示连接BE∵∠ACD=∠AEB∠ADC=∠ABE=90∘∴△ACD~△AEB∴ADAB =ACAE∴AD·AE=AB·AC=6×3=18.【解析】(1)连接OC,利用切线的性质和圆周角定理可证得∠OCF=∠ACE=90°,利用余角的性质可证∠ACF=∠ECO,利用等腰三角形的性质及圆周角定理,可证得结论.(2)利用有两组对应角相等的两三角形相似可证得△AFC∽△CFB,利用相似三角形的性质可求出FB 的长,从而求出AB的长,即可得到BC的长;连接BE,利用有两组对应角相等的两三角形相似,可证得△ACD∽△AEB,利用相似三角形的性质可求出AD·AE的值.第31 页共31 页。

2023年中考数学二轮专题复习频考点突破 圆的综合(含解析)

2023年中考数学二轮专题复习频考点突破 圆的综合(含解析)

2023年中考数学频考点突破--圆的综合1.如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,CD=CE.(1)求证:OA=OB;(2)已知AB=4 √3,OA=4,求阴影部分的面积.2.AB是⊙O的直径,点C是⊙O上一点,连接AC、BC,直线MN过点C,满足∠BCM=∠BAC=α.(1)如图①,求证:直线MN是⊙O的切线;(2)如图②,点D在线段BC上,过点D作DH⊥MN于点H,直线DH交⊙O于点E、F,连接AF并延长交直线MN于点G,连接CE,且CE=53,若⊙O的半径为1,cosα=34,求AG⋅ED的值.3.如图,已知A、B是⊙O上两点,⊙OAB外角的平分线交⊙O于另一点C,CD⊙AB 交AB的延长线于D.(1)求证:CD是⊙O的切线;(2)E为弧AB̀的中点,F为⊙O上一点,EF交AB于G,若tan⊙AFE= 34,BE=BG,EG=3 √10,求⊙O的半径.4.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,BC=3.(1)求AB的长;(2)求⊙O的半径.5.如图1,在正方形ABCD中,点F在边BC上,过点F作EF⊙BC,且FE=FC (CE<CB),连接CE、AE,点G是AE的中点,连接FG.(1)用等式表示线段BF与FG的数量关系是;(2)将图1中的⊙CEF绕点C按逆时针旋转,使⊙CEF的顶点F恰好在正方形ABCD的对角线AC上,点G仍是AE的中点,连接FG、DF.①在图2中,依据题意补全图形;②求证:DF=√2FG.6.如图,已知⊙ABC,AC=3,BC=4,⊙C=90°,以点C为圆心作⊙C,半径为r.(1)当r取什么值时,点A、B在⊙C外(2)当r在什么范围时,点A在⊙C内,点B在⊙C外.7.已知直线l与⊙O,AB是⊙O的直径,AD⊙l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分⊙DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:⊙DAE=⊙BAF.8.如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分⊙ACE;(2)若BE=3,CE=4,求⊙O的半径.9.如图,AB是⊙O的直径,BD是弦,C是BD的中点,弦CE⊥AB,H是垂足,BD交CE,CA于点F,G.(1)求证:CF=BF=GF;(2)若CD=6,AC=8,求圆O的半径和BD长.10.如图所示,线段AB=1.8cm,作满足下面要求的图形.(1)到点A和点B的距离都小于1.1cm的所有点组成的图形.(2)到点A和点B距离都大于1.1cm的所有点组成的图形.11.如图,在Rt⊙ABC中,⊙C=90°,点D在线段AB上,以AD为直径的⊙O与BC 相交于点E,与AC相交于点F,⊙B=⊙BAE=30°.(1)求证:BC是⊙O的切线;(2)若AC=3,求⊙O的半径r;(3)在(1)的条件下,判断以A、O、E、F为顶点的四边形为哪种特殊四边形,并说明理由.12.如图,在⊙ABC中,⊙A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.(1)求证:BC为⊙O的切线;(2)若F为OA的中点,⊙O的半径为2,求BE的长.13.如图,已知AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D= 2∠CAD.(1)求∠D的大小;(2)若CD=2,求AC的长.14.如图,AB是⊙O的直径,AM、BN分别与⊙O相切于点A、B,CD交AM、BN 于点D、C,DO平分⊙ADC.(1)求证:CD是⊙O的切线;(2)设AD=4,AB=x (x > 0),BC=y (y > 0). 求y关于x的函数解析式. 15.如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊙AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.16.如图,在⊙ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作AB的垂线交AC的延长线于点F。

2021年中考数学二轮复习冲刺集训:圆的有关性质(含答案)

2021年中考数学二轮复习冲刺集训:圆的有关性质(含答案)

2021中考数学冲刺集训:圆的有关性质一、选择题1. 如图,AB为☉O的直径,C,D为☉O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°2. 如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,-3),那么经过点P的所有弦中,最短的弦的长为()A.4 B.5 C.8 D.103. 如图,A、D是⊙O上的两个点,BC是直径,若∠D=32°,则∠OAC等于()A. 64°B. 58°C. 72°D. 55°4. 如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°5. △ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A. 120°B. 125°C. 135°D. 150°6. 如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.7 B.27 C.6 D.87. 2019·武汉京山期中在圆柱形油槽内装有一些油,油槽直径MN为10分米.截面如图,油面宽AB为6分米,如果再注入一些油后,油面宽变为8分米,则油面AB上升()A.1分米B.4分米C.3分米D.1分米或7分米8. 如图,量角器的零刻度线与三角尺ABC的斜边AB重合,其中量角器的零刻度线的端点N与点A重合,射线CP从CA处出发按顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是()A.48°B.64°C.96°D.132°二、填空题9. 如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=________度.10. 如图,AB 是⊙O的直径,C ,D 是⊙O 上的两点,若∠BCD =28°,则∠ABD=________°.11. 如图0,A ,B 是⊙O 上的两点,AB =10,P 是⊙O 上的动点(点P 与A ,B 两点不重合),连接AP ,PB ,过点O 分别作OE ⊥AP 于点E ,OF ⊥PB 于点F ,则EF =________.12. 已知:如图,A ,B 是⊙O 上的两点,∠AOB =120°,C 是AB ︵的中点,则四边形OACB是________.(填特殊平行四边形的名称)13. 如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为________.14. 如图,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,则∠B +∠E =________°.15. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.16. 在Rt △ABC 中,∠C =90°,BC =3,AC =4,点P 在以点C 为圆心,5为半径的圆上,连接PA ,PB.若PB =4,则PA 的长为________.三、解答题17. 如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F . (1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).18. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG . (1)求证:AB =CD ; (2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.19. (2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,∠=∠.AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA(1)求证:AC是⊙O的切线;(2)若23==,求阴影部分的面积.CE AE20. 如图,四边形OBCD中的三个顶点在⊙O上,A是优弧BAD上的一个动点(不与点B,D重合).(1)当圆心O在∠BAD的内部时,若∠BOD=120°,则∠OBA+∠ODA=________°.(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.2021中考数学冲刺集训:圆的有关性质-答案一、选择题1. 【答案】B[解析]如图,连接AD,∵AB为☉O的直径,∴∠ADB=90°.∵∠A和∠BCD都是所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.2. 【答案】C[解析] 过点P作弦AB⊥OP,连接OB,如图.则PB=AP,∴AB=2BP=2 OB2-OP2.再过点P任作一条弦MN,过点O作OG⊥MN于点G,连接ON.则MN=2GN=2 ON2-OG2.∵OP>OG,OB=ON,∴MN>AB,∴AB是⊙O中的过点P最短的弦.在Rt△OPB中,PO=3,OB=5,由勾股定理,得PB=4,则AB=2PB=8.3. 【答案】B【解析】∵∠D与∠AOC同对弧AC,∴∠AOC=2∠D=2×32°=64°,∵OA=OC,∴∠OAC=∠OCA,在△OAC中,根据三角形内角和为180°,可得∠OAC=12(180°-∠AOC)=12×(180°-64°)=58°.4. 【答案】B5. 【答案】C【解析】由CD 为腰上的高,I 为△ACD 的内心,则∠IAC +∠ICA=12(∠DAC +∠DCA)=12(180°-∠ADC)=12(180°-90°)=45°,所以∠AIC =180°-(∠IAC +∠ICA)=180°-45°=135°.又可证△AIB ≌△AIC ,得∠AIB =∠AIC =135°.6. 【答案】B [解析] 连接OC ,则OC =4,OE =3.在Rt △OCE 中,CE =OC2-OE2=42-32=7.因为AB ⊥CD ,所以CD =2CE =2 7.7. 【答案】D8. 【答案】C[解析] ∵∠ACB =90°,∴点C 在以O 为圆心,OA 长为半径的圆上.第24秒时,∠ACE =48°,∴∠EOA =2∠ACE =96°.二、填空题9. 【答案】35 【解析】∵OA =OB =OC ,∴∠OAB =∠B ,∠C =∠OAC ,∵∠AOB =40°,∴∠B =∠OAB =70°,∵CD ∥AB ,∴∠BAC =∠C ,∴∠OAC=∠BAC =12∠OAB =35°. 10. 【答案】62 【解析】根据直径所对的圆周角等于90°及∠BCD =28°,可得∠ACD =∠ACB -∠BCD =90°-28°=62°,再根据同弧所对圆周角相等有∠ABD =∠ACD =62°.11. 【答案】5 [解析] ∵OE 过圆心且与PA 垂直,∴PE =EA.同理PF =FB ,∴EF 是△PAB 的中位线, ∴EF =12AB =5.12. 【答案】菱形 [解析] 连接OC.∵C 是AB ︵的中点, ∴∠AOC =∠COB =60°. 又∵OA =OC =OB ,∴△OAC 和△OCB 都是等边三角形, ∴OA =AC =BC =OB ,∴四边形OACB是菱形.13. 【答案】5[解析] 设圆的半径为x,则OE=x-1.根据垂径定理可知,CE=3,由勾股定理可得32+(x-1)2=x2,解得x=5.故答案为5.14. 【答案】215[解析] 连接CE,则∠B+∠AEC=180°,∠DEC=∠CAD=35°,∴∠B +∠AED=(∠B+∠AEC)+∠DEC=180°+35°=215°.15. 【答案】65[解析] ∵∠C=25°,∴∠A=∠C=25°.∵⊙O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°-25°=65°.16. 【答案】3或73[解析] 如图,连接CP,PB的延长线交⊙C于点P′.∵PC=5,BC=3,PB=4,∴BC2+PB2=PC2,∴△CPB为直角三角形,且∠CBP=90°,即CB⊥PB,∴PB=P′B=4.∵∠ACB=90°,∴PB∥AC.又∵PB=AC=4,∴四边形ACBP为平行四边形.又∵∠ACB=90°,∴▱ACBP为矩形,∴PA=BC=3.在Rt△APP′中,∵PA=3,PP′=8,∴P′A=82+32=73.综上所述,PA的长为3或73.三、解答题17. 【答案】(1)证明:∵BC 2=CD ·CA , ∴BC CA =CD BC , ∵∠C =∠C ,∴△CBD ∽△CAB , ∴∠CBD =∠BAC , 又∵AB 为⊙O 的直径, ∴∠ADB =90°,即∠BAC +∠ABD =90°, ∴∠ABD +∠CBD =90°, 即AB ⊥BC ,又∵AB 为⊙O 的直径, ∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形. 证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC , 又∵△CBD ∽△CAB , ∴∠BAC =∠CBD , ∴∠CBD =∠DAE , ∵∠DAE =∠DBF , ∴∠DBF =∠CBD , ∵∠BDF =90°,∴∠BDC =∠BDF =90°, ∵BD =BD ,∴△BDF ≌△BDC , ∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线, ∴∠ABC =90° ∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20, ∴⊙O 的半径为r =AB2=10, ∵∠BAC =36°, ∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.18. 【答案】(1)证明:∵AC 为直径, ∴∠ABC =∠ADC =90°, ∴∠ABC =∠BAD =90°, ∴BC ∥AD ,∴∠BCA =∠CAD , 又∵AC =CA ,∴△ABC ≌△CDA (AAS), ∴AB =CD ;(2)证明:∵AE 为⊙O 的切线且O 为圆心, ∴OA ⊥AE , 即CA ⊥AE ,∴∠EAB +∠BAC =90°, 而∠BAC +∠BCA =90°, ∴∠EAB =∠BCA , 而∠EBA =∠ABC , ∴△EBA ∽△ABC , ∴EB AB =BA BC , ∴AB 2=BE ·BC , 由(1)知AB =CD , ∴CD 2=BE ·BC ;(3)解:由(2)知CD 2=BE ·BC ,即CD 2=92BC ①,∵FG ∥BC 且点F 为AC 的三等分点, ∴G 为AB 的三等分点, 即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②, 将①代入②,消去CD 得,BC 2+12BC -3=0, 即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③,将③代入①得,CD =332.19. 【答案】(1)如图,连接OA ,过O 作OF AE 于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒,∵OA OE =, ∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠,∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵23CE AE ==∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠,∴2AEO EAC ∠=∠,∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠,∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒,∴OAE △是等边三角形,∴OA AE =,60EOA ∠=︒,∴OA =∴2πAOE S =扇形,在Rt OAE △中,sin 32OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π-20. 【答案】52解:(1)60(2)①如图(a).∵四边形OBCD 为平行四边形,∴∠BOD =∠BCD ,∠OBC =∠ODC .又∵∠BAD +∠BCD =180°,∠BAD =12∠BOD ,∴12∠BOD +∠BOD =180°,解得∠BOD =120°,∴∠BAD =12∠BOD =12×120°=60°,∠OBC =∠ODC =180°-∠BOD =180°-120°=60°. 又∵∠ABC +∠ADC =180°,∴∠OBA +∠ODA =∠ABC +∠ADC -(∠OBC +∠ODC )=180°-(60°+60°)=60°.②如图(b)所示,连接AO .∵OA =OB ,∴∠OBA =∠OAB .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAB=∠OAD+∠BAD,∴∠OBA=∠ODA+∠BAD=∠ODA+60°. 如图(c),同理可得∠ODA=∠OBA+60°.。

中考数学复习《圆》专题训练-附带有参考答案

中考数学复习《圆》专题训练-附带有参考答案

中考数学复习《圆》专题训练-附带有参考答案一、选择题1.下列语句:①长度相等的弧是等弧;②过平面内三点可以作一个圆;③平分弦的直径垂直于弦;④90°的圆周角所对的弦是直径;⑤等弦对等弧.其中正确的个数是( )A .1个B .2个C .3个D .4个2.如图,点A ,B ,C 在⊙O 上,∠C =44°,则∠AOB 的大小为( )A .22°B .88°C .66°D .70°3.已知扇形的圆心角为120°,半径为3cm ,则弧长为( )A .2π3cmB .2πcmC .4cmD .π3cm 4.如图,⊙O 中,弦AB ⊥CD 于E ,若∠A =30°,⊙O 的半径等于6,则弧AC 的长为( )A .6πB .5πC .4πD .3π5.如图,⊙O 的半径为9,PA 、PB 分别切⊙O 于点A ,B.若P =60∘,则AB⌢的长为( )A .133πB .136πC .6πD .52π 6.如图,四边形ABCD 是⊙O 的内接四边形,点D 是AC ⌢的中点,点E 是BC ⌢上的一点,若∠ADC =110°,则∠DEC的度数是( )A .35°B .45°C .50°D .55°7.如图,正六边形ABCDEF内接于00,若0 O的周长等于6π,则正六边形的边长为()A.√3B.3 C.2√3D.√68.如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为()A.2πB.2√2C.2π−4D.2π−2√2二、填空题9.如图,AB,CD是⊙O的弦,连结AD,延长AB,CD相交于点P,已知∠P=30°,∠ADC=40°,则BD 的度数是.10.如图,AB为⊙O的切线点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD、OA,若∠ADC=25°则∠ABO的度数为.11.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若⊙O半径是4,∠B=22.5°,那么BC的长是.12.如图,正六边形ABCDEF内接于⊙O,连接OC、OD,若OC长为2cm,则正六形ABCDEF的周长为cm.13.如图,在矩形ABCD中AB=2√3,以点A为圆心,AD长为半径画弧交BC于点E,连接AE,∠BAE=30°,则阴影部分的面积为.三、解答题14.如图,在⊙O中AB=CD,弦AB与CD相交于点M.⌢=BD⌢.(1)求证:AC(2)连接AC,AD,若AD是⊙O的直径.求证:∠BAC+2∠BAD=90∘.15.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上∠PBC=∠C.(1)求证:CB∥PD;(2)若CD=8,BE=2,求⊙O的半径.⌢的中点,过D作DE∥AC,交OC的延16.如图,AB为半圆O的直径,C为半圆上一点,连接AC,点D为AC长线于点E.(1)求证:DE是半圆O的切线.(2)若OC=3,CE=2求AC的长.17.如图,△ABC内接于⊙O,AB=AC=10,BC=12,点E为上一点,点F为的中点,连结BF并延长与AE交于点G,连结AF,CF.(1)求证:∠AFC=∠AFG.(2)当BG经过圆心O时,求FG的长.18.如图,在中,AB=AC以AB为直径的分别与、相交于点D、E,连接过点作,垂足为点(1)求证:是的切线;(2)若的半径为4,∠CDF=22.5°,求图中阴影部分的面积.参考答案1.A2.B3.B4.B5.C6.A7.B8.C9.20°10.40°11.4+4√212.12π13.6√3−8314.(1)解:证明:∵AB=CD⌢=CD⌢∴AB⌢+BC⌢=BD⌢+BC⌢∴AC⌢=BD⌢.∴AC⌢=BD⌢(2)证明:∵AC∴∠ADC=∠BAD∴∠AMC=∠MAD+∠MDA=2∠BAD∵AD是⊙O的直径∴∠ACD=90°∴∠BAC+∠AMC=90°∴∠BAC+2∠BAD=90°.15.(1)证明:∵∠P=∠C,∠PBC=∠C ∴∠P=∠PBC∴CB∥PD;(2)解:连接CO设CO=x,则BO=x∵弦CD⊥AB于点E,CD=8∴CE=4∵BE=2∴EO=x−2在Rt△COE中:CO2=CE2+OE2∴x2=42+(x−2)2解得:x=5∴⊙O的半径为5.16.(1)证明:如图,连接OD交AC于点F.⌢的中点∵D是AC⌢=CD⌢∴AD∴∠AOD=∠COD∵OC=OA∴OD⊥AC∵DE∥AC∴OD⊥DE∴DE是半圆O的切线.(2)解:∵OC=3,CE=2∴OE=5,OD=OC=3∴在Rt△ODE中DE=√OE2−OD2=√52−32=4∴cosE=DEOE =45∵AC∥DE∴∠FCO=∠E∴cos∠FCO=45∴FC=OC⋅cos∠FCO=3×45=125∵OD⊥AC∴AC=2FC=245.17.(1)证明:∵AB=AC∴∠ABC=∠ACB∵∠ACB=∠AFB∴∠ABC=∠AFB∵∠ABC+∠AFC=180°,∠AFG+∠AFB=180°∴∠AFC=∠AFG;(2)解:连结AO并延长AO交于点H,如图∵AB=AC∴∴AH⊥BC,BH=CH=6∴AH8设OH=x,则OA=OB=8﹣x在Rt△OBH中,x2+62=(8﹣x)2解得x∵OB=OF,BH=CH∴OH是Rt△BCF的中位线∴CF=2OH∵点F为的中点∴∠EAF=∠CAF在△AFG和△AFC中∴△AFG≌△AFC(ASA)∴FG=FC.18.(1)证明:连接.是的直径.又AB=AC,∴D是BC的中点.连接;由中位线定理,知又.是的切线;(2)解:连接OE的半径为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学二轮精品复习试卷:圆学校:___________姓名:___________班级:___________考号:___________1、半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是A.3 B.4 C.D.2、两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是【】A.内含B.内切C.相交D.外切3、如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是A.B.C.D.4、如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是A.90°B.60°C.45°D.30°5、如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=500,则∠DAB等于A.55°B.60°C.65°D.70°6、如图,ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为A.36°B.46°C.27°D.63°7、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是【】A.4B.5C.6D.88、如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为【】A.cm B.cm C.cm D.7πcm9、已知和的半径分别为和,圆心距为,则和的位置关系是【】A.外离B.外切C.相交D.内切10、如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为【】A.40°B.50°C.80°D.100°11、如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为【】A.B.8 C.D.12、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为【】A.cm B.cm C.cm D.4 cm13、如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1)。

过点P(0,-7)的直线l与⊙B相交于C、D两点,则弦CD长的所有可能的整数值有【】A.1个B.2个C.3个D.4个14、如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为A.8 B.4 C.4π+4 D.4π-415、如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE16、如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为A.4 B.C.6 D.17、如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.18、已知两个半径不相等的圆外切,圆心距为,大圆半径是小圆半径的倍,则小圆半径为A.或B.C.D.19、如图,半圆O与等腰直角三角形两腰CA、CB分别切于D、E两点,直径FG在AB上,若BG=﹣1,则△ABC的周长为A、B、6 C、 D、420、如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB 的延长线于E,则sin∠E的值为【】A.B.C.D.21、如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=400,则∠OCB的度数为【】A.400B.500C.650D.75022、如图,已知⊙O1的半径为1cm,⊙O2的半径为2cm,将⊙O1,⊙O2放置在直线l上,如果⊙O1在直线l上任意滚动,那么圆心距O1O2的长不可能是【】A.6cm B.3cm C.2cm D.0.5cm23、如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上AD=OA=1,则图中阴影部分的面积为A.B.C.D.24、如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为A.B.C.D.25、如图,⊙O1,⊙O2、相交于A、B两点,两圆半径分别为6cm和8cm,两圆的连心线O1O2的长为10cm,则弦AB的长为【】A.4.8cm B.9.6cm C.5.6cm D.9.4cm二、填空题()26、在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为.27、在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线与⊙O交于B、C两点,则弦BC的长的最小值为.28、已知⊙O1的半径为3,⊙O2的半径为r,⊙O1与⊙O2只能画出两条不同的公共切线,且O1O2=5,则⊙O2的半径为r的取值范围是.29、已知与的半径分别是方程的两根,且,若这两个圆相切,则t= .30、已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是cm,扇形的面积是cm2(结果保留π).31、如图所示,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,且∠EAF=80°,则图中阴影部分的面积是.32、如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度).33、如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是度.34、若圆锥的母线长为5cm,底面半径为3cm,则它的侧面展开图的面积为cm2(结果保留π)35、如图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).36、图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD= .37、如图,AB切⊙O于点B,OA=2,∠OAB=300,弦BC∥OA,劣弧的弧长为.(结果保留π)38、如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB= .39、如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为.40、如图,A,B,C为⊙O上相邻的三个n等分点,,点E在上,EF为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′.设EB′=b,EC=c,EA′=p.现探究b,c,p三者的数量关系:发现当n=3时,p=b+c.请继续探究b,c,p三者的数量关系:当n=4时,p= ;当n=12时,p= .(参考数据:,)三、计算题()41、圆锥的底面半径为3cm,侧面展开图是圆心角为120º的扇形,求圆锥的全面积。

四、解答题()42、已知:如图,AC⊙O是的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)若OP∥BC,且OP=8,BC=2.求⊙O的半径.43、已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.44、如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.45、如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2.(1)求证:∠A=2∠DCB;(2)求图中阴影部分的面积(结果保留π和根号).46、如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C 作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形FADC是菱形;(2)FC是⊙O的切线.47、如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.48、如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=1200.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)(参考数据:sin60°=,cos60°=,tan60°=,≈26.851,可使用科学计算器)49、如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。

(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由。

(2)若cosB=,BP=6,AP=1,求QC的长。

50、问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P 为直径CD上一动点,则BP+AP的最小值为.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.试卷答案1.【解析】试题分析:如图所示,过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2。

在Rt△BOD中,。

故选C。

2.【解析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。

相关文档
最新文档