数学高考概率统计精讲
高考数学概率与统计题型解析与答题技巧
高考数学概率与统计题型解析与答题技巧在高考数学中,概率与统计是一个重要的板块,它不仅考查学生的数学知识和技能,还培养学生的数据分析和推理能力。
对于很多同学来说,这部分内容既有一定的挑战性,又充满了得分的机会。
下面我们就来详细解析高考数学中概率与统计的常见题型以及相应的答题技巧。
一、概率题型1、古典概型古典概型是概率中最基础的题型之一。
它的特点是试验结果有限且等可能。
例如,从装有若干个红球和白球的袋子中摸球,计算摸到某种颜色球的概率。
答题技巧:首先,确定总的基本事件数和所求事件包含的基本事件数。
然后,利用古典概型的概率公式 P(A)=所求事件包含的基本事件数÷总的基本事件数进行计算。
2、几何概型几何概型与古典概型不同,它的试验结果是无限的。
常见的有长度型、面积型、体积型几何概型。
比如,在一个区间内随机取一个数,求满足某个条件的概率。
答题技巧:对于几何概型,关键是要正确确定几何度量。
例如,长度型就计算长度,面积型就计算面积,体积型就计算体积。
然后,按照几何概型的概率公式 P(A)=构成事件 A 的区域长度(面积或体积)÷试验的全部结果所构成的区域长度(面积或体积)进行求解。
3、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率。
题目中通常会给出一些条件,让我们计算在这些条件下的概率。
答题技巧:利用条件概率公式 P(A|B)= P(AB)÷P(B),先求出 P(AB)和 P(B),再计算条件概率。
4、相互独立事件与互斥事件相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响;互斥事件则是指两个事件不能同时发生。
答题技巧:对于相互独立事件,它们同时发生的概率用乘法计算,即 P(AB)= P(A)×P(B);对于互斥事件,它们至少有一个发生的概率用加法计算,即 P(A∪B)= P(A)+ P(B)。
二、统计题型1、抽样方法包括简单随机抽样、分层抽样和系统抽样。
高考数学冲刺概率统计考点精讲
高考数学冲刺概率统计考点精讲高考数学中,概率统计是一个重要的板块,也是不少同学感到有一定难度的部分。
在高考冲刺阶段,对概率统计考点进行系统的梳理和深入的理解,有助于我们在考试中取得更好的成绩。
接下来,就让我们一起对这部分考点进行详细的讲解。
一、随机事件与概率1、随机事件随机事件是在一定条件下,可能发生也可能不发生的事件。
比如,抛掷一枚硬币,正面朝上就是一个随机事件。
2、概率的定义概率是对随机事件发生可能性大小的度量。
如果一个随机事件 A 发生的可能性大小可以用一个数值 P(A)来表示,那么0 ≤ P(A) ≤ 1。
3、古典概型古典概型是一种最简单的概率模型。
如果试验中所有可能出现的基本事件只有有限个,且每个基本事件出现的可能性相等,那么事件 A 的概率可以通过计算 A 包含的基本事件个数 m 与总的基本事件个数 n 的比值来得到,即 P(A) = m / n 。
4、几何概型与古典概型不同,几何概型中基本事件的个数是无限的。
比如,在一个区间内随机取一个数,求这个数落在某个子区间的概率。
二、概率的基本性质1、互斥事件如果事件 A 和事件 B 不能同时发生,那么称它们为互斥事件。
互斥事件的概率加法公式为:P(A∪B) = P(A) + P(B) 。
2、对立事件对立事件是指两个互斥事件中必有一个发生,且只有一个发生。
事件 A 的对立事件记为,且 P( )= 1 P(A) 。
3、概率的运算性质包括 P(∅)= 0 ,P(A) = 1 P( ),以及如果 A 包含于 B ,则 P(A) ≤ P(B) 等。
三、离散型随机变量及其分布列1、离散型随机变量如果随机变量 X 的取值可以一一列出,那么称 X 为离散型随机变量。
2、分布列离散型随机变量 X 的取值以及对应的概率所组成的表格称为分布列。
分布列具有两个性质:(1)Pi ≥ 0 ,i =1, 2, 3, … ;(2)P1 + P2 +P3 +… = 1 。
常见的离散型随机变量分布列有:(1)两点分布如果随机变量 X 只有两个可能的取值,且 P(X = 0) = 1 p ,P(X= 1) = p ,则称 X 服从两点分布。
高考数学中的概率与统计题详解
高考数学中的概率与统计题详解概率与统计是高考数学中的重要内容之一,涉及概率、统计两个部分。
概率是研究随机事件发生的可能性,统计则是根据观察到的现象,对总体进行推断。
在高考中,概率与统计题往往需要运用一定的公式和推理能力来解答。
下面将详细介绍高考中常见的概率与统计题,并提供相关的解题技巧。
一、概率题概率题常见于高考数学中,考察学生对随机事件和概率的理解与计算能力。
下面将从基本定义、计算公式和常见类型等方面对概率题进行详解。
1.基本定义概率是事件发生的可能性大小的度量,用一个介于0和1之间的数表示。
当事件不可能发生时,概率为0;当事件一定发生时,概率为1。
2.计算公式(1)事件A的概率:P(A) = 事件A的可能结果数 / 样本空间的可能结果数。
(2)互斥事件的概率:P(A或B) = P(A) + P(B)。
(3)独立事件的概率:P(A和B) = P(A) × P(B)。
3.常见类型(1)选择题:将概率题与其他数学知识相结合,如求百分比、比例等。
解题时应根据题目给出的条件,利用计算公式进行计算。
(2)排列组合问题:对于不同颜色、大小、形状的球,求取满足某个条件的组合数。
解题时应根据题目所给条件,使用排列组合公式进行计算。
(3)事件的复合:求两个或多个事件复合后的概率。
解题时应根据题目所给条件,利用计算公式进行计算。
二、统计题统计题常见于高考数学中,考察学生对收集、整理和分析数据的能力,以及对统计方法的应用。
下面将从数据收集与整理、统计指标和抽样调查等方面对统计题进行详解。
1.数据收集与整理统计题要求学生根据给定的数据进行分析和计算。
在实际情境中,常见的数据收集方法有观察、问卷调查、实验等。
解题时应根据题目所给的数据,进行整理和清晰的分类。
2.统计指标统计指标是对统计数据进行度量和描述的指标。
常见的统计指标有均值、中位数、众数、标准差等。
解题时应根据题目所要求的统计指标,运用相应的公式进行计算。
高考数学中的概率统计相关知识点分析
高考数学中的概率统计相关知识点分析高考数学中,概率统计是一道不可忽略的大题,几乎每年都出现在高考试卷中,因此对于概率统计相关知识点的掌握程度直接影响到考生高考成绩的好坏。
要想在高考数学中获得优异的成绩,必须熟练掌握概率统计知识,并了解其相关考点。
本文将从以下几个方面,对高考数学中的概率统计知识点进行分析和总结。
一、概率统计的定义概率统计是数学中的一个重要分支,是一种研究随机现象规律性的数学工具,主要包括概率论和统计学两个方面。
概率论是用来描述随机现象可能发生的概率的数学理论,而统计学则是通过对样本数据的分析,来推断总体的性质和规律的一门学科。
二、常见的概率统计方法在高考数学中,常见的概率统计方法包括概率、期望、方差和标准差等。
其中,概率是指某一事件在所有可能事件中所占的比例,通常用百分数或小数表示。
期望是指一次随机试验中,所期待获得的数值,可以用公式E(X)=∑P(Xi)X i 来表示。
方差是指一组数据与其期望的差的平方值的平均数,可以用公式D(X)=E[X-E(X)]^2来表示。
标准差是方差的平方根,可以用公式σ=sqrt(D(X))来表示,α 和β 之间的数即为随机变量 X 的一个离散分布。
三、高考数学中的概率统计考点1.条件概率条件概率是指在某一事件已经发生的情况下,另一个事件发生的概率。
在高考数学中,条件概率经常被用来解决概率计算问题,如计算A事件在B事件发生的情况下的概率等。
通常来说,条件概率用公式P(A|B) = P(AB) / P(B) 来表示。
2.独立事件独立事件是指两个或多个事件之间不相互影响,即一个事件的发生与另一个事件的发生无关。
在高考概率统计中,考生需要掌握如何判定两个事件是否独立,以及如何根据独立事件的性质计算概率。
3.随机变量随机变量是指变量的取值不确定,以概率的形式来描述的变量。
高考概率统计中,随机变量通常用于求期望、方差、标准差等常见的概率统计方法。
四、概率统计的应用概率统计理论在现实生活中有着广泛的应用,在自然科学、社会科学、医学、经济学、政治学等领域都有重要的地位。
高考概率统计知识点总结
高考概率统计知识点总结高考数学中的概率统计是一个相对独立的模块,但在学生中有着较高的难度和考查比重。
掌握好概率统计知识点对于提升数学成绩以及应对高考是至关重要的。
本文将从概率和统计两个方面,对高考中常见的概率统计知识点进行总结。
一、概率概率是概率统计中最为核心也是较为抽象的概念之一。
在考试中,概率通常通过计算概率值、事件的互斥、独立以及条件概率作为考点出现。
1. 概率值的计算:概率指某件事情发生的可能性大小。
常见的概率计算方式有两种,一种是频率概率,另一种是几何概率。
频率概率指的是事件发生的次数与总次数之间的比值;几何概率指的是事件发生的可能性与总可能性之间的比值。
2. 互斥事件与对立事件:互斥事件是指在同一次试验中,事件A和事件B不能同时发生;对立事件是指在同一次试验中,事件A发生与事件A不发生是互相对立的。
了解互斥事件和对立事件的性质,能够帮助我们更好地理解概率的计算。
3. 独立事件与非独立事件:独立事件是指在试验之间没有相互影响;非独立事件是指在试验之间相互影响。
对于独立事件和非独立事件,学生需要通过条件概率计算来确定它们之间的关系。
二、统计统计是概率统计中的另一个重要部分,它主要研究如何收集、整理、分析和解释大量数据的方法和技巧。
在高考中,统计通常通过抽样方法、频数分布、统计图表以及样本与总体的关系作为考点出现。
1. 抽样方法:抽样是指从总体中选取个别样本以代表总体。
在高考中,常用的抽样方法有随机抽样、分层抽样和整群抽样等。
了解各种抽样方法及其应用场景,可以帮助我们更好地分析总体特征。
2. 频数分布和统计图表:频数分布是指将一组数据按照数值大小进行整理和分类,以便观察数据的分布情况。
统计图表则是通过图像的方式将数据进行展示,包括直方图、折线图和饼图等。
掌握频数分布和统计图表的制作方法,可以更直观地观察数据特征。
3. 样本与总体的关系:样本是指从总体中选取的一部分数据,总体是指具有某种共同特征的个体或事物的集合。
掌握高考数学中的概率与统计题解题方法
掌握高考数学中的概率与统计题解题方法概率与统计是高考数学中的重要内容之一,许多学生在解答概率与统计题目时感到困惑。
本文将详细介绍高考数学中概率与统计题解题的方法,帮助学生掌握这一部分知识。
一、概率与统计题的分类在高考数学中,概率与统计题主要分为两类:概率题和统计题。
概率题是指要求计算某一事件发生的可能性;统计题是指要求根据给定的数据分析并得出结论。
接下来,将分别介绍这两类题目的解题方法。
二、概率题的解题方法概率题通常涉及到事件的概率计算,解题的关键在于理解题意并运用相应的公式进行计算。
1. 计算概率的基本公式- 若事件A发生的可能性为P(A),则事件A不发生的可能性为1-P(A)。
- 若事件A、B相互独立,则事件A和事件B同时发生的概率为P(A) × P(B)。
- 若事件A、B不相互独立,则事件A和事件B同时发生的概率为P(A) × P(B|A)。
2. 运用排列组合解决问题有时,概率题需要运用排列组合的知识进行计算。
比如,从n个元素中选取m个元素的组合数可表示为C(n,m)=n!/[(n-m)! × m!]。
3. 运用条件概率解决问题有时,概率题需要运用条件概率的概念进行计算。
条件概率表示在已知事件B发生的条件下,事件A发生的概率,表示为P(A|B)。
三、统计题的解题方法统计题主要涉及到数据的分析和处理,解题的关键在于根据题目要求选择合适的统计方法和技巧进行计算。
1. 构建频数表和频数分布图对于给定的数据,可以通过构建频数表和频数分布图来更好地观察数据的分布情况。
频数表可以统计每个数值出现的次数,频数分布图可以直观地展示数据的分布情况。
2. 求解平均数、中位数和众数平均数表示数据的平均值,中位数表示数据的中间值,众数表示出现次数最多的数值。
这些统计量可以帮助我们更好地了解数据的特征。
3. 进行数据的比较和推断统计题中常常需要进行数据的比较和推断,这时可以运用假设检验等方法进行判断并得出结论。
高考数学技巧全归纳概率统计与立体几何
高考数学技巧全归纳概率统计与立体几何高考数学是每个高中学生必须面对的一项考试,其中包括概率统计和立体几何这两个重要的内容。
本文将全面总结这两个部分的一些重要技巧和解题方法,帮助同学们更好地备考和应对高考数学。
一、概率统计技巧1.概率的计算方法:-事件的几何法:通过事件的几何模型来计算概率,例如通过面积比例、长度比例等方法计算概率。
-事件的频率法:通过实验、观察的次数来计算概率,例如通过频率的比例来估计概率。
-事件的古典法:通过假设所有结果等概率出现,根据有限样本空间来计算概率,适用于样本空间有限的情况。
2.条件概率与互斥事件:-条件概率的计算:根据条件概率的定义P(A,B)=P(A∩B)/P(B),通过已知条件和对应事件的交集以及相关的概率来计算条件概率。
-互斥事件:两个事件A和B是互斥事件,指的是它们的交集为空集,即A∩B=∅。
在计算互斥事件的概率时,可以将它们的概率相加,即P(A∪B)=P(A)+P(B)。
3.独立事件与乘法定理:-独立事件:两个事件A和B是独立事件,指的是它们的概率乘积等于它们分别的概率的乘积,即P(A∩B)=P(A)*P(B)。
在计算独立事件的概率时,可以将它们的概率相乘。
-乘法定理:乘法定理是计算复合事件概率的重要方法,即两个事件同时发生的概率等于先发生一事件的概率,再在该事件发生的条件下发生另一事件的概率,即P(A∩B)=P(A)*P(B,A)。
乘法定理可以推广到多个事件的情况。
4.排列与组合:-排列:指的是从一组不同的元素中取出若干个按一定顺序排列成一列,称为排列。
排列的计算公式为A(n,m)=n!/(n-m)!,其中n为总元素个数,m为取出的个数。
-组合:指的是从一组不同的元素中取出若干个不按顺序排列的组合,称为组合。
组合的计算公式为C(n,m)=n!/[(n-m)!*m!]。
二、立体几何技巧1.空间图形的展开:-将三维的立体图形展开成二维的平面图形,有助于理解和解决问题。
概率与统计 高中数学讲义解析版
第九章概率与统计9.1 两个计数原理、排列与组合1.通过实例,了解分类加法计数原理、分步乘法计数原理及其意义.2.通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式.【教材梳理】1.分类加法计数原理与分步乘法计数原理(1)分类加法计数原理①定义:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.②拓展:完成一件事,如果有n类方案,且:第1类方案中有m1种不同的方法,第2类方案中有m2种不同的方法,… ,第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+⋯+m n种不同的方法.(2)分步乘法计数原理①定义:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.②拓展:完成一件事,如果需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,… ,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.2.排列与组合(1)排列:一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.两个排列相同的充要条件是:两个排列的元素完全相同,且元素的排列顺序也相同.(2)排列数做从n 个不同元素中取出m 个元素的一个组合.(4)组合数3.A n m =(n −m +1)A n m−1=nA n−1m−1 ;(n +1)!−n!=n ⋅n! .4.kC n k =nC n−1k−1 ;C n m =C n−1m−1+C n−2m−1+⋯+C m−1m−1 .1. 判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.(1) 在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( √ ) (2) 在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( × )(3) 所有元素完全相同的两个排列为相同排列.( × )(4) (n +1)!−n !=n ⋅n ! .( √ )(5) kC n k =nC n−1k−1 .( √ )2. 公共汽车上有10位乘客,沿途5个车站,所有乘客下车的可能方式有( D )A. A 105 种B. C 105 种C. 105 种D. 510 种[解析]解:所有乘客下车的可能方式有510 种.故选D.3. (教材改编题)已知集合M ={1,−2,3} ,N ={−4,5,6,−7} ,从M ,N 这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是( C )A. 12B. 8C. 6D. 4[解析]解:分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6 .故选C.4. 已知n ,m 为正整数,且n ≥m ,则下列各式中正确的个数是( C )①A 63=120 ;②A 127=C 127A 77 ;③C n m +C n+1m =C n+1m+1 ;④C n m =C n n−m .A. 1B. 2C. 3D. 4[解析]解:对于①,A 63=6×5×4=120 ,故①正确;对于②,因为C 127=A 127A 77 ,所以A 127=C 127A 77 ,故②正确;对于③,因为C n m +C n m−1=C n+1m ,所以C n m+1+C n m =C n+1m+1 ,故③错误;对于④,C n m =C n n−m ,故④正确.故选C.考点一 分类加法计数原理与分步乘法计数原理例1 (1) 满足a ,b ∈{−1,0,1,2} ,且关于x 的方程ax 2+2x +b =0 有实数解的有序数对(a,b) 的个数为13.[解析]解:当a =0 时,b 的值可以是−1 ,0 ,1 ,2 ,故(a,b) 的个数为4;当a ≠0 时,要使方程ax 2+2x +b =0 有实数解,需使Δ=4−4ab ≥0 ,即ab ≤1 .若a =−1 ,则b 的值可以是−1 ,0 ,1 ,2 ,(a,b) 的个数为4;若a =1 ,则b 的值可以是−1 ,0 ,1 ,(a,b) 的个数为3;若a =2 ,则b 的值可以是−1 ,0 ,(a,b) 的个数为2.由分类加法计数原理可知,(a,b) 的个数为4+4+3+2=13 .故填13.(2) 某旅游景区有如图所示A 至H 共8个停车位,现有2辆不同的白色车和2辆不同的黑色车,要求相同颜色的车不停在同一行也不停在同一列,则不同的停车方法总数为( B )A. 288B. 336C. 576D. 1 680[解析]解:第一步:排白车,第一行选一个位置,则第二行有三个位置可选,由于车是不相同的,故白车的停法有4×3×2=24(种).第二步:排黑车,若白车选AF,则黑车有BE,BG,BH,CE,CH,DE,DG共7种选择,黑车是不相同的,故黑车的停法有2×7=14(种).根据分步计数原理,共有24×14=336(种),故选B.(3)(教材改编题)某儿童游乐园有5个区域要涂上颜色,现有四种不同颜色的油漆可供选择,要求相邻区域不能涂同一种颜色,则符合条件的涂色方案种数为( D )A. 36B. 48C. 54D. 72[解析]解:如图,将五个区域分别记为①,②,③,④,⑤.涂色分为5步完成,前三步涂区域①②③,有4×3×2=24(种)方法.后两步涂区域④⑤,可分为两类:区域②④涂色相同,有1×2种方案;区域②,④涂色不相同,有1×1种方案.所以不同的涂色方案共有24×(1×2+1×1)=72(种).故选D.【点拨】解答计数应用问题的总体思路:根据完成事件所需的过程,对事件进行整体分类,确定可分为几大类,整体分类以后,再确定在每类中完成事件要分几个步骤,这些问题都弄清楚了,就可以根据两个基本原理解决问题了.此外,还要掌握一些非常规计数方法,如:①枚举法:将各种情况一一列举出来,它适用于种数较少且计数对象不规律的情况;②转换法:转换问题的角度或转换成其他已知问题;③间接法:若用直接法比较复杂,难以计数,则可考虑利用正难则反的策略,先计算其反面情形,再用总数减去即得.变式1.(1)从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为( D )A. 56B. 54C. 53D. 52[解析]解:在8个数中任取2个不同的数共有8×7=56个对数值,但在这56个数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56−4=52(个).故选D.(2)某学校有东、南、西、北四个校门.翻新改造期间,学校对进入四个校门做出如下规定:学生只能从东门或西门进入校园,教师只能从南门或北门进入校园.现有3名教师和4名学生要进入校园(不分先后顺序),请问进入校园的方式共有128种.(用数字作答)[解析]解:因为学生只能从东门或西门进入校园,所以4名学生进入校园的方式共24=16种.因为教师只能从南门或北门进入校园,所以3名教师进入校园的方式共有23=8种.所以3名教师和4名学生要进入校园的方式共有16×8= 128种.故填128.(3) [2023届湖南长郡中学高三入学考试]某城市在中心广场建造一个花圃,花圃分为6个部分,如图所示.现要栽种4种不同颜色的花,每部分栽种一种,且相邻部分不能栽种同样颜色的花,则不同的栽种方法有( B )A. 80种B. 120种C. 160种D. 240种[解析]解:第一步,对1号区域栽种,有4种选择.第二步,对2号区域栽种,有3种选择.第三步,对3号区域栽种,有2种选择.第四步,对5号区域栽种,分为三种情况:①5号与2号颜色相同,则4号仅有1种选择,6号有2种选择;②5号与3号颜色相同,情况与①类似;③5号与2,3号颜色都不同,则4,6号只有1种选择.所以共有4×3×2×(1×2×2+1×1)=120(种).故选B.考点二排列、组合的基本问题命题角度1 排列的基本问题例2 有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数. (1)选其中5人排成一排;[答案]解:从7个人中选5个人排,排法总数有A75=7×6×5×4×3=2 520(种).(2)排成前后两排,前排3人,后排4人;[答案]分两步完成,先选3人排在前排,有A73种方法,余下4人排在后排,有A44种方法,故共有A73A44=5 040(种).另解:本题即为7人排成一排的全排列.(3)全体排成一排,甲不站排头也不站排尾;[答案](优先法)(方法一)甲为特殊元素.先排甲,有5种方法,其余6人有A66种方法,故共有5×A66=3 600(种).(方法二)排头与排尾为特殊位置.排头与排尾从除甲的其余6个人中选2个排列,有A62种方法,中间5个位置由余下4人和甲进行全排列,有A55种方法,共有A62×A55=3 600(种).(4)全体排成一排,女生必须站在一起;[答案](捆绑法)将女生看成一个整体,与3名男生一起全排列,有A44种方法,再将4名女生进行全排列,也有A44种方法,故共有A44A44=576(种).(5)全体排成一排,男生互不相邻;[答案](插空法)男生不相邻,而女生不作要求,所以应先排女生,有A44种方法,再在女生之间及首尾空出的5个空位中任选3个空位排男生,有A53种方法,故共有A44A53=1 440(种).(6)全体排成一排,甲、乙两人中间恰好有3人;[答案](捆绑法)把甲、乙及中间3人看作一个整体,第一步:先排甲乙两人,有A22种方法;第二步:从余下5人中选3人排在甲乙中间,有A53种;第三步:把这个整体与余下2人进行全排列,有A 33 种方法.故共有A 22A 53A 33=720(种).(7) 全体排成一排,甲必须排在乙前面(可不相邻);[答案](消序法)7人的全排列有A 77 种,其中甲在乙前面与乙在甲前面各占12 ,故共有A 772=2 520 (种).另解:7个位置中任选5个排除甲、乙外的5人,余下的两个位置甲、乙的排法即定,故有A 75=2 520 (种).(8) 全部排成一排,甲不排在左端,乙不排在右端.[答案]甲、乙为特殊元素,左、右两端为特殊位置.(方法一)(特殊元素法)甲在最右端时,其他的可全排,有A 66 种;甲不在最右端时,可从余下5个位置中任选一个,有A 51 种,而乙可排在除去最右端位置后剩余的5个中的任意一个上,有A 51 种,其余人全排列,共有A 51A 51A 55 种.由分类加法计数原理,共有A 66+A 51A 51A 55=3 720 (种).(方法二)(特殊位置法)先排最左端,除去甲外,有A 61 种,余下6个位置全排,有A 66 种,但应剔除乙在最右端时的排法A 51A 55 种,因此共有A 61A 66−A 51A 55=3 720 (种).方法三(间接法):7个人全排,共A 77 种,其中,不合条件的有甲在最左端时,有A 66 种,乙在最右端时,有A 66 种,其中都包含了甲在最左端,同时乙在最右端的情形,有A 55 种.因此共有A 77−2A 66+A 55=3 720 (种).【点拨】有约束条件的排列问题一般有以下几种基本类型与方法:①特殊元素优先考虑;②对于相邻问题采用“捆绑法”,整体参与排序后,再考虑“捆绑”部分的排序;③对于不相邻问题,采用“插空”法,先排其他元素,再将不相邻元素插入空档;④对于定序问题,可先不考虑顺序限制,排列后再除以定序元素的全排列数.变式2. 【多选题】某学院学生会的3名男生和2名女生在社区参加志愿者活动,结束后这5名同学排成一排合影留念,则下列说法正确的是( BCD )A. 若让其中的男生甲排在两端,则这5名同学共有24种不同的排法B. 若要求其中的2名女生相邻,则这5名同学共有48种不同的排法C. 若要求其中的2名女生不相邻,则这5名同学共有72种不同的排法D. 若要求其中的1名男生排在中间,则这5名同学共有72种不同的排法[解析]解:对于A,男生甲排在两端,共有2A44=48(种)不同的排法,A错误.对于B,2名女生相邻,共有A22A44=48(种)不同的排法,B正确.对于C,2名女生不相邻,共有A33A42=72(种)不同的排法,C正确;对于D,要求1名男生排在中间,则这5名同学共有3A44=72(种)不同的排法,D正确.故选BCD.命题角度2 组合的基本问题例3 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有1名女生;[答案]解:1名女生,4名男生,故共有C51C84=350(种).(2)两队长当选;[答案]将两队长作为一类,其他11个作为一类,故共有C22C113=165(种).(3)至少有1名队长当选;[答案]至少有1名队长当选含有两类:只有1名队长和2名队长.故共有C21C114+ C22C113=825(种).或采用间接法:C135−C115=825(种).(4)至多有2名女生当选;[答案]至多有2名女生含有三类:有2名女生、只有1名女生、没有女生,故选法有C52C83+C51C84+C85=966(种).(5)既要有队长,又要有女生当选.[答案]分两类:第一类女队长当选,有C124种选法;第二类女队长不当选,有C41C73+C42C72+C43C71+C44种选法.故选法共有C124+C41C73+C42C72+C43C71+C44=790(种).【点拨】解组合问题时要注意:①分类时不重不漏;②注意间接法的使用,在涉及“至多”“至少”等问题时,多考虑用间接法(排除法);③应防止出现如下常见错误:如第3小题,先选1名队长,再从剩下的人中选4人得C21C124≠825,请同学们自己找错因.变式3. 【多选题】为响应政府部门号召,某红十字会安排甲、乙、丙、丁四名志愿者奔赴A,B,C三地参加健康教育工作,则下列说法正确的是( BCD )A. 不同的安排方法共有64种B. 若恰有一地无人去,则不同的安排方法共有42种C. 若甲必须去A地,且每地均有人去,则不同的安排方法共有12种D. 若甲、乙两人都不能去A地,且每地均有人去,则不同的安排方法共有14种[解析]解:四人到三地去,一人只能去一地,方法数为34=81,A错误.若恰有一地无人去,则不同的安排方法数是C31(C41+C42+C43)=42,B正确.若甲必须去A地,且每地均有人去,则不同的安排方法数为A33+C31+C32= 12,C正确.若甲、乙两人都不能去A地,且每地均有人去,分甲、乙去同一个地方和不去同一个地方,则不同的安排方法数为2×5+2A22=14,D正确.故选BCD.考点三排列、组合的综合问题命题角度1 分堆与分配问题例4 按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;[答案]解:无序不均匀分组问题.先选1本,有C61种选法;再从余下的5本中选2本,有C52种选法;最后余下3本全选,有C33种选法.故共有C61C52C33=60(种).(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;[答案]有序不均匀分组问题.由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑再分配,共有C 61C 52C 33A 33=360 (种).(3) 平均分成三份,每份2本;[答案]无序均匀分组问题.先分三步,则应是C 62C 42C 22 种方法,但是这里出现了重复.不妨记六本书为A ,B ,C ,D ,E ,F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB,CD,EF) ,则C 62C 42C 22 种分法中还有(AB,EF,CD) ,(CD,AB,EF) ,(CD,EF,AB) ,(EF,CD,AB) ,(EF,AB,CD) ,共有A 33 种情况,而这A 33 种情况仅是AB ,CD ,EF 的顺序不同,因此只能作为一种分法,故分配方式有C 62C 42C 22A 33=15 (种).(4) 平均分配给甲、乙、丙三人,每人2本;[答案]有序均匀分组问题.在(3)的基础上再分配给3个人,共有分配方式C 62C 42C 22A 33⋅A 33=C 62C 42C 22=90 (种).(5) 分成三份,1份4本,另外两份每份1本;[答案]无序部分均匀分组问题.共有C 64C 21C 11A 22=15 (种).(6) 甲、乙、丙三人中,一人得4本,另外两人每人得1本;[答案]有序部分均匀分组问题.在(5)的基础上再分配给3个人,共有分配方式C 62C 21C 11A 22⋅A 33=90 (种).(7) 甲得1本,乙得1本,丙得4本.[答案]直接分配问题.甲选1本,有C 61 种方法;乙从余下的5本中选1本,有C 51 种方法,余下4本留给丙,有C 44 种方法,故共有分配方式C 61C 51C 44=30 (种).【点拨】平均分配给不同人的分法等于平均分堆的分法乘以堆数的全排列.分堆到位相当于分堆后各堆再全排列,平均分堆不到指定位置,其分法数为:平均分堆到指定位置.对于分堆与分配问题应注意:①处理分配问题要注意先分堆再堆数的阶乘分配;②被分配的元素是不同的(如“名额”等则是相同元素,不适用),位置也应是不同的(如不同的“盒子”);③分堆时要注意是否均匀,如6分成(2,2,2)为均匀分组,分成(1,2,3)为非均匀分组,分成(4,1,1)为部分均匀分组.变式4.(1) [2020年新高考Ⅰ卷]6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( C )A. 120种B. 90种C. 60种D. 30种[解析]解:首先从6名同学中选1名去甲场馆,方法数为C61;然后从其余5名同学中选2名去乙场馆,方法数为C52;最后剩下的3名同学去丙场馆.故不同的安排方法共有C61C52=6×10=60种.故选C.(2)【多选题】2022年北京冬奥会吉祥物“冰墩墩”有着可爱的外表和丰富的寓意,现有5个不同造型的“冰墩墩”,则下列说法正确的是( BCD )A. 把这5个“冰墩墩”装入3个不同的盒内,共有129种不同的装法B. 从这5个“冰墩墩”中选出3个分别送给3位志愿者,每人1个,共有60种选法C. 从这5个“冰墩墩”中随机取出3个,共有10种不同的取法D. 把这5个“冰墩墩”装入3个不同的盒内,每盒至少装一个,共有150种不同的装法[解析]解:对于A,每个“冰墩墩”可选择3个盒子中的任意一个,根据分步乘法原理共有35=243(种)不同的装法,故A错误.对于B,共有C53A33=60(种)选法,故B正确.对于C,共有C53=10(种)不同的取法,故C正确.对于D,若3个盒子中“冰墩墩”的数量为1,1,3,则有C53C31A22=60(种)不同的装法;若3个盒子中“冰墩墩”的数量为1,2,2,则有C51C31C42=90(种).共有60+90=150(种),故D正确.故选BCD.命题角度2 数字排列问题例5 用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位奇数?[答案]解:先排个位数,有C31种方法,然后排千位数,有C41种方法,剩下百位和十位任意排,有A42种方法,故所求为C41C31A42=144个.(2)能组成多少个无重复数字且比1 325大的四位数?[答案]分为三类,第一类是千位是2,3,4,5中任意一个,有A41A53个数;第二类是千位是1,且百位是4,5中的一个,有A21A42个数;第三类是千位是1,且百位是3和十位是4,5中的一个,有A21A31个数.故所求为A41A53+A21A42+A21A31=270个.【点拨】对于有限制条件的数字排列问题,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置,同时注意隐含条件:0不能在首位.变式5.(1)设集合A={0,2,4} ,B={1,3,6} .现分别从A,B中任取2个元素组成无重复数字的四位数,其中不能被5整除的数共有( C )A. 64个B. 96个C. 144个D. 152个[解析]解:所求的四位数中,数字含0的数有C21C32C21A33=72个,数字不含0的数有C22C32A44=72个,共有72+72=144个.故选C.(2)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2不相邻,这样的六位数的个数是32.(用数字作答)[解析]解:任何相邻两个数字的奇偶性不同,且1和2相邻,可分三步:第一步:先将3,5排列,共有A22种排法;第二步:再将4,6插空排列,共有2A22种排法;第三步:将1,2捆绑放到3,5,4,6形成的空中,共有C51种排法.共有A222A22C51=40(种)排法.又任何相邻两个数字的奇偶性不同,共有2A33A33=72(种)排法,所以所求为72−40=32.故填32.【巩固强化】1. 体育场南侧有3个大门,北侧有2个大门,某学生到该体育场练跑步,每个门都可进出,则他进出体育场的方案共有( D )A. 6种B. 10种C. 5种D. 25种[解析]解:该学生进出体育场都有5种可能,故他进出体育场的方案共有5×5=25(种).故选D.2. 某学校为落实“双减政策”,在每天放学后开设拓展课程供学生自愿选择,开学第一周的安排如下表.周内选择编程、书法、足球三门课,则不同的选课方案共有( A )A. 15种B. 10种C. 8种D. 5种[解析]解:若周二选编程,则选课方案有C31C31=9(种);若周三选编程,则选课方案有C21C31=6(种).综上,不同的选课方案共有9+6=15(种).故选A.3. [2023届安徽高三开学考试]如图,“天宫空间站”是我国自主建设的大型空间站,其基本结构包括天和核心舱、问天实验舱和梦天实验舱三个部分. 假设有6名航天员(4男2女)在天宫空间站开展实验,其中天和核心舱安排4人,问天实验舱与梦天实验舱各安排1人,且两名女航天员不在一个舱内,则不同的安排方案种数为( B )A. 14B. 18C. 30D. 36[解析]解:将6名航天员安排在3个实验舱的方案种数为C64C21C11=30(种),其中两名女航天员在一个舱内的方案种数为C42C21C11=12(种).所求为30−12=18(种).故选B.4. 给如图所示的5块区域A,B,C,D,E涂色,要求同一区域用同一种颜色,有公共边的区域使用不同的颜色,现有红、黄、蓝、绿、橙5种颜色可供选择,则不同的涂色方法有( D )A. 120种B. 720种C. 840种D. 960种[解析]解:A有5种颜色可选,B有4种颜色可选,D有3种颜色可选,C,E 均可涂除D的涂色外的其它颜色,均有4种可选.故共有5×4×3×4×4= 960(种)不同的涂色方法.故选D.5. 语文里流行一种特别的句子,正和反读起来都一样的,比如:“清水池里池水清”“中山自鸣钟鸣自山中”,那么在所有的四位数中符合这个规律且四个数字不能都相同的四位数有( A )A. 81个B. 90个C. 100个D. 729个[解析]解:设符合题意的四位数为xyyx,则当x=1时,y=0,2,3,…,9,共9个;当x=2时,y=0,1,3,…,9,共9个;…当x=9时,y=0,1,2,…,8,共9个.由分类加法计数原理可知满足条件的四位数有9×9=81(个).故选A.6. 某校选定甲、乙、丙、丁、戊共5名教师去3个边远地区支教(每地至少1人),其中甲和乙一定不同地,甲和丙必须同地,则不同的选派方案共有( D ) A. 27种 B. 36种 C. 33种 D. 30种[解析]解:因为甲和乙一定不同地,甲和丙必须同地,所以有(2,2,1)和(3,1,1)两种分配方案:①分成(2,2,1)三组,其中甲和丙为一组,从余下3人选出2人组成一组,然后排列,有C32A33=3×3×2=18(种);②分成(3,1,1)三组,在丁、戊中选出1人,与甲丙组成一组,然后排列,有C21A33=2×3×2=12(种).共有18+12=30(种).故选D.7.(1)若C n4>C n6,则n的取值集合是{6,7,8,9} .[解析]解:因为C n4>C n6,所以n≥6,且n!4!(n−4)!>n!6!(n−6)!,所以30>(n−4)(n−5),即(n−10)(n+1)<0,解得−1<n<10.综上,6≤n<10.故n 的取值集合是{6,7,8,9}.(2)C22+C32+C42+⋯+C102=165 .[解析]解:C22+C32+C42+⋯+C102=C33+C32+C42+⋯+C102=C43+C42+⋯+ C102=⋯=C102+C103=C113=165.8. 【多选题】上海某校举办了主题为“党在我心中”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,则下列结论正确的是( BCD )A. 若甲、乙、丙三名同学全参加,则不同的朗诵排列顺序有36种B. 若甲、乙、丙三名同学恰有一人参加,则不同的朗诵排列顺序有288种C. 若甲、乙、丙三名同学恰有二人参加,则不同的朗诵排列顺序有432种D. 选派的4名学生不同的朗诵排列顺序有768种[解析]解:对于A,甲、乙、丙三名同学全参加,有C41A44=96(种)情况,由捆绑法易得其中甲、乙相邻的有C41A22A33=48(种)情况.所以甲、乙、丙三名同学全参加时,甲和乙的朗诵排列顺序不能相邻有96−48=48(种)情况,故A错误.对于B,甲、乙、丙三名同学恰有一人参加,不同的朗诵排列顺序有C43C31A44= 288(种)情况,故B正确.对于C,甲、乙、丙三名同学恰有二人参加时,不同的朗诵排列顺序有C42C32A44=432(种)情况,故C正确.对于D,选派的4名学生不同的朗诵排列顺序有288+432+48=768(种)情况,故D正确.故选BCD.【综合运用】9. 直线l:xa +yb=1,a∈{1,3,5,7},b∈{2,4,6,8} .若l与坐标轴围成的三角形的面积不小于10,则这样的直线的条数为( B )A. 6B. 7C. 8D. 16[解析]解:l与坐标轴围成的三角形的面积为S=12ab≥10,即ab≥20.当a= 1时,不满足;当a=3时,b=8,即1条;当a∈{5,7}时,b∈{4,6,8},此时a的取法有2种,b的取法有3种,则直线l的条数为2×3=6.故满足条件的直线的条数为1+6=7.故选B.10. 洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上有此图象(如图),结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数(图中白圈表示的数为阳数,黑点表示的数为阴数).现利用阴数和阳数构成一个四位数,规则如下:(从左往右数)第一位数是阳数,第二位数是阴数,第三位数和第四位数一阴一阳和为7,则这样的四位数的个数有( A )A. 120个B. 90个C. 48个D. 12个[解析]解:根据题意,阳数为1,3,5,7,9,阴数为2,4,6,8.第一位数的选择有5种,第二位数的选择有4种,第三位数和第四位数的组合可以为(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共6种选择,根据分步乘法计数原理,这样的四位数共有5×4×6=120(个).故选A.11. 如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( D )A. 48B. 18C. 24D. 36[解析]解:第1类,对于每一条棱,都可以与两个面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).故选D.12. 【多选题】从1,2,3,4,5,6中任取三个不同的数组成一个三位数,则在所组成的数中( ACD )A. 偶数有60个B. 比300大的奇数有48个C. 个位和百位数字之和为7的数有24个D. 能被3整除的数有48个[解析]解:对于A,先从2,4,6中任取一个数放在个位,再任取两个数放在十位和百位,共有3A52=60(个),故A正确.对于B,若百位数字为3或5,有2×2×4=16(个)三位奇数;若百位数字为4或6,有2×3×4=24(个)三位奇数.则符合题意的三位数有16+24=40(个),故B错误.对于C,个位和百位的数可以是{1,6},{2,5},{3,4}顺序可以交换,再从剩下的数中任选一个放在十位上,共有A22C31C41=24(个),故C正确.对于D,要使组成的数能被3整除,则各位数之和为3的倍数,取出的数有{1,2,3},{1,2,6},{1,3,5},{1,5,6},{2,3,4},{2,4,6},{3,4,5},{4,5,6},共8种情况,所以组成的能被3整除的数有8A33=48(个),故D正确.故选ACD.13. 中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图是利用算筹表示数1-9的一种方法.例如:3可以表示为“”,26可以表示为“”.现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数的个数为16. [解析]解:根据题意,6根算筹可以表示的数字组合为15,19,24,28,33,37,46,68,77.数字组合15,19,24,28,37,46,68中,每组可以表示2个两位数,则可以表示2×7=14(个)两位数;数字组合33,77共可表示2个两位数.则共可表示14+2=16(个)两位数.故填16.【拓广探索】。
高考数学统计概率知识点
高考数学统计概率知识点数学是高考中一个重要的科目,其中统计与概率是一个重要的知识点。
统计与概率涉及到数据的收集、整理、分析以及概率的计算和应用。
在这篇文章中,我们将深入探讨高考数学中的统计与概率知识点,并帮助同学们更好地理解和掌握这一部分内容。
1. 统计统计是指对收集到的数据进行整理、分析和解释的过程。
在高考数学中,统计主要涉及到以下几个方面的内容:1.1 数据收集数据收集是统计的第一步,它包括了数据的获取和整理。
数据可以通过调查问卷、实验和观察等方式进行收集。
在这个过程中,要注意数据的真实性和完整性,确保数据的可靠性。
1.2 数据的呈现数据的呈现是指将收集到的数据以图表或图像的形式展示出来,以便于更好地观察和分析。
常见的数据图表包括条形图、折线图、饼图等。
在绘制图表时,要注意选择适当的图表类型,确保数据的准确性和清晰度。
1.3 数据的分析数据的分析是统计的核心部分,它包括了对数据的计算、比较和解释等过程。
在进行数据分析时,可以运用各种统计指标和方法,如平均值、中位数、众数、方差等,以便更好地理解数据的特征和变化趋势。
2. 概率概率是用来描述随机事件发生可能性大小的数学工具。
在高考数学中,概率主要涉及到以下几个方面的内容:2.1 随机事件与样本空间随机事件是指无法预测结果的事件,它可以用来描述一个随机试验的可能结果。
样本空间是指一个随机试验的所有可能结果的集合。
在计算概率时,需要明确随机事件和样本空间的定义,并根据实际情况确定随机事件的个数和样本空间的大小。
2.2 概率的计算概率的计算是指通过对随机事件和样本空间的分析,来确定某个事件发生的可能性大小。
常见的概率计算方法有等可能原则、频率方法和古典概型法等。
在进行概率计算时,需要注意计算的正确性和合理性,并注意纳入所有可能影响结果的因素。
2.3 概率的应用概率的应用是指通过概率的计算,来解决实际问题。
在高考数学中,概率的应用包括了生日问题、排列组合、事件的独立性和条件概率等内容。
高考统计概率知识点归纳总结大全
高考统计概率知识点归纳总结大全统计概率是高考数学中的重要知识点,也是考查学生逻辑思维和数据分析能力的一种方式。
掌握统计概率的基本概念和计算方法对于解题至关重要。
本文将对高考统计概率的相关知识点进行归纳总结,以帮助同学们更好地复习和应对考试。
一、基本概念1. 实验与事件:实验是指进行一次观察或测量的过程,事件是实验的结果。
2. 样本空间:样本空间是指实验中所有可能的结果的集合。
3. 事件的概率:事件的概率是指事件在随机试验中发生的可能性大小,用P(A)表示。
4. 必然事件和不可能事件:必然事件是指在每次实验中都会发生的事件,概率为1;不可能事件是指在每次实验中都不会发生的事件,概率为0。
二、概率的计算方法1. 频率与概率:频率指某个事件在实验中发生的次数与实验总次数之比,频率接近一个值时,该值即为事件的概率。
2. 古典概型:对于样本空间中的每一个结果,概率是相等的,可以用总事件数与有利事件数之比来计算概率。
3. 几何概率:对于几何概型,可以根据几何图形的面积或长度比例来计算概率。
4. 概率的运算:并、交、差、余等运算。
三、条件概率1. 条件概率的定义:在事件B发生的条件下,事件A发生的概率记作P(A|B),表示已知事件B发生的前提下,事件A发生的概率。
2. 乘法定理:P(AB) = P(A|B) × P(B),即事件A和事件B同时发生的概率等于事件B发生的概率乘以事件A在事件B发生的条件下发生的概率。
3. 全概率公式:设B1,B2,...,Bn为一组互不相容的事件且构成对空间Ω的一个分割,即它们的并为Ω,且Bi ∩ Bj = ∅ (i ≠ j),则对于任意事件A,有P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... +P(A|Bn)P(Bn)。
4. 贝叶斯定理:设B1,B2,...,Bn为一组互不相容的事件且构成对空间Ω的一个分割,即它们的并为Ω,且Bi ∩ Bj = ∅ (i ≠ j),则对于任意事件A,有P(Bi|A) = P(A|Bi)P(Bi) / [P(A|B1)P(B1) +P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)]。
高考概率统计知识点汇总
高考概率统计知识点汇总概率统计作为数学的一个重要分支,是高中数学中的一项重要内容,也是高考中难度较大的一部分。
掌握概率统计的知识点对于高考取得好成绩至关重要。
本文将对高考概率统计的知识点进行汇总介绍,帮助考生更好地备考。
一、基本概念与定义1. 概率的概念:概率是对一件事件发生的可能性进行量化的数学方法。
常用的表示方式有百分数、小数和分数。
2. 随机事件与样本空间:随机事件指的是具有不确定性的事件,而样本空间是指所有可能结果的集合。
3. 必然事件和不可能事件:必然事件是一定会发生的事件,概率为1;不可能事件是一定不发生的事件,概率为0。
二、基本计算方法1. 乘法定理:乘法定理是指当两个随机事件A、B同时发生时,它们的概率等于事件A发生的概率乘以在A发生条件下事件B发生的概率。
2. 加法定理:加法定理是指当两个互斥事件A和B中至少一个事件发生时,它们的概率等于事件A发生的概率加上事件B发生的概率。
3. 条件概率:条件概率是指在已知事件B发生的条件下,事件A发生的概率。
计算条件概率时,需要用到乘法定理。
4. 独立事件:独立事件是指两个事件A和B的发生与否互不影响,即事件A的发生与否不会对事件B的发生产生影响。
对于独立事件来说,它们的概率乘积等于各自概率的乘积。
三、概率分布1. 随机变量与概率分布:随机变量是指在随机试验中可能取得的各个值,概率分布是指随机变量取各个值的概率。
2. 离散型随机变量与离散概率分布:离散型随机变量是指可以取一定个数值的随机变量,离散概率分布是指离散型随机变量取各个值的概率。
3. 连续型随机变量与连续概率分布:连续型随机变量是指在一定范围内可以取任意值的随机变量,连续概率分布是指连续型随机变量取某个区间的概率。
四、抽样与估计1. 简单随机抽样:简单随机抽样是指从总体中依概率挑选出样本的方法,以确保样本能够代表总体。
2. 参数与统计量:参数是指总体中的某个特征值,统计量是指样本中的某个特征值。
高考复习概率与统计知识点归纳总结
高考复习概率与统计知识点归纳总结概率与统计是高中数学中的一大重点和难点。
在高考中,这一部分的知识点占有相当大的比重,因此学生需要在复习阶段集中精力,深入理解和掌握相关的知识点。
本文将对高考概率与统计的知识点进行归纳总结,以帮助学生们更好地复习和备考。
一、概率基本概念1. 随机事件与样本空间:随机事件是对某一随机试验的结果的一种描述,样本空间是一个随机试验中可能出现的所有结果的集合。
2. 事件的概率:事件A发生的概率用P(A)表示,其计算公式为P(A) = 事件A的可能结果数 / 样本空间的结果总数。
3. 事件的互斥与对立:互斥事件指的是两个事件不可能同时发生,对立事件指的是两个事件中一个必然发生,另一个必然不发生。
4. 事件的独立性:两个事件相互独立指的是一个事件的发生不受另一个事件的影响,它们的概率计算是相互独立的。
二、排列与组合1. 排列:排列是从n个不同元素中取出m(m≤n)个元素,按一定的顺序排列成一列。
公式为An^m = n(n-1)(n-2)...(n-m+1)。
2. 组合:组合是从n个不同元素中取出m(m≤n)个元素,不考虑排列顺序。
公式为Cn^m = n! / (m!(n-m)!)。
三、事件概率的计算1. 加法定理:对于两个事件A和B,其和事件A∪B的概率为P(A∪B) = P(A) + P(B) - P(A∩B)。
2. 乘法定理:对于两个独立事件A和B,其积事件A∩B的概率为P(A∩B) = P(A) × P(B)。
3. 全概率公式:对于一组互斥事件A1、A2、...、An,其和事件A的概率为P(A) = P(A1) + P(A2) + ... +P(An)。
4. 条件概率公式:对于两个事件A和B,已知事件B发生的条件下事件A发生的概率为P(A|B) = P(A∩B) / P(B)。
四、随机变量与概率分布1. 随机变量:随机变量是随机试验结果的函数,它的取值是随机的。
数学高考必备知识总结概率与统计的应用技巧
数学高考必备知识总结概率与统计的应用技巧在高考数学中,概率与统计是一个重要的考点,也是学生们常常感到困惑的部分。
概率与统计的应用技巧不仅能够帮助我们解决实际问题,还能提升我们在高考中的得分。
本文将对概率与统计的必备知识总结和应用技巧进行详细介绍。
一、概率的基本概念与应用1. 概率的定义与性质概率是事件发生的可能性的度量,通常用一个介于0和1之间的数值表示。
概率的性质包括:必然事件的概率为1,不可能事件的概率为0,对于任意事件A,都有0≤P(A)≤1。
2. 事件的互斥与独立性互斥事件指的是两个事件不可能同时发生,而独立事件则指的是两个事件的发生与否互不影响。
在计算概率时,我们需要注意事件之间的互斥性和独立性。
3. 条件概率与乘法定理条件概率是指在已知某个条件下,事件A发生的概率。
乘法定理是计算复合事件概率的重要方法,其公式为:P(A∩B) = P(A) × P(B|A),其中P(A∩B)表示事件A与事件B同时发生的概率,P(B|A)表示在事件A已经发生的条件下,事件B发生的概率。
4. 全概率公式与贝叶斯定理全概率公式是求解复合事件概率的常用方法,其公式为:P(B) =P(A1)P(B|A1) + P(A2)P(B|A2) + … + P(An)P(B|An),其中A1, A2, …,An为互不相容的事件,且它们的并集构成了样本空间。
贝叶斯定理是在已知概率的基础上,根据逆概率计算条件概率的方法,其公式为:P(A|B) = P(A∩B) / P(B)。
二、统计的基本概念与应用1. 随机变量与概率分布随机变量是指取值不确定的变量,其可以分为离散型随机变量和连续型随机变量。
离散型随机变量只能取有限个或可数个值,而连续型随机变量则可以取任意一个区间内的值。
概率分布是随机变量在不同取值下的概率情况的总结。
2. 随机事件与频率随机事件是指在一次试验中可能发生的事件,频率是指在大量独立重复的试验中,某个事件发生的次数与试验总数的比值。
高三数学概率与统计知识精讲苏教版
高三数学概率与统计苏教版【本讲教育信息】一. 教学内容:概率与统计[学习过程]一、高考要求:了解:抽样方法;总体分布的估计;变量的相关性;统计案例。
理解:总体特征数的估计;了解:随机事件与概率;几何概型;互斥事件及其发生的概率;理解:古典概型。
二、本章知识结构:三、基础知识(一)统计1. 抽样方法有简单随机抽样;系统抽样;分层抽样。
2. 简单随机抽样抽签法;随机数表法。
3. 用抽签法从个体个数为N的总体中抽取一个容量为k的样本的步骤为:(1)将总体中的所有个体编号(号码可以从1到N);(2)将1到N这N个号码写在形状、大小相同的号签上(号签可以用小球、卡片、纸条等制作);(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽出1个号签,并记录其编号,连续抽取k次;(5)从总体中将与抽到的签的编号相一致的个体取出.4. 用随机数表法抽取样本的步骤是:(1)对总体中的个体进行编号(每个号码位数一致);(2)在随机数表中任选一个数作为开始;(3)从选定的数开始按一定的方向读下去,得到的数码若不在编号中,则跳过;若在编号中,则取出;如果得到的号码前面已经取出,也跳过;如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.5. 将总体平均分成几个部分,然后按照预先定出的规则,从每个部分中抽取一个个体,得到所需的样本,这样的抽样方法称为系统抽样(systemAticsAmpling). 系统抽样,又叫等距抽样。
6. 系统抽样的步骤为:(1)采用随机的方式将总体中的个体编号;系统抽样也可称为“等距抽样”.(2)将整个的编号按一定的间隔(设为k)分段,当Nn(N为总体中的个体数,n为样本容量)是整数时,k=Nn;当Nn不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N′能被n整除,这时k=N′n,并将剩下的总体重新编号;(3)在第一段中用简单随机抽样确定起始的个体编号l;(4)将编号为l,l+k,l+2k,…,l+(n-1)k的个体抽出.7. 当总体由差异明显的几个部分组成时,常常将总体中的个体按不同的特点分成比较分明的几部分,然后按各部分在总体中所占的比例实施抽样,这种抽样方法叫分层抽样;其中所分成的各个部分称为“层”.8. 分层抽样的步骤是:(1)将总体按一定标准分层;若按比例计算所得的个体数不是整数,可作适当的近似处理.(2)计算各层的个体数与总体的个体数的比;(3)按各层个体数占总体的个体数的比确定各层应抽取的样本容量;(4)在每一层进行抽样(可用简单随机抽样或系统抽样).9. 三种抽样的关10. 反映总体频率分布的表格称为频率分布表。
高考数学2024概率与统计历年题目全解
高考数学2024概率与统计历年题目全解概率与统计作为高考数学中的重要部分,一直是考生们难以逾越的“坎”。
为了帮助广大考生更好地应对高考概率与统计部分的考题,本文将对高考数学2024年概率与统计题目进行全面解析,希望能够为考生们提供帮助和指导。
1. 选择题部分选择题是高考中概率与统计部分的常见题型,也是考生们容易出错的地方。
以下是2024年高考概率与统计选择题的解答:题目一:已知事件A发生的概率为P(A)=0.6,事件B发生的概率为P(B)=0.3,且事件A与事件B相互独立。
求事件A发生且事件B不发生的概率。
解答一:事件A发生且事件B不发生,表示为A发生的概率P(A)乘以B不发生的概率P(B'),即P(A且B')=P(A)×P(B')=0.6×(1-0.3)=0.6×0.7=0.42。
因此,事件A发生且事件B不发生的概率为0.42。
题目二:已知事件C发生的概率为P(C)=0.4,事件D发生的概率为P(D)=0.5,且事件C与事件D相互独立。
求事件C或事件D发生的概率。
解答二:事件C或事件D发生,表示为C发生的概率P(C)加上D发生的概率P(D),即P(C或D)=P(C)+P(D)=0.4+0.5=0.9。
因此,事件C或事件D发生的概率为0.9。
2. 计算题部分计算题是概率与统计部分的重要考察内容,需要考生们掌握一定的计算方法和技巧。
以下是2024年高考概率与统计计算题的解答:题目一:某班有40名学生,其中20名男生、20名女生。
现从该班级随机选取3名学生,求选出的3名学生全为男生的概率。
解答一:选出的3名学生全为男生的概率等于从20名男生中选取3名学生的概率除以从40名学生中选取3名学生的概率。
即P(全为男生)=C(20,3)/C(40,3)=[20×19×18]/[40×39×38]=0.0283。
因此,选出的3名学生全为男生的概率为0.0283。
高考数学中的概率与统计问题解析
高考数学中的概率与统计问题解析在高考数学中,概率与统计是必考内容之一。
因为这两个概念在现实生活中的应用非常广泛,所以掌握好这些知识不仅对考试有好处,而且对日常生活也会有很大帮助。
下面就从概率与统计两个方面,为大家详细解析高考数学中的相关问题。
一、概率概率是研究随机事件发生的可能性的一种数学方法。
在高考数学中,概率主要出现在两个方面,一是基本概念,二是题目应用。
1.1 基本概念在高考数学中,我们首先需要掌握的是概率的基本概念,包括术语的定义、公式的推导等。
下面,我们以事件的概念为例,对概率的基本概念进行解析。
(1)事件的概念事件是指一个特定的结果或者一组结果,它是随机试验中的某种可能结果。
例如,抛硬币出现正面或反面,就是一个随机试验,正面和反面分别是两个可能事件。
(2)样本空间和事件的关系样本空间是指随机试验所有可能结果的集合,而事件是样本空间的子集。
例如,抛硬币出现正面或反面,样本空间就是{正,反},其中正是一个事件,反也是一个事件。
(3)概率的定义概率是指某个事件发生的可能性大小,用一个实数来表示。
在高考数学中,概率的计算公式为:$$ P(A)=\frac{m}{n} $$其中,P(A)表示事件A发生的概率,m表示事件A包含的样本点的个数,n表示样本空间中的样本点的总个数。
(4)概率的性质在高考数学中,概率具有以下几个性质:- 非负性:概率不会小于0。
- 规范性:整个样本空间的概率为1。
- 可加性:当A、B是两个互不相交的事件时,它们的概率之和等于它们的并的概率,即$$ P(A \bigcup B)=P(A)+P(B) $$1.2 题目应用在高考数学中,概率的题目多种多样,基本都是考察学生对于概率概念和解决实际问题的能力。
下面,我们以两道高考真题为例,来看一下如何应用概率解题。
【例题1】已知某城市三天中降雪的概率分别为0.25、0.3、0.3,三天降雪的概率为0.15,那么这个城市至少有一天降雪的概率是多少?解析:这道题考察的是概率的不定性,也就是求至少一个事件发生的概率。
数学高考数学中的概率与统计题解题方法与思路总结
数学高考数学中的概率与统计题解题方法与思路总结概率与统计是数学中的一个重要分支,也是高考数学中的一项重要内容。
考查概率与统计的题目在高考中占据一定比例,掌握好解题方法与思路对于考生来说是至关重要的。
本文将对高考数学中的概率与统计题解题方法与思路进行总结,并提供一些实用的技巧和示例,帮助考生更好地应对这类题目。
一、概率题解题方法与思路在高考数学中,概率题目主要包括事件与概率、排列组合与概率、概率的计算与运用等内容。
以下是一些解题方法与思路的总结:1. 理清题意:在解概率题前,首先要仔细阅读题目,理解题目所描述的背景和条件。
确定给定事件和所求事件,并结合题目中的条件将问题转化为一个概率问题。
2. 构建样本空间:根据题目所给条件,建立一个恰当的样本空间。
样本空间是所有可能的结果组成的集合,对于复杂的问题,可以利用树状图、表格等方式来构建样本空间,帮助理清逻辑关系。
3. 确定事件:根据题目要求,确定所关注的事件,并通过分析题目中的条件,对事件进行限定条件,以便进行计算。
4. 计算概率:利用概率的定义,计算所求事件发生的概率。
常用的计算方法有等可能原理、排列组合等概率的性质。
5. 运用概率:在解概率题时,还需要掌握条件概率、独立事件等相关概念和计算方法。
根据题目给出的条件,利用已知的概率计算所求的概率,注意要根据条件的不同进行不同的计算。
二、统计题解题方法与思路统计是高考数学中的另一个重要内容,主要包括频率分布、参数估计、假设检验等。
以下是一些解题方法与思路的总结:1. 构建频数表:对于给定的数据,首先要进行整理和分类,然后利用频数表将数据进行统计。
频数表是将数据按照一定的规则分组,统计各组的频数。
2. 绘制统计图表:根据频数表,可以绘制统计图表,如直方图、频率多边形等。
统计图表可以直观地展示数据的分布情况,对于理解问题和进行进一步分析具有重要意义。
3. 计算统计指标:在统计题中,常常需要计算一些统计指标,如平均数、标准差等。
高考数学中的概率与统计问题解析技巧
高考数学中的概率与统计问题解析技巧在高考数学中,概率与统计是一个重要的考点,涉及到了概率、统计两个方面的知识。
掌握好概率与统计问题的解析技巧,对于高考数学的顺利发挥至关重要。
本文将为大家介绍一些解析概率与统计问题的技巧,帮助大家在高考数学中取得好成绩。
一、概率问题的解析技巧1. 理解概率的定义首先,我们需要明确概率的定义。
概率是指某个事件发生的可能性大小。
概率的取值范围是0到1之间,其中0表示不可能事件,1表示必然事件。
在解析概率问题时,我们需要根据情境判断事件的可能性,并将其转化为数值计算。
2. 利用排列组合计算概率在一些概率问题中,我们需要计算不同事件的组合情况。
此时,我们可以运用排列组合的知识来计算概率。
例如,从n个物体中取出m个的组合计算公式是C(n,m) = n! / (m!*(n-m)!),其中n!表示n的阶乘。
3. 运用事件的互斥性和独立性在某些情况下,我们可以利用事件的互斥性和独立性来计算概率。
互斥事件指的是两个事件不会同时发生,例如抛硬币的结果为正面和反面就是互斥事件。
独立事件指的是一个事件的发生不受其他事件的影响。
当事件A和事件B是独立事件时,它们的概率可以通过P(A ∩B) = P(A) * P(B)来计算。
二、统计问题的解析技巧1. 理解统计的基本概念在解析统计问题时,我们需要了解统计的一些基本概念。
例如,总体是指我们研究的对象的全体,样本是从总体中抽取出来的一部分个体。
平均数是一组数据的总和除以个数,中位数是一组数据按照大小排序后位于中间的值,众数是一组数据中出现次数最多的数。
2. 运用抽样调查的方法当我们需要了解总体的情况时,我们可以通过抽样调查的方法来获取样本数据。
在解析统计问题时,我们可以根据样本数据进行分析,从而推断总体的情况。
常用的抽样方法有简单随机抽样、整群抽样、分层抽样等。
3. 利用频数统计和图表分析在统计问题中,频数统计和图表分析是常用的方法。
我们可以通过对数据进行频数统计,找出数据中的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学高考概率统计精讲
数学高考中的概率与统计是重要的一部分,而且常常是考试中的重点。
本文将对概率与统计的基本概念和相关题型进行详细讲解,以帮助同学们更好地掌握这一内容。
一、概率的基本概念
概率是研究随机现象的数学分支,用于描述事件发生的可能性。
在概率的研究中,有几个基本概念需要掌握。
1. 样本空间和事件
样本空间是指一个随机现象的所有可能结果的集合,用S表示。
事件是样本空间的子集,表示一种具体的情况或结果。
2. 概率的定义
概率是指事件A发生的可能性,一般用P(A)表示。
在概率的计算中,有两种常见的计算概率的方法:古典概率和几何概率。
3. 古典概率
古典概率适用于在有限个等可能的结果中计算概率的情况。
根据古典概率的定义,事件A的概率为P(A) = n(A) / n(S),其中n(A)表示事件A中的有利结果的个数,n(S)表示样本空间中的总结果个数。
4. 几何概率
几何概率适用于通过几何方法计算概率的情况。
对于某个事件A,
我们可以通过计算它的面积或长度与总面积或长度的比值来得到概率。
二、概率与统计的应用
概率与统计不仅是数学学科中的一个重要内容,也是与日常生活密
切相关的。
在高考中,涉及到的概率与统计的应用题主要包括以下几
个方面:
1. 排列组合
排列组合是概率统计中的重要内容之一,也是高考中常见的考点。
在排列组合的计算中,有排列和组合两种情况,需要根据题目的要求
来确定。
2. 随机变量与概率分布
随机变量是指随机试验结果的数值表示,可以是离散型或连续型的。
概率分布是随机变量可能取值的概率情况,包括离散型随机变量的分
布列和连续型随机变量的概率密度函数。
3. 事件的独立性和相关性
事件的独立性是指事件A和事件B的发生与否互不影响。
相关性则是指事件A和事件B的发生与否存在某种关联关系。
在计算概率和统
计推断时,需要根据事件的独立性或相关性来确定具体的计算方法。
4. 参数估计和假设检验
参数估计是指通过样本数据来估计总体参数的值,可以用点估计和
区间估计两种方法。
假设检验则是根据样本数据对总体参数做出推断,包括单样本假设检验、双样本假设检验和方差分析等。
三、高考概率统计解题技巧
为了能够在高考中顺利解决概率与统计的问题,需要掌握一些解题
技巧。
1. 仔细阅读题目
概率与统计的题目往往会给出大量的信息,需要仔细阅读题目,理
解题目的要求和条件。
2. 确定所求
在解题前需要明确所求的是什么,例如概率、期望、方差等。
3. 灵活运用公式和方法
掌握一定的公式和方法是解题的基础,但是要注意在题目中的灵活
运用,选择合适的方法进行解题。
4. 注意计算和化简
在计算中要注意准确性,特别是在繁琐的计算过程中要仔细核对,
避免因计算错误导致解题错误。
同时,化简也是解题中的一种常用方法,可以简化计算过程,提高解题效率。
综上所述,概率统计是数学高考中的重要内容,需要同学们认真学习和掌握。
通过理解概率的基本概念和统计的应用,灵活应用解题技巧,相信大家能够在高考中取得好成绩。
祝同学们考试顺利!。