基于单片机温度测量装置的设计.

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

1 引言 (4)

2 方案设计 (5)

3 单元电路设计 (6)

4 系统软件设计 (12)

5 课程设计总结 (14)

6 电路总原理图 (15)

7 电路仿真 (16)

8 参考文献 (17)

9 程序附录 (18)

1 引言

在人类的生活环境中,温度扮演着极其重要的角色。温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密相关,因此温度控制是生产自动化的重要任务。随着社会的发展,科技的进步,以及测温仪器在各个领域的应用,智能化是现代温度控制系统发展的主流方向。特别是近几年来,温度控制系统早已应用到人们生活的各个方面,但温度控制一直是一个未开发的领域,却又与人们息息相关的一个世纪问题。针对这种实际情况,设计一个温度测量系统具有广泛的应用前景与意义。

在本设计中选用AT89C52型单片机作为主控制器件,采用热电阻作为测温元件,通过数码显示管并行传送数据,实现温度显示。本设计的内容主要分为两部分,一是对系统硬件部分的设计,包括温度采集电路和显示电路;二是对系统软件部分的设计,应用C语言实现温度的采集与显示。最终完成了数字温度计的总体设计。其系统构成简单,信号采集效果好,数据处理速度快,便于实际检测使用。

2 方案设计

基于单片机的温度测量装置方框图:

图1

总体方案框图

2.1电路总体说明

2.1.1 温度的测量用PT-100的热电阻来测量温度。因为随着温度的变化阻值也发生变化。

2.1.2 运算放大电路是可以把信号放大。

2.1.3 A/D 转化是将模拟量转化为数字量。

2.1.4 选用AT89C51的单片机来控制温度的变化。

2.1.5 在选用数码管将温度显示的数码管上面。

3 单元电路设计

3.1温度测量电路

图一为热电阻的三线制测温电路,可以消除和减小引线电阻的影响。如图一,热电阻的三根导线接到测温电桥,其中两根引线的内阻分别串入测量电桥相邻两臂的电阻上。引线的长度变化不影响电桥的平衡,所以可以避免因连接导线电阻受环境影响而引起的测量误差。

我们采用pt-100的热敏电阻,阻值会随着温度的变化而变化,测温的精度在1度左右。

Pt-100的工作原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成近似匀速的增长。但他们之间的关系并不是简单的正比的关系,而更应该趋近于一条抛物线。

铂电阻的阻值随温度的变化而变化的计算公式:

-200

0≤t<850℃ Rt=R0(1+At+Bt2)(2)

Rt为t℃时的电阻值,R0为0℃时的阻值。公式中的A,B,系数为实验测定。这里给出标准的

DIN IEC751系数:A=3.9083E-3、 B=-5.775E-7、 C=-4.183E-12

根据韦达公式求得阻值大于等于100欧姆的Rt -〉t的换算公式:

0≤t<850℃ t=(sqrt((A*R0)^2-4*B*R0*(R0-Rt))-A*R0)/2/B/R0

PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT) 其中α=0.00392,Ro为100Ω(在0℃的电阻值),T为摄氏温度
因此白金作成的电阻式温度检测器,又称为PT100。

金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即

Rt=Rt0[1+α(t-t0)]

式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。半导体热敏电阻的阻值和温度关系为

Rt=AeB/t

中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。

图2 热电阻测温电路

3.2 运算放大电路

因为通过PT-100热电阻测的温度的信号很小,所以我们采用具有一定抗共模抗干扰能力的减法差动放大器电路,所以我们才有LM244这个四运算放大器。减法差动放大电路只对U有放大作用。

从图中可以看到U1、U2两个同相运放电路构成输入级,在与差分放大器U3串联组成三运放差分防大电路。电路中有关电阻保持严格对称,具有以下几个优点: (1)U1和U2提高了差模信号与共模信号之比,即提高了信噪比;

(2)在保证有关电阻严格对称的条件下,各电阻阻值的误差对该电路的共模抑制比KCMRR没有影响;

(3)电路对共模信号几乎没有放大作用,共模电压增益接近零。因为电路中

R1=R2、 R3=R4、 R5=R6 ,放大倍数是:

Avd=U0/Ui1-Ui2=-[(Rp+2R1)/Rp]*(R5/R3)

通常,第一级增益要尽量高,第二级增益一般为1~2倍,这里第一级选择100倍,第二级为1倍。则取R3=R4=R5=R6=10KΩ,要求匹配性好,一般用金属膜精密电阻,阻值可在10KΩ~几百KΩ间选择。则 Avd=(RP+2R1)/RP 先定RP,通常在1KΩ~10KΩ内,这里取RP=1KΩ,则可由上式求得R1=99RP/2=49.5KΩ取标称值51KΩ。通常RS1和RS2不要超过RP/2,这里选RS1= RS2=510,用于保护运放输入级。 A1和A2应选用低温飘、高KCMRR的运放,性能一致性要好。

图3 运算放大电路

3.3 A/D转化

A/D转换的目标是将模拟量转换成数字量,在本次课程设计中,选用ADC0804。ADC0804是一款8位、单通道、低价格A/D转换器,主要特点是:模数转换时间大约100us;方便TTL或CMOS标准接口;可以满足差分电压输入;具有参考电压输入端;内含时钟发生器;单电源工作时(0~5)V输入电压范围是0~5V;不需要调零等等。

相关文档
最新文档