细菌质粒提取原理及步骤(精)

合集下载

质粒提取的原理、操作步骤、各溶液的作用

质粒提取的原理、操作步骤、各溶液的作用

细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。

各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。

质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA 分子。

目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。

碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH 和 SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。

纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。

例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。

对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。

一、试剂准备1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。

1M Tris-HCl[t1] (pH 8.0)12.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。

在10 lbf/in2高压灭菌15min ,贮存于4℃。

任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液。

50 mM葡萄糖最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。

因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。

提取质粒的主要步骤原理

提取质粒的主要步骤原理

提取质粒的主要步骤原理提取质粒是一种分离和纯化质粒DNA的常见实验技术。

质粒是细菌细胞内环状的DNA分子,通常用于基因克隆、转化、表达和基因组编辑等研究。

下面将详细介绍质粒提取的主要步骤原理。

1. 细菌培养:首先,选择含有目标质粒的细菌菌株进行培养。

通常使用大肠杆菌等常用实验菌株。

将细菌接种到含有适当营养物质(如LB培养基)的培养物中,并在适当条件下培养,如37摄氏度、220 rpm振荡培养。

2. 收获细菌:将培养至适当生长期的细菌用离心机离心,收集菌体沉淀。

通常使用1500×g离心10分钟,得到一个细菌菌体的沉淀。

3. 质粒裂解:利用物理或化学方法将细菌菌体裂解,释放内部的质粒DNA。

物理方法包括超声波处理和冻融法,而化学方法则涉及使用碱性裂解液(如SDS 和NaOH)。

该步骤破坏了细胞壁和细胞膜,以及核酸酶等酶的活性。

4. 蛋白质沉淀:为了去除细菌染色体DNA和蛋白质,可通过蛋白质沉淀步骤使质粒DNA纯化。

一种常用的方法是加入混合溶液,其中包含非离子性洗涤剂(如SDS)和蛋白酶K。

SDS具有溶解细菌膜和蛋白质的作用,而蛋白酶K能够降解杂质蛋白质。

该反应可以在高温条件下进行,如50-60摄氏度,以增加SDS和蛋白酶K的活性。

5. DNA沉淀:通过加入盐和酒精,可以使DNA溶液中的质粒DNA沉淀。

正常情况下,添加等体积的冷异丙醇,再加入适量的盐溶液。

因为质粒DNA在冷异丙醇和高盐浓度下更容易沉淀。

经过离心,沉淀的DNA可被分离出来。

6. 洗涤和溶解:将DNA沉淀洗涤一两次,以去除盐和其他杂质。

通常使用70%乙醇洗涤,再次离心以分离DNA沉淀,然后去除液体,使其干燥。

最后,用适当的缓冲液(如TE缓冲液)溶解质粒DNA,以得到高纯度的DNA溶液。

以上步骤提取质粒的主要原理如下:在收获细菌步骤中,细菌通过离心过程被分离出来,得到菌体沉淀。

在质粒裂解步骤中,通过物理或化学方法破坏细胞结构,释放质粒DNA。

提取质粒的原理

提取质粒的原理

提取质粒的原理质粒是一种环状的DNA分子,存在于细菌、酵母等微生物细胞中,具有自主复制和传递的能力。

质粒在基因工程中扮演着重要的角色,可以被用来携带外源基因并在宿主细胞中表达。

因此,提取质粒是基因工程实验中必不可少的步骤之一。

本文将介绍提取质粒的原理及其相关技术。

提取质粒的原理提取质粒的原理基于细胞裂解和质粒分离的过程。

一般来说,提取质粒的步骤包括以下几个方面:1. 细胞裂解首先需要将含有质粒的细胞进行裂解,使质粒从细胞内部释放出来。

细胞裂解的方法有多种,包括机械破碎、超声波破碎、化学裂解等。

其中,化学裂解是最常用的方法之一,其原理是利用化学试剂破坏细胞壁和细胞膜,使细胞内部的物质释放出来。

常用的化学试剂包括SDS、EDTA、蛋白酶K等。

2. 分离质粒细胞裂解后,需要将质粒从其他细胞组分中分离出来。

质粒的分离方法有多种,包括离心、柱层析、电泳等。

其中,离心是最常用的方法之一,其原理是利用离心力将不同密度的物质分离开来。

在离心过程中,质粒会沉积到离心管底部形成沉淀,其他细胞组分则会在上层形成上清液。

此时,可以将上清液倒掉,留下质粒沉淀。

3. 纯化质粒分离出的质粒可能会受到其他杂质的污染,因此需要进行纯化。

质粒的纯化方法有多种,包括酚-氯仿法、硅胶柱层析法、离子交换柱层析法等。

其中,酚-氯仿法是最常用的方法之一,其原理是利用酚和氯仿的不同溶解度将DNA、RNA和蛋白质分离开来。

在酚-氯仿法中,质粒会在上层形成一个白色的粘稠物质,其他杂质则会在下层形成。

提取质粒的技术提取质粒的技术有多种,包括常规提取法、快速提取法、自动提取法等。

其中,常规提取法是最常用的方法之一,其步骤如下:1. 细胞裂解将含有质粒的细胞进行裂解,使质粒从细胞内部释放出来。

常用的化学试剂包括SDS、EDTA、蛋白酶K等。

2. 分离质粒将裂解后的细胞进行离心,分离出质粒沉淀。

3. 纯化质粒将分离出的质粒进行酚-氯仿法纯化。

4. 洗涤质粒将纯化后的质粒进行洗涤,去除残留的酚和氯仿。

质 粒 提 取 原理及步骤

质 粒 提 取 原理及步骤

质粒提取原理及步骤--(二)一、导论已经提出过许多方法用于从细菌中提纯质粒DNA,这些方法都含有以下3个步骤:1. 细菌培养物的生长。

2. 细菌的收获和裂解3. 质粒DNA的纯化。

(一)细菌培养物的生长从琼脂平板上挑取一个单菌落,接种到培养物中(有含有行当抗生素的液体培养基中生长),然后从中纯化质粒,质粒的提纯几乎总是如此。

现在使用的许多质粒载体(如pUC系列)都能复制到很高的拷贝数,惟致只要将培养物放在LB 培养基中生长到对数晚期,就可以大量提纯质粒。

此时,不必性地扩增质粒DNA。

然而,较长一代的载体(如pBR322)由于不能如此自由地复制,所以需要在得到部分生长的细菌培养物中加入氯霉素继续培养若干小时,以便对质粒进行性扩增。

氯霉素可抑制宿主的蛋白质合成,结果阻止了细菌染色体的复制,然而,松弛型质粒仍可继续复制,在若干小时内,其拷贝数持续递增。

这样,像pBR322-类的质粒,从经氯霉素处理和未经处理的培养物中提取质粒的产量迥然不同,前者大为增高。

多年来,加入足以完全抑制蛋白质合成的氯霉素μg/ml)已成为的操作、用该方法提取的质粒DNA量,对于分子克隆中几乎所有想象到的工作任务。

(二)细菌的收获和裂解细菌的收获可通过离心来进行,而细菌的裂解则可以采用多种方法中的任意一种,这些方法包括用非离子型或离子型去污剂、有机溶剂或碱进行处理及用加热处理等。

选择哪一种方法取决于3个因素:质粒的大小、小肠杆菌菌株及裂解后用于纯化质粒DNA的技术。

尽管针对质粒和宿主的每一种组合分别提出精确的裂解条件不切实际,但仍可据下述一般准则来选择适当方法,以取得满意的结果。

1)大质粒(大于15kb)容易受损,故应采用漫和裂解法从细胞中释放出来。

将细菌悬于蔗糖等渗溶液中,然后用溶菌酶和EDTA进生处理,破坏细胞壁和细胞外膜,再加入SDS一类去污剂溶解球形体。

这种方法最大限度地减小了从具有正压的细菌内部把质粒释放出来所需要的作用力。

质粒提取 原理及步骤

质粒提取 原理及步骤

质粒提取原理及步骤质粒提取是分子生物学中的一项重要实验技术,被广泛应用于基因克隆、基因转染、基因表达等方面。

本文将重点介绍质粒提取的原理及步骤。

一、原理质粒提取的原理基于质粒和细胞的生化学性质差异。

质粒是一种独立复制的DNA分子,可以自主复制并传递给细胞的子代。

而在真核细胞中,大多数DNA都位于细胞核中,很难获得足够的DNA量进行实验。

质粒提取利用了这一差异,将大量的质粒从细胞中提取出来。

质粒提取的主要步骤如下:二、步骤1. 细胞培养首先需要选择适当的细胞类型并在培养基中培养,使细胞处于最佳生长状态。

对于大多数细胞类型,建议在对数生长期时采集,因为此时细胞数量最多且代谢活跃,可以有效提高质粒提取的DNA量和质量。

同时,还需注意避免细胞因为过于密集而形成聚集体或凝胶。

2. 细胞收获收获细胞的方法取决于细胞类型和实验的目的。

常见的方法包括用PBS或细胞培养液将细胞冲洗下来,或者用胶体离心等方法进行细胞收获。

收获的细胞量需要根据实验需求进行调整,一般建议在0.1-1g的范围内收获细胞。

3. 细胞裂解细胞裂解是质粒提取过程中最关键的步骤之一,它能有效破坏细胞膜和核膜,释放细胞内的DNA。

常用的细胞裂解剂包括SDS、Triton X-100和Tween-20等,同时还需要将细胞裂解液加入蛋白酶抑制剂和DNA酶切酶,以避免核酸降解和一些酶促反应的发生。

细胞裂解后,将细胞裂解液转移到离心管中,并进行离心分离,将细胞碎片等大分子杂质通过离心将其剔除。

4. DNA纯化DNA纯化是质粒提取的最后一步,目的是将提取得到的DNA从其他杂质中纯化出来。

不同的实验需求需要不同级别的DNA纯化,从而需要使用不同种类的DNA纯化试剂盒。

目前常用的DNA纯化试剂盒包括酚/氯仿提取法、离子交换柱纯化法、硅胶膜纯化法等。

在DNA纯化后,通过分析电泳和UV测定等方法进行检测,以确保提取的DNA质量和浓度满足实验需求。

总结质粒提取是分子生物学中非常基础和常用的实验技术,其所涉及的步骤包括细胞培养、细胞收获、细胞裂解和DNA纯化等步骤。

质粒提取步骤及原理

质粒提取步骤及原理

质粒提取是分子生物学中常用的实验技术,其目的是从细菌中提取出质粒DNA,用于后续的基因操作和分析。

下面是质粒提取的主要步骤和原理的详细解释。

一、质粒提取原理
质粒是细胞内的一种环状的小分子DNA,是进行DNA重组的常用载体。

作为一个具有自身复制起点的复制单位独立于细胞的主染色体之外,质粒DNA上携带了部分的基因信息,经过基因表达后使其宿主细胞表现相应的性状。

在DNA重组中,质粒或经过改造后的质粒载体可通过连接外源基因构成重组体。

从宿主细胞中提取质粒DNA,是DNA重组技术中最基础的实验技能。

二、质粒提取步骤
培养细菌使质粒扩增:将含有目标质粒的细菌接种在适当的培养基上,提供适当的条件(如温度、湿度和营养)使细菌生长和繁殖,从而使质粒得到扩增。

收集和裂解细菌:通过离心等方法收集培养好的细菌,然后使用适当的裂解液裂解细菌,使细菌的细胞壁和细胞膜破裂,释放出内部的质粒DNA。

分离和纯化质粒DNA:通过离心、过滤或层析等方法,将裂解液中的蛋白质、细胞碎片等杂质去除,得到相对纯净的质粒DNA。

这个过程中可能需要使用一些特殊的试剂或柱子来提高分离和纯化的效率。

通过以上步骤,我们可以从细菌中提取出高质量的质粒DNA,用于后续的基因操作和分析。

碱裂解法提取质粒DNA的实验原理和操作步骤

碱裂解法提取质粒DNA的实验原理和操作步骤

碱裂解法提取质粒DNA的实验原理和操作步骤碱裂解法是一种常用的方法,用于提取质粒DNA(plasmid DNA)纯化。

以下是具体的实验原理和操作步骤。

实验原理:碱裂解法利用碱性溶液将细菌细胞的细胞壁和细胞膜溶解,使细菌细胞内的质粒DNA被释放出来。

接着,使用中性化剂中和碱性溶液,使DNA带正电荷,而细胞中的蛋白质则带负电荷,从而能够通过离心将DNA与蛋白质分离。

最后,通过浓缩、洗涤和纯化,得到高质量的质粒DNA。

操作步骤:1.培养细菌:选取含有质粒DNA的细菌菌株,如大肠杆菌。

在含有适当抗生素的培养基中培养细菌菌株。

2.收获细菌:当菌液呈现较稠的浑浊状态时,收取细菌培养物。

使用离心机将菌液离心,分离菌体沉淀和上清液。

将上清液倒掉,保留菌体沉淀。

3.碱裂解:将菌体沉淀溶解于碱性溶液中,如盐酸和十二烷基硫酸钠(SDS)溶液。

轻轻混合并将溶液放入水浴中加热,使细菌细胞壁和细胞膜被溶解。

4.中和:使用中性化剂,如醋酸,使溶液中的酸性物质中和。

这样可以确保DNA带正电荷,而蛋白质和其他污染物则带负电荷。

5.离心:将溶液离心,在离心过程中,DNA会与细胞内其他分子分离,形成一个DNA沉淀。

上清液中含有蛋白质和其他污染物。

6.洗涤:使用洗涤缓冲液,如乙酸盐缓冲液,洗涤DNA沉淀,去除残留的污染物。

7.纯化:用去离子水溶解DNA沉淀,使其溶解在水中。

将溶解的DNA沉淀通过滤纸等过滤装置过滤掉残余杂质。

8.浓缩:通过酒精沉淀法或其他方法,将DNA溶液浓缩到所需的浓度。

9.检测:使用紫外分光光度计等方法,测定提取的质粒DNA的纯度和浓度。

注意事项:1.在实验过程中保持操作环境和仪器无菌。

2.碱裂解法中使用的溶液需准备新鲜,并避免受到污染。

3.操作过程中需要低温处理和离心操作,以保护DNA的完整性。

4.质粒DNA的提取可以根据实验目的进行进一步的扩增、测序或转染等应用。

总结:通过碱裂解法,可以从细菌中提取纯化的质粒DNA。

质粒大提原理

质粒大提原理

质粒大提原理
质粒大提原理(Plasmid Maxiprep Principle)是指在实验室中从大容量培养物中纯化大量质粒DNA的方法。

它是分子生物学中非常重要的技术,用于提取纯度较高的质粒DNA,以满足高效率的转染和进一步的实验需求。

质粒大提原理的基本流程包括以下几个步骤:
1. 质粒培养:将含有目标质粒的细菌在培养基中大量培养,以增加质粒的数量。

2. 细胞收获:将培养的细菌离心,收集菌体沉淀。

3. 菌体裂解:使用裂解缓冲液将菌体裂解,释放出细胞内的质粒DNA。

4. 蛋白质去除:通过加入蛋白酶和盐,除去蛋白质,使DNA 不受干扰。

5. DNA精制:通过加入酒精沉淀以及洗涤步骤,去除杂质,提纯DNA。

6. DNA溶解:将精制后的DNA用适当的溶液溶解,以便后续实验使用。

质粒大提原理的关键是将培养所得的细菌菌体裂解,释放出细胞内的质粒DNA。

通过一系列的化学处理和物理分离步骤,可实现对质粒DNA的提纯和纯化。

这样,可以获得足够高纯度的质粒DNA,以进行后续的分子生物学实验,例如重组DNA构建、基因克隆、基因表达等。

总结来说,质粒大提原理是一种利用细菌培养和DNA分离技
术,从大容量培养物中高效提取质粒DNA的方法。

它在分子生物学研究中有着广泛的应用,并为后续实验奠定了基础。

质粒提取原理和方法

质粒提取原理和方法

质粒提取原理和方法质粒提取是从细菌基因组中提取出质粒DNA的一种方法。

它是分子生物学和遗传工程中常用的技术,可用于质粒的纯化和制备。

质粒提取的原理主要基于以下几个步骤:1.细菌培养:首先,我们需要将含有目标质粒的细菌培养在适当的培养基上,通过高速离心将细菌收集起来。

2.细菌溶解:将培养物进行离心,分离菌落。

然后采用一定的细胞破碎方法,如超声波震荡、冻融等,将细菌细胞壁破坏,使质粒DNA释放到溶液中。

3.质粒分离:通过离心将细菌碎片、蛋白质等杂质与质粒DNA分离。

一般是通过两次离心来完成,第一次较低速离心用于去除细菌碎片和细胞蛋白质,第二次较高速离心用于沉淀质粒DNA。

4.DNA纯化:将质粒DNA从上一步得到的沉淀物中提取出来。

可以使用酚/氯仿法、硅胶柱法、商用试剂盒等方法进行纯化。

其中酚/氯仿法是较为常用的方法,它可以将DNA溶于水相,而蛋白质和其他的污染物则溶于有机相。

5.DNA沉淀:将纯化得到的DNA溶液加入适量的酒精沉淀剂(如乙醇或异丙醇),再次进行高速离心,使DNA沉淀到离心管底部。

6.DNA洗涤:将离心管底部形成的DNA沉淀用70%乙醇洗涤,去除酒精沉淀剂和其他杂质。

然后用空气吹干,最后用一定体积的纯水或缓冲液溶解。

质粒提取的方法根据实验需求不同和实验室条件的不同可以有所差异,常用的方法有以下几种:1.酚/氯仿法:这是一种经典的DNA提取方法,它将质粒DNA溶于三氯甲烷和酚的混合物中,蛋白质和其他污染物则溶于酚相。

离心去除酚相,再用异丙醇沉淀DNA,最后用70%乙醇洗涤。

2.硅胶柱法:这是一种基于硅胶柱的离心柱技术,可用于高通量的质粒提取。

DNA样品在硅胶柱中被结合,杂质被洗掉,最后用纯水或缓冲液洗提质粒DNA。

3.磁珠法:这是一种基于磁性珠子的质粒提取方法,通过在磁性珠子表面修饰DNA结合物,使质粒DNA与磁性珠子结合。

通过外加磁场将磁性珠子与DNA一起沉淀,然后去除上清液,最后用纯水洗提DNA。

大肠杆菌质粒提取原理

大肠杆菌质粒提取原理

大肠杆菌质粒提取原理
大肠杆菌质粒提取的原理主要包括以下几个步骤:
1. 细胞裂解:将大肠杆菌菌落接种到液体培养基中培养,在适当的培养时间后,将菌液离心沉淀,得到含有大肠杆菌细胞的沉淀物。

细胞裂解是通过物理或化学方法破坏细胞壁,释放细胞的内容物。

2. 质粒提取:将裂解后的细胞加入适当的缓冲液中,经过离心分离得到上清液和沉淀物。

上清液中含有质粒DNA,而细胞碎片和其他细胞器等则在沉淀物中。

3. DNA纯化:使用DNA纯化试剂盒或其他纯化方法将上清液中的质粒DNA分离纯化。

这些方法通常涉及对上清液进行酚/氯仿提取、乙醇沉淀或离心柱纯化等步骤,以去除杂质和纯化质粒DNA。

4. 质粒DNA定量:使用紫外线分光光度计对纯化后的质粒DNA进行定量,以确定得到的DNA的浓度和纯度。

5. 质粒DNA的后续应用:得到纯化的质粒DNA后,可进一步进行测序、限制性酶切、聚合酶链式反应(PCR)等分子生物学实验,以研究质粒DNA所携带的目的基因的功能、构建重组质粒或进行基因克隆等实验。

需要注意的是,在文中不提供标题或重复的文字。

如果需要添加标题,可以根据具体内容进行修改。

质粒提取原理

质粒提取原理

质粒提取原理质粒提取是分子生物学实验中常见的操作,其原理主要是利用离心、溶解、沉淀等方法将目标质粒从细菌中提取出来,为后续的实验操作提供必要的材料基础。

下面将详细介绍质粒提取的原理及相关操作步骤。

一、离心法。

离心法是质粒提取的基础步骤之一,其原理是通过高速离心使得细菌细胞和质粒分离。

首先,将含有目标质粒的培养基液体培养物进行离心,使得细菌细胞被沉淀到离心管底部,上清液中则含有目标质粒。

接着,将上清液转移至新的离心管中,再次进行离心操作,将残余的细菌细胞去除,得到含有目标质粒的上清液。

二、溶解法。

溶解法是质粒提取的另一关键步骤,其原理是通过特定的溶解液将目标质粒从细菌细胞中释放出来。

一般情况下,利用含有EDTA和蛋白酶K的溶解液对细菌细胞进行裂解,使得细菌细胞壁和膜被破坏,质粒得以释放。

此时,目标质粒已经被释放到溶解液中,为后续的纯化操作做好准备。

三、沉淀法。

沉淀法是质粒提取的最后一步,其原理是通过加入盐类或醇类使得目标质粒沉淀到溶液底部,从而实现质粒的分离和纯化。

一般情况下,将加入盐类或醇类的溶液与目标质粒混合后,通过离心将质粒沉淀到离心管底部,上清液中则含有杂质和其他不需要的物质。

最后,将上清液倒掉,得到沉淀的质粒,即可用于后续的实验操作。

综上所述,质粒提取的原理主要包括离心、溶解和沉淀三个步骤。

通过这些操作,可以有效地将目标质粒从细菌中提取出来,并得到相对纯净的质粒样品,为分子生物学实验提供了重要的基础材料。

在实际操作中,需要严格按照操作步骤进行操作,并注意操作中的细节,以确保提取到高质量的质粒样品。

希望本文介绍的质粒提取原理能够对相关实验工作有所帮助。

细菌质粒提取实验报告(3篇)

细菌质粒提取实验报告(3篇)

第1篇一、实验目的1. 掌握碱裂解法提取细菌质粒的原理和操作步骤。

2. 了解质粒DNA在分子生物学研究中的应用。

3. 学习琼脂糖凝胶电泳检测DNA的方法和技术。

二、实验原理质粒是细菌细胞内的一种小型、环状、双链DNA分子,独立于细菌染色体之外。

质粒携带的基因可以赋予细菌额外的生理代谢能力,如抗生素耐药性等。

碱裂解法是提取质粒DNA的常用方法,其原理如下:1. 在碱性条件下,蛋白质与DNA发生变性,质粒DNA与染色体DNA分开。

2. 加入盐溶液使pH值恢复至中性,质粒DNA迅速复性,而染色体DNA不易复性,形成网状结构。

3. 通过离心,将质粒DNA与蛋白质、染色体DNA等杂质分离。

三、实验材料与仪器1. 仪器:恒温摇床、台式离心机、微量移液器、紫外灯、凝胶成像系统、电泳仪、凝胶制备装置等。

2. 试剂:LB液体培养基、LB固体培养基、NaOH溶液、SDS溶液、KAc溶液、酚/氯仿/异戊醇溶液、无水乙醇、TE缓冲液、琼脂糖、DNA Marker、染色剂等。

3. 菌种:含质粒的大肠杆菌菌株。

四、实验步骤1. 菌液的制备:将含质粒的大肠杆菌菌株接种于LB液体培养基中,37℃振荡培养过夜。

2. 收集菌体:取适量培养液,4000r/min离心2min,收集菌体。

3. 菌体裂解:向菌体中加入NaOH和SDS溶液,65℃水浴10min,使蛋白质与DNA变性。

4. 质粒DNA的纯化:向裂解液中加入KAc溶液,混匀后4℃静置10min,使质粒DNA沉淀。

5. 离心:4000r/min离心10min,收集沉淀。

6. 洗涤:向沉淀中加入70%乙醇,混匀后4℃静置10min,再次离心,收集沉淀。

7. 干燥:将沉淀干燥至完全无水。

8. 溶解:向沉淀中加入适量TE缓冲液,溶解质粒DNA。

9. 琼脂糖凝胶电泳检测:取适量质粒DNA溶液,加入上样缓冲液,进行琼脂糖凝胶电泳检测。

五、实验结果与分析1. 琼脂糖凝胶电泳结果显示,质粒DNA在凝胶上呈现清晰的单一条带,表明质粒DNA已成功提取。

质粒抽提原理与详细操作步骤

质粒抽提原理与详细操作步骤

质粒抽提原理与详细操作步骤质粒抽提,实验室必备技能之一质粒质粒存在于许多细菌以及酵母菌等生物中,是细胞染色体外能够自主复制的很小的环状DNA 分子。

质粒抽提从细菌中分离质粒DNA的方法包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA。

采用强碱液、加热或溶菌酶(主要针对革兰氏阳性细菌)可以破坏菌体细胞壁,十二烷基磺酸钠(SDS)和 TritonX-100(一般很少使用)可使细胞膜裂解。

经溶菌酶和SDS或 Triton X-100处理后,细菌染色体DNA会缠绕附着在细胞碎片上,同时由于细菌染色体DNA比质粒大得多,易受机械力和核酸酶等的作用而被切断成不同大小的线性片段。

当用强热或酸、碱处理时,细菌的线性染色体DNA变性,而共价闭合环状DNA(Covalently closed circular DNA,简称cccDNA)的两条链不会相互分开。

当外界条件恢复正常时,线状染色体DNA片段难以复性,而是与变性的蛋白质和细胞碎片缠绕在一起,而质粒DNA双链又恢复原状,重新形成天然的超螺旋分子,并以溶解状态存在于液相中。

质粒抽提最常用的方法是碱裂解法,它具有得率高、适用面广、快速和纯度高等特点。

当然,碱裂解法也有缺陷:容易导致不可逆的变性。

要降低不可逆的变性,就要控制好碱裂解的时间。

碱裂解法抽提质粒需要用到以下三种溶液溶液Ⅰ50 mmol/L 葡萄糖,25 mmol/L Tris-Cl(pH 8.0),10 mmol/L EDTA(pH 8.0),在15 psi 压力下蒸汽灭菌15 min,4℃保存。

溶液Ⅱ0.2 mmol/L NaOH(从10 mmol/L 贮存液中现用现稀释),10 g/L SDS(室温保存)。

溶液Ⅲ5 mol/L乙酸钾 60.0 mL,冰乙酸 11.5 mL,无菌水28.5 mL,4℃保存,使用时置于冰浴中。

下面介绍一下碱裂解法小提质粒的具体操作:01柱平衡:向吸附柱中加入500 μl平衡Buffer,12000 rpm离心30-60 s,倒掉收集管中的废液;注意:吸附柱平衡后可最大限度激活硅基质膜,提高质粒的得率;吸附柱平衡后应立即使用,长时间放置会影响其吸附效果。

提取质粒的原理

提取质粒的原理

提取质粒的原理随着基因工程技术的不断发展,提取质粒已经成为了分子生物学和生物技术领域中的一项基本操作。

质粒提取是指从细菌中提取质粒,并进行纯化和鉴定的过程。

质粒是一种很小的环状DNA分子,它存在于细菌细胞内,并承担着细菌的一些重要生命活动,如抗生素抗性等。

质粒提取的过程是分子生物学实验中的一个重要步骤,对于分子生物学实验的成功与否有着至关重要的作用。

本文将介绍质粒提取的原理和方法。

质粒提取的原理提取质粒的原理主要是利用细菌细胞壁的物理和化学特性,将细菌细胞壁破裂,并将质粒从其中分离出来。

主要的步骤包括:1. 细胞裂解将细菌细胞裂解是提取质粒的第一步。

细胞壁的物理和化学特性限制了质粒的提取,因此需要先破坏细胞壁。

通常使用碱性溶液、高渗液、超声波等方法破坏细胞壁,使得细胞内的物质可以释放出来。

2. 分离质粒破坏细胞壁后,质粒和细胞内的其他物质就一起释放出来了。

此时需要用化学方法将质粒与其他物质分离开来。

常用的方法有离心、溶液层析、凝胶过滤等。

3. 纯化质粒分离出来的物质中,除了质粒外还有其他的DNA片段、RNA、蛋白质等。

为了得到纯净的质粒,需要进行进一步的纯化。

如聚丙烯酰胺凝胶电泳、离子交换层析、亲和层析等。

4. 鉴定质粒最后一步是鉴定质粒。

鉴定质粒的方法有多种,包括酶切、PCR、测序等。

通过这些方法可以确定质粒序列、大小、拓扑结构等信息。

质粒提取的方法1. 碱裂解法碱裂解法是最常用的质粒提取方法之一。

其原理是利用NaOH和SDS对细胞壁进行破坏,使得细胞内的DNA、RNA、蛋白质等物质可以释放出来。

具体步骤如下:(1)将细菌菌落接种到含有适当抗生素的LB培养基中,进行培养。

(2)将菌落转移到含有适当抗生素的LB培养基中,进行预培养。

(3)收集细菌菌落,进行洗涤。

(4)将菌落加入含有10mM Tris-HCl,1mM EDTA,pH8.0的缓冲液中,进行瞬时冻存。

(5)加入含有50mM葡萄糖、25mM Tris-HCl、10mM EDTA、0.5% SDS、pH12.0的溶液中,进行碱裂解。

质粒提取的原理、操作步骤、各溶液的作用

质粒提取的原理、操作步骤、各溶液的作用

细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。

各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。

质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA 分子。

目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。

碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH 和 SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。

纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。

例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。

对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。

一、试剂准备1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。

1M Tris-HCl[t1] (pH 8.0)12.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。

在10 lbf/in2高压灭菌15min ,贮存于4℃。

任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液。

50 mM葡萄糖最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。

因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。

质粒抽提试剂盒原理

质粒抽提试剂盒原理

质粒抽提试剂盒原理
质粒抽提试剂盒是一种用于从细菌中提取质粒DNA 的试剂盒。

其原理基于以下几个步骤:
1. 细菌培养:首先需要将含有质粒的细菌菌落在培养基中进行扩增培养,使细菌数量增加。

2. 细菌收获:待细菌培养到一定程度后,将培养液离心,将细菌沉淀获得。

3. 细胞破裂:使用破裂缓冲液将细菌细胞破裂,释放细菌细胞内的质粒 DNA。

4. 蛋白质沉淀:通过加入蛋白质沉淀剂,将破裂后的细菌蛋白质沉淀下来。

这一步的目的是去除蛋白质的干扰。

5. DNA 结合:在蛋白质沉淀物上加入乙酸铵和异丙醇,使DNA 萃取溶液中的 DNA 结合到硅胶纤维素膜上。

6. 洗涤:通过多次洗涤去除杂质,如蛋白质、盐等,使 DNA
纯化。

7. 质粒 DNA 释放:向质粒 DNA 结合的硅胶纤维素膜上加入
洗脱溶液,使 DNA 从膜上释放。

8. 质粒 DNA 收获:将质粒 DNA 通过离心等方式收获,得到
纯化的质粒 DNA。

通过以上步骤,质粒抽提试剂盒能够实现从细菌中高效、纯化地提取质粒 DNA,为后续实验提供高质量的 DNA 样本。

简述提取质粒的主要步骤

简述提取质粒的主要步骤

提取质粒的主要步骤质粒提取是分子生物学实验中的一项重要技术,用于从细菌中提取质粒DNA。

质粒DNA是细菌细胞中的一种环状DNA分子,具有自主复制的能力,因此在分子生物学研究中广泛应用。

下面将详细介绍提取质粒的主要步骤。

步骤一:培养细菌第一步是培养携带目标质粒的细菌。

在选择培养基时,应根据质粒的抗生素耐受性选择含有相应抗生素的培养基。

将含有质粒的细菌接种到含有抗生素的培养基中,并在适当的温度下培养细菌。

步骤二:细菌增殖在合适的培养条件下,将细菌培养到较高的密度,以便从中提取足够的质粒。

细菌增殖时间的长短取决于细菌的生长速度和所需的质粒数量。

步骤三:收获细菌当细菌培养到适当的密度时,将菌液进行收获。

可以通过离心将菌体沉淀下来,然后去除上清液,或者使用其他方法收获细菌。

步骤四:裂解细菌细胞在这一步中,需要将细菌细胞裂解以释放质粒。

常用的方法是使用裂解缓冲液,通过机械、物理或化学手段破坏细菌细胞壁,使细菌DNA和质粒DNA被释放出来。

步骤五:纯化质粒DNA在这一步中,需要将裂解液中的杂质和细菌残余物除去,以纯化质粒DNA。

常用的方法是使用离心来分离质粒DNA和其他细胞成分。

离心后,上清液中的质粒DNA可以通过吸附剂或其他纯化方法进一步提纯。

步骤六:测定质粒DNA的浓度和纯度纯化的质粒DNA通常还会带有一些杂质,如RNA、蛋白质和副产物等。

因此,需要对提取得到的质粒DNA进行浓度和纯度的测定。

常用的方法有比色法、光谱法和凝胶电泳等。

步骤七:存储质粒DNA提取得到的质粒DNA可以进行存储,以备后续实验使用。

常见的质粒DNA存储方式有冷冻保存和冻干保存等。

以上是提取质粒的主要步骤,这些步骤在实验中是相互关联的,需要严格按照操作流程进行,以确保提取质粒的质量和纯度。

同时,不同的实验目的可能需要有所调整和优化,具体操作时需要根据实际情况进行调整。

细菌质粒提取原理及步骤(精)

细菌质粒提取原理及步骤(精)

质粒提取原理及步骤一、导论已经提出过许多方法用于从细菌中提纯质粒DNA ,这些方法都含有以下3个步骤:1. 细菌培养物的生长。

2. 细菌的收获和裂解3. 质粒DNA 的纯化。

(一)细菌培养物的生长从琼脂平板上挑取一个单菌落,接种到培养物中(有含有行当抗生素的液体培养基中生长,然后从中纯化质粒,质粒的提纯几乎总是如此。

现在使用的许多质粒载体(如pUC 系列)都能复制到很高的拷贝数,惟致只要将培养物放在标准LB 培养基中生长到对数晚期,就可以大量提纯质粒。

此时,不必造反性地扩增质粒DNA 。

然而,较长一代的载体(如pB R322 由于不能如此自由地复制,所以需要在得到部分生长的细菌培养物中加入氯霉素继续培养若干小时,以便对质粒进行性扩增。

氯霉素可抑制宿主的蛋白质合成,结果阻止了细菌染色体的复制,然而,松弛型质粒仍可继续复制,在若干小时内,其拷贝数持续递增。

这样,像pBR 322-类的质粒,从经氯霉素处理和未经处理的培养物中提取质粒的产量迥然不同,前者大为增高。

多年来,加入足以完全抑制蛋白质合成的氯霉素μg/ml已成为标准的操作、用该方法提取的质粒DNA 量,对于分子克隆中几乎所有想象到的工作任务。

(二)细菌的收获和裂解细菌的收获可通过离心来进行,而细菌的裂解则可以采用多种方法中的任意一种,这些方法包括用非离子型或离子型去污剂、有机溶剂或碱进行处理及用加热处理等。

选择哪一种方法取决于3个因素:质粒的大小、小肠杆菌菌株及裂解后用于纯化质粒DNA 的技术。

尽管针对质粒和宿主的每一种组合分别提出精确的裂解条件不切实际,但仍可据下述一般准则来选择适当方法,以取得满意的结果。

1 大质粒(大于15kb 容易受损,故应采用漫和裂解法从细胞中释放出来。

将细菌悬于蔗糖等渗溶液中,然后用溶菌酶和EDTA 进生处理,破坏细胞壁和细胞外膜,再加入SDS 一类去污剂溶解球形体。

这种方法最大限度地减小了从具有正压的细菌内部把质粒释放出来所需要的作用力。

质 粒 提 取 原理及步骤

质 粒 提 取 原理及步骤

Forpersonal use only in study a nd research; not formercialuse质粒提取原理及步骤一、导论已经提出过许多方法用于从细菌中提纯质粒DNA,这些方法都含有以下3个步骤:1、细菌培养物得生长。

2、细菌得收获与裂解3、质粒DNA得纯化.(一)细菌培养物得生长从琼脂平板上挑取一个单菌落,接种到培养物中(有含有行当抗生素得液体培养基中生长),然后从中纯化质粒,质粒得提纯几乎总就是如此.现在使用得许多质粒载体(如pUC系列)都能复制到很高得拷贝数,惟致只要将培养物放在标准LB 培养基中生长到对数晚期,就可以大量提纯质粒。

此时,不必造反性地扩增质粒DNA.然而,较长一代得载体(如pB R322)由于不能如此自由地复制,所以需要在得到部分生长得细菌培养物中加入氯霉素继续培养若干小时,以便对质粒进行性扩增。

氯霉素可抑制宿主得蛋白质合成,结果阻止了细菌染色体得复制,然而,松弛型质粒仍可继续复制,在若干小时内,其拷贝数持续递增。

这样,像pBR322-类得质粒,从经氯霉素处理与未经处理得培养物中提取质粒得产量迥然不同,前者大为增高。

多年来,加入足以完全抑制蛋白质合成得氯霉素μg/ml)已成为标准得操作、用该方法提取得质粒DNA量,对于分子克隆中几乎所有想象到得工作任务。

(二)细菌得收获与裂解细菌得收获可通过离心来进行,而细菌得裂解则可以采用多种方法中得任意一种,这些方法包括用非离子型或离子型去污剂、有机溶剂或碱进行处理及用加热处理等。

选择哪一种方法取决于3个因素:质粒得大小、小肠杆菌菌株及裂解后用于纯化质粒DNA得技术。

尽管针对质粒与宿主得每一种组合分别提出精确得裂解条件不切实际,但仍可据下述一般准则来选择适当方法,以取得满意得结果.ﻭ1)大质粒(大于15kb)容易受损,故应采用漫与裂解法从细胞中释放出来.将细菌悬于蔗糖等渗溶液中,然后用溶菌酶与EDTA进生处理,破坏细胞壁与细胞外膜,再加入SDS一类去污剂溶解球形体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质粒提取原理及步骤一、导论已经提出过许多方法用于从细菌中提纯质粒DNA ,这些方法都含有以下3个步骤:1. 细菌培养物的生长。

2. 细菌的收获和裂解3. 质粒DNA 的纯化。

(一)细菌培养物的生长从琼脂平板上挑取一个单菌落,接种到培养物中(有含有行当抗生素的液体培养基中生长,然后从中纯化质粒,质粒的提纯几乎总是如此。

现在使用的许多质粒载体(如pUC 系列)都能复制到很高的拷贝数,惟致只要将培养物放在标准LB 培养基中生长到对数晚期,就可以大量提纯质粒。

此时,不必造反性地扩增质粒DNA 。

然而,较长一代的载体(如pB R322 由于不能如此自由地复制,所以需要在得到部分生长的细菌培养物中加入氯霉素继续培养若干小时,以便对质粒进行性扩增。

氯霉素可抑制宿主的蛋白质合成,结果阻止了细菌染色体的复制,然而,松弛型质粒仍可继续复制,在若干小时内,其拷贝数持续递增。

这样,像pBR 322-类的质粒,从经氯霉素处理和未经处理的培养物中提取质粒的产量迥然不同,前者大为增高。

多年来,加入足以完全抑制蛋白质合成的氯霉素μg/ml已成为标准的操作、用该方法提取的质粒DNA 量,对于分子克隆中几乎所有想象到的工作任务。

(二)细菌的收获和裂解细菌的收获可通过离心来进行,而细菌的裂解则可以采用多种方法中的任意一种,这些方法包括用非离子型或离子型去污剂、有机溶剂或碱进行处理及用加热处理等。

选择哪一种方法取决于3个因素:质粒的大小、小肠杆菌菌株及裂解后用于纯化质粒DNA 的技术。

尽管针对质粒和宿主的每一种组合分别提出精确的裂解条件不切实际,但仍可据下述一般准则来选择适当方法,以取得满意的结果。

1 大质粒(大于15kb 容易受损,故应采用漫和裂解法从细胞中释放出来。

将细菌悬于蔗糖等渗溶液中,然后用溶菌酶和EDTA 进生处理,破坏细胞壁和细胞外膜,再加入SDS 一类去污剂溶解球形体。

这种方法最大限度地减小了从具有正压的细菌内部把质粒释放出来所需要的作用力。

2 可用更剧烈的方法来分离小质粒。

在加入EDTA 后,有时还在加入溶菌酶后让细菌暴露于去污剂,通过煮沸或碱处理使之裂解。

这些处理可破坏碱基配对,故可使宿主的线状染色体DNA 变性,但闭环质粒DNA 链由于处于拓扑缠绕状态而不能彼此分开。

当条件恢复正常时,质粒DNA 链迅速得到准确配置,重新形成完全天然的超螺旋分子。

3 一些大肠杆菌菌株(如HB101的一些变种衍生株用去污剂或加热裂解时可释放相对大量的糖类,当随后用氯化铯-溴化乙锭梯度平衡离心进行质粒纯化时它们会惹出麻烦。

糖类会在梯度中紧靠超螺旋质粒DNA 所占位置形成一致密的、模糊的区带。

因此很难避免质粒DNA 内污染有糖类,而糖类可抑制多种限制酶的活性。

故从诸如HB101和TG1等大肠杆菌蓖株中大量制备质粒时,不宜使用煮沸法。

4 当从表达内切核酸酶A 的大肠杆菌菌株(endA+株,如HB101 中小量制备质粒时,建议不使用煮沸法。

因为煮沸不能完全灭活内切核酸酶A ,以后在温育(如用限制酶消化时,质粒DNA 会被降解。

但如果通过一个附加步骤(用酚:氯仿进行抽提可以避免此问题。

5目前这一代质粒的拷贝数都非常高,以致于不需要用氯霉素进行选择性扩增就可获得高产。

然而,某些工作者沿用氯霉素并不是要增加质粒DNA 的产量,而是要降低细菌细胞在用于大量制备的溶液中所占体积。

大量高度粘稠的浓缩细菌裂解物,处理起来煞为费事,而在对数中期在增减物中加入氯霉素可以避免这种现象。

有氯霉素存在时从较少量细胞获得的质粒DNA 的量以与不加氯霉素时从较大量细胞所得到的质粒DNA 的量大致相等。

(三质粒DNA 的纯化常使用的所有纯化方法都利用了质粒DNA 相对较小及共价闭合环状这样两个性质。

例如,用氯化铯-溴化乙锭梯度平衡离心分离质粒和染色体DNA 就取决于溴化乙锭与线状以及与闭环DNA 分子的结合量有所不同。

溴化乙锭通过嵌入奋不顾身碱基之间而与DNA 结合,进而使双螺旋解旋。

由此导致线状DNA 的长度有所增加,作为补偿,将在闭环质粒D NA 中引入超螺旋单位。

最后,超螺旋度大为增加,从而阻止了溴化乙锭分了的继续嵌入。

但线状分子不受此限,可继续结合更多的染料,直至达到饱和( 每2个碱基对大约结合1个溴化乙锭分子。

由于染料的结合量有所差别,线状和闭环DNA 分了在含有饱和量溴化乙锭的氯化铯度中的浮力密度也有所不同。

多年来,氯化铯-溴化乙锭梯度平衡离心已成为制备大量质粒DNA 的首选方法。

然而该过程既昂贵又费时,为此发展了许多替代方法。

其中主要包括利用离子交换层析、凝胶过滤层析、分级沉淀等分离质粒DNA 和宿主DNA 的方法。

本实验室采用离子交换层析法已可得到极高纯度的质粒。

二、质粒DNA 的小量制备质粒DNA的小量制备可采用下述的碱裂解法或煮沸法(一)细菌的收获和裂解1.收获1)将2ml 含相应抗生素的LB加入到容量为15ml 并通气良好(不盖紧)的试管中,然后接入一单菌落,于30℃剧烈振摇下培养过夜。

2)将1.5ml 培养物倒入微量离心管中,用微量离心机于4℃以12000g 离心30秒,将剩余的培养物贮存于4℃。

3)吸去培养液,使细菌沉淀尽可能干燥。

除去上清的简便方法是用一次性使用的吸头与真空管道相连,轻缓抽吸,并用吸头接触液面。

当液体从管中吸出时,尽可能使吸头远离细菌沉淀,然后继续用吸头通过抽真空除去附于管壁的液滴。

2.碱裂解法1)将细菌沉淀,所得重悬于100μl 用冰预冷的溶液I中,剧烈振荡。

溶液I:50mmol/L葡萄糖25mmol/L Tris .Cl(pH8.010mmol/LEDTA(pH8.0溶液I可成批配制,每瓶约100ml, 在10lbf/in2(6.895×104Pa 高压下蒸气灭菌15分钟,贮存于4℃。

须确使细菌沉淀在溶液I中完全分散,将两个微量离心管的管底部互相接触震荡,可使沉淀迅速分散。

2)加200μl 新配制的溶液Ⅱ。

溶液Ⅱ0.2mol/L NaOH (临用前用10mol/L贮存液现用现稀释)1%SDS盖紧管口,快速颠倒离心管5次,以混合内容物。

应确保离心管的整个内表面均与溶液Ⅱ接触。

不要振荡,将离心管放置于冰上。

3)加150μl 用冰预冷的溶液Ⅲ溶液Ⅲ5mol/L乙酸钾 60ml冰乙酸 11.5ml水 28.5ml所配成的溶液对钾是3mol/L,对乙酸根是5mol/L。

盖紧管口,将管倒置后和地振荡10秒钟溶液Ⅲ在粘稠的细菌裂解物中分散均匀,之后将管置于冰上3-5分钟。

4)用微量离心机于4℃12 000g 离心5分种,将上清转移到另一离心管中。

5)可做可不做:加等量酚:氯念,振荡混匀,用微量离心机于4 ℃以12000g 离心2分钟,将上清转移到另一良心管中。

有些工作者认为不必用酚:氯仿进行抽提,然而由于一些未知的原因,省略这一步,往往会得到可耐受限制酶切反应的DNA 。

6)用2倍休积的乙醇于室温沉淀双锭DNA 。

振荡混合,于室温放置2分钟。

7)用微量离心机于4℃以12 000g 离心5分钟。

8)小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出。

再将附于管壁的液滴除尽。

除去上清的简便方法是用一次性使用的吸头与真空管道相连,并用吸头接触液面。

当液体从管中吸出时,尽量使吸头远离核酸沉淀,然后继续用吸头通过抽真空除去附于管壁的液滴。

9)用1ml70%乙醇于4℃洗涤双链DNA 沉淀,按步骤8)所术方法去掉上清,在空气中使核酸沉淀干燥10分钟。

i. 此法制备的高拷贝数质粒(如Xf3或pUC ),其产量一般约为:每毫升原细菌培养物3-5μg。

ii .如果要通过限制酶切割反应来分析DNA ,可取1μl DNA 溶液加到另一含8μl 水的微量离心管内,加1μl 10×限制酶缓冲液和1单位所需限制酶,在适宜温育1-2小时。

将剩余的DNA 贮存于-20℃。

iii. 此方法按适当比例放大可适用于100ml 细菌培养物:3.煮沸裂解1)将细菌沉淀,所得重悬于350μl STET 中。

STET0.1mol/L NaCL10mmol/L Tris.Cl(pH8.01mmol/L EDTA(pH8.05% Triton X-1002)加25μl 新配制的溶菌酶溶液[10mg/ml,用10mmol/L Tris.Cl(pH8.0配制],振荡3秒钟以混匀之。

如果溶淮中pH 低于8.0,溶菌酶就不能有效发挥作用。

3)将离心管放入煮沸的水浴中,时间恰为40秒。

4)用微量离心机于室温以12 000g 离心10分种。

5)用无菌牙签从微量离心管中去除细菌碎片。

6)在上清中加入40μl 5mol/L乙酸钠(pH5.2)和420μl 异丙醇,振荡混匀,于室温放置5分钟。

7)用微量离心机于4℃以12 000g 离心5分种,回收核酸沉淀。

8)小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出。

再将附于管壁的液滴除尽。

除去上清的简便方法是用一次性使用的吸头与真空管道相连,轻缓抽吸,并用吸头接触液面。

当液体从管中吸出时,尽可能使吸头远离核酸沉淀,然后继续用吸头通过抽真空除去附于管的液滴。

9)加1ml 70%乙醇,于4℃以12 000g 离心2分钟。

10)按步骤8)所述再次轻轻地吸去上清,这一步操作要格外小心,因为有时沉淀块贴壁不紧,去除管壁上形成的所有乙醇液滴,打开管口,放于室温直至乙醇挥发殆尽,管内无可见的液体(2-5)分钟。

11)用50μl 含无DNA 酶的胰RNA 酶(20μg/ml)的TE(pH8.0溶解核酸稍加振荡,贮存于-20℃。

注:当从表达内切核酸酶A的大肠杆菌株(endA+株,如HB101 )中小量制粒尤其DNA 时,建议舍弃煮沸法。

因为煮沸步骤不能完全灭活内切核酸酶A,以后在Mg 2+存在下温育(V 中用限制酶时)质粒DNA 可被降解。

在上述方案的步骤9)之间增加一步,即用酚:氯仿进行抽提,可以避免这一问题。

(二)质粒DNA小量制备的问题与对策裂解和煮佛法都极其可靠,重复性也很好,而且一般没有会么麻烦。

多年来,在我们实验室中日常使用这两种方法的过程中,只碰到过两个问题:1)有些工作者首次进行小量制备时,有时会发现质粒DNA 不能被限制酶所切割,这几乎总是由于从细菌沉淀或从核酸沉淀中去除所有上清液时注意得不够。

大多数情况下,用酚:氯仿对溶液进行抽提可以去除小量备物中的杂质。

如果总是依然存在,可用离心柱层析注纯化DNA 。

2)在十分偶然的情况下,个别小时制备物会出现无质粒DNA 的现象。

这几乎肯定是由于核酸沉淀颗粒已同乙醇一起被弃去。

三、质粒DNA的大量制备(一)在丰富培养基中扩增质粒许多年来,一直认为在氯霉素存在下扩增质粒只对生长在基本培养基上的细菌有效,然而在带有pMBl 或ColEl 复制子的高拷贝数质粒的大肠杆菌菌株中,采用以下步骤可提高产量至每500ml 培养物2-5mg 质粒DNA ,而且重复性也很好。

相关文档
最新文档