triz技术系统进化的S曲线和进化法则的关系
TRIZ理论技术系统的八大进化法则及其实例
TRIZ理论技术系统的八大进化法则及其实例
技术系统的八大进化法则及其实例
一、技术系统的S曲线进化法则
例:汽车的发明和使用;从最初的婴儿期(即最初的蒸汽机车)到成长期(即内燃机车)再到成熟期(即现在拥有各种功能美观实用的现代型汽车)最后到衰退期二、提高理想度法则
例:污水排水管道;镀锌环钢排水管道强度大,但耐腐蚀耐磨损性差,塑料管道耐腐蚀耐磨损性强但强度低,故在塑料管道外镀锌层以提高管道强度
三、子系统不均衡进化法则
例:音乐手机;手机的发明和使用给人们带来了巨大地便利,人们不均衡的着重发展其中的某些功能(比如音乐播放功能)使其成为某种特定功能型手机
四、动态性和可控性进化法则
例:可折叠自行车;自行车本是体积相对较大的,后来将其装上铰变成可折叠自行车既方便有减小体积
五、增加集成度再进行简化法则
例:手机移动电源;将手机电池拿出来单独做成移动电源供手机使用
六、子系统协调性法则
例:电脑主机箱;电脑工作时,散热风扇和主机功率相协调
七、减少人工介入的法则
例:汽车的自动化案例
八、向微观级和增加场应用的进化法则
例:电子芯片;以前的集成电路大多是电子管,耗能大体积大,而现在则可以集中成小小的芯片。
S曲线与技术进化法则(TRIZ)
设计人员所设计的产品,是以一定的技术手段 来实现社会特定需求的人造系统。
▪是一种系统 ▪至少有一个部分是人造的 ▪符合完备性法则的要求
系统的本质属性: 1)系统特征:飞机是飞行,缝纫机是缝制衣服 2)作用客体: 空气,缝制的衣服 3)主要有效功能:飞机运送货物,缝纫机缝制衣服
例:电冰箱的系统特性、作用客体和系统属性
动态程度基于空间分类的进化路线spacesegmentation空间分割由左至右演化由专利及知识库萃取而来每一个演化转变均存在有好处benefits理想性增加的相关联性benefits增加cost也可能增加但大多数或长期的观点其净利益netbenefit是增加的活性毛细孔孔结构活性元素巧毛细管多孔结构泡沫巧克力多重中空结多孔巧克力中空结构酒心巧克力整块实体纯巧克力基于空间分类的进化路线此概念在35个进化路线中除了单双多monobipoly与简约设计trimming之外其它均适用活性毛细孔结构毛细孔多孔结构多重中空结中空结构整块实体利益逐渐增加技术挑战或许成本风险等逐渐增加时间基于界面分类的进化路线简约设计trimming设计者更聪明地善用资源而减少子系统使达到相同更佳功能系统复杂度进化的曲线简约后系统去除非主要子系统去除非主要功能复杂系统宝丽来公司的pogo无墨口袋照片打印机ifrevolutionarylimit现有系统存在有进化的极限进化的极限与ifr有段差距寻求现有系统进化的潜力进化潜力的定义技术系统的目前技术水平与技术系统能够达到的进化极限之间的差距manndarrell进化潜力就存在于当前进化状态和最高进化状态之间进化路线空间分割实体中空多孔毛细孔多孔活性毛细孔结构技术进化路线的应用产品概念形成模型技术进化路线的应用manndarrell的进化潜力雷达图产品进化位置的量化利用模糊集012345来度量产品的相对进化位置下图为产品相对每一进化模式位置的确定过程
TRIZ
(一)冲突解决理论1、技术冲突解决原理TRIZ提出描述技术冲突的39个通用工程参数:运动物体质量、静止物体质量、运动物体长度、静止物体长度等。
为了解决技术冲突,TRIZ理论提出了40 项发明原理,如分割、分离、局部质量、不对称等。
通过研究,Altshuller提出了冲突矩阵,该矩阵将描述技术冲突的39个工程参数与40条发明原理建立了对应关系,解决了设计过程中选择发明原理的难题。
2、物理冲突解决原理Terninko于1998年提出的物理冲突描述方法为:(1)为实现关键功能,子系统要具有一有用功能,但为了避免出现一有害功能,子系统又不能具有上述有用功能。
(2)关键子系统的特性必须是一大值以能取得有用功能,但又必须是一小值以避免出现有害功能。
(3)关键子系统必须出现以取得一有用功能,但又不能出现以避免出现有害功能。
TRIZ提出采用分离原理解决物理冲突的方法,包括空间分离和时间分离、基于条件的分离、整体与部分的分离。
英国Bath大学的Mann提出,解决物理冲突的分离原理与解决技术冲突的发明原理之间存在关系,一条分离原理可以与多条发明原理存在对应关系。
(二)物—场模型分析方法物—场分析是用符号表达技术系统变换的建模技术。
物—场模型分析方法产生于1947—1977年,每一次的改进都增加了新的可用的知识,现在已经有了76 种标准解。
这些标准解是最初解决问题方案的精华,因此,物—场分析为我们提供了一种方便快捷的方法,利用这种方法,可以在汲取基本知识的基础上产生不同想法。
TRIZ理论认为,技术系统构成要素S1、作用体S2、场F三者缺一就会造成系统不完整。
而当系统中某一物质的特定机能没有实现时,系统就会产生问题。
为了控制这一物质产生的问题,有必要引入另外的物质。
由此产生这些物质之间的相互作用并伴随能量(场)的产生、变换、吸收等,物—场模型也从一种形式变换为另一种形式。
因此各种技术系统及其变换都可用物质和场的相互作用形式表述。
第二节TRIZ技术进化理论
性 能 参 数 专 利 级 别 专 利 数 量 成长期 婴儿期
成熟期 衰退期
阶段,典型的S曲线是描述一个技术
系统的完整生命周期。
性能
成长期 成熟期 衰退期
婴儿期
经 济 收 益
S曲线与各阶段特点
时间
1. 技术系统的S曲线进化法则
尽可能保持技术系统在第二阶段发展,因 此需要缩短第一阶段和第三阶段 如果技术系统发展到达第四个阶段,我 们需要发展具备新的工作原理的新系统
• 1.企业战略的选择:不论是二维还是多维的S曲线,其最大的一个作用就是 反应技术和产品所处的生命周期,从而为企业战略的选择提供参考。 • 2.技术方向的选择:多维S曲线最利于技术方向的选择。通过分析S曲线族的 走势,同时配合曲线族对应的市场反应,可以找准此技术的核心发展路线, 同时也可以找到一定时期内消费者最认同的技术方向。
于不必再随身携带庞大的燃油箱,既简化
了飞机系统,同时也提高了飞行速度等飞 机性能。
10.提高自动化程度和智能化程度的法则
系统的发展用来实现那些枯燥的功能,以解放人们去完成更具有智力性的工作。 1.减少人工介入的一般路径 本路径的技术进化阶段:包含人工动作的系统—替代人工但仍保留人工动作的 方法—用机器动作完成替代人工。 2.在同一水平上减少人工介入的路径 本路径的技术进化阶段:包含人工作用的系统—用执行机构替代人工—用能量 传输机构替代人工—用能量源替代人工。
Parameter (Ideality)
具有资源
3
4
缺乏资源
1 2
1
Time
性能
第三轮S曲线 第二轮S曲线 第一轮S曲线 衰退期 成熟期
注意:如果在第三阶段有资源可以 提高改善技术系统,可以尝试返回 第二阶段。如果我们没有资源可以 利用,这时就发展新的S曲线。
创新方法-TRIZ简介理论篇
4
怎么办?
以技术创新方法培训为突破口, 传播创新意识和创新方法、推广 创新手段,培育创新型人才,提 升企业技术创新能力。
强化激励措施,让想干事能干事 的人才脱颖而出,形成一种万马 奔腾,奋发向上的良好风气。
5
创新思维
发明与创新是人类思维活动的产物,人类 的思维包括:逻辑思维、形象思维和灵感 思维。
18
TRIZ基本哲理
6、 在大多数情况下,理论的寿命与机器的 发展规律是一致的。因而,“试凑”法很 难产生两种或两种以上的系统解。
19
TRIZ方法论
无论是一个简单产品还是复杂的技术系统, 其核心技术的发展都是遵循着客观的规律 发展演变的,解决发明问题过程中所寻求 的科学原理和法则是客观存在的,都具有 客观的规律和模式;
3、 任何一个发明或创新的问题都可以表示为需 求和不能(或不再能)满足这些需求的原型系统 之间的冲突。所以,“求解发明问题”与“寻找 发明问题的解决方案”就意味着在利用折衷与调 和不能被采纳时对冲突的求解。
17
TRIZ基本哲理
4、 为探索冲突问题的解决方案,有必要利用专业工程师 尚不知道或不熟悉的物理或其它科学与工程的知识。技术 功能和可能实现该功能的物理学、化学、生物学等效应对 应的分类知识库可以成为探索冲突问题解的指针。
32
功能分析
Stone R B对功能的有关概念进行了重新定义: 产品功能(product任务的输入/输出关系;2)子功能 (sub-function):以动词——名词形式描述产品 分任务的输入/输出关系;3)功能(function): 以动词形式描述元件或产品的一个操作;4)流 (flow):随时间变化的能量、物料、信号;功 能所描述操作的承受者。按上述定义,功能基是 功能与流的集合,子功能由功能与流合成,产品 功能可分解为多个子功能。功能与流是进行功能 分析、建立功能模型的基本元素,这些元素的总 体是功能基。
技术创新方法之二TRIZ的八大进化法则
二、TRIZ的技术系统的八大进化法则+S曲线
பைடு நூலகம்
针对技术系统进化演变规律,在大量专利分析的基础上TRIZ理论总结 提炼出八个基本进化法则。
利用这些进化法则,可以分析确认当前产品的技术状态,并预测未来 发展趋势,开发富有竞争力的新产品。
可以应用于产生市场需求、定性技术预测、产生新技术、专利布局和
统的组成和进化的趋势。
技术系统法则2:能量传递法则
技术系统实现功能的必要条件:能量必须能够从能量源流向技术 系统的所有元件;
技术系统应该沿着使能量流动路径缩短的方向进化,以减少能量 损失;
如果某个元件接收不到能量,就不能发挥作用,这会影响到技术 系统的整体功能。
实例:手摇绞肉机替代菜刀 用刀片旋转运动代替刀的垂直运
衰退期的特征: 相同功能的新技术系统开始排挤老系统; 系统带来的收益下降;
衰退期出现的原因: 新系统已经发展到第二阶段迫使现在系统退出市场; 超系统的改变导致对系统需求的降低; 超系统的改变导致系统生存困难。
对衰退期的建议: 寻找新的民展领域; 重点投入资金寻找、选择和研究能够进一步提高产品性能的替代技术。
成熟期的特征: 系统发展趋于缓慢; 生产量趋于稳定; 新出现的矛盾会阻碍系统的进一步发展。
成熟期的特点: 系统消耗大量的特定资源; 系统被附加一些与其主要功能完全不相关的附加功能; 系统的发展寄希望于新的材料和技术; 系统的改变主要是外在的变化。
对成熟期的建议: 下一步的努力方向是:降低成本,改善外观; 增强系统服务功能的可能性; 简化系统,和其它系统或技术相结合
第一部手机:1973年诞生,重800g,功能仅为电话通信; 现代手机:重仅数十克,功能可超过100种,包括通话、游戏、 MP3、照相等。
TRIZ试题及答案
1、(20分,论述题)试述TRIZ理论体系的构成,不少于600字。
现代TRIZ理论的核心思想主要体现在三个方面。
首先,无论是一个简单产品还是复杂的技术系统,其核心技术的发展都是遵循着客观的规律发展演变的,即具有客观的进化规律和模式。
其次,各种技术难题、冲突和矛盾的不断解决是推动这种进化过程的动力。
再就是技术系统发展的理想状态是用尽量少的资源实现尽量多的功能。
现代TRIZ理论体系主要包括以下几个方面的内容:1. 创新思维方法与问题分析方法TRIZ理论中提供了如何系统分析问题的科学方法,如多屏幕法等;而对于复杂问题的分析,则包含了科学的问题分析建模方法——物-场分析法,它可以帮助快速确认核心问题,发现根本矛盾所在。
2. 技术系统进化法则针对技术系统进化演变规律,在大量专利分析的基础上TRIZ理论总结提炼出八个基本进化法则。
利用这些进化法则,可以分析确认当前产品的技术状态,并预测未来发展趋势,开发富有竞争力的新产品。
3. 技术矛盾解决原理不同的发明创造往往遵循共同的规律。
TRIZ理论将这些共同的规律归纳成40个创新原理,针对具体的技术矛盾,可以基于这些创新原理、结合工程实际寻求具体的解决方案。
4. 创新问题标准解法针对具体问题的物-场模型的不同特征,分别对应有标准的模型处理方法,包括模型的修整、转换、物质与场的添加等等。
5. 发明问题解决算法ARIZ主要针对问题情境复杂,矛盾及其相关部件不明确的技术系统。
它是一个对初始问题进行一系列变形及再定义等非计算性的逻辑过程,实现对问题的逐步深入分析,问题转化,直至问题的解决。
6. 基于物理、化学、几何学等工程学原理而构建的知识库基于物理、化学、几何学等领域的数百万项发明专利的分析结果而构建的知识库可以为技术创新提供丰富的方案来源。
2、(共20分):举例说明下列发明原理(每条发明原理各举2例,不少于600字)①分割原理②抽取原理③组合原理④变害为利原理⑤快速原理分割(segmentation)原理体现在3个方面比如:用个人计算机代替大型计算机;用卡车加拖车的方式代替大卡车;用烽火传递信息(分割信息传递距离);在大项目中应用工作分解结构,等等。
TRIZ理论
TRIZ理论一个产品或物质都可以看做是一个技术系统,技术系统可以简称为系统,系统是由多个子系统组成的,并通过子系统工程间的相互作用来实现一定的功能,子系统可以是零件或部件甚至于构成元素。
系统是处于超系统之中的,超系统是系统所在的环境,环境中的其他相关的系统可以看做是超系统的构成部分。
技术系统的进化是指实现系统功能的技术从低级向高级变化的过程,进化是客观进行着的,不管人们是认识了它还是没有认识它。
技术系统是功能的实现,同一功能存在多种技术实现方式,任何系统在完成人们所期望的功能中,同时亦会带来不希望的功能。
一、八大技术系统进化法则1、技术系统的S曲线进化法则2、提高理想度法则3、字系统的不均衡进化法则4、动态性和可控性进化法则5、增加集成度再进行简化法则6、子系统协调性进化法则7、向微观级和场的应用进化法则8、减少人工介入的进化法则。
二、最终理想解(IFR)在解决问题之初,首先抛开各种客观限制条件。
通过理想化来定义问题的最终理想解,以明确理想解所在的方向和位置,保证在问题解决过程中沿着此目标前进并获得最终理想解。
避免了传统创新设计方法中缺乏目标的弊端。
名词术语:理想化方法、理想试验、理想模型理想化水平I=有用功能之和/有害功能之和I=效益之和/(成本之和+危害之和)理想化方法部分理想化和全部理想化。
最终理想解是在超系统中考虑的。
最终理想解确定的步骤:1、设计的最终目的是什么?2、理想解是什么?3、达到理想解的障碍是什么?4、出现这种障碍的结果是什么?5、不出现这种障碍的条件是什么?创造这些条件存在的可用资源是什么?三、40个发明原理1、分割①将物体分割成独立的部分②使物体成为可组合的③增加物体被分割的程度2、抽取①将物体中“负面”的部分或特性抽取出来②只从物体中抽取部分必要的部分或特性3、局部质量①将物体或外部环境的同类结构转换成异类结构②使物体的不同部分实现不同的功能③使物体的每一部分处于最有于其运行的条件下4、非对称①用非对称形式代替对称形式②如果对象已经是非对称增加其非对称程度5、合并①合并空间上的同类或相邻的物体或操作②合并时间上的同类或相邻的物体或操作6、普偏性使得物体或物体的一部分实现多种功能以代替其他部分的功能7、嵌套①将第一个物体嵌入第二个物体然后将这个物体一起嵌入第三个物体…②让物体穿过另一个物体的空腔8、配重①将一个物体与另一能产生提升力的物体组合来补偿其重量②通过与环境(利用气体、液体的动力或浮力等的相互作用实现物体重量的补偿)9、预先反作用①预先施加反作用②如果物体将处于受拉伸工作状态则预先施加压力10、预先作用①事先完成部分或全部分的动作或功能②在方便的位置预先安置物体使其在第一时间发挥作用避免时间浪费11、预先应急措施针对物体相对教底的可靠性预先准备好相应的应急措施12、等势原则在势能场中避免物体位置的改变13、逆向思维①颠倒过去解决问题的方法②使物体的活动部分改变为固定的让固定的部分部分变为活动的③翻转物体(或过程)14、曲面化①竟直线、平面用曲线、曲面代替立方体结构改成球体②使用滚筒、球体、旋螺状等结构③从直线运动改成旋转运动利用离心力15、动态化①使物体或其环境自动调节以使其在每一个动作阶段的性能达到最佳②把物体分成及个部分各部分之间可相对改变位置③将不动的物体改变成可动的或具有适应性16、不足或超额行动如果现有的方法很难完成对象的100%可用同样的方法完成“稍少”或“稍多”一点问题可能变得相当容易解决17、一维变多维①将物体从一维变到二维或三维空间②用多层结构代替单层结构③使物体倾斜或侧向放置④使用给定表面的另一面18、机械震动①让物体处于震动状态②对有震动的物体则增加震动的频率(甚至到超声波)③使用物体的共震频率④用压电震动器代替机械震动器⑤使用超声波或电磁场震荡偶合19、周期性动作①用周期性动作或脉动代替连续动作②如果行动已经是周期性的则改变其频率③利用脉动之间的间隙来支行另一动作20、有效作用的连续性①持续采取行动使对象的所有部分都一直处于满负荷工作状态②消除空闲的间歇的行动和工作21、紧急行动快速的执行一个危险或有害的作业22、变害为利①利用有害的因素(特别是对环境的有害影响)来取得积极的效果②“以毒攻毒”用另一个有害作用来中和以清除物体所在的有害作用③加大有害因素的程度使之不在有害23、反馈①通过引入反馈来改善性能②如果已经引入反馈则改变其大小和作用24、中介物①采取中介体传递或完成动作②把一个物体和另一个物体临时结合在一起(随后能比较容易的分开25、①使物体具有补充和自恢复功能以完成自服务②利用废弃的资源能量和物资26、复制、①使用更简单更便宜的复制品代替难以获得的昂贵的复杂的易碎的物体②用光学复制品或图形来代替实物可以按比例放大或缩小图形③如果可视光学复制品已经被采用进一步扩展到红外或紫外线复制品26、用廉价的物品代替一个昂贵的物品在某些质量提醒上做出妥协(例如使用寿命)28、机械系统的代替①用感官刺激的方法代替机械手段②采用与物体相互作用的申,磁,或电磁场③场的代替从恒定场到可边场从固定场到随时间变化的场从随机场到有组织的场④将场和铁磁组合使用29、气体与气压结构:使用气体与或液体代替物体的固体零部件这些零部件可使用气体或水的膨胀或空气或液体静压缓冲功能30、柔性外壳和薄膜①使用柔性外壳和薄膜替代传统的机构②用柔性外壳和薄膜把对象和外部环境隔开31、多孔材料①使物体多孔或添加多孔元素②如果一个物体已经是多孔的则利用这些引入有用的物质或功能32、改变颜色①改变物体或其周围环境的颜色②改变难以观察的物体或过程的透明度或可视性③采用有颜色的添加剂使不易观察的物体或过程容易观察到④如果已经加入了添加剂则借助发光迹线追踪物质33、同质性:将物体或与其协会作用的其他物体用同一材料或特性相近的材料制作34、抛弃与再生①抛弃或改变物体中已经完成其功能和无能的部分②在过程中迅速补充物体所消耗和减少的部分35、物理化学状态变化:改变物体的物理化学状态浓度,密度,柔性,温度36、相变:利用物体相变转换时发生的某种反映或现象(例如热量的吸收或释放引起的物体体积的变化37、热膨胀①利用热膨胀或热收缩的材料②组合使用多种具有不同热膨胀系数的材料38、加速氧化①使用富氧空气代替普通空气②使用纯氧代替富氧空气③使用电离射线处理空气或氧气使用离子化的氧气④用臭氧代替离子化的空气39、惰性环境①用惰性气体环境代替普通环境②在真空中完成过程40、复合材料:从单一材料改成复合材料。
S曲线和技术系统进化
• 交通堵塞 • 停车 • 空气污染 • 废旧汽车
3. 经济和法律的限制
实例:汽车速度受规定所限
实例:国际法限制化学武器的发展
4. 超系统发生改变
实例:风箱、鼓风机
风箱
手动鼓风机 电动鼓风机
5. 新出现的矛盾会阻碍系统的发展
实例:大油轮可以运输更多的原油,但是; 油轮太大,若出现事故是灾难性的。
何时最易被破坏?
当企业一直向高利润的高端市场挺进,甩 掉低端市场的低利润产品时;
当企业陷入到无差异化竞争的泥潭中,和 成本结构相似、产品档次相当的竞争者互 相残杀时;
破坏的两种类型
性 能
延续性策略 把更好的产品引入现有市场
不
同
的
低端市场破坏性创新
性
以低成本业务模式为过度服
能
务的客户解决问题
成熟期的主要特征
1. 系统消耗大量的特定资源 2. 系统被附加一些与其主要功能完全不相关
的附加功能 3. 系统发展寄希望于新的材料和技术 4. 系统的改变主要是外在的变化
1. 系统消耗大量的特定资源
实例:汽车
2. 引入完全不相关的附加功能
实例:电视机
三星全新电视
主要功能:人们获取信息
附加功能:健康身体
降
衰退期出现的原因
1. 新系统已经发展到第二阶段,迫使现有系 统退出市场
2. 超系统的改变导致对系统需求的降低 3. 超系统的改变导致系统生存困难
1. 成长的新系统迫使现有系统退出市场
实例:计算尺、胶片单反机
计算尺
胶片机
2. 超系统的改变导致对系统需求的降低
实例:沙漏、胶卷
3. 超系统的改变导致系统生存困难
科技局第4部分 S曲线与技术进化法则
自行车的进化
❖ 1870年,被称为“Ariel”的自行车设计成功,该车前轮安装 在一个垂直的轴上,使转向成为可能,但依然不安全、不舒 适、驱动困难。
自行车的进化
❖ 1879年,脚登驱动、链轮及链条传动的自行车设计成功,该 类车的速度可以达到很高,但该类自行车没有车闸,因此高 速骑车时很危险。
自行车的进化
S曲线-衰退期
❖ 相同功能的新技术系统开始排挤老系统 ❖ 系统带来的收益在下降
性能参数
衰退期 成熟期
成长期 婴儿期
时间
衰退期出现的原因
1. 新系统已经发展到第二阶段,迫使现有系统退出市场 2. 超系统的改变导致对系统需求的降低 3. 超系统的改变导致系统生存困难
❖ 实例:计算尺、胶片单反机
计算尺
1875年6月2日,贝尔在一次试验中,他把金属片连接在电磁 开关上,没想到在这种状态下,声音奇妙地变成了电流。
婴儿期的特征:
❖当实现系统功能的原理出现后,系统也随之产生; ❖新系统的各组成部分通常是从其它已有的系统中“借” 来的,并不适应新系统的要求。
性能参数
成熟期
衰退期
成长期 婴儿期
时间
对婴儿期的建议
❖ 1888年,车闸设计成功,前轮直径已经变大,但零部件材料 不过关,影响了自行车的速度。
自行车的进化
❖ 20世纪,各种新材料用于自行车零件。并且有了折叠自行车, 变速自行车。
后变速器
前后变速器
自行车的进化
❖ 21世纪的自行车
自行车的进化
❖ 21世纪的电动自行车
这款电动力自行车外形如同一个平板,它采用汽车用锂电池供电。自行车上的车把、车座和脚蹬等
由图可知, 人造板技术发展饱 和点的专利数量为1191件, 整 个曲线的成长时间为33714个。 整个曲线的成长时间为33714 个月, 即经历33714 个月专利 数量会达到饱和点。
创新方法之TRIZ技术系统进化法则及案例之三
・学习园地•创新方法之TRIZ技术系统进化法则及案例之三张丽丽(马鞍山钢铁股份有限公司)编者按:创新从最通俗的意义上讲就是创造性地发现问题和创造性地解决问题的过程,TRIZ 理论的强大作用正在于它为人们创造性地发现问题和解决问题提供了系统的理论和方法工具。
“工欲善其事、必先利其器”,掌握先进的创新方法是提高创新效率的最佳途径。
为了给广大冶金工作者们提供创新方法学习平台,特推出《创新方法》专栏。
任何一个产品、工艺和技术都在随着时间向着更高级的方向发展和进化,并且它们的进化过程都会经历相同的几个阶段。
阿奇舒勒通过对大量专利的研究和分析,发现技术系统的进化和生物系统一样,是按照一定规律在发展和进化的,他将这些规律进行总结,就形成了TRIZ理论中的S—曲线和技术系统进化法则。
技术系统进化法则的内容主要体现了产品在实现其他相应功能的过程中改进和发展的趋势。
运用S—曲线和技术系统进化法则可以判断出当前研发的产品处于技术系统进化过程中的哪个阶段,然后基于法则的提示,可以更好地预测出产品未来的发展方向。
1技术系统进化S曲线技术系统进化,就是不断用新技术替代老技术,用新产品替代老产品,即实现系统功能的各项内容从低级到高级变化的过程。
对于一个具体的技术系统而言,对其子系统或元件进行不断地改进,以提高整个系统的性能,就是技术系统的进化过程。
阿奇舒勒通过对大量专利的分析和研究,发现任何一个技术系统都在随着时间向更高级的方向发展和进化,并且它们的进化过程都会经历几个相同的阶段,其规律满足一条S形的曲线。
技术系统进化S曲线,如图1所示。
图中横坐标代表技术系统的发展时期,纵坐标代表技术系统某个重要的性能参数。
性能参数随时间的延续呈现出与人的生命周期类似的S曲线,即所有技术系统的进化一般都要经历由婴儿期、成长期、成熟期、衰退期四个阶段组成的生命周期。
从图1中可以看出,在婴儿期,系统性能的增强比较缓慢;当进入成长期以后,性能将快速增强;而当系统进一步发展到成熟期以后,性能的增强又转而变缓;在最终的退出期,系统的性能不但没有增加,反而有所下降。
triz理论
TRIZ理论(发明问题解决理论)简介冷战时期,以美国为首西方国家的特工与前苏联的克格勃曾经进行过无数次惊心动魄的间谍战,其中一次就是围绕被称为神奇的“点金术”展开的。
因为美国、德国等西方国家惊异于前苏联在军事、工业等方面的创造能力,他们把创造这种奇迹的神秘武器称为“点金术”,可结果强大的克格勃使欧美国家只能望“术”兴叹。
那么这种神奇的“点金术”到底是什么呢?它为什么有这么大的威力?这个“点金术”就是当前世界上著名的发明问题解决理论,被简称为TRIZ理论,TRIZ 就是“发明问题解决理论”的俄语缩写,是由前苏联发明家阿奇舒勒在1946年创立的,因而阿奇舒勒也被尊称为TRIZ理论之父。
TRIZ理论被公认为是使人聪明的理论。
1946年,阿奇舒勒开始了发明问题解决理论的研究工作。
当时阿奇舒勒在前苏联里海海军专利局工作,在处理世界各国著名的发明专利过程中,他总是考虑这样一个问题:当人们进行发明创造、解决技术难题时,是否有可遵循的科学方法和法则,从而能迅速地实现新的发明创造或解决技术难题呢?答案是肯定的!阿奇舒勒发现任何领域的产品改进、技术的变革、创新和生物系统一样,都存在产生、生长、成熟、衰老、灭亡的过程,是有规律可循的。
人们如果掌握了这些规律,就会能动地进行产品设计并能预测产品未来发展趋势。
以后数十年中,阿奇舒勒穷其毕生的精力致力于TRIZ理论的研究和完善。
在他的领导下,前苏联的数十家研究机构、大学、企业组成了TRIZ的研究团体,分析了世界近250万份高水平的发明专利,总结出各种技术发展进化遵循的规律模式,以及解决各种技术矛盾和物理矛盾的创新原理和法则,建立一个由解决技术问题,实现创新开发的各种方法、算法组成的综合理论体系,并综合多学科领域的原理和法则,建立起TRIZ理论体系。
TRIZ的核心是技术进化原理。
按这一原理,技术系统一直处于进化之中,解决矛盾是其进化的推动力。
它们大致可以分为3类:TRIZ的理论基础、分析工具和知识数据库。
TRIZ理论的八大技术系统进化法则
机械创新设计课程论文(TIZE理论的八大技术系统进化法则)专业机械设计制造及其自动化班级10机自职1学号1010113126姓名姚巧珍成绩教师刘小鹏2013年5月23日TRIZ理论的八大技术系统进化法则姚巧珍(10机自职1班,学号:1010113126)[摘要] 技术系统的这八大进化法则可以应用于产生市场需求、定性技术预测、产生新技术、专利布局和选择企业战略制定的时机等。
它可以用来解决难题,预测技术系统,产生并加强创造性问题的解决工具。
本文讲述了TRIZ理论的八大技术系统进化法则,这些技术系统进化法则基本涵盖了各种产品核心技术的进化规律,每条法则又包含多种具体的进化路线和模式。
它可以帮助设计者在方案设计阶段迅速地产生个具有创造性的新概念,实现产品的快速创新。
[关键词] 技术系统,进化法则,子系统,S曲线。
引言一个产品或物体都可以看做是一个技术系统,技术系统可以简称为系统。
系统是由多个子系统组成的,并通过子系统间的相互作用来实现一定的功能,子系统可以是零件或部件甚至于构成元素。
系统是处于超系统之中的,超系统是系统所在的环境,环境中的其他相关的系统可以看做是超系统的构成部分。
技术系统的进化是指实现系统功能的技术从低级向高级变化的过程,进化是客观进行着的,不管人们是认识了它还是没有认识它。
如果认识和掌握了系统的进化规律,有利于设计者开发出更先进的产品,从而提升产品的竞争力。
1.八大技术系统进化法则TRIZ的技术系统八大进化法则分别是:1)技术系统的S曲线进化法则;2)提高理想度法则;3)子系统的不均衡进化法则;4)动态性和可控性进化法则;5)增加集成度再进行简化法则;6)子系统协调性进化法则;7)向微观级和场的应用进化法则;8)减少人工进入的进化法则1.1技术系统的S曲线进化法则图1-1是一条典型的S曲线。
S曲线描述了一个技术系统的完整生命周期,图中的横轴代表时间;纵轴代表技术系统的某个重要的性能参数,比如飞机这个技术系统,飞行速度、可靠性就是其重要性能参数,性能参数随时间的延续呈现S形曲线。
TRIZ最终理想解与技术系统进化法则
3-4.是否可降低成本 是否可利用系统内部的剩余资源或引入系统外 部的“免费”资源,帮助实现消除有害功能或 实现有用功能 方案7: 用手、 鼻子扶眼镜
4. 看其他行业是否已解决本问题(略) 5. 构建解决方案(略)
最终理想解的例题练习
最终理想解 S曲线
例题3:给鸡蛋打日期戳
给鸡蛋标注生产日期和保质期,消费者就能够判断鸡蛋是 否坏损,因此有“身份证” 的鸡蛋受到消费者的青睐,价 格也比没有标识的高。 养殖场厂长决定要这样做,但是购买进口的电脑喷码仪太 贵了,如何解决这个问题吗?
孙子说:不战而屈人之兵!
理想度的基本概念
最终理想解 S曲线 进化法则 进化路线
技术系统是人类为了实现某种功能而设计、制造出来的一种人造系统,在 技术系统使用和改进的过程中,其优劣需要进行评价和比较。
例如,买笔记本电脑,评估性价比。
技术系统能够提供一个或多个有用功能,也会附带若干我们不希望出现的 副作用,称为有害功能。同时,实现技术系统必须要付出一定的时间、空 间、材料、能量等成本。(好东西什么都好,唯一的缺点就是贵!)
资源的耗费
0
有害功能
0
理想系统:既没有实体和物质,也不消耗任 何的资源,但是却能够实现所有需要的功能, 而且不传递、不产生有害的作用。
基于理想系统的概念而得到的针对一个特定 技术问题的理想化解决方案的过程,称为最 终理想解( Ideal Final Result, IFR)。
有用功能
∞
IFR的表述需包含以下两个基本点: 1. 系统自己实现这个功能(自服 务) 2. 没有利用额外的资源,实现了 所需的功能。
技术系统的构成关系可以用下图描述:
什么是技术系统?
最终理想解 S曲线 进化法则 进化路线
TRIZ的九大经典理论体系【范本模板】
TRIZ的九大经典理论体系TRIZ理论包含着许多系统、科学而又富有可操作性的创造性思维方法和发明问题的分析方法。
经过半个多世纪的发展,TRIZ理论已经成为一套解决新产品开发实际问题的成熟的九大经典理论体系。
TRIZ解决问题过程中,将问题的通解具体化是一个难点,这需要有深厚的领域背景知识.TRIZ理论认为,一个成功的设计可由如下公式描述:S=Pc×Pkn×(1+M)×(1+T)其中:S—-成功的设计;Pc—-个人解决问题的能力;Pkn—-领域知识的水平与经验;M——TRIZ方法论与哲学思想的运用;T——TRIZ工具的运用。
在公式中,Pc和Pkn 都与领域知识有关。
因此,尽管TRIZ理论的创始人阿奇舒勒否认了经验知识在TRIZ 理论中的重要性,但从上述公式可以看出经验知识依然对TRIZ理论的应用构成了重要的支持。
所以,在TRIZ 理论中融入经验思维模式,应是TRIZ理论在应用中的一个发展方向。
(一)TRIZ的技术系统八大进化法则.阿奇舒勒的技术系统进化论可与达尔文生物进化论和斯宾塞的社会达尔文主义齐肩,称为三大进化论.TRIZ的技术系统八大进化法则分别是:1、技术系统的S曲线进化法则;2、提高理想度法则;3、子系统的不均衡进化法则;4、动态性和可控性进化法则;5、增加集成度再进行简化法则;6、子系统协调性进化法则;7、向微观级和场的应用进化法则;8、减少人工进入的进化法则。
技术系统的这八大进化法则可应用于产生市场需求、定性技术预测、产生新技术、专利布局和选择企业战略制定的时机等。
它可用来解决难题,预测技术系统,产生并加强创造性问题的解决工具。
(二)最终理想解(IFR)。
TRIZ理论在解决问题之初,首先抛开各种客观限制条件,通过理想化来定义问题的最终理想解(ideal final result,IFR),以明确理想解所在的方向和位置,保证在问题解决过程中沿着此目标前进并获得最终理想解,从而避免了传统创新涉及方法中缺乏目标的弊端,提升了创新设计的效率。
创新工程师-S曲线与进化法则
S 曲线与进化法则内容提纲进化2技术系统进化法则13S曲线进化选择TRIZ 的核心思想z 技术系统的进化不是随机的,而是遵循一定的客观规律。
z 同生物系统的进化类似,技术系统也面临着“自然选择”,优胜劣汰。
内容提纲进化1技术系统进化法则23S曲线时间性能参数婴儿期成长期成熟期衰退期S 曲线时间性能参数婴儿期成长期成熟期衰退期S 曲线时间速度S 曲线实例:汽车婴儿期成长期成熟期衰退期内容提纲进化1技术系统进化法则23S曲线婴儿期1成长期2成熟期3衰退期3S曲线-婴儿期性能参数衰退期成熟期成长期婴儿期时间新系统是怎么来的?铁路马车-1807年诞生最早的蒸汽火车-1836年最早的…First Car Benz Automobile婴儿期的特征1.当实现系统功能的原理出现后,系统也随之产生2.新系统的各组成部分通常是从其它已有的系统中“借”来的,并不适应新系统的要求婴儿期的判别标准发明级别发明专利数量参数性能利润时间时间时间时间III IVIII当前处于婴儿期的产品内容提纲进化1技术系统进化法则23S曲线婴儿期2成长期1成熟期3衰退期4时间性能参数婴儿期成长期成熟期衰退期S 曲线-成长期成长期的特征1.制约系统的主要“瓶颈”问题得到解决,系统的主要性能参数快速提升,产量迅速增加,成本降低2.随着收益率的提高,投资额大幅增长3.特定资源的引入使系统变得更有效4.系统向新的领域扩展成长期的判别标准发明级别发明专利数量参数性能利润时间时间时间时间III IVIII当前处于成长期的产品内容提纲进化1技术系统进化法则23S曲线婴儿期3成长期2成熟期1衰退期4时间性能参数婴儿期成长期成熟期衰退期S 曲线-成熟期成长期的特征1.系统发展趋于缓慢2.生产量趋于稳定3.新出现的矛盾会阻碍系统的进一步发展成熟期的判别标准发明级别发明专利数量参数性能利润时间时间时间时间III IVIII当前处于成熟期的产品内容提纲进化1技术系统进化法则23S曲线婴儿期4成长期2成熟期3衰退期1时间性能参数婴儿期成长期成熟期衰退期S 曲线-衰退期衰退期的特征1.相同功能的新技术系统开始排挤老系统2.系统的“心理功能”和带来的收益都在下降衰退期的判别标准发明级别发明专利数量参数性能利润时间时间时间时间III IVIII当前处于衰退期的产品S 曲线的跃迁时间性能参数能工作能正确工作最大性能最大功效最佳可靠性最低成本S 曲线族时间性能参数实例:“车”的进化S 曲线的意义1.描述了技术系统的一般发展规律。
TRIZ中的技术系统S—曲线进化法则与产品的生命周期word资料9页
TRIZ中的技术系统S—曲线进化法则与产品的生命周期1 概述产品是企业生存和发展的基础,企业之间的竞争往往是围绕着产品的竞争而展开的。
随着技术的不断发展进步和市场竞争的不断加剧,产品的更新换代也愈发频繁。
如何做好企业的产品规划,准确地把握住市场脉搏和消费趋势,及时研发并生产出领先于竞争对手的产品,在市场竞争中取得先机,是每一个企业所面临的共同挑战。
做好产品的规划,首先是要分析和把握产品的发展趋势。
TRIZ(theory of inventive problem solving,发明问题解决理论)从技术进化的角度对产品的技术成熟度进行了预测,并据此推断该产品未来的发展方向及形态,这为产品设计人员进行产品设计及研发提供了很好的借鉴。
产品的生命周期(product life cycle)理论主要从产品的市场营销的角度对产品的发展过程进行分析,为企业制定产品策略及营销策略提供了依据。
两个理论从不同的角度对产品的生命过程进行了分析,它们之间有何区别和联系,对企业的产品规划工作又有何实际指导意义,本文将对此进行分析和探讨。
2 TRIZ中的技术系统S-曲线进化法则及技术成熟度预测2.1 技术系统S-曲线进化法则一个产品或物体都可以看作是一个技术系统,技术系统可以简称为系统。
系统是由多个子系统组成的,并通过子系统间的相互作用来实现一定的功能,子系统可以是零件或部件构成。
系统是处于超系统之中的,超系统是系统所在的环境,环境中其他相关的系统可以看作是超系统的构成部分。
G.S.Altshuller于1946年开始创立TRIZ理论,其中重要的理论之一是技术系统进化论,其主要观点是技术系统的进化并非随机的,而是遵循着一定的客观的进化模式,所有的系统都是向“最终理性化”进化的,系统进化的模式可以在过去的专利发明中发现,并可以应用于新系统的开发,从而避免盲目的尝试和浪费时间。
Altshuller的技术系统进化论主要有八大进化法则,这些法则可以用来解决难题,预测技术系统,产生并加强创造性问题的解决工具。
01_TRIZ的技术系统八大进化法则
(一)TRIZ的技术系统八大进化法则阿奇舒勒的技术系统进化论可以与自然科学中的达尔文生物进化论和斯宾塞的社会达尔文主义齐肩,被称为“三大进化论”。
TRIZ的技术系统八大进化法则分别是:1、技术系统的S曲线进化法则;2、提高理想度法则;3、子系统的不均衡进化法则;4、动态性和可控性进化法则;5、增加集成度再进行简化法则;6、子系统协调性进化法则;7、向微观级和场的应用进化法则;8、减少人工进入的进化法则。
技术系统的这八大进化法则可以应用于产生市场需求、定性技术预测、产生新技术、专利布局和选择企业战略制定的时机等。
它可以用来解决难题,预测技术系统,产生并加强创造性问题的解决工具。
八大技术系统进化法则1.技术系统的S曲线进化法则1)婴儿期2)成长期3)成熟期4)衰退期各阶段的特点。
S曲线族2.提高理想度法则1)一个系统在实现功能的同时,必然有2个方面的作用:有用功能和有害功能;2)理想度是指有用作用和有害作用的比值3)系统改进的一般方向是最大化理想度比值4)在建立和选择发明解法的同时,需要努力提升理想度水平提高理想度可以从以下4个方向予以考虑:1)增加系统的功能2)传输尽可能多的功能到工作元件上3)将一些系统功能转移到超系统和外部环境中4)利用内部或外部已经存在的可利用资源。
3.子系统的不均衡进化法则1)每个子系统都是沿着自己的S曲线进化的2)不同的子系统将依据自己的时间进度进化3)不同的子系统在不同的时间点到达自己的极限,这将导致子系统间矛盾的出现4)系统中最先到达其极限的子系统将抑制整个系统的进化,系统的进化水平取决于此系统5)需要考虑系统的持续改进来消除矛盾4.动态性和可控性进化法则1)增加系统的动态性,以更大的柔性和可移动性来获得功能的实现2)增加系统的动态性要求增加可控性5.增加集成度再进行简化法则1.增加集成度的路径2简化路径3单--双---多--路径4子系统分离路径6.子系统协调性进化法则1.匹配和不匹配元件的路径2调节的匹配和不匹配的路径3工具和工件匹配的路径4匹配制造工程中加工动作节拍的路径7.向微观级和场的应用进化法则1.向微观级转化的路径2转化到高效场的路径3增加场效率的路径4分割的路径8.减少人工介入的进化法则(1)减少人工介入的一般路径本路径的技术进化阶段:包括人工动作的系统→替代人工但仍保留人工动作的方法→用机器动作完全代替人工。
TRIZ的两大革命性成果
TRIZ的两大革命性成果1、很多的方法和原理在发明的过程中是在重复使用的。
2、技术系统的进化和发展并不是随机的,而是遵循着一定的客观规律。
技术系统进化的s曲线含义及其应用含义每个技术系统的进化,都要如图所示S一曲线的四个阶段:婴儿期、成长期、成熟期、衰退期。
S一曲线完整地描述了一个技术系统的生命周期。
因此,我们把S一曲线定义为完整地描述了一个技术系统中从孕育、成长、成熟到衰退的变化规律的曲线。
更进一步地说,S一曲线描述的是一个技术系统中的诸项性能参数的发展变化规律,这些性能参数都会经历婴儿期、成长期、成熟期、衰退期这四个阶段。
例如:在飞机这一技术系统中,飞机的速度、安全性等都是其重要的性能参数。
在S一曲线中,通常用横轴表示时间,纵轴表示系统的性能参数。
1.婴儿期这一阶段,新的技术系统刚刚诞生。
虽然,它能提供一些前所未有的功能或技术性能的改进,但是系统本身还存在着效率低、可靠性差等一系列待解决的问题。
同时,由于大多数人对系统的未来发展并没有什么信心,而缺乏对其人力和物力的投人。
因此,在这一阶段系统的发展十分缓慢。
2.成长期在一这阶段,人类社会已经认识到新系统的价值和市场潜力,乐于为系统的发展投入较大量的人力、物力和财力。
因此,系统中存在的各种问题,逐一被很好地解决,效率和性能都有很大程度地提高。
由于技术系统的市场前景看好,能吸引更多的投资,则更加促进了系统的高速发展。
3. 成熟期技术系统发展到这一阶段,由于大量人力和财力的不断投人,使其变得日趋完善,性能水平达到最高,所获的利润达到最大并有下降的趋势。
实际上,此时大量投入所产生的研究成果,多是一些较低水平的系统优化和性能改进。
4. 衰退期这一阶段,应用于技术系统的各项技术已经发展到极限,很难得到进一步的突破。
该技术系统可能不再有更大的需求或者即将被新开发出来的技术系统所取代。
此时,新的技术系统将开始其更加耀眼的生命周期,呈现在世人面前。
作用分析S-曲线有助于理解技术系统的成熟度,辅助企业做出恰当的研发决策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、技术系统进化的S曲线和进化法则的关系?
(1) 婴儿期产品处于原理实现阶段,一般应用完备性法则、能量传递法则和协调性进化法则使产品功能得以实现。
(2) 成长期产品处于性能优化和商品化开发阶段,一般应用提高动态性法则、子系统不均衡进化法则,促进产品快速完善,广泛获得市场认可。
(3) 成熟期产品技术已趋于完善,一般应用向微观系统进化对局部加以改进。
(4) 衰退期产品性能参数、盈利已达到最高并开始下降,需要提前开发新的替代产品,一般应川旬超系统跃迁法则使产品更新换代。
(5)提高理想度法则贯穿产品的全生命周期。
(2) 二、描述一个问题,并找出其中的技术冲突?(需找出改进的参数和恶化的参数)
(3) 塑料瓶装口香糖较锡纸装口香糖量多实惠而受到消费者的欢迎。
现在的问题是:用户每次咀嚼完毕瓶装口香糖后会因找不到纸巾包裹废弃物而烦恼,随手乱扔既害人又不利己,而且每次吃完瓶内口香糖后对瓶子的处理也是一种烦恼,既不能乱扔,放在包里还占空间。
解决方案是:用一节一节的粘性纸卷成的瓶正好解决掉这个问题。
每当用户吃完口香糖后,就从瓶子上撕下一块儿纸包裹口香糖,解决了找不到纸巾包裹口香糖的烦恼,而粘性纸的节数正好正比于口香糖的数量,当口香糖吃完后,对应的粘性纸也撕光,正好解决了瓶子大占空间的问题。
改进的参数:21 功率·33可操作性·32·可制造性恶化的参数:13·结构的稳定性。