乘法口算技巧 十位乘十位 百位乘百位 十位乘百位的

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、两位数乘法口算

一位数乘法口算就是口诀表,在讲清算理的基础上要求背会。这里重点介绍几种两位数乘法的特殊算法。

1、两个相同因数积的口算法;(平方口算法)

(1)、基本数与差数之和口算法:

基本数:这个数各位分别平方后,组成一个新的数称基本数。十位平方为基本数百位以上的数,个位平方为基本数十位和个位数,十位无数用零占位。

差数:这个数十位和个位的积再乘20称差数。

基本数+ 差数= 这两个相同因数的积。

例1、13×13

基本数:百位:1×1=1

十位:用0占位

个位:3×3=9

所以基本数就是109

差数:1×3×20=60

基本数+ 差数= 109 + 60 = 169

所以13×13=169

例2、67×67

基本数:百位以上数字是6×6=36

十位和个位数字是7×7=49

所以基本数是3649

差数:6×7×20=840

基本数+差数=3649+840=4489

所以:67×67 = 4489

(2)三步到位法

思维过程:

第一步:把这个数个位平方。得出的数,个位作为积的个位,十位保留。

第二步:把这个数个位和十位相乘,再乘2,然后加上第一步保留的数,所得的数的个位就是积的十位数,十位保留。

第三步:把这个数十位平方,加上第二步保留的数,就是积的百位、千位数。

例1、24×24

第一步:4×4=16 “1”保留,“6”就是积的个位数。

第二步:4×2×2+1=17 “1”保留,“7”就是积的十位数。

第三步:2×2+1=5 “ 5”就是积的百位数.

所以24×24=576

例二、37×37

第一步:7×7=49 "4"保留,"9",就是积的个位数。

第二步:3×7×2+4=46 "4"保留,"6",就是积的十位数。

第三步:3×3+4=13 "13"就是积的百位和千位数字。

所以:37×37=1369

(3)、接近50两个相同因数积的口算

思维方法:比50大的两个相同数的积等于5乘5加上个位数字,再添上个位数字的平方,(必须占两位,十位无数用零占位):比50小的两个相同数的积,等于5乘5减去个位数字的十补数,再添上个位数字十补数的平方(必须占两位,十位无数用零占位)。

例1、53×53

5×5+3=28 再添上3×3=9 (必须两位09)等于2809

所以:53×53=2809

例2、58×58

5×5+8=33 再添上8×8=64 等于3364

所以:58×58=3364

例3、47×47

5×5-3(3是7的十补数)=22 再添上3×3=9 (必须两位09)

等于2209

所以:47×47=2209

(4)、末位是5的两个相同因数积的口算

思维方法:设这个数的十位数字为K,则这两个相同因数的积就是:K×(K+1)再添上5×5=25 或者K×(K+1)×100+25

例1、35×35=3×(4+1)×100+25=1225

例2、75×75=7×(7+1)×100+25=5625

两个相同因数积的口算方法很多,这里就不一一介绍了。我们利用两个相同因数积的口算方法可以口算好多相近的两个数的积。举例如下:

例1、13×14

因为:13×13=169 再加13得182 所以:13×14=182

或者14×14 因为:14×14=196 再减14 还得182

例2、35×37

因为:35×35=1225 再加70(2×35)得1295

所以35×37=1295

2、首尾有规律的数的口算

(1)首同尾合十(首同尾补)

思维方法:首数加“1”乘以首数,右边添上尾数的积(两位数),如积是一位数,十位用零占位。

例:76×74=(7+1)×7×100+6×4=5624

(2)尾同首合十(尾同首补)

思维方法:首数相乘加尾数,右边添上尾数的平方(两位数),如积是一位数,十位用零占位。

例:76×36=(7×3+6)×100+6×6=2736

(3)一同一合十(一个数两位数字相同,一个数两位数字互补)

思维方法:两个数的十位数字相乘,再加上相同数字,右边添上两尾数的积。如积是一位数,十位用零占位。

例:33×64=(3×6+3)×100+3×4=2112

以上三种方法,可以用一个公式计算即:

(头×头+同)×100 + 尾×尾

3、利用特殊数字相乘口算

有些数字很特殊,它们的积是有规律的。

(1)7乘3的倍数或3乘7的倍数

先看看下面的几个式子:

7×3=21 7×6=42 7×9=63

7×12=84 7×15=105 7×18=126......7×27=189

我们观察这几个式子被乘数都是7,乘数是3的倍数.是3的几倍,积的个位就是几,积的十位或者十位以上的数字始终是个位的2倍.

因此,我们可以说:7乘3的倍数,等于该倍数加该倍数的20倍.

果我们设这个倍数为N,用公式表示:7×3N=N+20N(N>0的正整如数)

例1、7×27=7×3×9=9+20×9=189

例2、7×57=7×3×19=19+20×19=398

这个结论3乘7的倍数也适用.我们用这个结论可以口算3的倍数和7的倍数的两个数相乘. 例3、14×15=7×2×3×5=7×3×10=10+20×10=210

例4、28×36=7×4×3×12=7×3×48=48+20×48=1008

(2)、17乘3的倍数或3乘17的倍数

17乘3的倍数,等于该倍数加该倍数的50倍.(3乘17的倍数也适用)

如果我们设这个倍数为N,用公式表示:17×3N=N+50N(N>0的正整数)

例1、17×21=17×3×7=7+50×7=357

例2、17×84=17×3×28=28+50×28=1428

例3、34×24=17×2×3×8=17×3×16=16+50×16=816

(3)、17乘13的倍数或13乘17的倍数

17乘13的倍数等于该倍数加该倍数的20倍,再加200倍。

如果我们设这个倍数为N,用公式表示:17×13N=N+20N+200N(N>0的正整数)

例1、17×78=17×13×6=6+20×6+200×6=1326

例2、34×65=17×2×13×5=17×13×10=10+20×10+200×10

=2210

例3、34×78=17×2×13×6=17×13×12=12+20×12+200×12

=2652

(4)43乘7的倍数或7乘43的倍数

43乘7的倍数等于该倍数加该倍数的300倍。

如果我们设这个倍数为N,用公式表示:43×7N=N+300N(N>0的正整数)

相关文档
最新文档