名校第1课时 弧长和扇形面积PPT课件

合集下载

《弧长和扇形面积》课件

《弧长和扇形面积》课件
面积为______
3
解:∵△ABC中,∠A=60°,
∴∠ABC+∠ACB=180°-60°=120°,
∵△OBD,△OCE是等腰三角形,
∴∠BDO+∠CEO=∠ABC+∠ACB=120°,
∴∠BOD+∠COE=360°-(∠BDO+∠CEO)-(∠ABC+∠ACB)
=360°-120°-120°=12DB= × 3 × 3
2
60×32
3−
360
=
9 3
3
− .
2
2
记作:扇形OCED
新知探究 知识点1
S =πR2
分别计算下图中各扇形的面积
R
180° O
2
180

R
R 2
360
2
R 90°
O
2
90

R
R 2
360
4
45°
R
O
2
45

R
R 2
360
8
n°R
O
2
n
n

R
R 2
360
360
扇形面积公式:
半径为R 的圆中,圆心角为n°的扇形的面积是
解得
135×4²
R=4,∴此扇形的面积为
=6π(cm2).
360
随堂练习
1.如图,实线部分是由两条等弧组成的游泳池,且这两条弧所在
的圆的半径均为15 m.若每条弧所在的圆都经过另一个圆的圆心,
则游泳池的周长是 40π m.
解:如图,连接O1O2,CO1,CO2,DO1,DO2,
∵O1O2= CO1 = CO2 =15m,

弧长和扇形面积优秀课件

弧长和扇形面积优秀课件
(2)弧长与圆周长、扇形面积与圆面积之间有什 么联系?
5.布置作业
教科书第 113 页 练习第 1,2,3 题. 教科书习题 24.4 第 4,6,8 题.
(5)半径为 R 的圆中,n°的圆心角所对的弧长?
l n 2R nR
360
180
思考:弧长的大小由哪些量决定?
1.探究并应用弧长公式
例1 制造弯形管道时,经常要先按中心线计算“展直长 度”,再下料,试计算图中所示的管道的展直长度 L (结果取整数).
A C
B
100° R=900 mm
O
D
2.探究并应用扇形面积公式
4、已知扇形的半径是3cm,此扇形的弧长是 2πcm,则此扇形的圆心角等于_1_2_0_度,扇形 的面积是___3_π__cm²。(结果保留π)
5、一个扇形的半径为3cm,面积为πcm²,则 此扇形的圆心角为___4_0___度。
6、已知扇形的圆心角为120°,所对的弧长
为 8 ,则此扇形的面积是___1_6_____。
九年级 上册
24.4 弧长和扇形面积(第1课时)
教学目标
• 1.理解弧长与圆周长的关系,能用比例的方法 推导弧长公式,并能利用弧长公式进行相关计算 • 2.类比推导弧长公式的方法推导扇形面积公式 ,并能利用扇形面积公式进行相关计算.
1.探究并应用弧长公式
问题1 我们知道,弧是圆的一部分,弧长就是圆周 长的一部分.如何计算圆周长?如何计算弧长?
问题2:什么图形是扇形。
B
B
弧 圆圆心心角角
A
扇形
O A
2.探究并应用扇形面积公式
问题3:你能否类比刚才我们研究弧长公式的 方法推导出扇形面积的计算公式?

弧长及扇形的面积ppt课件

弧长及扇形的面积ppt课件

如图所示,扇形OAB的圆心角为60°,半径为1,将它向右 滚动到扇形O′A′B′的位置,点O到O′所经过的路线长
A.π B .4/3π C.5/3π D.2π
B' A
B
C' D
A
C
扇形的定义 如图,一条弧和经过这条弧的端点的两条半径所组成 的图形叫做扇形.

A B
O
探究二
1.如图,圆的半径为R,圆心角为90°, 怎样计算扇形的面积呢?
∠BAC=60°.设⊙O的半径为2,求 B⌒C 的
长.
例2、 如图:在△AOC中,∠AOC=90°, ∠C=15°,以O为圆心,AO为半径的圆交AC于B 点,若OA=6, 求弧AB的长。
C
B
O
A
试一试:
如图:AB与⊙O相切于点B,AO的延长线交⊙O 于点C,连接BC,若∠ABC=120°,OC=3,求 弧BC的长.
B●
B
B2
B1
F'
U
A
BCD的边AB=8,AD=6,现将矩形ABCD 放在直线l上且沿着l向右作无滑动地翻滚,当它 翻滚至类似开始的位置时(如图所示),则顶点 A所经过的路线长是_________.
如图,半径为5的半圆的初始状态是直径平行于桌 面上的直线b,然后把半圆沿直线b进行无滑动滚动 ,使半圆的直径与直线b重合为止,则圆心O运动路 径的长度等于______.
1 4
π×(652-152)=1000π(cm2)
例题解析
例2 如图,正三角形ABC的边长为2,分别以A、B、C为 圆心,1为半径的圆两两相切于点O1、O2、O3,求弧O1O2、 弧O2O3、弧O3O1围成的图形的面积S(图中阴影部分).

数学九上《弧长和扇形面积》ppt课件

数学九上《弧长和扇形面积》ppt课件
因此,在计算扇形面积时,可以通过已知的弧长或圆心角来求解;反之亦然。
弧长和扇形面积的计算方法
CATALOGUE
03
弧长是指圆弧的长度,是圆周长的部分。
弧长的定义
弧长的计算公式
弧长的应用
弧长 = (圆心角/360°) × 圆的周长。
弧长常用于计算圆的周长、圆的面积、扇形面积等。
03
02
01
根据弧长的定义,弧长是圆周长的部分,因此可以通过圆周长的公式推导出弧长的公式。
扇形面积的计算公式为:扇形面积 = (圆心角(弧度) / 2π) × π × 半径^2。
这个公式是通过将扇形分割成若干个小三角形,再求和得出的。
扇形面积是指由圆弧和两条半径围成的图形面积。
弧长和扇形面积都是描述圆或圆弧属性的量,它们之间存在一定的关系。
当圆心角相同时,弧长越长,扇形面积越大;反之,当弧长相同时,圆心角越大,扇形面积也越大。
THANKS
感谢观看
根据扇形面积的定义,扇形面积是圆面积的部分,因此可以通过圆面积的公式推导出扇形面积的公式。
扇形面积公式的推导
弧长公式的推导
弧长和扇形面积的应用
CATALOGUE
04
弧长公式是计算圆或扇形周长的重要工具,常用于计算几何图形的周长。
弧长公式
扇形面积公式是计算扇形面积的基础,对于计算几何图形的面积和比例关系具有重要意义。
掌握弧长和扇形面积的计算公式。
理解弧长和扇形面积的几何意义。
能够运用所学知识解决实际问题,提高数学应用能力。
弧长和扇形面积的基本概念
CATALOGUE
02
弧长是指圆弧的长度,可以通过圆心角和半径计算得出。
弧长的计算公式为:弧长 = 圆心角(弧度) × 半径。

弧长及扇形面积的计算ppt课件

弧长及扇形面积的计算ppt课件
3.6 弧长及扇形面积的计算
1.半径为r的圆的周长是多少?面积是
多少?
C 2r S r2
2.什么叫做弧?什么叫做1°的弧?
圆上任意两点间的部分叫做弧.
整个圆的 1 叫做1°的弧. 弧是圆的一部分 360
3.什么叫做扇形?
一条弧和经过这条弧两端的两条半径 所围成的图形叫做扇形.
扇形是圆面的一部分
n 2r nr
360
180
知识点一 弧长公式
在半径为r的圆中,n°弧的长度为:
弧的度数或圆心角的度数
n°弧
弧长
l
nr
180
半径 A
r O
B
注意:“n°弧的长度”也可以说成
“n°的圆心角所对的弧的长度”.
例1. 如图所示为一段弯形管道,其中心线是一段圆弧 AB 已知 AB的圆心为O,半径OA=60 cm,∠AOB = 108°, 求这段弯管的长度.
作业布置
A:学案 B:《练习册》91-92页
(去掉1.3.4.8.14.15.17.19)
如图 ,已知⊙O的半径为r .思考下面的问题:
O
1°弧
O
60°弧
O
n°弧
(1)圆周上1°弧的长度是整个圆周长的多少? 1
怎样用圆的半径r表示 1°弧的长度呢? 360
1 2 r r
360
180
(2)怎样用圆的半径r表示 60°弧的长度呢?
60 2r r
360
3
(3)怎样用圆的半径r表示 n°弧的长度 l 呢?
分BD的长为20cm,求扇子的一面上贴纸部分的面
积。
分析:
转化思想
.
S S扇形BAC S扇形DAE
解:由题意得:n=120 °,

《弧长和扇形面积》PPT教学课文课件 (第1课时)

《弧长和扇形面积》PPT教学课文课件 (第1课时)

答案: AB 4, BC 3,由勾股定理得 AC 5.
将Rt ABC 绕点 A 逆时针旋转 90°得到Rt AB1C1,
ABC 的面积等于 AB1C1的面积,
CAB C1AB1, AC1 AC 5, AB1 AB 4,
C1AC B1AB 90,
阴影部分的面积 S S扇形AC1C S ABC S扇形ABB S AC1B1
1 2
lR
1 2
20π
3
30π
例2
如图,水平放置的圆柱形排水管道的截面半径是 0.6m,其中水面高0.3m.求截面上有水部分的面积 (结果保留小数点后两位).
解:如图,连接OA,OB,作弦AB的垂直平分线,垂足为D,交 AB 于点C,
连接AC.
OC 0.6m, DC 0.3m, OD OC DC 0.3(m). OD DC
起跑位置不同,为了保证每个 人所跑路程为200米
02
探索新知
思考
我们知道,弧是圆的一部分,弧长就是圆周长的一部分.想一想,
如何计算圆周长?圆的周长可以看作是多少度的圆心角所对的弧
长?由此出发,1°的圆心角所对的弧长是多少?n°的圆心角呢?
(1)半径为R的圆的周长公式:
C 2πR
(3)1°的圆心角所对的弧长是:1π8R0
比一比
n°的圆心角所对的弧长和扇形面积之间有什么关系?
S扇形
nR2 360
nR R l 180 2
R 1 lR 22
及时练
(1)若扇形的半径为6cm,圆心角为60°,求扇形的面积
S扇形
nR2 360
2 360

(2)已知扇形所在圆的半径为3cm,弧长为20πcm,求扇形面积

弧长和扇形面积课件

弧长和扇形面积课件

VS
详细描述
通过观察扇形的形状,我们可以将其分解 为三角形和其他基本图形,然后通过测量 各部分的长度来计算面积。这种方法需要 一定的几何知识,但对于一些简单的情况 非常有效。
04
弧长和扇形面积的应用
在几何图形中的应用
弧长和扇形面积是几何学中重要的概念,广泛应用于各种几何图形的研究和计算。
在圆形、椭圆、抛物线等图形中,弧长和扇形面积的计算对于确定图形的形状、大 小以及解决相关问题具有重要意义。
THANKS FOR WATCHING
感谢您的观看
扇形面积的单位
扇形面积的单位是面积单位,常用的单位有平方米、平方 厘米、平方千米等。
弧长和扇形面积的关联知识
弧长和扇形面积的关系
在同一个圆或等半径的圆中,如果圆 心角增大,则对应的弧长和扇形面积 都会增大。这是因为弧长和扇形面积 都与圆心角的大小有关。
弧长和扇形面积的应用
在实际生活中,弧长和扇形面积的应 用非常广泛,例如在几何学、工程学 、天文学等领域都有应用。
利用微积分计算弧长
总结词
通过微积分的方法,我们可以对弧长进行精确的计算,适用于复杂曲线的弧长计 算。
详细描述
微积分提供了一种积分的方法来计算曲线的长度。对于弧长,可以通过对曲线函 数进行积分来得到。具体来说,弧长 = ∫(sqrt(1 + (y')^2)) dx,其中 y' 是曲线 在 x 处的导数。
弧长和扇形面积课件
目录
• 弧长和扇形面积的基本概念 • 弧长的计算方法 • 扇形面积的计算方法 • 弧长和扇形面积的应用 • 弧长和扇形面积的扩展知识
01
弧长和扇形面积的基本 概念
弧长的定义
弧长是圆弧上任意两点间的长度,它 是圆的一部分。

弧长和扇形面积的计算ppt课件

弧长和扇形面积的计算ppt课件
式 S扇形=

lr,与三角形的面积公式有些类似,可以把扇形

看作一个曲边三角形,把弧长看作底,r 看作高;(4)注
意区分扇形面积公式和弧长公式,其存在两方面不同:一是
分母不同,二是半径的指数不同.
28.5 弧长和扇形面积的计算
对点典例剖析


典例2 某摆盘的形状是扇形的一部分,如图所示是其几

单 何示意图(阴影部分为摆盘),通过测量得到 AC=BD=12 cm
∠BAB′=n°,根据题意,得 2π×2=
××
,解得

,∴∠BAB′=120°,∵ 点 C′为 BB′ 的中点,
n=120
28.5 弧长和扇形面积的计算


∴∠BAC′= ∠BAB′=60°,∴△BAC′为等边三角形


题 ,∵ 点 D 为 AC 的中点,∴ 点 D′为 AC′的中点,

[解析]如解析图,连接 OD,∵AC=4,AB=2,∴AC=2AB


题 ,∵∠ABC=90°,∴∠C=30°,∴∠DOB=2∠C=60°,∵BC



突 = − =2 ,∴OC=OD=OB= BC= ,过点 O 作


OM⊥CD 于点 M,在 Rt△OCM 中,∠C=30°,∴OM= OC=
π+ π
2
3


28.5 弧长和扇形面积的计算
重 ■题型二 求阴影部分的面积

例 2 如图,在△ABC 中,∠ABC=90°,AB=2,AC=4,

型 点 O为 BC 的中点,以点 O 为圆心,OB 长为半径作半圆

《弧长和扇形面积》PPT课件 人教版九年级数学

《弧长和扇形面积》PPT课件 人教版九年级数学
B
B

O
圆心角
扇形
A
O
A
探究新知
判一判
下列图形是扇形吗?
×
×
×


探究新知
2
问题1 半径为r的圆,面积是多少? S = r
问题2 ①360°的圆心角所对扇形的面积是多少?
②1°的圆心角所对扇形的面积是多少?
③n°的圆心角所对扇形的面积是多少?
r
O
问题3 下页图中各扇形面积分别是圆面积的几分之几,
∴=360°×

l
=288°
α
∴S=
πl2=2000π(cm2)
360°
解法二:
1
1
S= ×2πr·l= ×2π×40×50=2000π(cm2).
2
2
解法三:
S=πr·
l= π×40×50=2000π (cm2).
已知一个圆锥的底面半径为12cm,母线长为
20cm,则这个圆锥的侧面积为
2
384
n r 2
S扇形 =
360
注意
①公式中n的意义.n表示1°圆心角的倍数,它
是不带单位的;②公式要理解记忆(即按照上面推导过
程记忆).
探究新知
问题 扇形的面积与哪些因素有关?
A
E
B
C
A
C
O
D

F
B
O●
D
圆心角大小不变时,对应
圆的 半径 不变时,扇形面
的扇形面积与 半径 有关,
积与 圆心角 有关,圆心角越
圆锥有无数条母线,它们都相等.
圆锥的高
S
பைடு நூலகம்

《弧长和扇形面积的计算》PPT课件下载(第1课时)

《弧长和扇形面积的计算》PPT课件下载(第1课时)

n
180l BC
180 25
143.
πr 3.1410
所以∠BOC约为143° .
总结
扇形的面积公式有两个,若已知圆心角的度数和 半径,则用S扇形=n3π6r02 ;若已知扇形的弧长和半径, 则用S扇形=12 lR(l是扇形的弧长).
1 若扇形的面积为3π,圆心角为60°,则该扇形的半径为( D )
= 120π 0.62 - 1 AB OD
360
2
=0.12π- 1 0.6 3 0.3 2
0.22(m2).
1. 弧长公式为 l n • πr nπr .
180 180
2.
扇形的面积计算公式为
S扇形
nπr 2 360
.
3. 弧长和扇形面积都和圆心角n°,半径r有关系,
因此l和S之间也有一定的关系,列式表示为:
O
垂足为D,交AB于点C,连接AC .
∵OC=0.6 m,DC=0.3 m,
O
∴OD=OC-DC=0.3(m). ∴OD=DC .
A
D
B
图1
又AD⊥DC, ∴AD是线段OC的垂直平分线 .
C
∴AC=AO=OC . 从而∠AOD=60°,∠AOB=120°. 图2
有水部分的面积 S =S扇形OAB -S OAB
A.π
B.2π
C.4π
D.6π
3 如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=
4,则 BC 的长为( B )
A. 10 π
3
C. 5 π
9
B. 10 π
9
D. 5 π
18
知识点 2 扇形面积公式
半径为r的⊙O,面积为πr2,圆心角为360°. 按下表的圆心角,计算所

弧长和扇形的面积课件PPT(1)

弧长和扇形的面积课件PPT(1)

∴ =
90π·4
=2π,
180
扇形 OAB
90π×42
的面积= 360 =4π,
∴2π·DC=2π,∴DC=1.在 Rt△SDC 中,SC=4,SD= 2 - 2 =
42 -12 = 15,
∴用这个扇形卷成的圆锥的高为 15厘米,圆锥的侧面积为 4π
厘米 2.
16
教材新知精讲
拓展点一
名师解读:(1)在弧长公式中,n 表示 1°的圆心角的倍数,在计算
时,n 和 180 都可以不写单位;
(2)若圆心角的单位不全是度,还有别的单位,例如分和秒,一定
要把分和秒全部转化为度,再进行计算;
π
(3)在弧长公式 l=180中,已知 l,n,r 中的任意两个量可以求出第三
180
180
个量,即 n= π ,r= π ;
180 ,解得r=12.
答案:B
3
教材新知精讲
知识点一
知识点二
综合知识拓展
知识点三
解答这类问题时,一般根据弧长公式直接求解或根据公
式变形求解.
4
教材新知精讲
知识点一
知识点二
综合知识拓展
知识点三
知识点二扇形的面积公式
半径为r的圆中,圆心角为n°的扇形的面积为
π2
S= 360
=
π
×
180 2
分析:先利用弧长公式和扇形的面积公式计算 =
90π·4
=2π,
180
90π×42
扇形 OAB 的面积= 360 =4π,利用扇形的弧长等于圆锥的底面圆的
周长得到 2π·DC=2π,则 DC=1,由扇形的半径等于圆锥的母线长得到
SC=4,然后利用勾股定理可计算出高 SD.

《弧长和扇形面积的计算》PPT课件

《弧长和扇形面积的计算》PPT课件
科学课件: .
/kejian/kexue/
物理课件: .
/kejian/wuli/
化学课件: .
/kejian/huaxue/ 生物课件: .
/kejian/shengwu/
地理课件: .
/kejian/dili/
历史课件: .
/kejian/lishi/
c

问题2: 怎样来计算弯道的“展直长度”?
面积S扇=
4
cm2
3
.
(3)已知半径为2的扇形,面积为π,则这个扇形的弧长

4

3
.
(4)已知扇形的半径为5 cm,面积为20 cm2,则扇形弧长

8
cm.
(5)已知扇形的圆心角为210°,弧长是28π,则扇形的面
积为 336
.
5.如图,在四边形ABCD中,AB=CD,AD∥BC,以点B
为圆心,BA为半径的圆弧与BC交于点E,四边形AECD
知识讲解
1.认识扇形
扇形:一条弧和经过这条弧端点的两条半径所
组成的图形叫做扇形.

如图所示,在☉O中,由半径OA,OB和所组

成的图形为一个扇形.由半径OA,OB和

组成的图形也是扇形.
【思考】一个扇形对应几个圆心角?一个圆心角对应几个扇形?
在同一个圆中,一个扇形对应一个圆心角,反过来,一个圆心角对
范文下载: .
/fanwen/
试卷下载: .
/shiti/
教案下载: .
/jiaoan/
ppt论坛: . .cn
ppt课件: .
/kejian/
语文课件: .
/kejian/yuwen/ 数学课件: .

弧长及扇形面积的计算ppt课件

弧长及扇形面积的计算ppt课件

·×
∴∠B=30°,∴∠AOC=60°,∴阴影部分的面积=S扇形AOC-S△AOC=
- ×4×2



= π-4

.
【举一反三】
1.(2023·新疆中考)如图,在☉O中,若∠ACB=30°,OA=6,则扇形OAB(阴
影部分)的面积是
A.12π
B.6π
(B )
C.4π
D.2π
B.35 cm
C.30 cm
D.22.5 cm

3. (2023·荆州中考)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,B


为上一点,OB⊥AC于D.若AC=300
3 m,BD=150 m,则的长为
( B)
A.300π m
B.200π m
C.150π m
D.100 3π m
【技法点拨】
弧长计算的三个步骤
1.从问题中找出公式所涉及三个量(弧长l、弧所对的圆心角、半径)中的两个;
2.把已知的两个量代入弧长公式;
3.求出公式中的未知量.
【重点2】扇形面积公式及应用(运算能力、推理能力)
【典例2】(教材再开发·P105例2拓展)如图,AB是☉O的直径,点C是☉O上一点,连
( B)
A.π
D.2π- 3
B.3π
C.2π
【举一反三】
1.(2023·大连中考)圆心角为90°,半径为3的扇形弧长为
A.2π
B.3π
3
2
C. π
( C)
1
2
D. π
2.(2024·遵义质检)一条弧所对的圆心角为135°,弧长等于半径为5 cm的圆的周长的3倍,则

弧长和扇形面积-ppt课件

弧长和扇形面积-ppt课件
第二十四章

24.4
弧长和扇形面积
感悟新知
知1-讲
知识点 1 弧长公式
1.弧长公式
在半径为 R 的圆中, n°的圆心角所对的
弧长 l 的计算公式为l=

.

感悟新知
知1-讲
特别提醒
●公式中,n表示1°的n 倍, 180 表示1°的180 倍,
n, 180 不带单位.
●题目若没有写明精确度,可以用含“π”的式子表
知3-讲
感悟新知
知3-讲
(2)圆锥的母线: 连接圆锥顶点和底面圆周上任意一点的
线段叫做圆锥的母线 .
(3)圆锥的高: 连接圆锥顶点与底面圆心的线段叫做圆锥
的高 .
感悟新知
知3-讲
特别提醒
1.圆锥的轴通过底面的圆心,并且垂直于底面 .
2.圆锥的母线长都相等 .
3.圆锥的母线l、高h及底面圆的半径r构成直角三角
∠ACB=90°,AC=BC=2 ,以点A为圆心,AC为半
径画弧,交AB于点E,以点B为圆心,BC为半径画弧,
交AB于点F,则图中阴影部分的面积是
(
)
A.π-2
B.2π-2
C.2π-4
D.4π-4
感悟新知
知2-练
思路导引:
感悟新知
知2-练
解:在等腰直角三角形ABC中,∠ACB=90 °,AC=BC=
求所得旋转体的全面积 .
知3-练
感悟新知
知3-练
思路导引:
感悟新知
解:(1)∵∠ C=90°, AC=6, BC=8,
∴ AB= + =10.
∴ S 底=π AC2=36π, S 侧=π× 6× 10=60π .

弧长和扇形面积ppt

弧长和扇形面积ppt

利用弧度制计算弧长
总结词
利用弧度制计算弧长是一种基于角度的另一种计算方式,通过将角度转换为弧度 ,并利用弧长公式进行计算。
详细描述
在弧度制下,角度和弧长之间的关系可以用公式L=rθ表示,其中θ是以弧度为单位 的角度。通过将角度转换为弧度,我们可以利用这个公式计算出弧长。
利用微积分计算弧长
总结词
利用微积分计算弧长是一种基于微元法的计算方式,通过将圆分割成无数个小的弧段,并求和得到整 个圆的周长。
详细描述
利用微积分计算弧长的基本思想是将圆分割成无数个小的弧段,每个弧段的长度可以近似为弦长。然 后,将这些弦长相加得到整个圆的周长。这个方法可以用来计算任意曲线的长度,包括圆的周长。
03 扇形面积的计算方法
利用圆的性质计算扇形面积
总结词
通过圆的性质,我们可以将扇形面积转化为圆的一部分,从而计算出其面积。
05 弧长和扇形面积的扩展知 识
弧长的变种:曲线的长度
弧长的概念
弧长是曲线的基本属性之一,表示曲线上两点之间的长度。在几 何学中,弧长通常用于描述曲线段的长度。
曲线的长度
除了弧长,曲线的长度也是重要的概念。一条曲线由无数个小的直 线段组成,这些直线段的长度之和就是曲线的总长度。
计算方法
计算曲线的长度通常需要使用微积分的方法,通过求和公式将无数 个小的直线段长度相加,得到曲线的总长度。
04 弧长和扇形面积的应用
在几何学中的应用
弧长公式
弧长公式是计算圆弧或曲线的长度的重要工 具,广泛应用于几何学中。通过弧长公式, 可以确定圆弧的长度,进而用于解决与圆、 椭圆、抛物线等形状相关的几何问题。
扇形面积公式
扇形面积公式是计算扇形面积的基础,对于 解决与圆、椭圆、抛物线等形状相关的几何 问题具有重要意义。通过扇形面积公式,可 以确定扇形的面积,进而用于解决与角度、 弧长等相关的几何问题。

弧长和扇形面积通用课件

弧长和扇形面积通用课件

THANKS
弧长和扇形面积的进一步研究
弧长和扇形面积的应用
弧长和扇形面积在几何、物理、工程等领域有广泛的应用,如计 算物体运动轨迹、分析机械运动等。
弧长和扇形面积的性质
弧长和扇形面积具有一些重要的性质,如对称性、可加性等,这些 性质在解决实际问题时具有重要意义。
弧长和扇形面积的拓展
弧长和扇形面积的计算方法可以拓展到其他形状,如椭圆、抛物线 等,这些形状在现实世界中也有广泛的应用。
弧长和扇形面积的概念在日常生活中 也有广泛的应用,如计算圆形物体的 运动轨迹、建筑物的圆弧形结构等。
弧长和扇形面积的计算公式在物理学、 工程学、天文学等领域也有广泛的应 用,是解决实际问题的重要工具之一。
在日常生活和工程设计中,弧长和扇 形面积的计算有助于优化设计方案, 提高效率和质量。
在科学计算中的应用
04 弧长和扇形面积的应用
在几何图形中的应用
弧长和扇形面积是几何学中重要的概念,用于描述和计算各种几何图形,如圆形、 椭圆、抛物线等。
在几何图形中,弧长和扇形面积的计算有助于解决各种问题,如周长、面积、体积等。
弧长和扇形面积的计算公式在几何学中具有广泛的应用,是解决几何问题的关键工 具之一。
在日常生活中的应用
弧长和扇形面积通用 课件
目录
CONTENTS
• 弧长和扇形面积的基本概念 • 弧长的计算方法 • 扇形面积的计算方法 • 弧长和扇形面积的应用 • 弧长和扇形面积的拓展知识
01 弧长和扇形面积的基本概 念
弧长的定义
描述弧长的定义
弧长是指圆弧的长度,通常用字母L表示。在圆中,弧长是连接圆心和圆上任意 一点的线段的长度。弧长的计算公式为:L = θ/360° × 2πr,其中θ是圆心角的 大小,r是圆的半径。

弧长和扇形面积公式课件

弧长和扇形面积公式课件

06
习题与答案
习题部分
总结词
弧长和扇形面积公式的基本概念 与计算方法
详细描述
本节旨在帮助学员了解弧长和扇形 面积的概念及计算方法。通过典型 例题的解析,让学员掌握弧长和扇 形面积公式的应用。
题目1
求半径为5的圆中,1/4圆的弧长。
习题部分
分析
本题考察弧长公式的应用, 需注意1/4圆的弧长是圆周 长的一部分。
解答
根据弧长公式,弧长=圆 周长×(弧所对圆心角 /360°),1/4圆的弧长为 5π×(1/4/360°)。
题目2
求半径为4的圆中,1/6圆 的扇形面积。
习题部分
分析
本题考察扇形面积公式的应用,需注意1/6 圆的扇形是圆面积的一部分。
解答
根据扇形面积公式,面积=(圆半径^2)×(弧 所对圆心角/360°),1/6圆的扇形面积为 4^2×(1/6/360°)。
常运转。
物理学
在物理学中,弧长和扇形面积被 用来描述和计算各种圆形物体或 粒子的运动轨迹和能量分布等。
04
弧长和扇形面积公式的实践应用
在数学中的运用
弧长公式
弧长公式常用于解决与圆弧或曲线的长 度相关的问题,例如在几何学或解析几 何中。
VS
扇形面积公式
扇形面积公式在解决几何学问题中非常有 用,例如计算多边形的面积或了解星球的 形状和大小。
α=θ/360°×2π,其中θ为 角度制。
角度与弧度转换
1弧度=57.3°,1°=π/180 弧度。
弧长公式的推导
推导过程
由圆的周长公式C=2πR,可得弧长公式L=C×∣θ/360°∣,进一步可得 L=∣α∣×R。
圆周角与圆心角关系
圆周角θ与圆心角α之间的关系为α=θ/360°。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
为_12_0_°.
例4:如图、水平放置的圆柱形排水管道的截 面半径是0.6cm,其中水面高0.3cm,求截面 上有水部分的面积。(精确到0.01cm)。
有水部分的面积 = S扇- S△
0
A
D
B
C
练习:1.如图、水平放置的圆柱形排水管道的
截面半径是0.6cm,其中水面高0.9cm,求截
面上有水部分的面积。(结果保留 )
(3)1°圆心角所对弧长是多少?l 2R R
360 180
若设⊙O半径为R, n°的圆心角所对的弧长
l为 ,则 l nR
180 A
B
(4)140°圆心角所对的
弧长是多少?

O
l 140R 7R
180
9
例1:
已知圆弧的半径为50厘米,圆心角为60°,
求此圆弧的长度。
解:
l n R 60 • 50
4、如图所示,分别以n边形的顶点为圆心, 以单位1为半径画圆,则图中阴影部分的面积之
和为 个平方单位.
提问与解答环节
Questions And Answers
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
D
有水部分的面积 = S扇+ S△
A
E
B
0
0.24 0.09 3
C
做一做:
1、已知扇形的圆心角为120°,半径为2,则
这个扇形的面积为___4____.
3
2、已知扇形的圆心角为300,面积为

则这个扇形的半径R=_6_c__m.
3、已知扇形的圆心角为1500,弧长为 20 cm ,
则扇形的面积为_2_4__0___c_m__2.
例3:如图,把Rt△ABC的斜边放在直线 l 上,按
顺时针方向转动一次,使它转到 ABC的位置。
若BC=1,∠A=300。求点A运动到A′位置时,点A经
过的路线长。
A′ l 4
C
3
A
B C′
l
1.已知弧所对的圆心角为900,半径是4,则弧
2 长为______
条2.弧已所知对一的条圆弧心的角半为径_1为_6_90_,°。弧长为8 ,那么这
3. 钟表的轴心到分针针端的长为5cm,那么经过
40分钟,分针针端转过的弧长是( B )
A.
10 cm
3
B. 20 cm C.
3
25 cm D.
3
50 cm
3
如下图,由组成圆心角的两条半径和圆心角
所对的弧围成的图形是扇形。
B
BБайду номын сангаас
弧 圆圆心心角角
A
扇形
O A
如果圆的半径为R,则圆的面积为 R 2,
180 180
=
50
3
(cm)
答:此圆弧的长度为 50 cm
3
例2制造弯形管道时,要先按中心线计算“展直长
度”,再下料,试计算图所示管道的展直长度L(单
位:mm,精确到1mm)
解:由弧长公式,可得弧AB 的长
L 100 900 500 1570(mm)
180
因此所要求的展直长度 L 2 700 1570 2970(mm) 答:管道的展直长度为2970mm.
l°的圆心角对应的扇形面积为 R2 ,
360
n°的圆心角对应的扇形面积为 n R2 nR2 360 360
那么: 在半径为R 的圆中,n°的圆心角
所对的扇形面积的计算公式为
nR 2
S扇形 360
探索弧长与扇形面积的关系
比较扇形面积(S)公式和弧长(l)公 式,你能用弧长来表示扇形的面积吗?
S 1 Rl 2
R Sl

O
想一想:扇形的面积公式与什么公式类似?
A
B
O
O
l nR
180
S扇形
nR 2
360
比较扇形面积与弧长公式, 用弧长表示扇形面积:
S扇形
1 lR 2
1、已知扇形的圆心角为120°, 半径为2,则这个扇形的面积, S扇=__34__.
2、已知半径为2的扇形,面积 为 4 ,则它的圆心角的度数
在田径二百米跑比赛中,每位运动 员的起跑位置相同吗?每位运动员 弯路的展直长度相同吗?
制造弯形管道时,经常要先按中心线 计算“展直长度”(图中虚线的长度), 再下料,这就涉及到计算弧长的问题
(1)半径为R的圆,周长是多少? C=2πR
(2)圆的周长可以看作是多少度的圆心角所对的弧?360°
相关文档
最新文档