一元一次方程应用题产品配套问题
09列一元一次方程解应用题(产品配套问题)
09列一元一次方程解应用题(产品配套问题)一.解答题(共12小题)1.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?2.某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?3.制作一张餐桌要用一个桌面和4条桌腿.某家具公司的木工师傅用1m3木材可制作15个桌面或300个桌腿,公司现有18m3的木材.(1)应怎样安排用料才能使制作的桌面和桌腿配套?(2)家具公司欲将制作餐桌全部出售,为尽快回收资金,决定以标价的八折出售,一张餐桌仍可获利28%,这样全部出售后总获利31500元.求每张餐桌的标价是多少?4.某机械厂加工车间有84名工人,平均每人每天加工大齿轮16个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?5.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.2个甲种部件和3个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?6.一套仪器由一个A部件和三个B部件构成,用1m3钢材可做40个A部件或240个B部件,现要用6m3钢材制作这种仪器,为使所做的A部件和B部件刚好配套,则做A部件和B部件的钢材各需多少m3?7.一张圆桌由一个桌面和四条桌腿组成.如果1m3木料可以制作圆桌的桌面50个,或制作桌腿300条,那么5m3的木料如何分配可以使桌面和桌腿正好配套?最多能制作成多少张圆桌?8.某车间有27名工人,每人每天可以生产1500个螺钉或2400个螺母.一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?9.制作一张桌子需要一个桌面和四个桌腿,1m3木材可制作20个桌面或制作400条桌腿,现有12m3的木材,应怎样计划才能使桌面和桌腿刚好配套?能制成多少套桌椅?10.学生课桌装备车间共有木工10人,每个木工一天能装备双人课桌3张或单人椅9把,如果安排一部分木工装备课桌,另一部分木工装备单人椅,怎样分配才能使一天装配的课桌椅配套.11.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.问:生产螺栓和螺母各安排多少人才能使每天生产的螺栓螺母刚好配套?12.列方程解应用题:某工厂车间有21 名工人,每人每天可以生产12 个螺钉或18 个螺母,1 个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,车间应该分配生产螺钉和螺母的工人各多少名?09列一元一次方程解应用题(产品配套问题)参考答案与试题解析一.解答题(共12小题)1.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?【分析】设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程求出即可.【解答】解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),解得:x=12,则22﹣x=10,答:应安排生产螺钉和螺母的工人10名,12名.【点评】此题主要考查了一元一次方程的应用,列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.2.某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?【分析】设应分配x人生产甲种零件,则(60﹣x)人生产乙种零件,才能使每天生产的这两种种零件刚好配套,根据每人每天平均能生产甲种零件24个或乙种零件12个,可列方程求解.【解答】解:设分配x人生产甲种零件,则共生产甲零件24x个和乙零件12(60﹣x),依题意得方程:,解得x=15,60﹣15=45(人).答:应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.【点评】本题考查一元一次方程的应用和理解题意的能力,关键是设出生产甲和乙的人数,以配套的比例列方程求解.3.制作一张餐桌要用一个桌面和4条桌腿.某家具公司的木工师傅用1m3木材可制作15个桌面或300个桌腿,公司现有18m3的木材.(1)应怎样安排用料才能使制作的桌面和桌腿配套?(2)家具公司欲将制作餐桌全部出售,为尽快回收资金,决定以标价的八折出售,一张餐桌仍可获利28%,这样全部出售后总获利31500元.求每张餐桌的标价是多少?【分析】(1)设用x m3木材制作桌面,则用(18﹣x)m3木材制作桌腿.根据“1m3木材可制作25个桌面,或者制作300条桌腿”建立方程求出其解即可.(2)可设每张餐桌的标价是y元,根据全部出售后总获利31500元,列出方程求解即可.【解答】解:(1)设用x立方米做桌面,则用(18﹣x)立方米做桌腿.根据题意得:4×15x=300(18﹣x),解得:x=15,则18﹣x=18﹣15=3.答:用15立方米做桌面,用3立方米做桌腿才能使制作的桌面和桌腿配套.(2)15×15=225(张),设每张餐桌的标价是y元,根据题意得:225[0.8y﹣0.8y÷(1+28%)]=31500,解得:y=800.故每张餐桌的标价是800元.【点评】本题考查了一元一次方程的应用,根据数量关系桌腿数=桌面数×4列出关于x的一元一次方程是解题的关键.4.某机械厂加工车间有84名工人,平均每人每天加工大齿轮16个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?【分析】首先设每天加工大齿轮的有x人,则每天加工小齿轮的有(84﹣x)人,再利用1个大齿轮与2个小齿轮刚好配成一套得出等式求出答案.【解答】解:设每天加工的大齿轮的有x人,则每天加工的小齿轮的有(84﹣x)人,根据题意可得;2×16x=10(84﹣x),解得:x=20,则84﹣20=64(人).答:每天加工的大齿轮的有20人,每天加工的小齿轮的有64人.【点评】此题主要考查了一元一次方程的应用,利用1个大齿轮与2个小齿轮刚好配成一套进而得出等式是解题关键.5.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.2个甲种部件和3个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?【分析】设安排x人加工甲部件,则安排(85﹣x)人加工乙部件,等量关系为:3×16×加工甲部件的人数=2×10×加工乙部件的人数,依此列出方程,解方程即可.【解答】解:设安排x人加工甲部件,则安排(85﹣x)人加工乙部件,根据题意得3×16x=2×10×(85﹣x),解得x=25,所以85﹣25=60(人),答:安排25人加工甲部件,安排60人加工乙部件.【点评】本题考查一元一次方程的应用,关键是设出加工甲的人数,表示出乙的人数,根据配套情况列方程求解.6.一套仪器由一个A部件和三个B部件构成,用1m3钢材可做40个A部件或240个B部件,现要用6m3钢材制作这种仪器,为使所做的A部件和B部件刚好配套,则做A部件和B部件的钢材各需多少m3?【分析】设应用xm3钢材做A部件,则应用(6﹣x)m3钢材做B部件,根据一个A部件和三个B部件刚好配成套,列方程求解.【解答】解:设应用xm3钢材做A部件,则应用(6﹣x)m3钢材做B部件,由题意得,3×40x=240(6﹣x),解得:x=4,则6﹣x=2.答:为使所做的A部件和B部件刚好配套,则应用4m3钢材做A部件,2m3钢材做B部件.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.7.一张圆桌由一个桌面和四条桌腿组成.如果1m3木料可以制作圆桌的桌面50个,或制作桌腿300条,那么5m3的木料如何分配可以使桌面和桌腿正好配套?最多能制作成多少张圆桌?【分析】设最多能制作成x张圆桌,则制作x个桌面,4x条桌腿,根据制作桌面和桌腿的木料共5m3,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设最多能制作成x张圆桌,则制作x个桌面,4x条桌腿,根据题意得:+=5,解得:x=150,∴4x=600,=3(立方米),=2(立方米).答:用3m3的木料制作桌面、2m3的木料制作桌腿正好配套,最多能制作150张圆桌.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.8.某车间有27名工人,每人每天可以生产1500个螺钉或2400个螺母.一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?【分析】设安排x名工人生产螺钉,则安排(27﹣x)名工人生产螺母,根据螺母的数量为螺钉的二倍即可得出关于x一元一次方程,解之即可得出结论.【解答】解:设安排x名工人生产螺钉,则安排(27﹣x)名工人生产螺母,根据题意得:2×1500x=2400(27﹣x),解得:x=12,∴27﹣x=15.答:安排12名工人生产螺钉、安排15名工人生产螺母.【点评】本题考查了一元一次方程的应用,根据一个螺钉需要配两个螺母列出关于x的一元一次方程是解题的关键.9.制作一张桌子需要一个桌面和四个桌腿,1m3木材可制作20个桌面或制作400条桌腿,现有12m3的木材,应怎样计划才能使桌面和桌腿刚好配套?能制成多少套桌椅?【分析】设用x立方米做桌面,则用(12﹣x)立方米做桌腿,根据一张桌子需要一个桌面和四个桌腿以及1m3木材可制作20个桌面或制作400条桌腿即可得出关于x的一元一次方程,解之即可得出x值,将x的值代入12﹣x和20x中即可得出结论.【解答】解:设用x立方米做桌面,则用(12﹣x)立方米做桌腿.根据题意得:4×20x=400(12﹣x),解得:x=10,∴12﹣x=12﹣10=2,20x=20×10=200.答:用10立方米做桌面,用2立方米做桌腿,可以配成200套桌椅.【点评】本题考查了一元一次方程的应用,根据数量关系桌腿数=桌面数×4列出关于x的一元一次方程是解题的关键.10.学生课桌装备车间共有木工10人,每个木工一天能装备双人课桌3张或单人椅9把,如果安排一部分木工装备课桌,另一部分木工装备单人椅,怎样分配才能使一天装配的课桌椅配套.【分析】首先设x人装配双人课桌,则有(10﹣x)人装配单人椅,根据题意可得等量关系:装配双人课桌的数量×2=装配单人椅的数量,根据等量关系列出方程即可.【解答】解:设x人装配双人课桌,由题意得:3x×2=9(10﹣x),解得:x=6,10﹣6=4,答:安排6人装配双人课桌,4人装配单人椅.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.11.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.问:生产螺栓和螺母各安排多少人才能使每天生产的螺栓螺母刚好配套?【分析】安排x名工人生产螺栓,(30﹣x)名工人生产螺母,然后根据总人数为30人,生产的螺母是螺栓的2倍列方程组求解即可.【解答】解:设安排生产螺栓x人,则安排生产螺母为(30﹣x)人由题得:答:安排10个人生产螺栓,安排20个人生产螺母能使每天生产的螺栓螺母刚好配套【点评】本题主要考查的是一元一次方程的应用,根据总人数为30人,生产的螺母是螺栓的2倍列出方程组是解题的关键.12.列方程解应用题:某工厂车间有21 名工人,每人每天可以生产12 个螺钉或18 个螺母,1 个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,车间应该分配生产螺钉和螺母的工人各多少名?【分析】设分配x名工人生产螺母,则(21﹣x)人生产螺钉,由1 个螺钉需要配2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程求出解即可得出答案.【解答】解:设分配x名工人生产螺母,则(21﹣x)人生产螺钉,由题意得18x=2×12(21﹣x),解得:x=12,则21﹣x=9,答:车间应该分配生产螺钉和螺母的工人9名,12名.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.。
一元一次方程应用专题十大题型(包括数轴上动点问题)
一元一次方程应用专题十大题型(包括数轴上动点问题)一元一次方程应用题十大类型一:配套问题配套问题1. 某车间有52名工人生产甲、乙两种零件,每人每小时平均能生产15个甲种零件或18个乙种零件,1个甲种零件配4个乙种零件,则分配多少名工人生产甲种零件,多少名工人生产乙种零件,恰好使每小时生产的甲、乙两种零件零件配套?2. 加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人生产大小齿轮,才能每天加工的大小齿轮刚好配套?二.利润问题1.某商场购进一批服装,每件服装的进价为200元,由于换季,商城决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是多少?2.某商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则该商场总的盈亏情况()A.亏损20元B.盈利30元C. 亏损50元D.不赢不亏三. 比赛积分问题1.小明参加竞赛活动,试卷由50道选择题组成,评分标准规定:选对一题得3分,不选得0分,选错一题倒扣1分.已知小明有5题没选,得103分,则他选错了_______道题.趣味应用题 '五羊杯'竞赛题2. 50名学生中,会讲英语的有36人,会讲日语的有20人,即不会讲英语也不会讲日语的有8人,即会讲英语又会讲日语的有_______人.四工程问题1. 一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲乙合作,需要几小时完成?2. 某工厂原计划用26小时生产一批零件,后因每小时多生产5个,用24小时不但完成了任务,而且还比原计划多生产了60个,问原计划生产多少个零件.五.行程问题1. 相遇问题例:A,B两地相距450km,甲乙两车分别从A,B两地同时出发,相向而行.已知甲车得速度为120km/h,乙车得速度为80km/h,经过t h两车相距50km,则t的值是____________.2.追及问题例:甲、乙两人练习跑步,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m.设 x s 后甲追上乙,则可列方程_________.3.小李骑自行车从甲地到乙地,出发40分钟后,小王骑自行车从甲地出发,两人同时到达乙地,已知小李骑自行车的速度是15千米/时,小王骑电动车的速度时小李骑自行车的速度的3倍.求甲乙两地的距离.4.小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8点同时出发,到上午10点两人相距36千米,到中午12时,两人又相距36千米,求A,B两地间的路程.5.甲乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依次顺时针方向环形,乙点依次逆时针环形,若乙的速度是甲的速度的4倍,则他们第2000次相遇在边()。
一元一次方程应用题产品配套问题
甲仓库储粮35吨,乙仓库储粮19吨,现调粮食 15吨,应分配给两仓库各多少吨,才能使得甲 仓库的粮食数量是乙仓库的两倍?
分析:
原有:甲仓库储粮35吨
调来:分x给甲+分1给5—乙x
乙仓库储粮19吨 = 15
现在:甲35储+x粮
= 2乙(储19粮+15-x)
产品配套问题
例题:某车间22名工人生产螺钉和螺母, 每人每天平均生产螺钉1200个或螺母2000 个,一个螺钉要配两个螺母,为了使每天 的产品刚好配套,应该分配多少名工人生 产螺钉,多少工人生产螺母?
分析:
生产速度:螺钉1200个 螺母2000个
数 量:120螺0x钉 :2螺00母0(22-x) = 1:2
机械厂加工车间有85名工人,平均每人每天 加工大齿轮16个或小齿轮10个。2个大齿轮 和3个小齿轮配成一套,问需分别安排多少名 工人加工大、小齿轮,才能使每天加工的大 小齿轮刚好配套?
分析:
生产速度:大齿轮16个 小齿轮10个
数 量:1大6x : 10(1小5—x) = 2:3
大的x人数+小85的—人x数=85
一个大人一餐能吃四个面包,四个幼儿一餐 只吃一个面包,现有大人和幼儿共100人, 一餐刚好吃100个面包,这100人中大人和 幼儿各有多少人?
分析:
一餐能吃的数量:大4个 小1/4个 面包总数:4大x 人吃的+幼1/儿4(吃10的0—x) = 100
大x人+ 1幼0儿0—x =100
某车间有16名工人,每人每天可加工甲种零 件5个或乙种零件4个,已知每加工一个甲种 零件可获利16元,每加工一个乙种零件可获 利24元。若此车间一共获利1440元,则这 一天有几个工人加工甲中零件?
人教版 3.4实际问题与一元一次方程--1产品配套问题
x
300(15 x) 4 50 等量关系:桌腿数 = 4桌面数 x
1、机械厂加工车间有85名工人,平 均每人每天加工大齿轮16个或小齿 轮10个。2个大齿轮和3个小齿轮配 成一套,问需分别安排多少名工人 加工大、小齿轮,才能使每天加工 的大小齿轮刚好配套?
2、一个成年人一餐能吃两个面包, 两个幼儿一餐只吃一个面包,现有 成年人和幼儿共100人,一餐刚好 吃110个面包,这100人中成年人 和幼儿各有多少人?
x
等量关系: 螺母数 = 2螺钉数
2000(22 x) 2 1200 x
例2:用白铁皮做罐头盒,每张铁皮可制 盒身16个,或盒底43个,一个盒身与两 个盒底配成一套罐头盒。现有150张白铁 皮,用多少张制盒身,多少张制盒底, 可以正好制成整套罐头盒? 分析: 每张铁皮可制盒身16个,或盒底43个。若 有 张铁皮制作盒身,则剩下(150 x)张铁 皮制作盒底。则盒身数为 16x 。盒底数 为 43(150 x)。 等量关系:盒底数 = 盒身数的2倍
祝同学们学习进步!
再见ቤተ መጻሕፍቲ ባይዱ
例1:某车间22名工人生产螺钉和螺母, 每人每天平均生产螺钉1200个或螺母 2000个,一个螺钉要配两个螺母,为了 使每天的产品刚好配套,应该分配多少 名工人生产螺钉,多少工人生产螺母?
分析: 效率:每人每天生产螺钉1200个 ,螺母2000个。 若有 人生产螺钉,则剩下 (22 x) 人生产螺 1200x 个生产螺母2000(22 x)个。 母。生产螺钉
3、某车间有16名工人,每人每天 可加工甲种零件5个或乙种零件4个, 已知每加工一个甲种零件可获利16 元,每加工一个乙种零件可获利24 元。若此车间一共获利1440元, 则这一天有几个工人加工甲中零件?
一元一次方程的应用题(产品配套问题训练)
一元一次方程的应用题(产品配套问题训练)一.选择题(共12小题)1.现用90立方米木料制作桌子和椅子,已知一张桌子配4张椅子,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x2.制作一张桌子要用1个桌面和4条桌腿,1根木材可以制作20个桌面或者制作400条桌腿,现有12根木材,要使制作出来的桌面和桌腿恰好都配成桌子,应利用多少根木材来制作桌面?()A.10B.8C.6D.23.某车间有22名工人,每人每天可以生产1200个螺钉或2000螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有x 名工人生产螺钉,则可列方程为()A.2×2000x=1200(22﹣x)B.2×1200x=2000(22﹣x)C.1200x=2×2000(22﹣x)D.2000x=2×1200(22﹣x)4.某工厂有技术工12人,平均每天每人可加工甲种零件24个或乙种零件15个,2个甲种零件和3个乙种零件可以配成一套,设安排x个技术工生产甲种零件,为使每天生产的甲乙零件刚好配套,则下面列出方程中正确的有()个.①=②×24x=15(12﹣x)③3×24x=2×15(12﹣x)④2×24x+3×15(12﹣x)=1A.3B.2C.1D.05.某车间有30名工人,生产某种由一个螺栓两个螺母组成的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下列所列方程正确的是()A.22x=16(30﹣x)B.16x=22(30﹣x)C.2×16x=22(30﹣x)D.2×22x=16(30﹣x)6.福州某机械厂加工车间有35名工人,平均每名工人每天加工大齿轮5个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能刚好配套?若设加工大齿轮的工人有x名,则可列方程为()A.3×5x=2×10(35﹣x)B.2×5x=3×10(35﹣x)C.3×10x=2×5(35﹣x)D.2×10x=3×5(35﹣x)7.某车间有33名工人,每人每天可以生产1200个螺钉或1800个螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有x名工人生产螺钉,则可列方程为()A.2×1800x=1200(33﹣x)B.2×1200x=1800(33﹣x)C.1200x=2×1800(33﹣x)D.1800x=2×1200(33﹣x)8.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳.一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x9.用150张铁皮做罐头盒,每张铁皮可制盒身15个或盒底45个,1个盒身与2个盒底配成一套罐头盒,为使制成的盒身与盒底恰好配套,可设用x张铁皮制盒底,则可列方程为()A.2×15x=45(150﹣x)B.15x=2×45(150﹣x)C.2×15(150﹣x)=45x D.15(150﹣x)=2×45x10.某车间56名工人,每人每天能生产螺栓16个或螺母24个,每个螺栓配两个螺母;设安排x名工人生产螺栓,才能使每天生产出来的螺栓和螺母刚好配套,下列方程中正确的是()A.2×16x=24(56﹣x)B.2×24x=16(56﹣x)C.16x=24(56﹣x)D.24x=16(56﹣x)11.某车间生产圆形铁片和长方形铁片,两个圆形铁片和一个长方形铁片可以制作成一个油桶(如图),已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或长方形铁片80片,为使生产的铁片恰好配套,设安排x人生产圆形铁片,可列方程()A.80x=2×120(42﹣x)B.2×80x=120(42﹣x)C.120x=2×80(42﹣x)D.2×120x=80(42﹣x)12.一套仪器由一个A部件和三个B部件构成,用1立方米钢板可做40个A部件或240个B部件.现要用6立方米钢板制作这种仪器,设应用x立方米钢板做B部件,其他钢板做A部件,恰好配套,则可列方程为()A.3×40x=240(6﹣x)B.240x=3×40(6﹣x)C.40x=3×240(6﹣x)D.3×240x=40(6﹣x)二.填空题(共8小题)13.为保障一线医护人员的健康安全,某防护服厂加班生产防护服和防护面罩.已知工厂共54人,每人每天可加工防护服80件或防护面罩100个,已知一套防护服配一个防护面罩,为了使每天生产的防护服与防护面罩正好配套,需要安排人生产防护服.14.某车间有26名工人,每人每天可以生产800个螺栓或1000个螺母,1个螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,设安排x名工人生产螺栓,则所列方程为.15.某厂生产一批纸盒,2米硬纸板可以做3个盒盖或者4个盒身,现有硬纸板140米,为了使盒盖和盒身正好配套,制作盒盖需要米硬纸板.16.明代大数学家程大位著的《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问君多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排笔管或笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,则可列方程为.17.某车间有技术工人85人,平均每人每天可加工甲种部件16个或乙种部件10个.2个甲种部件和3个乙种部件刚好能配成一套,则一天最多能加工套.18.某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.19.某生产车间有60名工人生产太阳眼镜,1名工人每天可生产镜片200片或镜架50个,应分配个工人生产镜片和个工人生产镜架,才能使每天生产的产品配套.20.某车间加工机轴和轴承,一名工人平均每天可加工15个机轴或10个轴承,车间一共80人,则当一根机轴和两个轴承配套时,应分配多少人加工机轴,才能使每天生产的机轴与轴承配套?设x人加工机轴,可列方程:.三.解答题(共8小题)21.某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在18天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?22.某工厂车间有28个工人,生产A零件和B零件,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.求该工厂有多少工人生产A零件?23.用一批卡纸做包装盒,每张卡纸可做2个盒身或5个底盖,一个盒身与两个底盖配成一个完整的包装盒.(1)如果用25张卡纸做盒身,20张卡纸做底盖,做成的盒身和底盖是否正好配套?请通过计算结果加以说明.(2)如果有63张卡纸,请问用多少张卡纸做盒身,多少张卡纸做底盖,才能使做成的盒身和底盖正好配套?24.制作一张桌子,要用一个桌面和4条腿组成,1m3木材可制作300条桌腿或可制作15个桌面,现有30m3木材,应该用多少立方木材制作桌面,用多少立方木材制作桌腿,才能使桌腿和桌面配套?25.某车间32名工人生产桌子和椅子,每人每天平均生产桌子15张或椅子50把,一张桌子要配两把椅子.已知车间每天安排x名工人生产桌子.(1)求车间每天生产桌子和椅子各多少张?(用含x的式子表示)(2)如果x=18,那么每天生产的桌子和椅子能否刚好配套?请说明理由.26.一个车间加工轴杆和轴承,每人每天平均可以加工轴杆6根或者轴承8个,1根轴杆与2个轴承为一套,该车间共有40人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?27.某丝巾厂家70名工人义务承接了志愿者手上,脖子上的丝巾的制作任务.已知每人每天平均生产手上的丝巾180条或者脖子上的丝巾120条,一条脖子上的丝巾要配2条手上的丝巾.(1)为了使每天生产的丝巾刚好配套,应分配多少名工人生产手上的丝巾,多少名工人生产脖子上的丝巾?(2)在(1)的方案中,能配成套.28.某车间36名工人生产螺母和螺钉,每人每天平均生产螺钉200个或螺母500个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?。
一元一次方程配套问题
一元一次方程配套问题一元一次方程是初中数学中的基础知识之一,它是由一个未知数和一个常数构成的线性方程。
解一元一次方程可以帮助我们解决很多实际问题,下面我将通过几个配套问题来说明一元一次方程的应用。
1. 问题一:小明买了一些苹果,每个苹果的价格是2元,他一共花了10元,请问他买了几个苹果?解答:设小明买了x个苹果,根据题意可以列出方程2x=10。
解这个方程可以得到x=5,所以小明买了5个苹果。
2. 问题二:某地气温每小时下降2摄氏度,现在的气温是20摄氏度,问多少小时后气温降到10摄氏度?解答:设降温的小时数为x,根据题意可以列出方程20-2x=10。
解这个方程可以得到x=5,所以需要5小时后气温降到10摄氏度。
3. 问题三:某商店举行打折活动,所有商品都打7折,现在一件衣服原价是100元,打完折后的价格是多少?解答:设打完折后的价格为x,根据题意可以列出方程0.7*100=x。
解这个方程可以得到x=70,所以打完折后的价格是70元。
4. 问题四:某座大楼的电梯每秒上升3层楼,现在电梯在第5层,请问它上升到第15层需要多少秒?解答:设上升的秒数为x,根据题意可以列出方程3x=15-5。
解这个方程可以得到x=10,所以电梯上升到第15层需要10秒。
通过以上的配套问题,我们可以看到一元一次方程在解决实际问题中的应用。
通过设定适当的未知数,列出方程并解方程,我们可以求解出问题中所需的未知数的值。
这样的方法不仅能够提高我们的数学运算能力,还能够培养我们的问题解决能力和逻辑思维能力。
在实际生活中,一元一次方程的应用非常广泛。
例如,在购物、计算时间、打折等问题中,我们可以利用一元一次方程来求解。
此外,在物理学、经济学等领域,一元一次方程也有着重要的应用。
例如,利用一元一次方程可以计算物体的运动速度、解决经济中的供求问题等。
一元一次方程是数学中的基础知识,它能够帮助我们解决很多实际问题。
通过学习和掌握一元一次方程的解法,我们可以提高自己的数学能力和问题解决能力。
一元一次方程配套问题
一元一次方程配套问题1.一套仪器由一个A部件和三个B部件构成。
用1m³钢材可以做40个A部件或240个B部件。
现要用6m³钢材制作这种仪器,应该用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器多少套?答:用6m³钢材可以制作240个A部件或1440个B部件。
因此,如果要制作一套仪器,需要1个A部件和3个B部件,即需要用1m³钢材制作1个A部件和3m³钢材制作3个B部件。
所以,用2m³钢材制作2个A部件,用4m³钢材制作12个B部件,可以恰好配成5套这种仪器。
2.某车间有62名工人,生产甲、乙两种零件。
每人每天平均能生产甲种零件12个或乙种零件23个。
应该分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?(已知3个甲种零件和2个乙种零件配成一套)答:每个工人每天可以生产甲种零件12/23个或乙种零件23/12个。
为了使生产的甲种零件和乙种零件刚好配套,需要满足以下条件:3n个甲种零件=2m个乙种零件其中,n和m都是正整数。
将上式变形得:n/m=2/3因此,需要分配的工人数满足以下条件:62x(2/5)=24.862x(3/5)=37.2所以应该分配25名工人生产甲种零件,37名工人生产乙种零件。
3.某纺织厂有纺织工人300名,为增产创收,该纺织厂又增设了制衣车间,准备将这300名纺织工人合理分配到纺织车间和制衣车间。
现在知道工人每人每天平均能织布30米或制4件成衣,每件成衣用布1.5米。
若使生产出的布匹刚好制成成衣,求应有多少人去生产成衣?答:每个工人每天可以织布30米或制作4/1.5=8/3件成衣。
为了使生产的布匹和成衣刚好配套,需要满足以下条件:30n=8m/3其中,n和m都是正整数。
将上式变形得:n/m=8/90因此,需要分配的工人数满足以下条件:300x(8/98)=24.49300x(90/98)=275.51所以应该分配25名工人生产成衣。
一元一次方程应用题配套问题知识点
一元一次方程应用题配套问题知识点
一元一次方程应用题中的配套问题,主要考察的是对等量关系的应用和理解。
这类问题通常涉及到生产、生活中的各种物品的配比关系,如零件的装配、物资的调配等。
解决这类问题,关键在于理清各个部分之间的关系,并用数学模型将这种关系表达出来。
知识点主要包括:
1. 等量关系:在配套问题中,各个部分之间存在一定的等量关系,如数量相等、总价相等等。
理解并找出这种等量关系是解题的关键。
2. 一元一次方程:通过设未知数,根据等量关系建立一元一次方程,是解决配套问题的常用方法。
3. 方程的解法:解一元一次方程的方法包括移项、合并同类项、去括号、系数化为1等。
根据方程的特点选择合适的解法是必要的。
4. 实际问题中的数量关系:在配套问题中,除了数学关系外,还需要理解实际问题的背景和数量关系,如生产效率、时间、成本等。
综上所述,一元一次方程应用题中的配套问题知识点主要包括等量关系、一元一次方程、方程的解法和实际问题中的数量关系。
通过理解和运用这些知识点,可以更好地解决这类问题。
一元一次方程配套问题
应用问题2配套问题例:某车间有22人,加工生产一种螺栓和螺母。
每人每天平均生产螺栓120个或螺母200个,一个螺栓要配两个螺母,应该分配多少名工人生产螺栓,多少名工人生产螺母,才能每天生产的产品刚好配套?1、某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知2个大齿轮和3个小齿轮配套,问应如何安排劳力使生产的产品刚好成套?2、某队有55人,每人每天平均挖土2.5方或运土3方,为合理安排劳力使挖出的土及时运走,应如何分配挖土和运土的人数?3、某工程每天安排120个工人修建水库,平均每天每个工人能挖土5立方或运土3立方。
为了使挖出的土及时被运走,应如何安排挖土和运土的人数?行船与飞机飞行问题:⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度例:一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
1、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间的距离。
2、小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,求该河的水流速度。
课后练习1、一张方桌又一个桌面和四条腿组成。
用1立方米木料可制作50个方桌桌面或制作300条桌子腿,现有5立方米木料。
若做成的桌腿和桌面恰好配套。
能做成方桌多少张?2、某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个或丙种零件8个。
问如何安排每天的生产,才能使每天生产的产品配套?(3个甲,2个乙,1个丙为1)3、生产车间每天能生产甲种零件450个或乙种零件300个,已知3个甲种零件与5个乙种零件刚好配套,现在在21天中使所生产的零件全部配套,那么应该如何安排生产?4、某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离?5一架飞机,最多能在空中连续飞行4小时,飞出去时的速度是950千米/小时,返回时的速度是850千米/小时,这架飞机最远能飞出多少千米就应返回?。
专题06 一元一次方程的应用——配套问题(应用题专项训练)(沪科版)(原卷版)-2024-2025学
专题06一元一次方程的应用——配套问题1.(2023秋·四川达州·七年级统考期末)列方程解应用题:某车间有15个工人,生产水桶、扁担两种商品;已知每人每天平均能生产水桶80个或扁担110个,则应分配多少人生产水桶、多少人生产扁担,才能使每天生产的水桶和扁担刚好配套?(每2个水桶和1个扁担配成一套)2.(2023秋·湖北武汉·七年级校考期末)列方程解应用题:某车间每天能生产甲种零件180个或乙种零件120个,若甲、乙两种零件分别取3个、5个配成-套,那么要在30天内生产最多的成套产品,应怎样安排生产甲、乙两种零件的天数?3.(2022秋·内蒙古呼伦贝尔·七年级统考期末)某车间有94个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每1个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?每天能生产多少套?4.(2022秋·重庆渝北·七年级统考期末)新型冠状病毒肺炎正在全球蔓延,医用器械十分紧缺,某医用器械厂一组有10名工人,每人每天可以生产3个甲零件或4个乙零件.1个甲零件与2个乙零件可组装成一个完整的医用器械,为了组装更多的医用器械,要求每天生产的甲零件与乙零件刚好配套,一组应安排生产甲零件与乙零件的工人各多少名?5.(2023秋·广西南宁·七年级南宁市天桃实验学校校考期末)新型冠状肺炎疫情蔓延期间,口罩成了人们生活中必不可少的物品.某口罩厂有40名工人,每人每天可以生产1000个口罩面或1200根耳绳.一个口罩面需要配两根耳绳,为使每天生产的口罩与耳绳刚好配套,应该安排多少名工人生产口罩面,安排多少工人生产耳绳?该口罩厂每天可生产多少个口罩?6.(2022秋·江苏扬州·七年级校考期末)制桶厂有工人28人,每个工人平均每小时可以生产圆形铁片12个,或长方形铁片8个,将两张圆形铁片与一张长方形铁片可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片才能合理地将铁片配套?7.(2022秋·江苏·七年级专题练习)京华服装厂生产一批某种型号的秋装,已知每两米的某种布料可做上衣的衣身3件或衣袖5只,现计划用这种布料132米做这批秋装,则应分别用多少布料做衣身,多少布料做衣袖才能恰好配套?8.(2022秋·广东惠州·七年级惠州一中校考阶段练习)某校七年级170名学生参加义务植树活动,如果每个男生平均一天能挖3个树坑,每个女生平均一天能栽种7棵树,如果正好每个树坑都栽上一棵树,那么该校七年级的男生和女生各有多少人?9.(2023秋·湖北孝感·七年级统考期末)云梦县某家具厂现有工人50人,平均每人每天可加工茶几18个或椅子14把,1个茶几和2把椅子配成一套家具,问:应安排加工茶几和加工椅子的工人各多少人才能使每天加工的茶几和椅子刚好配套?并求出每天可加工多少套家具.10.(2023秋·重庆开州·七年级统考期末)冰薄月饼以香气浓郁,酥软适当在开州区享有盛名.某糕点厂中秋节前要制作一批盒装礼盒月饼,每个礼盒中装4块大月饼和8块小月饼,制作1块大月饼要用0.05 kg面粉,1块小月饼要用0.02 kg面粉,现共有面粉4500 kg,要用多少面粉制作大月饼才能生产最多的礼盒装月饼?最多可生产多少盒礼盒装月饼?11.(2022秋·河北保定·七年级统考期末)某校新进了一批课桌椅,七年(2)班的学生利用活动课时间帮助学校搬运部分课桌椅,已知七年(2)班共有学生45人,其中男生的人数比女生人数的2倍少24人,要求每个学生搬运60张桌子或者搬运150张椅子.请解答下列问题:(1)七年(2)班有男生、女生各多少人?(2)一张桌子配两把椅子,为了使搬运的桌子和椅子刚好配套,应该分配多少个学生搬运桌子,多少个学生搬运椅子?12.(2022秋·全国·七年级期末)某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库存有布料300m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料227m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)13.(2023秋·七年级课时练习)某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是新调入工人人数的3倍多4人.(1)求调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产240个螺栓或400个螺母,1个螺栓需要2个螺母,为使每天生产的螺栓和螺母刚好配套,应该安排生产螺栓和螺母的工人各多少名?14.(2023秋·山东滨州·七年级统考期末)某工厂车间有60个工人生产A零件和B零件,每人每天可生产A零件15个或B零件20个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A 零件和B零件恰好配套.工厂将零件批发给商场时,每个A零件可获利10元,每个B零件可获利5元.(1)求该工厂有多少工人生产A零件?(2)因市场需求,该工厂每天要多生产出一部分A零件供商场零售使用,现从生产B零件的工人中调出多少名工人生产A零件,才能使每日生产的零件总获利比调动前多600元?15.(2022秋·全国·七年级专题练习)小林到某纸箱厂参加社会实践,该厂计划用50张白板纸制作某种型号的长方体纸箱.如图,每张白板纸可以用A,B,两种方法剪裁,其中A种裁法:一张白板纸裁成4个侧面;B种裁法:一张白板纸裁成2个侧面与4个底面.且四个侧面和两个底面恰好能做成一个纸箱.设按A 种方法剪裁的有x张白板纸.(1)按B种方法剪裁的有______张白板纸;(用含x的代数式表示)(2)将50张白板纸裁剪完后,可以制作该种型号的长方体纸箱多少个?16.(2023秋·广东湛江·七年级统考期末)在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级2班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗?如果不配套,那么如何进行人员调配,才能使每小时剪出的筒身与筒底刚好配套?17.(2022秋·浙江丽水·七年级统考期末)某厂用铁皮做罐头盒,每张铁皮可制盒身15个或盒底45个,1个盒身与2个盒底配成一套罐头盒.为了充分利用材料,要求制成的盒身和盒底恰好配套.现有151张铁皮,最多可做多个包装盒?为了解决这个问题,小敏设计一种解决方案:把这些铁皮分成两部分,一部分做盒身,一部分做盒盖.(1)请探究小敏设计的方案是否可行?请说明理由.(2)若是你解决这个问题,怎样设计解决方案,使得材料充分利用?请说明理由.18.(2022秋·江苏·七年级期末)某工厂接受了20 天内生产1200 台GH 型电子产品的总任务。
一元一次方程应用---配套问题
120x=2406 x 化简得 x=26 x
配套问题应用举例
例4.加工车间有85名工人,平均每天每人加工大齿轮16个或小齿轮 10个,已知2个大齿轮与3个小齿轮配成一套,问需安排多少名工人 加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
配套比为:大齿轮数量:小齿轮数量 2 : 3
反思小结
这节课重点研究了什么问题?
配套问题 解决配套问题的关键是什么?
确定配套比
如何列方程解决配套问题? 总量比等于配套比
配套比为:桌面量:桌腿量 1 : 4
设用xm3木料做桌面,则用 5 x m3木料做桌腿
桌面量 50x ,桌腿量 3005 x .
列方程得 50x : 3005 x 1: 4
依据比例的基本性质:两外项之积等于两内项之积
200x=3005 x 化简得 2x=35 x
配套问题应用举例
例2.车间每天能制作甲零件500只,或者乙零件250只,甲乙零件各 一只配成一套产品,现要在30天内制作最多的成套产品,则甲乙 两种零件各应制作多少天?
配套比为:圆片数量: 长方形数量 2 :1
设x名工人制作圆片,则 42 x 名工人制作长方形片 圆片数量 120x ,长方形片数量 8042 x .
列方程得 120x : 8042 x =2 :1
依据比例的基本性质:两外项之积等于两内项之积
120x=16042 x 化简得 3x=442 x
例3.一套仪器由一个A部件和三个B部件组成,用1立方米钢材可做 40个A部件或240个B部件.现要用6立方米钢材做这种仪器,应用 多少钢材做A部件,恰好配成这种仪器多少件?
配套比为:A部件量: B部件量 1: 3
一元一次方程应用题产品配套问题
产品配套问题的应用
产品配套问题指的是在生产、销售和消费过程中,如何确定产品之间的比例和数量关系,以达到最佳配套效果。 通过一元一次方程,可以轻松解决产品配套问题,确保产品之间的比例和数量匹配。
常见的产品配套问题举例
建筑材料配送
如何确定各类建筑材料的比例和数量,以便按时完成工程。
食品搭配搭销售
如何确定不同食品的搭配比例和销售数量,以满足不同顾客的需求。
实际应用案例分析
公平分配问题
如何根据每个成员的需求,公平 地分配有限的资源。
产品包装问题
生产线配置问题
如何确定产品包装的比例和数量, 以确保产品外观的统一和市场需 求的满足。
如何根据生产需求,合理配置工 业生产线的设备比例和数量。
总结
一元一次方程是解决产品配套问题的有力工具,通过定义、基本方法和应用 案例的介绍,我们了解了其在日常生活和实际工作中的重要性。
工业生产线配置
如何确定不同工业设备的配置比例和数量,以提高生产效率。
如何通过一元一次方程解决产品配套问题
1
确定未知数
根据具体问题,确定需要解决的未知数。
列方程
2
将已知条件转化为方程,确保方程具有
一元一次的形式。
3
解方程
根据方程的定义和基本解法,求解未知
验证解的可行性
4
数的值。
将求得的未知数代入方程验证解的正确 性和可行性。
3 应用范围
一元一次方程在日常生活中广泛应用,尤其在解决产品配套问题时非常实用。
解方程的基本方法
逆向操作法
通过逆向操作,将方程转化为 简单的等式,从而求得未知数 的值。
平衡法则
通过保持等式两侧的平衡状态, 逐步化简方程,直到得到未知 数的值。
一元一次方程配套问题
配套问题
PART ONE
在实际问题中,大家常见到一些配套组合问题,如螺钉与螺母的配套,盒身与盒底的配套等.解决这类问题的方法是:
抓住配套关系,设出未知数,根据配套关系列出方程,通过解方程来解决问题
02
01
例 1 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?
解一元一次方程应用
添加副标题
202X
仔细审题,找出能表示应 用题全部含义的一个相等关系。
设一个未知数,并根据相等 关系列出需要的代数式。
根据相等关系列出一元一 次方程。
解这个方程,求出未 知数的值。
作答
列一元一次方程解应用题的步骤 :
注意:
1
2
方程中数量 单位要统一。
3
设未知数及作答 时若有单位的一定要带单 位。
2×25x=40(36-x)
解得x=16,36-x=20 所以用16张制盒身,20张制盒底正好使盒身与盒底配套.
例4一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做方桌的桌面50个或做桌腿300条,现有5立方米木料,那么用多少立方米木料做桌面、多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配成多少方桌?
某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?
01
某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?
配套问题应用题
单人产量
总产量
x × 1 200 = 1 200 x (22﹣x) × 2 000 =2 000(22-x)
人数和为22人 螺母数量 =螺钉数量
螺母总产量:螺 钉总产量=1:1
1200x=2023(22-x)
解:设分配x名工人生产螺钉,假如其设他怎x名(样工2列2人方-x生程)产?名螺母, 工人生产螺母.则
二 自学检测
1 某车间22名工人生产螺钉和螺母,每人每天平 均生产螺钉1200个或螺母2023个,1个螺钉要配 1个螺母,为了使每天旳产品刚好配套,应该分 配多少工人生产螺钉,多少人生产螺母?
本题旳配套关系是: 1个螺钉配1个螺母,即螺钉数:螺母 数=1:1.
列表分析:
产品类型 螺钉 螺母
生产人数
分析:本题旳配套关系是:
2个螺钉配3个螺母,即螺钉数:螺母数=2:3.
3×螺钉数量=2×螺母数量
方程列为:3×1 200 x=2×2 000(22-x)
3×1 200 x=2×2 000(22-x)
3600x=4000(22-x) 3600x=88000-4000x 7600x=88000 x=19/220
Page 11
1/1200:2/2023=5:6 生产螺钉:22÷(5+6)x5=10(人) 生产螺母:22-10=12(人)
Page 12
自学检测
3 某车间22名工人生产螺钉和螺母,每人每天平均 生产螺钉1200个或螺母2023个,2个螺钉要配3个 螺母,为了使每天旳产品刚好配套,应该分配多 少工人生产螺钉,多少人生产螺母?
答:应分配10名工人生产螺钉,12名工人生产 螺母.
Page 10
设x名工人生产螺钉,则有 22-x人生产螺母,可得: 1200x=2023(22-x)÷2 1200x=22023-1000x 1200x+1000x=22023 22x=220 x=10 所以生产螺母旳人数为: 22-10=12(人)
七年级一元一次方程配套问题
七年级一元一次方程配套问题
配套问题是一元一次方程中常见的问题类型,通常涉及到物品的组合和搭配。
以下是一个简单的配套问题示例:
假设有100个人,他们需要不同数量的大米和面粉。
其中,50人需要4袋大米,另外50人需要3袋面粉。
现在我们知道,3袋面粉可以换5袋大米。
那么,应该如何分配这些大米和面粉才能满足每个人的需求?
设需要x 袋大米和y 袋面粉。
根据题目信息,我们可以建立以下方程:
50人需要4袋大米,所以x = 4 × 50。
另外50人需要3袋面粉,所以y = 3 × 50。
由于3袋面粉可以换5袋大米,所以实际上需要的面粉数量应该是x/5 × 3。
用数学方程表示为:
x = 4 × 50
y = 3 × 50
y = (x/5) × 3
现在我们要来解这个方程组,找出x 和y 的值。
计算结果为:x = 200, y = 150
所以,需要分配200袋大米和150袋面粉,以满足每个人的需求。
配套问题应用题一元一次方程
配套问题应用题一元一次方程标题,应用题,一元一次方程。
在日常生活中,我们经常会遇到一些问题需要用到一元一次方
程来解决。
一元一次方程是代数学中的基础知识,它可以帮助我们
解决各种实际问题。
下面我们就来看几个配套问题应用题,通过解
一元一次方程来解决这些问题。
问题1,小明买了苹果和橙子,苹果每斤3元,橙子每斤2元,小明一共买了10斤水果,花了25元。
问小明买了多少斤苹果和多
少斤橙子?
解:设小明买了x斤苹果,y斤橙子,则可以列出方程:
3x + 2y = 25。
又因为小明一共买了10斤水果,所以又有方程:
x + y = 10。
通过解这个一元一次方程组,可以得到小明买了5斤苹果和5斤橙子。
问题2,某商店举行促销活动,原价每件衣服100元,现在打八折出售,小王买了5件衣服,一共花了360元。
问小王原价每件衣服多少钱?
解:设原价每件衣服为x元,则可以列出方程:
5 0.8x = 360。
通过解这个一元一次方程,可以得到原价每件衣服为96元。
通过以上两个问题的解答,我们可以看到一元一次方程在解决实际问题中的重要性。
它可以帮助我们快速准确地找到问题的解决办法,让我们的生活更加方便和高效。
希望大家能够在日常生活中多多运用代数知识,解决各种实际问题。
人教版七年级数学实际问题与一元一次方程(产品配套问题含答案)
第4课时实际问题与一元一次方程(产品配套问题)1.有一个专项加工茶杯车间,一个工人每小时平均可以加工杯身12个,或者加工杯盖15个,车间共有90人.安排加工杯身的人数为多少时,才能使生产的杯身和杯盖正好配套?直接设法:设安排加工杯身的工人为x人,则加工杯盖的工人为人,每小时加工杯身个,杯盖个,则可列方程为,解得x= .间接设法:设加工杯身x个,则加工杯盖x个,所以加工杯身的工人为人,加工杯盖的工人为人,则可列方程为 .解得x= .故加工杯身的工人为人.2.用白铁皮做罐头盒,每张铁皮可制盒身15个,或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,怎样分配材料可以正好制成整套罐头盒?若设用x张铁皮做盒身,根据题意可列方程为( )A.2×15(108-x)=42xB.15x=2×42(108-x)C.15(108-x)=2×42xD.2×15x=42(108-x)3.某车间共有75名工人生产A,B两种工件,已知一名工人每天可生产A种工件15件或B 种工件20件,但要安装一台机械时,同时需A种工件1件,B种工件2件,才能配套,则车间如何分配工人生产,才能保证连续安装机械时,两种工件恰好配套?4.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x人做上衣,则做裤子的人数为人,根据题意,可列方程为,解得x= .5.用铝片做听装饮料瓶,每张铝片可制瓶身16个或制瓶底43个,一个瓶身与两个瓶底配成一套,现有150张铝片,用多少张制瓶身,多少张制瓶底可以正好制成整套的饮料瓶?6.一张方桌由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌的桌面50个或制作桌腿300条,现有5立方米木料,请你设计一下,用多少木料做桌面,多少木料做桌腿,恰好配成方桌多少张?7.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓、螺母按1∶3配套.问:生产螺栓和螺母各安排多少人才能使每天生产的螺栓、螺母刚好配套?第4课时产品配套问题参考答案1.直接设法:设安排加工杯身的工人为x人,则加工杯盖的工人为(90-x)人,每小时加工杯身12x个,杯盖15(90-x)个,则可列方程为12x=15(90-x),解得x=50.间接设法:设加工杯身x个,则加工杯盖x个,所以加工杯身的工人为x12人,加工杯盖的工人为x15人,则可列方程为x12+x15=90.解得x=600.故加工杯身的工人为50人.2.D3.解:设该车间分配x名工人生产A种工件,(75-x)名工人生产B种工件,根据题意,得2×15x=20(75-x),解得x=30.则75-x=45.答:该车间分配30名工人生产A种工件,45名工人生产B种工件,才能保证连续安装机械时,两种工件恰好配套.4.(54-x) 8x=10(54-x) 30.5.解:设用x张铝片制瓶身,(150-x)张铝片制瓶底可以正好制成整套的饮料瓶.根据题意,得16x×2=43×(150-x).解得x=86.所以150-x=64.答:用86张铝片制瓶身,64张铝片制瓶底可以正好制成整套的饮料瓶.6.解:设用x立方米木料做桌面,那么桌腿用木料(5-x)立方米,根据题意,得4×50x=300(5-x).解得x=3.所以5-x=2,50x=150.答:用3立方米木料做桌面,用2立方米木料做桌腿,恰好配成方桌150张.7.解:设安排x人生产螺栓,则安排(30-x)人生产螺母,由题意,得12x×3=18×(30-x),解得x=10.所以30-x=20.答:安排10个人生产螺栓,安排20个人生产螺母能使每天生产的螺栓、螺母刚好配套.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个大人一餐能吃四个面包,四个幼儿一餐 只吃一个面包,现有大人和幼儿共100人, 一餐刚好吃100个面包,这100人中大人和 幼儿各有多少人?
分析:
一餐能吃的数量:大4个 小1/4个 面包总数:4大x 人吃的+幼1/儿4(吃10的0—x) = 100
大x人+ 1幼0儿0—x =100
某车间有16名工人,每人每天可加工甲种零 件5个或乙种零件4个,已知每加工一个甲种 零件可获利16元,每加工一个乙种零件可获 利24元。若此车间一共获利1440元,则这
用白铁皮做罐头盒,每张铁皮可制盒身16个, 或盒底43个,一个盒身与两个盒底配成一套 罐头盒。现有150张白铁皮,用多少张制盒 身,多少张制盒底,可以正好制成整套罐头 盒?
分析:
每张铁皮可制: 盒身16个,或盒 底43个
数 量:盒身 = 盒底 的2倍
生产盒身+生产盒底=150
机械厂加工车间有85名工人,平均每人每天 加工大齿轮16个或小齿轮10个。2个大齿轮 和3个小齿轮配成一套,问需分别安排多少名 工人加工大、小齿轮,才能使每天加工的大 小齿轮刚好配套?
分析:
生产速度:大齿轮16个 小齿轮10个
数 量:1大6x : 10(1小5—x) = 2:3
大的x人数+小85的—人x数=85
甲仓库储粮35吨,乙仓库储粮19吨,现调粮食 15吨,应分配给两仓库各多少吨,才能使得甲 仓库的粮食数量是乙仓库的两倍?
分析:
原有:甲仓库储粮35吨
调来:分x给甲+分1给5—乙x
乙仓库储粮19吨 = 15
现在:甲35储+x粮
= 2乙(储19粮+15-x)
实际问题与一元一次方程(1)
——产品配套问题
例题:某车间有22名工人,每人每天可以生产 1200个螺钉或2000个螺母,1个螺钉需要配2个 螺母,为了使每天生产的螺钉和螺母刚好配套, 应安排生产螺钉和螺母的工人各多少人?
分析:题目中的等量关系:
配套即:每天生产螺钉数量=2╳螺母数量
每天每人的工作效率╳人数=每天的产品数 量
一张学生桌由一个桌面和四条腿组成。若1立方米 木料可制作桌面50个或桌腿300条,现有15立 方米木材,请你设计一下,用多少木料做桌面, 用多少木料做桌腿恰好配套?
分析: 1立方米木料可制作:桌面50个 桌腿300条 数 量:5桌0x面 : 300(腿15—x) = 1:4
生产x桌面+生15产—桌x腿=15
涉及到的量: 工人数:生x产甲+生16产-x乙=16 生产速度:甲种零件5个 乙种零件4个
数数量量:甲的数量=生5产x 甲的人数×生产甲的速度
数量:乙的数量=生4产(16乙-x的) 人数×生产乙的速度
单价:甲种零件16元,乙种零件24元 获利:甲16获*5利x 额+乙24获*4利(1额6-x) =1440