人教版选修第二章离散型随机变量教案事件的相互独立性
2014-2015学年高中数学(人教版选修2-3)配套课件第二章 2.2.2 事件的相互独立性
由等可能性知这8个基本事件的概率均为,这时A
中含有6个基本事件,B中含有4个基本事件,AB中含 有3个基本事件.
栏 目 链 接
6 3 4 1 3 于是 P(A)= = ,P(B)= = ,P(AB)= , 8 4 8 2 8 3 显然有 P(AB)= =P(A)P(B)成立. 8 从而事件 A 与 B 是相互独立的.
这时 A={(男,女),(女,男)},B={(男,男),(男,女),(女, 男)},AB={(男,女),(女,男)}. 1 3 1 于是 P(A)= ,P(B)= ,P(AB)= . 2 4 2 由此可知 P(AB)≠P(A)P(B). 所以事件 A,B 不相互独立. (2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为 Ω ={(男,男,男),(男,男,女),(男,女,男),(男,女,女),(女, 男,男),(女,男,女),(女,女,男),(女,女,女)}.
栏 目 链 接
相互独立事件. 事件; A 与 B 是相互独立 ________事件,A 与 B 是________
基 础 梳 理 3.两个相互独立事件同时发生的概率,等于每个事件 P(A)P(B) 发生的概率的积,即P(AB)=____________. 例如:甲坛子里有3个白球,2个黑球;乙坛子里有2个
2 1 1 - 解析:因为 P( A )= ,所以 P(A)= ,又 P(B)= , 3 3 3 1 P(AB)= ,所以有 P(AB)=P(A)P(B),所以事件 A 与 B 9 独立但不一定互斥. 故选 C. 答案:C
自 测 自 评
3.甲、乙两人独立地解同一问题,甲解决这个 问题的概率是 p1, 乙解决这个问题的概率是 p2, 那么 其中至少有一人解决这个问题的概率是( A.p1+p2 B.p1· p2 C.1-p1p2 D.1-(1-p1)(1-p2) )
人教版数学选择性必修三综合复习:概率、离散型随机变量及其分布课件
[例4] (课标全国Ⅱ,18,12分)11分制乒乓球比赛,每赢一球得1分,当某局打
成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、
乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲
得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,
.
✓ 由题意可知七场四胜制且甲队以4∶1获胜,则共比赛了5场,且第5场甲胜,
前4场中甲胜3场.第一类:第1场、第2场中甲胜1场,第3场、第4场甲胜,则
3
1
3
P1= 21 ×0.6×0.4×0.52=2× × × = ;第二类:第1场、第2场甲胜,
5
5
4
第3场、第4场中甲胜1场,则P2=0.62×
的概率为
12
13
.
✓ 设事件“从8件产品中取出的2件产品中有1件不是一等品”为A,
✓ 事件“从8件产品中取出的2件产品中有1件是一等品”为B,
✓ 则P(A)
21 61 +22
82
=
13
,
28
P(AB)=
61 21
82
=
1
28
✓ 所以另1件是一等品的概率为P(B|A)=
=
3
7
✓ 恰转动2次中奖为事件A2,恰转动3次中奖为事件A3.
1
3
✓ 每次抽奖相互独立,每次抽奖中奖的概率均为 ,
✓ ∴P(A)=P(A1)+P(A2)+P(A3)=
1
2
1
+ ×
3
3
3
+
2
2
1
× ×
人教课标版高中数学选修2-3《离散型随机变量的均值与方差(第1课时)》教案-新版
2.3 离散型随机变量的均值与方差(第1课时)一、教学目标1.核心素养通过对离散型随机变量的均值的学习,更进一步提高了学生的数学建模能力和数学运算能力.2.学习目标(1)通过实例,理解取得有限值的离散型随机变量的均值的概念;(2)能计算简单离散型随机变量的期望,并能解决一些实际问题.3.学习重点离散型随机变量的期望的概念、公式及其应用.4.学习难点灵活利用公式求期望.二、教学设计1.预习任务任务1阅读教材P60-P63,思考:何为加权平均、权数?随机变量的均值(数学期望)的定义是什么?它反应了什么?任务2根据数学期望的计算过程,可得到它的什么性质?任务3何为两点分布?如果随机变量服从两点分布,则其数学期望有什么特点?任务4随机变量均值与样本的平均值有何联系与区别?2.预习自测1.已知X的分布列为则E(X)等于()A.0.7 B.0.61 C.-0.3 D.02.设E(X)=10,E(Y)=3,则E(3X+5Y)=()A.45 B.40 C.30 D.153.若X ~B (4,12),则E (X )的值为( )A .4B .2C .1 D.12 (二)课堂设计 1.知识回顾(1)何为离散型随机变量. (2)离散型性随机变量的分布列. (3)何为样本平均值?怎么计算?.(4)我们预习本课的数学期望是怎么定义的?怎么计算? 2.创设情境 引入新知前面我们学习了离散性随机变量分布列的概念,研究了一些简单离散型随机变量的分布,建立了二项分布、超几何分布等应用广泛的概率模型.离散型随机变量的分布列刻画了随机变量取值的概率规律,但往往还需要进一步了解离散型随机变量取值的特征.比如:某商店为了满足市场需求,要将单价分别为18元/kg ,24元/kg 、36元/kg ,如果按照3:2:1的比例对糖果进行混合销售,其中混合糖果中每颗质量都相等,如何对每千克糖果定价才合理?通过师生探究发现:当定价为混合糖果的平均价格时才合理.进而求混合糖果的平均价格,从而得出如下结论:根据混合糖果中3种糖果的比例可知在1kg 的混合糖果中,3种糖果的质量分别是63kg ,62 kg 和61kg ,则混合糖果的合理价格应该是18×63+24×62+36×61=23(元/kg ). 问题1:上述分式中36,26和61的意义是什么?在学生思考后,教师指出:上面的平均值其实是一种加权平均数,其中36,26和61表示一种权重系数,简称为权数.在计算平均数时,权数可以表示总体中的各种成分所占的比例.权数越大的数据在总体中所占的比例越大,它对加权平均数的影响越大.加权平均数是不同比重数据的平均数.加权平均数就是把原始数据按照合理的比例来计算.通过交流,使学生达成共识:36,26和61分别表示价格为18元/kg 、24元/kg 何36元/kg 的糖果在混合糖果中所占的比例.问题2:如果每一颗糖果的质量都相等,则在搅拌均匀的混合糖果中, 任取一颗恰好是18元/kg 的糖果的概率是多少?恰好是24元/kg 的糖果的概率是多少?恰好是36元/kg 的糖果的概率是多少?学生讨论,得出共识:在混合糖果中,任取一颗恰好是18元/kg 的糖果的概率是36,恰好是24元/kg 的糖果的概率是26,恰好是36元/kg 的糖果的概率是61.问题3:假如从混合糖果中随机的选取一颗,记X 为该糖果原来的单价,你能写出X 的分布列吗?学生不难得出随机变量X 的分布列为:问题4:能否将混合糖果的平均价格用X 的取值及其相应的概率来表示呢?由之前的知识,学生得出: 每千克混合糖果的平均价格为:18×63+24×62+36×61=23(元/kg ) 即18×P(X=18)+24×P(X=24)+36×P(X=36)=23(元/kg ) 教师总结:这里混合糖果的平均价格为随机变量X 的取值与其相应概率乘积之和.混合糖果的平均价格既为随机变量X 的均值.(设计意图:用实际问题为背景,从求学生熟悉的样本平均数为出发点,设置问题串,层层递进,逐步深入,最终得出结论:离散型随机变量X 取值的平均值为离散型随机变量X 的所有取值与其相应概率乘积之和.这样不但可以使学生直观感受到数学与生活的联系,而且可以激发学生的学习兴趣与热情.同时有利于学生进行知识迁移,为下面概括抽象得出科学定义做好铺垫.) 3.概括抽象 构建概念问题5:能否用数学语言表述离散型随机变量的均值这一概念的定义? 可以使学生自行定义,教师作出修正,最终形成正式的定义:若离散型随机变量X 的分布列为:则称E(X)=x1p1+x2p2+…+xnpn为随机变量X的均值或数学期望.数学期望又简称为期望.它反映了离散型随机变量取值的平均水平.(设计意图:使学生经历离散型随机变量均值概念的形成过程,体验从具体问题中概括、抽象,形成定义的思想方法,体会概括、抽象是一种常用的数学逻辑方法,使学生学会科学定义的方法.这里渗透了从特殊到一般的数学思想方法)问题6:离散型随机变量ξ的期望与ξ可能取值的算术平均数相同吗?通过师生共同分析得出结论,期望的计算是从概率分布出发,因而它是概率意义下的平均值.随机变量ξ取每个值时概率不同导致了期望不同于初中所学的算术平均数.(设计意图:期望源于平均值,但又不同于平均值,通过比较,进一步加深对数学期望的理解.)问题7:能给出两点分布与二项分布的均值吗?根据均值的计算公式,学生不难得出:4.例题分析应用新知例1:设随机变量X的分布列如下所示,已知E(X)=1.6,则a-b=()A.0.2B.0.1 C【知识点:期望】详解:a+b=0.8,且E(X)=0×0.1+1×a+2×b+3×0.1=1.6.即a+b=0.8,且a+2b=1.3,∴a=0.3,b=0.5,a-b=-0.2.点拨:本题主要考查离散型随机变量的均值的计算公式,且要熟知离散型随机变量的概率之和为1.例2:有一批数量很大的产品,其次品率是15℅.对这批产品进行抽查,每次抽出1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽到次品,但抽查次数最多不超过10次.求抽查次数ξ的期望.【知识点:期望】详解:解决这个实际问题的难点是求ξ的分布列,一般地,在产品抽查中已说明产品数量很大时,各次抽查结果可以认为是相互独立的.并且取1~10的整数,前k-1次取到正品,而第k 次取到次品的概率是P (ξ=k )=15.085.01⨯-k (k=1,2,3,…,9),P (ξ=10)=185.09⨯.然后学生运用数学期望的定义来解题点拨:求离散型随机变量期望的步骤: (1)确定离散型随机变量ξ的取值.(2)写出分布列,并检查分布列的正确与否. (3)求出期望.例3:某同学代表班级参加设计比赛,每连续设计10次,其中有3次中10环,5次中9环,2次中8环.①求次同学射击一次中靶的环数的均值是多少?②如果把该同学射击一次所得的环数的2倍再加上5记为该同学的设计成绩Y ,即Y=2X+5,那么试求Y 的均值. 【知识点:分布列、期望及性质】详解:(1)击靶数的分布列,根据期望的计算公式可得出E(X)=9.1(2)写出得分Y 的分布列,并求出E (Y )=23.2点拨:当X 为随机变量时,若Y=aX+b(a,b 为常数),则Y 也为随机变量,并称随机变量X 和Y 具有线性关系.X 与Y 的均值也具有线性关系,且E(Y=aX+b)=aE(X)+b 练习:设E (X )=10,E (Y )=3,则E (3X +5Y )=( ) A .45 B .40 C .30 D .15【知识点:离散型随机变量期望的性质】 详解:E(3X+5Y)=3E(X)+5E(Y)=45.点拨:随机变量X 和Y 具有线性关系.X 与Y 的均值也具有线性关系,且E(Y=aX+b)=aE(x)+b 5.课堂总结均值或数学期望:一般地,若离散型随机变量ξ的概率分布为则称=ξE 为ξ的均值或数学期望,简称期望.均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.均值或期望的一个性质:若b aX Y +=,其中b a ,是常数(X 是随机变量),则Y 也是随机变量,且有()()E aX b aE X b +=+.(1)当0=a 时,()E b b =,即常数的数学期望就是这个常数本身;(2)当1=a 时,()()E X b E X b +=+,即随机变量X 与常数之和的期望等于X 的期;(3)当0=b 时,E aX aE X =()(),即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.①若X 服从两点分布,则)(X E =p ; ②若ξ~),,(p n B 则)(X E =np . 6. 随堂检测1.随机抛掷一个骰子,所得点数η的均值为( ) A.16 B.13 C.12 D.3.52.若X ~B (4,12),则E (X )的值为( ) A .4 B .2 C .1 D .123.若X 是一个随机变量,则E (X -E (X ))的值为( ) A .无解 B .0 C .E (X ) D .2E (X ) (三)课后作业 (一)基础型1.若随机变量ξ~B (n,0.6),且E (ξ)=3,则P (ξ=1)的值是( ) A .2×0.44 B .2×0.45 C .3×0.44 D .3×0.642.今有两台独立工作在两地的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达数为ξ,则E (ξ)的值为( ) A .0.765 B .1.75 C .1.765 D .0.223.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为ξ,则ξ的期望是( ) A .7.8 B .8 C .16 D .15.64.若X 是一个随机变量,则E (X -E (X ))的值为( ) A .无解 B .0 C .E (X ) D .2E (X ) (二)能力型5.两封信随机投入A 、B 、C 三个空邮箱,则A 邮箱的信件数ξ的数学期望是( )A.13 B.23 C.43 D.346.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.4007.某一供电网络,有n个用电单位,每个单位在一天中使用电的机会是p,供电网络中一天平均用电的单位个数是()A.np(1-p) B.Np C.n D.p(1-p)8.甲、乙两台自动车床生产同种标准产品1 000件,ξ表示甲机床生产1 000件产品中的次品数,η表示乙机床生产1 000件产品中的次品数,经过一段时间的考察,ξ,η的分布列分别是:据此判定()A.甲比乙质量好B.乙比甲质量好C.甲与乙的质量相同D.无法判定9.在10件产品中,有3件一等品,4件二等品,3件三等品.从这10件产品中任取3件,求:(1)取出的3件产品中一等品件数X的分布列和数学期望;(2)取出的3件产品中一等品件数多于二等品件数的概率.10.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求ξ的数学期望;(3)求“所选3人中女生人数ξ≤1”的概率.11.某安全生产监督部门对5家小型煤矿进行安全检查(简称安检),若安检不合格,则必须整改,若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8.计算(结果精确到0.01):(1)恰好有两家煤矿必须整改的概率;(2)平均有多少家煤矿必须整改;(3)至少关闭一家煤矿的概率.12.为了拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12、13、16.现有3名工人独立地从中任选一个项目参与建设.(1)求他们选择的项目所属类别互不相同的概率;(2)记ξ为3人中选择的项目属于基础设施工程或产业建设工程的人数,求ξ的分布列及数学期望.(三)探究型13.设l为平面上过点(0,1)的直线,l的斜率等可能地取-22,-3,-52,0,52,3,22,用ξ表示坐标原点到l的距离,则随机变量ξ的数学期望E(ξ)=________.14.马老师从课本上抄录一个随机变量ξ的概率分布如下表:请小牛同学计算ξ“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ξ)=________.15.某企业2014年工作计划中,对每位员工完成工作任务的奖励情况作出如下规定:有一季度完成任务者得奖金300元;有两季度完成任务者得奖金750元;有三季度完成任务者得奖金1 260元;对四个季度均完成任务的员工,奖励 1 800元;若四个季度均未完成任务则没有奖金.假若每位员工在每个季度里完成任务与否都是等可能的,求企业每位员工在2014年所得奖金的数学期望.(四)自助餐1.已知某一随机变量X的概率分布列如下表,E(X)=6.3,则a值为()A.5 B.6 C.7 D.82.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花销售情况需求量X(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则期望利润是()A.706元B.690元3.如果袋中有6个红球,4个白球,从中任取1球,记住颜色后放回,连续摸取4次,设ξ为取得红球的次数,那么ξ的期望E(ξ)=()A.34 B.125 C.197 D.134.有10件产品,其中3件是次品,从中任取2件,若X表示取到次品的个数,则E(X)等于()A.35 B.815 C.1415 D.15.某人从家乘车到单位,途中有3个交通岗亭.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为()A.0.4 B.1.2 C.0.43 D.0.66.袋子装有5只球,编号为1,2,3,4,5,从中任取3个球,用X表示取出的球的最大号码,则E(X)=()A.4 B.5 C.4.5 D.4.757.设15 000件产品中有1 000件次品,从中抽取150件进行检查,由于产品数量较大,每次检查的次品率看作不变,则查得次品数的数学期望为()A.15 B.10 C.20 D.58.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数X~B(5,14),则E(-X)的值为()A.14B.-14C.54D.-549.设随机变量X的分布列为P(X=k)=p k(1-p)1-k(k=0,1,0<p<1),则E(X)=________.10.一个人有n把钥匙,其中只有一把能打开他的房门,他随意地进行试开,并将试开不对的钥匙除去,则打开房门所试开次数ξ的数学期望是________.11.某公司有5万元资金用于投资开发项目,如果成功,一年后可获得12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:12.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是________.13.若事件在一次试验中发生次数的方差等于0.25,则该事件在一次试验中发生的概率为________. (四)参考答案 预习自测 1.C 2.A 3.B 随堂检测 1.D 2.B 3.B 课后作业 基础型 1.C 2.B 3.A 4.B 能力型 5.B 6.B 7.B 8.A9.解:(1)由于从10件产品中任取3件的结果数为C 310,从10件产品中任取3件,其中恰有k 件一等品的结果数为C k 3C 3-k 7,那么从10件产品中任取3件,其中恰有k 件一等品的概率为 P (X =k )=C k 3C 3-k7C 310,k =0,1,2,3.所以随机变量X 的分布列是X 的数学期望E (X )=0×724+1×2140+2×740+3×1120=910.(2)设“取出的3件产品中一等品件数多于二等品件数”为事件A ,“恰好取出1件一等品和2件三等品”为事件A 1,“恰好取出2件一等品”为事件A 2,“恰好取出3件一等品”为事件A 3.由于事件A 1,A 2,A 3彼此互斥,且A =A 1∪A 2∪A 3,而P (A 1)=C 13C 23C 310=340,P (A 2)=P (X =2)=740,P (A 3)=P (X =3)=1120,所以取出的3件产品中一等品件数多于二等品件数的概率为 P (A )=P (A 1)+P (A 2)+P (A 3)=340+740+1120=31120. ∴σ(X 3)=D X 3=10×12×12= 2.5.10. 解:(1)ξ可能取的值为0,1,2.P (ξ=k )=C k 2·C 3-k4C 36,k =0,1,2.所以,ξ的分布列为(2)由(1),ξ的数学期望为 E (ξ)=0×15+1×35+2×15=1.(3)由(1),“所选3人中女生人数ξ≤1”的概率为 P (ξ≤1)=P (ξ=0)+P (ξ=1)=45.11. 解:(1)每家煤矿必须整改的概率是1-0.5,且每家煤矿是否整改是相互独立的,所以恰好有两家煤矿必须整改的概率是P 1=C 25×(1-0.5)2×0.53=516≈0.31.(2)由题设,必须整改的煤矿数ξ服从二项分布B (5,0.5),从而ξ的数学期望E (ξ)=5×0.5=2.50,即平均有2.50家煤矿必须整改.(3)某煤矿被关闭,即该煤矿第一次安检不合格,整改后经复查仍不合格,所以该煤矿被关闭的概率是P 2=(1-0.5)×(1-0.8)=0.1,从而该煤矿不被关闭的概率是0.9.由题意可知,每家煤矿是否被关闭是相互独立的,故至少关闭一家煤矿的概率是P 3=1-0.95≈0.41.12. 解:记第i 名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件A i ,B i ,C i ,i =1,2,3,由题意知A 1,A 2,A 3相互独立,B 1,B 2,B 3相互独立,C 1,C 2,C 3相互独立,A i ,B j ,C k (i ,j ,k =1,2,3,且i ,j ,k 互不相同)相互独立,且P (A i )=12,P (B i )=13, P (C i )=16.(1)他们选择的项目所属类别互不相同的概率 P =3!P (A 1B 2C 3)=6P (A 1)P (B 2)P (C 3)=6×12×13×16=16.(2)解法一 设3名工人中选择的项目属于民生工程的人数为η, 由已知,η~B (3,13),且ξ=3-η, 所以P (ξ=0)=P (η=3)=C 33(13)3=127, P (ξ=1)=P (η=2)=C 23(13)2(23)=29, P (ξ=2)=P (η=1)=C 13(13)(23)2=49, P (ξ=3)=P (η=0)=C 03(23)3=827. 故ξ的分布列是ξ的数学期望E (ξ)=0×127+1×29+2×49+3×827=2.解法二 记第i 名工人选择的项目属于基础设施工程或产业建设工程分别为事件D i ,i =1,2,3. 由已知,D 1,D 2,D 3相互独立,且 P (D i )=P (A i +C i )=P (A i )+P (C i )=12+16=23.所以ξ~B (3,23),即P (ξ=k )=C k 3(23)k (13)3-k,k =0,1,2,3. 故ξ的分布列是ξ的数学期望E (ξ)=3×23=2. 探究型 13.47 14.215.解:P (X =0)=C 04(12)0(12)4=116;P (X =300)=C 14(12)1(12)3=14; P (X =750)=C 24(12)2(12)2=38;P (X =1 260)=C 34(12)3(12)1=14;P (X =1 800)=C 44(12)4(12)0=116. 故X 的分布列为E (X )=0×116+300×14+750×38+1 260×14+1 800×116=783.75(元). 自助餐 1.C 2.A 3.B 4.A 5.B 6.C 7.B 8.D 9.p 10.n +12 11.4 760 12.49 13.0.5。
数学:人教版选修2-3第二章离散型随机变量教案(2.2.2事件的相互独立性)
2.2.2事件的相互独立性教学目标:知识与技能:理解两个事件相互独立的概念。
过程与方法:能进行一些与事件独立有关的概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:独立事件同时发生的概率教学难点:有关独立事件发生的概率计算授课类型:新授课课时安排:2课时教 具:多媒体、实物投影仪教学过程:一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++=12()()()n P A P A P A +++探究:(1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少?事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上(2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球 问题(1)、(2)中事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)问题(1)、(2)中事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响)思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A 为“第一名同学没有抽到中奖奖券”, 事件B 为“最后一名同学抽到中奖奖券”. 事件A 的发生会影响事件B 发生的概率吗?显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A 的发生不会影响事件B 发生的概率.于是P (B| A )=P(B ),P (AB )=P( A ) P ( B |A )=P (A )P(B).二、讲解新课:1.相互独立事件的定义:设A, B 为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立(mutually independent ) .事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立2.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.(简称积事件)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果同时摸出白球的结果有32⨯种所以从这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即 1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅. 3.对于事件A 与B 及它们的和事件与积事件有下面的关系: )()()()(B A P B P A P B A P ⋅-+=+三、讲解范例:例 1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解: (1)记“第一次抽奖抽到某一指定号码”为事件A, “第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB .由于两次抽奖结果互不影响,因此A 与B 相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025.(2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(A B )U (A B )表示.由于事件A B 与A B 互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P (A B )十P (A B )=P (A )P (B )+ P (A )P (B )= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( A B )U (A B )表示.由于事件 AB , A B 和A B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P ( AB ) + P (A B )+ P (A B ) = 0.0025 +0. 095 = 0. 097 5.例2.甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率?解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,A 与B ,A 与B ,A 与B 为相互独立事件,(1)2人都射中的概率为:()()()0.80.90.72P A B P A P B ⋅=⋅=⨯=,∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A B ⋅发生),另一种是甲未击中、乙击中(事件A B ⋅发生)根据题意,事件A B ⋅与A B ⋅互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:()()()()()()P A B P A B P A P B P A P B ⋅+⋅=⋅+⋅0.8(10.9)(10.8)0.90.080.180.26=⨯-+-⨯=+=∴2人中恰有1人射中目标的概率是0.26.(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为()[()()]0.720.260.98P P A B P A B P A B =⋅+⋅+⋅=+=.(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,2个都未击中目标的概率是()()()(10.8)(10.9)0.02P A B P A P B ⋅=⋅=--=,J C J B J A J C J B J A ∴“两人至少有1人击中目标”的概率为1()10.020.98P P A B =-⋅=-=.(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”,故所求概率为:()()()P P A B P A B P A B =⋅+⋅+⋅()()()()()()P A P B P A P B P A P B =⋅+⋅+⋅0.020.080.180.28=++=.(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,故所求概率为1()1()()10.720.28P P A B P A P B =-⋅=-⋅=-=例 3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率 解:分别记这段时间内开关A J ,B J ,C J 能够闭合为事件A ,B ,C .由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是()()()()P A B C P A P B P C ⋅⋅=⋅⋅[][][]1()1()1()P A P B P C =--- (10.7)(10.7)(10.7)0.027=---=∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是 1()10.0270.973P A B C -⋅⋅=-=.答:在这段时间内线路正常工作的概率是0.973.变式题1:如图添加第四个开关D J 与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率 (1()()0.9730.70.6811P A B C P D ⎡⎤-⋅⋅⋅=⨯=⎣⎦) 变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率方法一:()()()()()P A B C P A B C P A B C P A B C P A B C ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅()()()()()()()()()()()()()()()P A P B P C P A P B P C P A P B P C P A P B P C P A P B P C =⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅0.847=方法二:分析要使这段时间内线路正常工作只要排除C J 开且A J 与B J 至少有1个开的情况[]21()1()10.3(10.7)0.847P C P A B --⋅=-⨯-=例 4.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k 门高炮击中的事件为K A (k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为12345()P A A A A A ⋅⋅⋅⋅=12345()()()()()P A P A P A P A P A ⋅⋅⋅⋅5(10.2)=-=5)54( ∴敌机未被击中的概率为5)54(.(2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得: 敌机被击中的概率为1-n)54(∴令41()0.95n -≥,∴41()510n ≤ 两边取常用对数,得110.313lg 2n ≥≈- ∵+∈N n ,∴11n = ∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点评:上面例1和例2的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便四、课堂练习: 1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( ) ()A 320 ()B 15 ()C 25 ()D 9202.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C 2个球不都是白球的概率 ()D 2个球中恰好有1个是白球的概率3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是( )()A 0.128 ()B 0.096 ()C 0.104 ()D 0.3844.某道路的A 、B 、C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是 ( )()A 35192 ()B 25192 ()C 35576 ()D 651925.(1)将一个硬币连掷5次,5次都出现正面的概率是 ;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是 .6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,(1)每穴播两粒,此穴缺苗的概率为 ;此穴无壮苗的概率为 .(2)每穴播三粒,此穴有苗的概率为 ;此穴有壮苗的概率为 .7.一个工人负责看管4台机床,如果在1小时内这些机床不需要人去照顾的概率第1台是0.79,第2台是0.79,第3台是0.80,第4台是0.81,且各台机床是否需要照顾相互之间没有影响,计算在这个小时内这4台机床都不需要人去照顾的概率.8.制造一种零件,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1件,其中恰有1件废品的概率是多少?9.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?答案:1. C 2. C 3. B 4. A 5.(1)132 (2) 0.56 6.(1) 0.01 , 0.16 (2) 0.999,0.9367. P=220.790.810.404⨯≈8. P=0.040.950.960.050.086⨯+⨯≈9. 提示:86461121212122P =⋅+⋅= 五、小结 :两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响一般地,两个事件不可能即互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的六、课后作业:课本58页练习1、2、3 第60页 习题 2. 2A 组4. B 组1七、板书设计(略)八、教学反思:1. 理解两个事件相互独立的概念。
高中数学 第二章 随机变量及其分布 2.2 第2课时 事件的相互独立性学案 新人教A版选修23
2.2 第二课时 事件的相互独立性一、课前准备 1.课时目标(1) 理解事件相互独立的定义;(2) 能利用事件相互独立的乘法公式求n 事件都发生的概率. 2.基础预探1.设A 、B 为两个事件,如果P (AB )=_______,则称事件A 与事件B 相互独立.2.如果事件A 与B 相互独立,那么______,_______,_________也都相互独立.3.一般地,如果事件12,,,n A A A 相互独立,那么这n个事件都发生的概率,等于每个事件发生的概率的积,即12()n P A A A =____________________.二、学习引领1.事件相互独立的的深入理解当A ,B 相互独立时,易知(|)P A B =P (A ),而()()(|)()P AB P B P A B P A ==,所以()()()P AB P A P B =;易知(|)P B A =P (A ),故()()(|)()P AB P A P B A P B ==,所以()()()P AB P A P B =.因此可知,当A ,B 相互独立时()()()P AB P A P B =.2. 事件互斥与事件相互独立的区别事件的“互斥”与“相互独立”是两个不同的概念:两事件“互斥”是指两事件不可能同时发生;两事件“相互独立”是指一个事件的发生与否对另一个事件发生的与否没有影响.这两个可以结合应用如:1-()()P A P B 表示两个相互独立事件A 、B 至少有一个不发生的概率.3.判断两个事件是否是相互独立事件首先,一般地,两个事件相互独立是指两个试验的结果之间的关系或者一个大试验的两个不相关的子试验之间的关系;其次,事件的相互独立性可以看作是一个综合事件分几个步骤完成,可类比分步计数原理的解题过程理解. 三、典例导析题型一:相互独立事件的判断例1 李云有一串8把外形相同的钥匙,其中只有一把能打开家门.一次李云醉酒回家,他每次从8把钥匙中随便拿一把开门,试用后又不加记号放回,则 “第一次打不开门”记为事件A ,“第二次能打开门”记为事件B ,请问事件A 与B 是否相互独立?思路导析:本题分析事件A 的发生与否对事件B 是否有影响,即可得到判断.解:由于此人喝醉,不能记得用过那把钥匙,故每次取得每把钥匙的可能性相同;并且试用后不加标记的放回去.易知,前一事件是否发生,对后一事件发生的概率没有影响,所以二者是相互独立事件.规律方法:判断两个事件是否独立,可利用两个事件相互独立的定义分别求出()P AB 、()P B 、()P A 代入公式()()()P AB P A P B =判定;也可分析事件A 的发生与否对事件B 的发生是否有影响.变式训练:甲组3名男生、2名女生;乙组2名男生、3名女生,今从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生’’与“从乙组中选出1名女生”;这两个事件是否是相互独立事件?题型二 求相互独立事件同时发生的概率例2 中央电视台“星光大道”节目共有四关,每期都有实力相当的5名选手参加,每关淘汰一名选手,最后决出周冠军.经选拔,某选手将参加下一期的“星光大道”. (1)求该选手进入第四关才被淘汰的概率; (2)求该选手至多进入第三关的概率.思路导析:事件“进入第四关才被淘汰”的含义为“前三关未被淘汰,第四关被淘汰”;事件“选手至多进入第三关”的含义为“第一关被淘汰”或“第二关被淘汰”或“第三关被淘汰”;然后结合互斥事件的加法公式与相互独立事件的乘法公式解决. 解:(1)记“该选手能通过第i 关”的事件为=i A i (l,2,3,4),则54)(1=A P ,43)(2=A P ,32)(3=A P ,=)(4A P 21,所以该选手进入第四关才被淘汰的概率为 44123123()()()()()P A A A A P A P A P A P A =⨯⨯⨯=3243545121=.(2)该选手至多进入第三关的概率1233112[()(]P P A A A A A A =⋃⋃++=)()()(211A P A P A P )()()(321A P A P A P 53314354415451=⨯⨯+⨯+=. 方法规律:求相互独立事件的概率,首先判断所给事件是否能分解为互相独立连续的几个子事件,然后选用公式求解.这类问题也常与互斥事件、古典概型等联系存一起,注意恰当的选择方法.变式训练:两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A12 B 512 C 14 D 16题型三:概率加法乘法的综合问题例3 某植物园要栽培甲、乙两种果树,先要培育成苗..,然后再进行移栽.已知甲、乙两种果树成苗..的概率分别为0.6,0.5,移栽后成活..的概率分别为0.7,0.9. (1)求甲、乙两种果树至少有一种果树成苗..的概率;(2)求恰好有一种果树能培育成苗..且移栽成活..的概率. 思路导析:事件“至少有一种果树成苗..”的对立事件为“两个果树都不成苗”;事件“恰好有一种果树能培育成苗..且移栽成活..”包含“甲果树成苗且移栽成活”或“乙果树成苗且移栽成活”两个互斥的事件,然后利用互斥事件加法公式以及相互独立事件的概率乘法公式解决.解:分别记“甲、乙两种果树成苗”为事件1A 、2A ;分别记“甲、乙两种果树苗移栽成活”为事件1B 、2B ,则1()0.6P A =,2()0.5P A =,1()0.7P B =,2()0.9P B =.(1)“甲、乙两种果树至少有一种成苗”的对立事件是“甲、乙两种果树都不成苗”,而1A 与2A 是相互独立事件,故其概率为121212()1()1()()10.40.50.8P A A P A A P A P A =-=-=-⨯=;(2)分别记“两种果树培育成苗且移栽成活”为事件A B ,, 则1111()()()()0.60.70.42P A P A B P A P B ===⨯=,2222()()()()0.50.90.45P B P A B P A P B ===⨯=.“恰好有一种果树培育成苗且移栽成活”包括两种情况:“甲种果树培育成苗且移栽成活、乙种果树没培育成苗且没移栽成活”,即AB ;或“甲种果树没有培育成苗且没移栽成活、乙种果树培育成苗且移栽成活”,即AB ,而AB 与AB 是互斥事件,A 与B 、A 与B 是相互独立事件, 故其概率为[()()]()()()()()()P AB AB P AB P AB P A P B P A P B ⋃=+=+0.420.550.580.450.492=⨯+⨯=方法规律:对于相互独立事件、互斥事件的综合问题的求解可分三步进行:一是列出题中涉及的各个事件,并用适当的符号表示;二是理清各事件之间的关系,列出关系式;三是根据事件之间的关系准确的运用概率公式进行计算.当遇到“至多”、“至少”问题时常考虑其对立事件,从问题的反面求解.变式训练:甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求: (Ⅰ)甲试跳两次,第2次才成功的概率;(Ⅱ)甲、乙两人在第一次试跳中至少有一人成功的概率.四、随堂练习1.不透明的坛中有黑、白两种颜色的球,从中进行有放回地摸球,用1A 表示第一次摸得白球,2A 表示第二次摸得白球,则1A 与2A 是( )A 相互独立事件B 不相互独立事件C 互斥事件 D.对立事件2.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为51,身体关节构造合格的概率为41.从中任挑一儿童,这两项至少有一项合格的概率是( )(假定体型与身体关节构造合格与否相互之间没有影响) A.2013B.51 C.41 D.523.两人同时向一目标射击,甲命中率为15,乙命中率为14,则两人都没有命中目标的概率为 ( )A.720 B.35 C.121D.1104.在一次考试中,某班语文、数学、英语平均分在120分以上概率分别为0.4,0.2,0.4,则该班的三科平均分都在120分以上的概率为 .5.袋中有红、黄、绿色球各一个,每次任取一个,有放回地抽取三次,球的颜色全相同的概率是________.6.今年国庆节期间,王林去花博会参观的概率为14,李明去花博会参观的概率为15,假定两人的行动相互之间没有影响,求在国庆节期间王林、李明两人至少有一人去花博会参观的概率.五、课后作业1. 一个学生通过一种英语能力测试的概率是12,他连续测试两次,那么其中恰有一次通过的概率是( )A 14B 13C 12 D.342.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A 、B 中至少有一件发生的概率是( )A.512 B. 12 C. 712 D. 343.甲、乙、丙三名同学利用某网校联网学习数学,每天上课后独立完成六道自我检测题,甲答及格的概率为0.8,乙答及格的概率为0.6,丙答及格的概率为0.7,三人各答一次,则三人中只有一人及格的概率 .4.如图,用A 、B 、C 、D 表示四类不同的元件连接成系统M.当元件A 、B 至少有一个正常工作且元件C 、D 至少有一个正常工作时,系统M 正常工作已知元件A 、B 、C 、D 正常工作的概率依次为0.5、0.6、0.7、0.8,元件连接成的系统M 正常工作的概率)(M P = .5.为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P )和所需费用如下表: 预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大6.在三人兵乓球对抗赛中,甲、乙、丙三名选手进行单循环赛(即每两人比赛一场),共赛三场,每场比赛胜者得1分,输者得0分,没有平局;在每一场比赛中,甲胜乙的概率为13,甲胜丙的概率为14,乙胜丙的概率为13.(1)求甲获得小组第一且丙获得小组第二的概率;(2)求三人得分相同的概率; (3)求甲不是小组第一的概率.参考答案2.2 第二课时 事件的相互独立性2.基础预探1.()()P A P B2.A 与B A 与B A 与B3.12()()()n P A P A P A三、典例导析 例1 变式训练 解:“从甲组选出1名男生”这一事件是否发生,对“从乙组选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.例2 变式训练解:用事件A 、B 分别表示“两个实习生每人加工一个零件”为合格品,事件C 表示“两个零件中恰有一个为一等品”,则()()C AB AB =⋃,由题意知A 、B 为相互独立事件 则21135()()()343412P C P AB P AB =+=⨯+⨯=,故选B.例3 变式训练解:记“甲第i 次试跳成功”为事件i A ,“乙第i 次试跳成功”为事件i B ,依题意得()0.7i P A =,()0.6i P B =,且i A ,i B (12i =,)相互独立.(I)“甲第2次试跳才成功”为事件12A A ⋂,且两次试跳相互独立,所以1212()()()0.30.70.21P A A P A P A ==⨯=.答:甲第2次试跳才成功的概率为0.21.(II)“甲、乙两人在第一次试跳中至少有一人成功”为事件C .方法一:111111()()()C A B A B A B =⋃⋃因为,且11A B ,11A B ,11A B 彼此互斥,111111()()()()P C P A B P A B P A B =++所以111111()()()()()()P A P B P A P B P A P B =++0.70.40.30.60.70.6=⨯+⨯+⨯0.88=方法二:11()1()()10.30.40.88P C P A P B =-=-⨯=. 答:甲、乙两人在第一次试跳中至少有一人成功的概率为0.88.四、随堂练习 1.答案:A解析:1A 与2A 是相互独立事件,由于这是有放回地摸球,1A 与2A 无影响. 2.答案:D解析:可用排除法,由相互独立事件的概率乘法公式可知:P=52)411()511(1=-⨯--. 3.答案:B解析:记“甲命中目标”为事件A ,“乙命中目标”为事件B ,则“甲没有命中目标”为事件A ,“乙没有命中目标”为事件B ,由于A 、B 相互独立,则A 、B 也相互独立, 则433()()()545P AB P A P B ==⨯=. 4.答案:0.032解析:三个事件相互独立,由相互独立事件的乘法公式可知P= 0.40.20.4=0.032⨯⨯. 5.答案:19解:颜色相同包括三红、三黄、三绿,概率为P=913313131=⨯⨯⨯. 6.解:记事件A=“王林去花博会参观”,B=“李明去花博会参观”,则A 表示“王林不去花博会参观”,B 表示“李明不去花博会参观”,且A 、B 是相互独立事件,“王林、李明至少有一人去花博会参观”的对立事件是AB , 因为113()()()(1)(1)455P AB P A P B ==--=,所以,321()155P AB -=-=, 所以,王林、李明两人至少有一人去花博会参观的概率是25. 五、课后作业 1. 答案:C解析:设A 为第一次测试通过,B 为第二次测试通过,则所求概率为11111()()()()()()22222P AB P AB P A P B P A P B +=+=⨯+⨯=. 2.答案:C 解析:61)(,21)(==B P A P ,1571()12612P P AB =-=-⨯=. 3.解析:由相互独立事件的概率乘法公式可知P=0.80.40.3+0.20.60.3+0.20.40.7=0.096+0.036+0.056=0.188⨯⨯⨯⨯⨯⨯. 4.答案:0.752解析:由相互独立事件的概率乘法公式可知:=)(M P [1()]P AB -[1()]P CD -=0.752. 5.解:方案1:单独采用一种预防措施的费用均不超过120万元由表可知,采用甲措施,可使此突发事件不发生的概率最大,其概率为0.9.方案2:联合采用两种预防措施,费用不超过120万元,由表可知联合甲、丙两种预防措施可使此突发事件不发生的概率最大,其概率为1-(1-0.9)(1-0.7)=0.97.方法3:联合采用三种预防措施,费用不超过120万元,故只能联合乙、丙、丁三种预防措施,此时突发事件不发生的概率为1-(1-0.8)(1-0.7)(1-0.6)=1-0.024=0.976.综合上述三种预防方案可知,在总费用不超过120万元的前提下,联合使用乙、丙、丁三种预防措施可使此突发事件不发生的概率最大.6.解:(Ⅰ)设“甲获小组第一且丙获小组第二”为事件A, 则1121()34318P A =⨯⨯= (Ⅱ)设三场比赛结束后,三人得分相同为事件B,即每人胜一场输两场,有以下两种情形:甲胜乙,乙胜丙,丙胜甲,概率为1113133412P =⨯⨯=; 甲胜丙,丙胜乙,乙胜甲,概率为212214339P =⨯⨯=;三人得分相同的概率为12117()12936P B P P =+=+=. (3)设“甲不是小组第一”为事件C, 方法一:1111()13412P C =-⨯=; 方法二:该小组第一是乙或丙的概率为P=123213334318⨯+⨯=,13711()183612P C =+=.。
(完整版)2.2.2事件的相互独立性
答:事件A的发生会影响事件B发生的概率
思考2:三张奖券有一张可以中奖。现由三名 同学依次有放回地抽取,问:最后一名去抽的 同学的中奖概率会受到第一位同学是否中奖的 影响吗?
设A为事件“第一位同学没有中奖”;
B为事件“最后一名同学中奖”。
答:事件A的发生不会影响事件B发生的概率。 P(B | A) P(B)
应用公式的前提: 1.事件之间相互独立 2.这些事件同时发生.
例题举例
例1、假使在即将到来的2016年奥运会上,我国 乒乓球健儿克服规则上的种种困难,技术上不断 开拓创新,在团体比赛项目中,我们的中国女队 夺冠的概率是0.9,中国男队夺冠的概率是0.7,那 么男女两队双双夺冠的概率是多少?
解:设事件A:中国女队夺冠; 事件B:中国男队夺冠.
人教版高中数学选修2-3 第二章《随机变量及其分布》
复习回顾
①什么叫做互斥事件?什么叫做对立事件?
不可能同时发生的两个事件叫做互斥事件;如果两个互斥 事件有一个发生时另一个必不发生,这样的两个互斥事件 叫对立事件.
②两个互斥事件A、B有一个发生的概率公式是
什么? P(A+B)=P(A)+(B)
③若A与A为对立事件,则P(A)与P(A)关 系如何?
相互独立的概念
设A,B为两个事件,如果 P (1)互斥事件:两个事件不可能同时发生 (2)相互独立事件:两个事件的发生彼此互不影响
判断两个事件相互独立的方法 1.定义法:P(AB)=P(A)P(B) 2.经验判断:A发生与否不影响B发生的概率
(2)当已知事件的发生影响所求事件的概率,一般也认 为是条件概率。
思考与探究
思考1:三张奖券有一张可以中奖。现由三名 同学依次无放回地抽取,问:最后一名去抽的 同学的中奖概率会受到第一位同学是否中奖的 影响吗?
2017年高中数学第二章随机变量及其分布2.2.2事件的相互独立性习题课件新人教A版选修2_3
解:记“甲射击 1 次,击中目标”为事件 A,“乙射击 1 次, 击中目标”为事件 B,则 A 与 B,A 与 B,A 与 B ,A 与 B 为相互 独立事件,
(1)2 人都射中目标的概率为: P(AB)=P(A)·P(B)=0.8×0.9=0.72.
(2)“2 人各射击 1 次,恰有 1 人射中目标”包括两种情况: 一种是甲射中、乙未射中(事件 A B 发生),另一种是甲未射中、乙 射中(事件 A B 发生).根据题意,事件 A B 与 A B 互斥,根据互斥 事件的概率加法公式和相互独立事件的概率乘法公式,所求的概 率为:
(2)D= C ,P(D)=1-P(C)=1-0.8=0.2, P(E)=0.8×0.2×0.8+0.8×0.8×0.2+0.2×0.8×0.8=0.384.
11.某项选拔共有四轮考核,每轮设有一个问题,能正确回 答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回 答第一、二、三、四轮问题的概率分别为45、35、25、15,且各轮问 题能否正确回答互不影响:
(3)分别抛掷 2 枚相同的硬币,事件 M:“第 1 枚为正面”,
事件 N:“两枚结果相同”.
这 3 个问题中,M,N 是相互独立事件的有( )
A.3 个
B.2 个
C.1 个
D.0 个
解析:(1)中,M,N 是互斥事件;(2)中,P(M)=35,P(N)=12.
即事件 M 的结果对事件 N 的结果有影响,所以 M,N 不是相互
P(A B )+P( A B)=P(A)·P( B )+P( A )·P(B) =0.8×(1-0.9)+(1-0.8)×0.9 =0.08+0.18=0.26.
(3)“2 人至少有 1 人射中”包括“2 人都中”和“2 人有 1 人 射中”2 种情况,其概率为
学高中数学随机变量及其分布事件的相互独立性教师用书教案新人教A版选修
2.2.2事件的相互独立性学习目标核心素养1.在具体情境中,了解两个事件相互独立的概念.(难点)2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.(重点)3.综合运用互斥事件的概率加法公式及独立事件的乘法公式解决一些问题.(重点、难点)1.通过学习事件相互独立的概念,培养数学抽象的素养.2.借助相互独立事件的乘法公式解题,提升数学运算的素养.1.相互独立事件的定义和性质(1)定义:设A,B为两个事件,如果P(AB)=P(A)P(B),那么称事件A与事件B相互独立.(2)性质:1如果A与B相互独立,那么A与错误!,错误!与B,错误!与错误!也都相互独立.2如果A与B相互独立,那么P(B|A)=P(B),P(A|B)=P(A).思考:互斥事件与相互独立事件的区别是什么?[提示]相互独立事件互斥事件条件事件A(或B)是否发生对事件B(或A)发生的概率没有影响不可能同时发生的两个事件符号表示相互独立事件A,B同时发生,记作:AB互斥事件A,B中有一个发生,记作:A∪B(或A+B)计算公式P(AB)=P(A)P(B)P(A∪B)=P(A)+P(B)对于n个事件A1,A2,…,A n,如果其中任一个事件发生的概率不受其他事件是否发生的影响,则称n个事件A1,A2,…,A n相互独立.3.独立事件的概率公式(1)若事件A,B相互独立,则P(AB)=P(A)P(B);(2)若事件A1,A2,…,A n相互独立,则P(A1A2…A n)=P(A1)×P(A2)×…×P(A n).1.坛中有黑、白两种颜色的球,从中进行有放回地摸球,用A1表示第一次摸得白球,A2表示第二次摸得白球,则A1与A2是()A.相互独立事件B.不相互独立事件C.互斥事件D.对立事件A[由概率的相关概念得A1与A2是互不影响的两个事件,故是相互独立的事件.]2.一个学生通过一种英语能力测试的概率是错误!,他连续测试两次,那么其中恰有一次通过的概率是()A.错误!B.错误!C.错误!D.错误!C[由题意知,恰有一次通过的概率为错误!×错误!+错误!×错误!=错误!.]3.在某道路A,B,C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条道路上匀速行驶,则三处都不停车的概率为________.错误![由题意可知,每个交通灯开放绿灯的概率分别为错误!,错误!,错误!.在这条道路上匀速行驶,则三处都不停车的概率为P=错误!×错误!×错误!=错误!.]相互独立事件的判断(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.[思路点拨] (1)利用独立性概念的直观解释进行判断.(2)计算“从8个球中任取一球是白球”发生与否,事件“从剩下的7个球中任意取出一球还是白球”的概率是否相同进行判断.(3)利用事件的独立性定义判断.[解] (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为错误!,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为错误!;若前一事件没有发生,则后一事件发生的概率为错误!,可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件.(3)记A:出现偶数点,B:出现3点或6点,则A={2,4,6},B={3,6},AB={6},所以P(A)=错误!=错误!,P(B)=错误!=错误!,P(AB)=错误!.所以P(AB)=P(A)P(B),所以事件A与B相互独立.判断事件是否相互独立的方法1.定义法:事件A,B相互独立⇔P(AB)=P(A)P(B).2.直接法:由事件本身的性质直接判定两个事件发生是否相互影响.3.条件概率法:当P(A)>0时,可用P(B|A)=P(B)判断.错误!1.(1)下列事件中,A,B是相互独立事件的是()A.一枚硬币掷两次,A=“第一次为正面”,B=“第二次为反面”B.袋中有2白,2黑的小球,不放回地摸两球,A=“第一次摸到白球”,B=“第二次摸到白球”C.掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为偶数”D.A=“人能活到20岁”,B=“人能活到50岁”(2)甲、乙两名射手同时向一目标射击,设事件A:“甲击中目标”,事件B:“乙击中目标”,则事件A与事件B()A.相互独立但不互斥B.互斥但不相互独立C.相互独立且互斥D.既不相互独立也不互斥(1)A(2)A[(1)把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A是独立事件;B中是不放回地摸球,显然A事件与B事件不相互独立;对于C,A,B应为互斥事件,不相互独立;D是条件概率,事件B受事件A的影响.故选A.(2)对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A与B相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A与B可能同时发生,所以事件A与B 不是互斥事件.故选A.]相互独立事件同时发生的概率(1)两人都能破译的概率;(2)两人都不能破译的概率;(3)恰有一人能破译的概率;(4)至多有一人能破译的概率.[解] 设“甲能破译”为事件A,“乙能破译”为事件B,则A,B相互独立,从而A与错误!、错误!与B、错误!与错误!均相互独立.(1)“两人都能破译”为事件AB,则P(AB)=P(A)P(B)=错误!×错误!=错误!.(2)“两人都不能破译”为事件错误!错误!,则P(错误!错误!)=P(错误!)P(错误!)=[1—P(A)][1—P(B)]=错误!×错误!=错误!.(3)“恰有一人能破译”为事件(A错误!)∪(错误!B),又A错误!与错误!B互斥,所以P[(A错误!)∪(错误!B)]=P(A错误!)+P(错误!B)=P(A)P(错误!)+P(错误!)P(B)=错误!×错误!+错误!×错误!=错误!.(4)“至多有一人能破译”为事件(A错误!)∪(错误!B)∪(错误!错误!),而A错误!、错误!B、错误!错误!互斥,故P[(A错误!)∪(错误!B)∪(错误!错误!)]=P(A错误!)+P(错误!B)+P(错误!错误!)=P(A)P(错误!)+P(错误!)P(B)+P(错误!)P(错误!)=错误!×错误!+错误!×错误!+错误!×错误!=错误!.1.求相互独立事件同时发生的概率的步骤(1)首先确定各事件是相互独立的;(2)再确定各事件会同时发生;(3)先求每个事件发生的概率,再求其积.2.公式P(AB)=P(A)P(B)可推广到一般情形,即如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)P(A2)…P (A n).错误!2.某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13s内(称为合格)的概率分别为错误!,错误!,错误!,若对这三名短跑运动员的100米跑的成绩进行一次检测,求:(1)三人都合格的概率;(2)三人都不合格的概率;(3)出现几人合格的概率最大.[解] 记甲、乙、丙三人100米跑成绩合格分别为事件A,B,C,显然事件A,B,C相互独立,则P(A)=错误!,P(B)=错误!,P(C)=错误!.设恰有k人合格的概率为P k(k=0,1,2,3).(1)三人都合格的概率:P3=P(ABC)=P(A)·P(B)·P(C)=错误!×错误!×错误!=错误!.(2)三人都不合格的概率:P0=P(错误!错误!错误!)=P(错误!)·P(错误!)·P(错误!)=错误!×错误!×错误!=错误!.(3)恰有两人合格的概率:P2=P(AB错误!)+P(A错误!C)+P(错误!BC)=错误!×错误!×错误!+错误!×错误!×错误!+错误!×错误!×错误!=错误!.恰有一人合格的概率:P1=1—P0—P2—P3=1—错误!—错误!—错误!=错误!=错误!.综合(1)(2)可知P1最大.所以出现恰有一人合格的概率最大.事件的相互独立性与互斥性1.甲、乙二人各进行一次射击比赛,记A=“甲击中目标”,B=“乙击中目标”,试问事件A与B是相互独立事件,还是互斥事件?事件错误!B与A错误!呢?[提示] 事件A与B,错误!与B,A与错误!均是相互独立事件,而错误!B与A错误!是互斥事件.2.在探究1中,若甲、乙二人击中目标的概率均是0.6,如何求甲、乙二人恰有一人击中目标的概率?[提示] “甲、乙二人恰有1人击中目标”记为事件C,则C=错误!B+A错误!.所以P(C)=P(错误!B+A错误!)=P(错误!B)+P(A错误!)=P(错误!)·P(B)+P(A)·P(错误!)=(1—0.6)×0.6+0.6×(1—0.6)=0.48.【例3】在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.[思路点拨] 该线路是并联电路,当且仅当三个开关都不闭合时,线路才不通,故本题可采用对立事件求解.[解] 分别记这段时间内开关J A,J B,J C能够闭合为事件A,B,C.由题意知这段时间内3个开关是否能够闭合相互之间没有影响.根据相互独立事件概率的乘法公式,得这段时间内3个开关都不能闭合的概率是P(错误!错误!错误!)=P(错误!)·P(错误!)·P(错误!)=[1—P(A)][1—P(B)][1—P(C)]=(1—0.7)(1—0.7)(1—0.7)=0.027.所以在这段时间内线路正常工作的概率是1—P(错误!错误!错误!)=1—0.027=0.973.概率问题中的数学思想1.正难则反.灵活应用对立事件的概率关系(P(A)+P(错误!)=1)简化问题,是求解概率问题最常用的方法.2.化繁为简.将复杂事件的概率转化为简单事件的概率,即寻找所求事件与已知事件之间的关系.“所求事件”分几类(考虑加法公式,转化为互斥事件)还是分几步组成(考虑乘法公式,转化为相互独立事件).3.方程思想.利用有关的概率公式和问题中的数量关系,建立方程(组),通过解方程(组)使问题获解.错误!3.设事件A与B相互独立,两个事件中只有A发生的概率和只有B发生的概率都是错误!,求事件A和事件B同时发生的概率.[解] 在相互独立事件A和B中,只有A发生即事件A错误!发生,只有B发生即事件错误!B发生.∵A和B相互独立,∴A与错误!,错误!与B也相互独立.∴P(A错误!)=P(A)·P(错误!)=P(A)·[1—P(B)]=错误!,1P(错误!B)=P(错误!)·P(B)=[1—P(A)]·P(B)=错误!. 21—2得P(A)=P(B).3联立13可解得P(A)=P(B)=错误!.∴P(AB)=P(A)·P(B)=错误!×错误!=错误!.与相互独立事件A,B有关的概率计算公式事件A,B的各种情形概率计算公式A,B同时发生P(AB)=P(A)P(B)A,B都不发生P(错误!错误!)=P(错误!)P(错误!)=[1—P(A)][1—P (B)]=1—P(A)—P(B)+P(A)P(B)A,B至少有一个不发生P=1—P(AB)=1—P(A)P(B)A,B至少有一个发生P=1—P(错误!错误!)=1—P(错误!)P(错误!)=P(A)+P(B)—P(A)P(B)A,B恰好有一个发生P=P(A错误!+错误!B)=P(A)P(错误!)+P(错误!)P(B)=P(A)+P(B)—2P(A)P(B)1.判断(正确的打“√”,错误的打“×”)(1)对事件A和B,若P(B|A)=P(B),则事件A与B相互独立.()(2)若事件A,B相互独立,则P(错误!错误!)=P(错误!)P(错误!).(3)如果事件A与事件B相互独立,则P(B|A)=P(B).()(4)若事件A与B相互独立,则B与错误!相互独立.()[答案] (1)√(2)√(3)√(4)×2.袋内有3个白球和2个黑球,从中不放回地摸球,用A表示“第一次摸得白球”,用B表示“第二次摸得白球”,则A与B是()A.互斥事件B.相互独立事件C.对立事件D.不相互独立事件D[P(A)=错误!,P(B)=错误!,事件A的结果对事件B有影响.根据互斥事件、对立事件和相互独立事件的定义可知,A与B不是相互独立事件.]3.国庆节放假,甲去北京旅游的概率为错误!,乙、丙去北京旅游的概率分别为错误!,错误!.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________.错误![因为甲、乙、丙去北京旅游的概率分别为错误!,错误!,错误!,因此,他们不去北京旅游的概率分别为错误!,错误!,错误!,所以,至少有1人去北京旅游的概率为P=1—错误!×错误!×错误!=错误!.]4.某班甲、乙、丙三名同学竞选班委,甲当选的概率为错误!,乙当选的概率为错误!,丙当选的概率为错误!.(1)求恰有一名同学当选的概率;(2)求至多有两人当选的概率.[解] 设甲、乙、丙当选的事件分别为A,B,C,则有P(A)=错误!,P(B)=错误!,P(C)=错误!.(1)因为事件A,B,C相互独立,所以恰有一名同学当选的概率为P(A错误!错误!)+P(错误! B错误!)+P(错误!错误!C)=P(A)·P(错误!)·P(错误!)+P(错误!)·P(B)·P(错误!)+P(错误!)·P(错误!)·P(C)=错误!×错误!×错误!+错误!×错误!×错误!+错误!×错误!×错误!=错误!.(2)至多有两人当选的概率为1—P(ABC)=1—P(A)·P(B)·P(C)=1—错误!×错误!×错误!=错误!.。
高中数学选修2(新课标)课件2.2.2事件的相互独立性
由等可能性知这 8 个基本事件的概率均为18,这时 A 中含有 6 个基本事件,B 中含有 4 个基本事件,AB 中含有 3 个基本事件.于
是 P(A)=68=34,P(B)=48=12,P(AB)=38,显然有 P(AB)=38=P(A)P(B) 成立.从而事件 A 与 B 是相互独立的.
【答案】 (2)见解析
状元随笔 (1)因为事件 A 和事件 B 相互独立,故 P(A B )=P(A)
-P(A)P(B)=P(A)(1-P(B))=P(A)P( B ).
由相互独立事件的定义知事件 A 与事件 B 相互独立.类似可证
明 A 与 B, A 与 B 也都相互独立. (2)两个事件的相互独立性可以推广到 n(n>2,n∈N*)个事件的
+P( A )P(B)=0.6×0.4×2=0.48.
(3)至少有 1 人击中目标,即事件 A B 或事件 A B 或事件 AB 发 生,由于两人各射击一次,事件 A B 、事件 A B、事件 AB 不可能同 时发生,为互斥事件,所以至少有 1 人击中目标的概率为 P(AB)+ P(A B )+P( A B)=0.36+0.48=0.84.
【答案】 (1)①②③
(2)一个家庭中有若干个小孩,假定生男孩和生女孩是等可能 的,令 A={一个家庭中既有男孩又有女孩},B={一个家庭中最多 有一个女孩}.对下列两种情形,讨论 A 与 B 的独立性:
人教a版数学【选修2-3】2.2.2《事件的独立性》ppt课件
第二章
随机变量及其分布
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
1
自主预习学案
2
典例探究学案
3
巩固提高学案
4
备 选 练 习
第二章
2.2
2.2.2
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
自主预习学案
第二章
第二章 2.2 2.2.2
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
3.如果A与B相互独立,那么P(B|A)=__________ ,P(A|B) P(B) P(A) . =__________ 同时发生 的两个事件,而相互独 4 .互斥事件是不可能 __________ 立事件是指一个事件是否发生对另一个事件发生的概率 没有影响 ,二者不能混淆. __________ P(A)+P(B) ; 若A、B互斥,则P(AB)=0;P(A+B)=__________ P(A)· P(B) , P(A + B) = 若 A 、 B 相 互 独 立 , 则 P(AB) = __________ 1-P(- A )· P(- B) . ________________
第二章
2.2
2.2.2
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
[解析] 设甲、乙、丙去北京旅游分别为事件 A、B、C, 1 1 1 2 3 则 P(A)=3,P(B)=4,P(C)=5,P( A )=3,P( B )=4,P( C )= 4 5,由于 A,B,C 相互独立,故 A , B , C 也相互独立,故 P( A 2 3 4 2 B C )=3×4×5=5,因此甲、乙、丙三人至少有 1 人去北京 2 3 - - - 旅游的概率 P=1-P( A B C )=1-5=5.
第二章2.22.2.2事件的相互独立性
③在含有 2 红 1 绿三个大小相同的小球的口袋中,任 取一个小球,观察颜色后放回袋中,事件 A=“第一次取 到绿球”,B=“第二次取到绿球”.
解:①事件 A 与 B 是互斥事件,故 A 与 B 不是相互
独立事件.
②第一枚出现正面还是反面,对第二枚出现反面没有
影响,所以 A 与 B 相互独立.
③由于每次取球观察颜色后放回,故事件 A 的发生 对事件 B 发生的概率没有影响,所以 A 与 B 相互独立.
(2)“2人中恰有1人射中目标”包括两种情况:一种 是甲射中,乙未射中(事件AB发生);另一种是甲未射 中,乙射中(事件AB发生).根据题意,事件AB与AB互 斥,根据互斥事件的概率加法公式和相互独立事件的概 率乘法公式,所求的概率为
P(AB)+P(AB)=P(A)·P(B)+P(A)·P(B) =0.8×(1-0.9)+(1-0.8)×0.9 =0.08+0.18=0.26.
第二章 随机变量及其分布
2.2 二项分布及其应用 2.2.2 事件的相互独立性
[学习目标] 1.在具体情境中,了解两个事件相互独 立的概念(重点). 2.能利用相互独立事件同时发生的概 率公式解决一些简单的实际问题(难点).
1.相互独立事件的定义和性质 (1)定义:设A,B为两个事件,如果P(AB)= P(A)P(B),则称事件A与事件B相互独立. (2)如果A与B相互独立,那么A与B,A_与B_,A与_ B也 都相互独立. (3)如果A与B相互独立,那么P(B|A)=P(B),P(A|B) =P(A).
(2)三列火车至少有一列正点到达的概率为 P2=1- P(A- B—C)=1-P(A- )P(B- )P(C- )=1-0.2×0.3×0.1=0.994.
[迁移探究] 在典例 2 条件下,求恰有一列火车正点 到达的概率.
高中数学 第二章 随机变量及其分布 2.2 二项分布及其应用 2.2.2 事件的相互独立性 新人教A
解析:根据相互独立事件的概念知,这三个说法都是 正确的.
答案:(1)√ (2)√ (3)√
2.袋内有 3 个白球和 2 个黑球,从中不放回地摸球, 用 A 表示“第一次摸得白球”,用 B 表示“第二次摸得白 球”,则 A 与 B 是( )
A.互斥事件 B.相互独立事件 C.对立事件 D.不相互独立事件 解析:根据互斥事件、对立事件和相互独立事件的定
(3)条件概率法:当 P(A)>0 时,可用 P(B|A)=P(B) 判断.
[变式训练] 下面所给出的两个事件 A 与 B 相互独立
吗? ①抛掷一枚骰子,事件 A=“出现 1 点”,事件 B=
“出现 2 点”; ②先后抛掷两枚均匀硬币,事件 A=“第一枚出现正
面”,事件 B=“第二枚出现反面”;
③在含有 2 红 1 绿三个大小相同的小球的口袋中,任 取一个小球,观察颜色后放回袋中,事件 A=“第一次取 到绿球”,B=“第二次取到绿球”.
解:①事件 A 与 B 是互斥事件,故 A 与 B 不是相互
独立事件.
②第一枚出现正面还是反面,对第二枚出现反面没有
影响,所以 A 与 B 相互独立.
③由于每次取球观察颜色后放回,故事件 A 的发生 对事件 B 发生的概率没有影响,所以 A 与 B 相互独立.
义可知,A 与 B 不是相互独立事件.
答案:D
3.国庆节放假,甲去北京旅游的概率为13,乙、丙去
北京旅游的概率分别为14,15.假定三人的行动相互之间没
有影响,那么这段时间内至少有 1 人去北京旅游的概率为
()
A.5690
B.35
1
1
C.2
D.60
解析:因甲、乙、丙去北京旅游的概率分别为13,14, 15.因此,他们不去北京旅游的概率分别为23,34,45,所以, 至少有 1 人去北京旅游的概率为 P=1-23×34×45=35.
第二章 离散型随机变量(4.5)(1)
25
48
⑵由条件概率函数计算公式, 得到
X Y 1 1 2 3 4 Pr . 12 6 4 3 25 25 25 25
及 Y X 3 1 2 3 Pr. 1 1 1 333
例7 设 X ,Y 的联合概率函数如下表所示:
X \ Y 1 1 2
0 103
12
12
3 211
2 12 12 12
2 310 12 12
的联合概率函数及概率值 P X Y .
解 由题意, 随机变量 X,Y 的取值为 i, j,i, j 1,2,3
由乘法公式
P X i,Y j P X i P Y j X i
i, j 1,2,3
比如
P X 2,Y 1 P X 2 P Y 1 X 2 1
6
等, 类似可得: X \ Y 1 2 3
率函数. X \ Y 3 4 5 6 1 1234 20 20 20 20
2 0123 20 20 20
3 0012 20 20
4 0001 20
二、边缘概率函数
对于随机向量 X ,Y , 分量 X或Y 本身是一个(一维) 随机变量, 它的概率分布称为 X ,Y 的关于 X 或Y的边
缘概率函数或边缘分布律.
e14 n!
n m0
n!
m!n
m!7.14m
6.86nm
e14 7.14 6.86n 14n e14, n 0,1, 2,
n!
n!
Hale Waihona Puke P Ymnme14
7.14m 6.86nm m!n m!
e14 7.14m 6.86k
k nm0
m!k !
e14 7.14 m 6.86k e14 7.14 e m 6.86
高中数学 第二章 随机变量及其分布 2.2 二项分布及其应用 2.2.2 事件的相互独立性教案 新人教A版选修23
2.2.2 事件的相互独立性整体设计教材分析概率论是研究和揭示随机现象规律性的数学分支.它的理论和方法渗透到现实世界的各个领域,应用极为广泛.而在概率论中,独立性是极其重要的概念,它的主要作用是简化概率计算.相互独立事件同时发生的概率与前面学习的等可能性事件、互斥事件有一个发生的概率,是三类典型的概率模型.将复杂问题分解为这三种基本形式,是处理概率问题的基本方法.因此,本节内容的学习,既是对前面所学知识的深化与拓展,又是提高学生解决现实问题能力的一种途径,更是加强学生应用意识的良好素材.在本节中引入独立性的概念主要是为了介绍二项分布的产生背景,为下一节起铺垫作用.课时分配1课时教学目标知识与技能理解两个事件相互独立的概念,能进行与事件独立性有关的概率的计算.过程与方法通过教学渗透由特殊到一般的数学思想,提高解决实际问题的能力.情感、态度与价值观通过对实例的分析,问题的探究,学会合作,提高学习数学的兴趣.重点难点教学重点:独立事件同时发生的概率.教学难点:有关独立事件发生的概率计算.教学过程引入新课我们知道求事件的概率有加法公式:若事件A与B互斥,则P(A∪B)=P(A)+P(B).那么怎么求A与B的积事件AB呢?回顾旧知:1.事件A与B至少有一个发生的事件叫做A与B的和事件,记为A∪B(或A+B);2.事件A与B都发生的事件叫做A与B的积事件,记为A∩B(或AB);如果事件A1,A2,…,A n彼此互斥,那么P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n).提出问题:甲果盘里有3个苹果,2个橙子,乙果盘里有2个苹果,2个橙子,从这两个果盘里分别摸出1个水果,它们都是苹果的概率是多少?活动结果:不妨设事件A:“从甲果盘里摸出1个水果,得到苹果”;事件B:“从乙果盘里摸出1个水果,得到苹果”.“从这两个果盘里分别摸出1个水果,它们都是苹果”是一个事件,它的发生,就是事件A ,B 同时发生,记作AB.(简称积事件)从甲果盘里摸出1个水果,有5种等可能的结果;从乙果盘里摸出1个水果,有4种等可能的结果.于是从这两个果盘里分别摸出1个水果,共有5×4种等可能的结果.同时摸出苹果的结果有3×2种.所以从这两个果盘里分别摸出1个水果,它们都是苹果的概率P(AB)=3×25×4=310. 探究新知提出问题:大家观察P(AB)与P(A)、P(B)有怎样的关系?活动结果:从甲果盘里摸出1个水果,得到苹果的概率P(A)=35,从乙果盘里摸出1个水果,得到苹果的概率P(B)=24.显然P(AB)=P(A)P(B). 继续探究:事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)事件A 是否发生对事件B 发生的概率有无影响?(无影响)探究结果:显然,事件A“从甲果盘里摸出1个水果,得到苹果”对事件B“从乙果盘里摸出1个球水果,得到苹果”没有影响,即事件A 的发生不会影响事件B 发生的概率.于是:P(B|A)=P(B),又P(B|A)=P(AB)P(A),易得:P(AB)=P(A)P(B|A)=P(A)P(B). 将上述问题一般化,得出如下定义:1.相互独立事件的定义:设A ,B 为两个事件,如果P(AB)=P(A)P(B),则称事件A 与事件B 相互独立(mutually independent).理解新知事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件就叫做相互独立事件.若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立.简证:若A 与B 是相互独立事件,则P(AB)=P(A)P(B).所以P(A B )=P(A)-P(AB)=P(A)-P(A)P(B)=P(A)(1-P(B))=P(A)P(B );P(A B)=P(B)-P(AB)=P(B)-P(A)P(B)=(1-P(A))P(B)=P(A )P(B);P(A B )=P(A )-P(A B)=P(A )-P(A )P(B)=P(A )(1-P(B))=P(A )P(B ); 即A 与B ,A 与B ,A 与B 也相互独立.教师指出:定义表明如果P(AB)=P(A)P(B),则称事件A 与事件B 相互独立,反之亦然.2.相互独立事件同时发生的概率:P(AB)=P(A)P(B).即两个相互独立事件同时发生的概率,等于每个事件发生的概率的积.类比:若事件A 与B 互斥,则P(A∪B)=P(A)+P(B).提出问题:该结论能否推广到一般情形?P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ).活动结果:一般地,如果事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,P(A1A2…A n)=P(A1)P(A2)…P(A n).运用新知例1已知诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题的概率为0.5,老二为0.45,老三为0.4,且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大?设计意图:题目富有趣味性,激发学生兴趣,使其创造力得到进一步发挥.解:设“臭皮匠老大解出问题”为事件A,“老二解出问题”为事件B,“老三解出问题”为事件C,“诸葛亮解出问题”为事件D,则三个臭皮匠中至少有一人解出问题的概率为1-P(A B C)=1-0.5×0.55×0.6=0.835>0.8=P(D).所以,合三个臭皮匠之力解出问题的把握就大过诸葛亮.例2甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率.解:记“甲射击1次,击中目标”为事件A,“乙射击1次,击中目标”为事件B,则A与B,A与B,A与B,A与B为相互独立事件,(1)2人都射中的概率为:P(AB)=P(A)P(B)=0.8×0.9=0.72,∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲射中、乙未射中(事件A B发生),另一种是甲未射中、乙射中(事件A B发生).根据题意,事件A B与A B互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:P(A B)+P(A B)=P(A)P(B)+P(A)P(B)=0.8×(1-0.9)+(1-0.8)×0.9=0.08+0.18=0.26,∴2人中恰有1人射中目标的概率是0.26.(3)(法1):“2人至少有1人射中”包括“2人都中”和“2人有1人不中”两种情况,其概率为P=P(AB)+[P(A B)+P(A B)]=0.72+0.26=0.98.(法2):“2人至少有一个射中”与“2人都未射中”为对立事件,2人都未射中目标的概率是P(A B)=P(A)P(B)=(1-0.8)(1-0.9)=0.02,∴2人至少有1人射中目标的概率为P=1-P(A B)=1-0.02=0.98.(4)(法1):“至多有1人射中目标”包括“有1人射中”和“2人都未射中”,故所求概率为:P=P(A B)+P(A B)+P(A B)=P(A)P(B)+P(A)P(B)+P(A)P(B)=0.02+0.08+0.18=0.28.(法2):“至多有1人射中目标”的对立事件是“2人都射中目标”,故所求概率为P=1-P(AB)=1-P(A)P(B)=1-0.72=0.28.【变练演编】在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.解:分别记这段时间内开关J A,J B,J C能够闭合为事件A,B,C.由题意,这段时间内3个开关是否能够闭合相互之间没有影响.根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是P(A B C)=P(A)P(B)P(C)=[1-P(A)][1-P(B)][1-P(C)]=(1-0.7)(1-0.7)(1-0.7)=0.027.∴这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是1-P(A B C)=1-0.027=0.973.答:在这段时间内线路正常工作的概率是0.973.变式1:如图添加第四个开关J D与其他三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率.([1-P(A B C)]·P(D)=0.973×0.7=0.681 1)变式2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.方法一:P(A B C)+P(A BC)+P(A B C)+P(ABC)+P(AB C)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.847.方法二:分析要使这段时间内线路正常工作只要排除J C 开且J A 与J B 至少有1个开的情况.则1-P(C )[1-P(AB)]=1-0.3×(1-0.72)=0.847.【达标检测】已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮? 分析:因为敌机被击中就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率.解:(1)设“敌机被第k 门高炮击中”为事件为A k (k =1,2,3,4,5),那么5门高炮都未击中敌机的事件为A 1 A 2 A 3 A 4 A 5 .∵事件A 1,A 2,A 3,A 4,A 5相互独立,∴敌机未被击中的概率为P(A 1 A 2 A 3 A 4 A 5 )=P(A 1)P(A 2)P(A 3)P(A 4)P(A 5)=(1-0.2)5=(45)5. ∴敌机未被击中的概率为(45)5. (2)设至少需要布置n 门高炮才能有0.9以上的概率击中敌机,仿照(1)可得:敌机被击中的概率为1-(45)n ,∴令1-(45)n ≥0.9.∴(45)n ≤110. 两边取常用对数,得n≥11-3lg2≈10.3. ∵n∈N *,∴n=11.∴至少需要布置11门高炮才能有0.9以上的概率击中敌机.点评:逆向思考方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便.课堂小结1.一般地,两个事件不可能既互斥又相互独立,因为互斥事件不可能同时发生,而相互独立事件是以它们能够同时发生为前提.相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的.(列表比较)2.解决概率问题的关键:分解复杂问题为基本的互斥事件与相互独立事件.补充练习【基础练习】1.袋中有2个白球,3个黑球,从中依次取出2个,则取出两个都是白球的概率是( )A.12B.25C.35D.1102.甲、乙、丙三人独立地去译一个密码,分别译出的概率为15,13,14,则此密码能译出的概率是( )A.160B.25C.35D.59603.两个篮球运动员在罚球时命中概率分别是0.7和0.6,每人投篮3次,则2人都恰好进2球的概率是________.答案:1.D 2.C 3.0.190 512【拓展练习】某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话;(2)拨号不超过3次而接通电话.解:设A i ={第i 次拨号接通电话},i =1,2,3.(1)第3次才接通电话可表示为A 1 A 2A 3,于是所求概率为P(A 1 A 2A 3)=910×89×18=110; (2)拨号不超过3次而接通电话可表示为:A 1+A 1A 2+A 1 A 2A 3,于是所求概率为P(A 1+A 1A 2+A 1 A 2A 3)=P(A 1)+P(A 1A 2)+P(A 1 A 2A 3)=110+910×19+910×89×18=310. 设计说明本节课由六个基本环节组成:复习旧知,创造类比条件―→提出问题,引发思考―→合作交流,感知问题―→类比联想,探索问题―→实践应用,解决问题―→小结反思,深化拓展.(1)以问题作为教学的主线.在趣味性情境中发现问题,在猜想、对比性问题中展开探索,在实践应用性问题中感悟数学的思维与方法.(2)以课堂作为教学的辐射源.通过教师、学生、多媒体多点辐射,带动和提高所有学生的学习积极性与主动性.备课资料1.甲、乙两人独立地解决同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( )A .p 1p 2B .p 1(1-p 2)+p 2(1-p 1)C .1-p 1p 2D .1-(1-p 1)(1-p 2)答案:B2.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是0.05,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解:记“第一次抽奖抽到某一指定号码”为事件A,“第二次抽奖抽到某一指定号码”为事件B,则“两次抽奖都抽到某一指定号码”就是事件AB.(1)由于两次抽奖结果互不影响,因此A与B相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率为P(AB)=P(A)P(B)=0.05×0.05=0.002 5.(2)“两次抽奖恰有一次抽到某一指定号码”可以用(A B)∪(A B)表示.由于事件A B 与A B互斥,根据概率的加法公式和相互独立事件的定义,可得所求的概率为P(A B)+P(A B)=P(A)P(B)+P(A)P(B)=0.05×(1-0.05)+(1-0.05)×0.05=0.095.(3)“两次抽奖至少有一次抽到某一指定号码”可以用(AB)∪(A B)∪(A B)表示.由于事件AB,A B和A B两两互斥,根据概率的加法公式和相互独立事件的定义,可得所求的概率为P(AB)+P(A B)+P(A B)=0.002 5+0.095=0.097 5.。
高二数学选修2_3第二章随机变量和分布
§2.1.1离散型随机变量一、教学目标1.复习古典概型、几何概型有关知识。
2.理解离散型随机变量的概念,学会区分离散型与非离散型随机变量。
3. 理解随机变量所表示试验结果的含义,并恰当地定义随机变量.重点:离散型随机变量的概念,以及在实际问题中如何恰当地定义随机变量.难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究.二、复习引入:1.试验中不能的随机事件,其他事件可以用它们来,这样的事件称为。
所有基本事件构成的集合称为,常用大写希腊字母表示。
2.一次试验中的两个事件叫做互斥事件(或称互不相容事件)。
互斥事件的概率加法公式。
3. 一次试验中的两个事件叫做互为对立事件,事件A的对立事件记作,对立事件的概率公式4.古典概型的两个特征:(1) .(2) .5.概率的古典定义:P(A)= 。
6.几何概型中的概率定义:P(A)= 。
三、预习自测:1.在随机试验中,试验可能出现的结果,并且X是随着试验的结果的不同而的,这样的变量X叫做一个。
常用表示。
2.如果随机变量X的所有可能的取值,则称X为。
四、典例解析:例1写出下列各随机变量可能取得值:(1)抛掷一枚骰子得到的点数。
(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。
(3)抛掷两枚骰子得到的点数之和。
(4)某项试验的成功率为0.001,在n次试验中成功的次数。
(5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值例2随机变量X为抛掷两枚硬币时正面向上的硬币数,求X的所有可能取值及相应概率。
变式训练一只口袋装有6个小球,其中有3个白球,3个红球,从中任取2个小球,取得白球的个数为X,求X的所有可能取值及相应概率。
例3△ABC中,D,E分别为AB,AC的中点,向△ABC部随意投入一个小球,求小球落在△ADE 中的概率。
五、当堂检测1.将一颗均匀骰子掷两次,不能作为随机变量的是:()(A)两次出现的点数之和;(B)两次掷出的最大点数;(C)第一次减去第二次的点数差;(D)抛掷的次数。
人教课标版高中数学选修2-3《事件的独立性》教案-新版
第二章随机变量及其分布2.2 二项分布及其应用2.2.1 事件的独立性一、教学目标1、核心素养通过上一节课条件概率和本节课事件的相互独立性的学习,使学生会处理较为复杂的概率计算,同时也培养了学生分类讨论的思想.从而提高了学生的运算能力和数学建模能力;2、学习目标(1)理解事件独立性的概念;(2)理解互斥事件、对立事件和相互独立事件的区别;(3)会利用相互独立事件概率的乘法公式解决相应的问题;3、学习重点理解事件A与B独立的概念,并能运用相互独立事件的概率乘法公式解决实际问题;4、学习难点运用相互独立事件的概率乘法公式解决实际问题二、教学设计(一)课前设计1、预习任务任务1阅读教材,思考:(1)互斥事件、相互独立事件和对立事件的区别?(2)如何用条件概率证明两个事件相互独立?任务2熟记相互独立事件的乘法公式,并会利用公式解决预习自测的题目;2、预习自测1.设A与B是相互独立事件,则下列命题中正确的命题是()A.A与B是对立事件B.A与B是互斥事件C.A与B不相互独立D.A与B是相互独立事件答案 D2.一个口袋中有黑球和白球各5个,从中连摸两次球,每次摸一个且每次摸出后不放回,用A表示第一次摸得白球,B 表示第二次摸得白球,则A 与B 是( )A 、互斥事件B 、不相互独立事件C 、对立事件D 、相互独立事件 答案 B3.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( )A.0.12B.0.88C.0.28D.0.42答案:D4.一学生通过英语听力测试的概率是21,他连续测试两次,那么其中恰好一次通过的概率是( ) A.41 B.31 C.21 D.43 答案:C(二)课堂设计1、知识回顾(1)互斥事件和相互独立事件的概念;(2)互斥事件与相互独立事件的区别;(3)古典概型的概率公式;(4)条件概率的概念及其性质、计算公式;(5)本节课所学习的事件独立性的概念?相互独立事件概率计算公式?2、问题探究问题探究一 活动一:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A 为“第一名同学没有抽到中奖奖券”,事件B 为“最后一名同学抽到中奖奖券”.事件A 的发生会影响事件B 发生的概率吗?解析:显然无放回时,A 的发生影响着B ,即是条件概率.而当有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A 的发生不会影响事件B 发生的概率.于是P (B |A )=P (B ),代入条件概率公式得P (AB )=P (B |A )P (A )=P (A )P (B )活动二:甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球 问题:事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)问题:事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响) “从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.(简称积事件)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果同时摸出白球的结果有32⨯种所以从这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅. 相互独立事件的定义:设A,B 为两个事件,如果 P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立(mutually independent ).事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅问题探究二、互斥事件、对立事件、相互独立事件的区别 1.定义:设A ,B 为两个事件,如果()=()()P AB P A P B ⋅,那么称事件A 与事件B 相互独立.2.如果A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都相互独立.3.如果A 与B 相互独立,那么()=()P B A P B ,()=()P A B P A .4.互斥事件是不可能同时发生的两个事件,而相互独立事件是指一个事件是否发生对另一个事件发生的概率没有影响,二者不能混淆.对于事件A、B,在一次试验中,A、B如果不能同时发生,那么称A、B互斥.一次试验中,如果A、B两个事件互斥且A、B中必然有一个发生,那么称A、B对立,显然A+B为一个必然事件.A、B互斥则不能同时发生,但可能同时不发生.如掷一枚骰子,“点数为1”为事件A,“点数为2”为事件B,则A、B可能都不发生.两事件相互独立是指一个事件的发生与否对另一事件发生的概率没有影响.A、B互斥,则0)(=ABP;A、B对立,则1)()(=+BPAP.A、B相互独立,则)()()(BPAPABP⋅=,可见这是不相同的概率.问题探究三、利用相互独立事件乘法公式能解决哪些实际问题?例1.一个口袋内装有2个白球和2个黑球.求(1)先摸出一个白球不放回,再摸出一个白球的概率是多少?(2)先摸出一个白球后放回,再摸出一个白球的概率是多少?【知识点:相互独立事件乘法公式、条件概率】详解:(1)先摸出一白球不放回这件事对再摸出一个白球的概率产生了影响,再摸时只有一个白球,两个黑球,则概率为13;(2)先摸出一白球后放回这件事对再摸出一个白球的概率没有影响,还是从两个白球两个黑球中摸,则概率为1 2例2.天气预报中,在元旦假期甲地的降雨概率是0.2,乙地的降雨概率是0.3.假定在这段时间内两地是否降雨相互之间没有影响,计算在这段时间内:(1)甲乙两地都降雨的概率;(2)甲乙两地都不降雨的概率;(3)甲乙两地至少一个地方的概率;【知识点:相互独立事件乘法公式;数学思想:正难则反思想】详解:“甲地降雨”为时间A,“乙地降雨”为事件B.(1)“甲乙两地都不下雨”表示时间A,B同时发生,且甲乙两地是否降雨相互之间没有影响,即事件A与事件B相互独立.所以()()()=0.20.3=0.06p AB P A P B=⨯(2)“甲乙两地都不降雨”即事件A与B同时发生.利用独立事件的性质2可知,事件A与B 相互独立.所以()()()10.210.30.56p AB P A p B==-⨯-=()()(3)“至少一个地方降雨”用字母表示应为()()()()()()()()()()0.20.70.80.30.20.30.44p AB AB AB p AB p AB p AB p A p B p A p B p A p B ++=++=++=⨯+⨯+⨯=例3:俗话说“三个臭皮匠,顶上一个诸葛亮”,从数学角度解释这句话的含义【知识点:相互独立事件乘法公式;数学思想:正难则反思想】分析:三个臭皮匠不妨命名为A,B,C .假设三人解决某一问题的概率为0.5,且相互独立.诸葛亮解决该问题的概率为0.8.那么这三个臭皮匠至少有一人解决问题的概率为:1()10.50.50.50.8750.8p ABC -=-⨯⨯=>从数学角度解释名言,更能引起同学们的兴趣.激发他们上课的热情和积极性.例4:某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是0.05,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码;【知识点:相互独立事件乘法公式;数学思想:正难则反思想】详解:设“第一次抽奖抽到某一指定号码”为事件A ,“第二次抽奖抽到某一指定号码”为事件B ,“两次抽奖都抽到某一指定号码”为事件AB .(1)由于两次抽奖结果互不影响,因此事件A 与B 相互独立.于是由独立性可得,两次抽奖抽到某一指定号码的概率为P (AB )=P (A )P (B )=0.05×0.05=0.0025.(2)“两次抽奖恰有一次抽到某一指定号码”可以用(A )()B AB 表示.由于事件B A B A 与互斥,根据概率的加法公式和相互独立事件的定义可得,所求事件的概率为095.005.0)05.01()05.01(05.0)()()()()()(=⨯-+-⨯=+=+B P A P B P A P B A P B A P (3)“两次抽奖至少有一次抽到某一指定号码”可以用()()()AB AB AB 表示.由于事件B A B A AB ,,两两互斥,根据概率的加法公式和相互独立事件的定义可得,所求事件的概率为0975.0095.00025.0)()()(=+=++B A P B A P AB P例5.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?【知识点:相互独立事件乘法公式;数学思想:正难则反思想】分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k 门高炮击中的事件为K A (k =1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为5512345123454()=()()()()()(10.2)5P A A A A A P A P A P A P A P A ⎛⎫⋅⋅⋅⋅⋅⋅⋅⋅=-= ⎪⎝⎭∴敌机未被击中的概率为5)54(. (2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得: 敌机被击中的概率为415n⎛⎫- ⎪⎝⎭∴令41()0.95n -≥,∴41()510n ≤ 两边取常用对数,得110.313lg 2n ≥≈- ∵+∈N n ,∴11n = ∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点拨:上面例题的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便;3、课堂总结结合第一小节的知识梳理【知识梳理】【重点难点突破】(1)条件概率的计算方法有两种:①利用定义计算,先分别计算概率)(AB P 和)(A P ,然后代入公式)()()(A P AB P A B P =. ②利用缩小样本空间计算(局限在古典概型内),即将原来的样本空间Ω缩小为已知的事件A ,原来的事件B 缩小为AB ,利用古典概型计算概率:)()()(A n AB n A B P =. (2)判定相互独立事件的方法①由定义,若)()()(B P A P AB P ⋅=,则B A 、独立.②有些事件不必通过概率的计算就能判定其独立性,如有放回的两次抽奖,由事件本身的性质就能直接判定出是否相互影响,从而得出它们是否相互独立.4、随堂检测1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )()A 320 ()B 15 ()C 25 ()D 920【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 C2.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C2个球不都是白球的概率()D2个球中恰好有1个是白球的概率【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 C3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是()()A0.128 ()B0.096 ()C0.104 ()D0.384【知识点:相互独立事件乘法公式;】答案 B4.某道路的A、B、C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是()()A35192()B25192()C35576()D65192【知识点:相互独立事件乘法公式;】答案 A5.(1)将一个硬币连掷5次,5次都出现正面的概率是;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是.【知识点:相互独立事件乘法公式;】答案(1) 132(2) 0.56(三)课后作业★基础型自主突破1.一个口袋中有黑球和白球各5个,从中连摸两次球,每次摸一个且每次摸出后不放回,用A 表示第一次摸得白球,B表示第二次摸得白球,则A与B是()A、互斥事件B、不相互独立事件C、对立事件D、相互独立事件【知识点:相互独立事件、互斥事件】答案 B2.10件产品中有4件是次品,从10件产品中任取2件,恰好2件是正品或2件是次品的概率是()A、225B、215C、13D、715【知识点:相互独立事件乘法公式;数学思想:分类谈论思想】答案 D3.加工某零件需要经过两道工序,第一道工序的废品率是0.01,第二道工序的废品率为0.02,设这两道工序是否出废品是彼此无关的,那么产品的合格率为()A、0.9702B、0.9700C、0.9998D、0.9996【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 A4.种植某种树苗,成活率为0.9,若种植这种树苗5棵,则恰好成活4棵的概率是()A、0.33B、0.66C、0.5D、0.45【知识点:相互独立事件乘法公式】答案 B5.一射手对同一目标独立地射击四次,已知至少命中一次的概率为8081,则此射手每次击中的概率是()A、13B、23C、14D、25【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 C6.甲、乙两篮球运动员在罚球线投球的命中率分别是0.7和0.6,每人投球3次,则两人都投进2球的概率是_________.【知识点:相互独立事件乘法公式】答案0.19★★能力型师生共研7.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是()A.p1p2B.p1(1-p2)+p2(1-p1)C.1-p1p2D.1-(1-p1)(1-p2)【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 B8.(浙江)甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( )(A ) 0.216 (B )0.36 (C )0.432 (D )0.648【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 D9.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为______. 【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 2411 10.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为53,若40分为最低分数线,则该生被选中的概率是________.【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 31251053 11.甲、乙、丙三人射击命中目标的概率分别为0.5,0.25,0.125,现三人同时射击一目标,则目标被命中的概率为________.【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 6443 ★★★探究型 多维突破12.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一个荷叶),而且顺时针方向跳的概率是逆时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 荷叶上,则跳三次之后停在A 荷叶上的概率是( )A.13 B.29 C.49 D.827答案 A【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】13.在一个选拔项目中,每个选手都需要进行四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为5 6、45、34、13,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率;(3)该选手在考核过程中回答过的问题的个数记为X,求随机变量X的分布列.【知识点:相互独立事件乘法公式;数学思想:正难则反思想,分类讨论思想】答案:设事件A i(i=1,2,3,4)表示“该选手能正确回答第i轮问题”,由已知P(A1)=56,P(A2)=45,P(A3)=34,P(A4)=13,(1)设事件B表示“该选手进入第三轮才被淘汰”,则P(B)=P(A1A2A3)=P(A1)P(A2)P(A3)=56×45×(1-34)=16.(2)设事件C表示“该选手至多进入第三轮考核”,则P(C)=P(A1+A1A2+A1A2A3)=P(A1)+P(A1A2)+P(A1A2A3)=16+56×15+56×45×(1-34)=12.(3)X的可能取值为1,2,3,4.P(X=1)=P(A1)=1 6,P(X=2)=P(A1A2)=56×(1-45)=16,P(X=3)=P(A1A2A3)=56×45×(1-34)=16,P(X=4)=P(A1A2A3)=56×45×34=12,所以,X的分布列为自助餐1.已知事件A 、B 发生的概率都大于零,则( )A .如果A 、B 是互斥事件,那么A 与B 也是互斥事件B .如果A 、B 不是相互独立事件,那么它们一定是互斥事件C .如果A 、B 是相互独立事件,那么它们一定不是互斥事件D .如果A +B 是必然事件,那么它们一定是对立事件【知识点:相互独立事件、互斥事件】答案 C2.两个事件对立是这两个事件互斥的( )A .充分但不是必要条件B .必要但不是充分条件C .充分必要条件D .既不充分又不必要条件【知识点:互斥事件、对立事件】答案 B3.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则它们都中靶的概率是( )A.35B.34C.1225D.1425【知识点:相互独立事件乘法公式】答案 D4.今有光盘驱动器50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为( )A .35035C CB .350352515C C C C ++ C .3503451C C -D .3501452524515C C C C C + 【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 D5.甲、乙、丙3人投篮,投进的概率分别是13,25,12.现3人各投篮1次,则3人都没有投进的概率为( )A.115B.215C.15D.110【知识点:相互独立事件乘法公式】答案 C6.甲盒中有200个螺杆,其中有160个A 型的,乙盒中有240个上螺母,其中有180个A 型的,现从甲、乙两盒中各任取一个,则能配成A 型的螺栓概率为( )A .201 B.1615 C .53 D .2019 【知识点:相互独立事件乘法公式】答案 C7.到成都旅游的外地游客中,若甲、乙、丙三人选择去武侯祠游览的概率均为35,且他们的选择互不影响,则这三人中至多有两人选择去武侯祠游览的概率为( )A.36125B.44125C.54125D.98125【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 D8.位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位移动的方向为向上或向右,并且向上和向右移动的概率都为21,质点P 移动5次后位于(2,3)的概率是( ) A.5)21( B.525)21(C C.325)21(C D.53525)21(C C【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 B9.某市派出甲、乙两支球队参加全省足球冠军赛甲乙两队夺取冠军的概率分别是4173和 .则该市足球队夺得全省冠军的概率是_________.【知识点:互斥事件加法公式】答案 2819 10.一个家庭中有两个小孩,求:(1)两个小孩中有一个是女孩的概率;(2)两个都是女孩的概率; (3)已知其中一个是女孩,另一个也是女孩的概率.【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案:设“家庭中有一个是女孩”为事件A ,“另一个也是女孩”为事件B ,则“两个都是女孩”为事件AB ,家庭中有两个小孩的情况有:男、男;男、女;女、男;女、女;共4种情况,因此n (Ù)=4;其中有一个是女孩的情况有3种,因此n (A )=3;其中两个都是女孩的情况有1种,因此n (AB )=1.(1)由P (A )=n (A )n (Ù)=34,可得两个小孩中有一个是女孩的概率为34.(2)由P (AB )=n (AB )n (Ù)=14,可得两个都是女孩的概率为14.(3)由条件概率公式,可得P (B |A )=P (AB )P (A )=1434=13或P (B |A )=n (AB )n (A )=13.因此,在已知其中一个是女孩,另一个也是女孩的概率为13.11.某零件从毛坯到成品,一共要经过六道自动加工工序,如果各道工序出次品的概率分别为0.01、0.02、0.03、0.03、0.05、0.05,那么这种零件的次品率是多少?【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案:设“第i 道工序出次品”为事件A i ,i =1,2,3,4,5,6,它们相互独立,但不互斥,所以出现次品的概率为P (A 1+A 2+A 3+A 4+A 5+A 6)=1-P (A -1·A -2·A -3·A -4·A -5·A -6)=1-(1-0.01)·(1-0.02)·(1-0.03)2·(1-0.05)2=0.176 1.12.甲、乙2个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:(1)2个人都译出密码的概率;(2)2个人都译不出密码的概率;(3)恰有1个人译出密码的概率;(4)至多1个人译出密码的概率;(5)至少1个人译出密码的概率.【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案: 记“甲独立地译出密码”为事件A ,“乙独立地译出密码”为事件B ,A ,B 为相互独立事件,且P (A )=13,P (B )=14.(1)“2 个人都译出密码”的概率为:P (A ·B )=P (A )×P (B )=13×14=112.(2)“2个人都译不出密码”的概率为:P (A ·B )=P (A )×P (B )=[1-P (A )]×[1-P (B )]=(1-13)(1-14)=12. (3)“恰有1个人译出密码”可以分为两类:甲译出乙未译出以及甲未译出乙译出,且两个事件为互斥事件,所以恰有1个人译出密码的概率为:P (A ·B +A ·B )=P (A ·B )+P (A ·B )=P (A )P (B )+P (A )P (B )=13(1-14)+(1-13)×14=512.(4)“至多1个人译出密码”的对立事件为“有2个人译出密码”,所以至多1个人译出密码的概率为:1-P (AB )=1-P (A )P (B )=1-13×14=1112.(5)“至少1个人译出密码”的对立事件为“2个都未译出密码”,所以至少有1个人译出密码的概率为:1-P (A ·B )=1-P (A )P (B )=1-23×34=12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学:人教版选修2-3第二章离散型随机变量教案(2.2.2事件的相互独立性)2.2.2事件的相互独立性教学目标:知识与技能:理解两个事件相互独立的概念。
过程与方法:能进行一些与事件独立有关的概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:独立事件同时发生的概率教学难点:有关独立事件发生的概率计算授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪教学过程:一、复习引入:1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作.3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为,必然事件和不可能事件看作随机事件的两个极端情形5基本事件:一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件7.等可能性事件的概率:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A和事件B是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.一般地:如果事件中的任何两个都是互斥的,那么就说事件彼此互斥11.对立事件:必然有一个发生的互斥事件.12.互斥事件的概率的求法:如果事件彼此互斥,那么=探究:(1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少?事件:甲掷一枚硬币,正面朝上;事件:乙掷一枚硬币,正面朝上(2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件:从甲坛子里摸出1个球,得到白球;事件:从乙坛子里摸出1个球,得到白球问题(1)、(2)中事件、是否互斥?(不互斥)可以同时发生吗?(可以)问题(1)、(2)中事件(或)是否发生对事件(或)发生的概率有无影响?(无影响)思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A为"第一名同学没有抽到中奖奖券", 事件B为"最后一名同学抽到中奖奖券". 事件A的发生会影响事件B 发生的概率吗?显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A的发生不会影响事件B 发生的概率.于是P(B| A)=P(B),P(AB)=P( A ) P ( B |A)=P(A)P(B).二、讲解新课:1.相互独立事件的定义:设A, B为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A与事件B相互独立(mutually independent ) .事件(或)是否发生对事件(或)发生的概率没有影响,这样的两个事件叫做相互独立事件若与是相互独立事件,则与,与,与也相互独立2.相互独立事件同时发生的概率:问题2中,"从这两个坛子里分别摸出1个球,它们都是白球"是一个事件,它的发生,就是事件,同时发生,记作.(简称积事件)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有种等可能的结果同时摸出白球的结果有种所以从这两个坛子里分别摸出1个球,它们都是白球的概率.另一方面,从甲坛子里摸出1个球,得到白球的概率,从乙坛子里摸出1个球,得到白球的概率.显然.这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积,即.3.对于事件A与B及它们的和事件与积事件有下面的关系:三、讲解范例:例 1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解: (1)记"第一次抽奖抽到某一指定号码"为事件A, "第二次抽奖抽到某一指定号码"为事件B ,则"两次抽奖都抽到某一指定号码"就是事件AB.由于两次抽奖结果互不影响,因此A与B相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025.(2 ) "两次抽奖恰有一次抽到某一指定号码"可以用(A)U (B)表示.由于事件A与B互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P (A)十P(B)=P(A)P()+ P()P(B )= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.( 3 ) "两次抽奖至少有一次抽到某一指定号码"可以用(AB ) U ( A)U(B)表示.由于事件 AB , A和B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P( AB ) + P(A)+ P(B ) = 0.0025 +0. 095 = 0. 097 5. 例2.甲、乙二射击运动员分别对一目标射击次,甲射中的概率为,乙射中的概率为,求:(1)人都射中目标的概率;(2)人中恰有人射中目标的概率;(3)人至少有人射中目标的概率;(4)人至多有人射中目标的概率?解:记"甲射击次,击中目标"为事件,"乙射击次,击中目标"为事件,则与,与,与,与为相互独立事件,(1)人都射中的概率为:,∴人都射中目标的概率是.(2)"人各射击次,恰有人射中目标"包括两种情况:一种是甲击中、乙未击中(事件发生),另一种是甲未击中、乙击中(事件发生)根据题意,事件与互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:∴人中恰有人射中目标的概率是.(3)(法1):2人至少有1人射中包括"2人都中"和"2人有1人不中"2种情况,其概率为.(法2):"2人至少有一个击中"与"2人都未击中"为对立事件,2个都未击中目标的概率是,∴"两人至少有1人击中目标"的概率为.(4)(法1):"至多有1人击中目标"包括"有1人击中"和"2人都未击中",故所求概率为:.(法2):"至多有1人击中目标"的对立事件是"2人都击中目标",故所求概率为例 3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率解:分别记这段时间内开关,,能够闭合为事件,,.由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是.答:在这段时间内线路正常工作的概率是.变式题1:如图添加第四个开关与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率()变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率方法一:方法二:分析要使这段时间内线路正常工作只要排除开且与至少有1个开的情况例 4.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k门高炮击中的事件为(k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为.∵事件,,,,相互独立,∴敌机未被击中的概率为=∴敌机未被击中的概率为.(2)至少需要布置门高炮才能有0.9以上的概率被击中,仿(1)可得:敌机被击中的概率为1-∴令,∴两边取常用对数,得∵,∴∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点评:上面例1和例2的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语"至多"、"至少"的问题时的运用,常常能使问题的解答变得简便四、课堂练习:1.在一段时间内,甲去某地的概率是,乙去此地的概率是,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )2.从甲口袋内摸出1个白球的概率是,从乙口袋内摸出1个白球的概率是,从两个口袋内各摸出1个球,那么等于()2个球都是白球的概率2个球都不是白球的概率2个球不都是白球的概率2个球中恰好有1个是白球的概率3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是()0.1280.0960.1040.3844.某道路的、、三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是()5.(1)将一个硬币连掷5次,5次都出现正面的概率是;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是.6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,(1)每穴播两粒,此穴缺苗的概率为;此穴无壮苗的概率为.(2)每穴播三粒,此穴有苗的概率为;此穴有壮苗的概率为.7.一个工人负责看管4台机床,如果在1小时内这些机床不需要人去照顾的概率第1台是0.79,第2台是0.79,第3台是0.80,第4台是0.81,且各台机床是否需要照顾相互之间没有影响,计算在这个小时内这4台机床都不需要人去照顾的概率.8.制造一种零件,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1件,其中恰有1件废品的概率是多少?9.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?答案:1. C 2. C 3. B 4. A 5.(1) (2)6.(1) , (2) ,7. P=8. P=9. 提示:五、小结:两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响一般地,两个事件不可能即互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的六、课后作业:课本58页练习1、2、3 第60页习题 2. 2A组4. B组1七、板书设计(略)八、教学反思:1. 理解两个事件相互独立的概念。