第九章 湍流射流
流体力学中的流体中的湍流射流与颗粒输运

流体力学中的流体中的湍流射流与颗粒输运流体力学是研究流体运动规律的科学,其中湍流射流和颗粒输运是该领域的重要研究内容。
湍流射流指的是流体通过孔隙、喷嘴等突破口时形成的湍流现象,而颗粒输运则是指在流体中悬浮颗粒的运动行为。
本文将重点讨论流体力学中的湍流射流和颗粒输运,并探讨它们的性质及应用。
1. 湍流射流湍流射流是流体通过突破口时形成的湍流现象,广泛应用于燃烧、燃气轮机、环境污染控制等领域。
湍流射流的特点是流体速度的突变和湍流的紊乱运动。
它具有高速、高能量扩散和较大的流体混合效应,因此在燃烧领域中具有重要的应用价值。
湍流射流的研究可以从宏观和微观两个层面进行。
宏观层面的研究主要关注流体射流的流动特性,如速度分布、湍流结构和湍流能量耗散等。
微观层面的研究则关注湍流射流中的小尺度结构和湍流的发展机理。
通过对湍流射流的研究,可以更好地理解湍流现象,并且为相关工程应用提供参考依据。
2. 颗粒输运颗粒输运是指在流体中悬浮颗粒的运动行为,常见于颗粒物质的输送、气固两相流动等领域。
在颗粒输运过程中,颗粒之间的相互作用和颗粒与流体之间的相互作用起着重要的作用。
颗粒输运的研究可以从单颗粒和多颗粒两个方面进行。
在单颗粒颗粒输运研究中,通常关注颗粒的运动速度、轨迹和受力情况等。
而在多颗粒颗粒输运研究中,除了考虑单颗粒的运动特性外,还需研究颗粒之间的相互作用,如颗粒碰撞、聚集和分散等。
颗粒输运在粉体工程、环境工程、冶金工程等领域具有广泛的应用。
通过对颗粒输运的研究,可以优化工程设计,提高颗粒物质的输送效率和产品质量。
综上所述,流体力学中的湍流射流和颗粒输运是该领域的重要研究内容。
通过对湍流射流和颗粒输运的研究,可以更好地理解流体运动规律,并为相关领域的工程应用提供科学依据。
随着科技的不断发展,湍流射流和颗粒输运的研究将进一步深化,为工程领域的发展做出更大贡献。
流体力学中的流体中的湍流射流与流体力学应用

流体力学中的流体中的湍流射流与流体力学应用流体力学中的湍流射流与流体力学应用射流是流体力学中重要的研究对象之一,其在自然界和工程实践中具有广泛的应用。
湍流射流是指介质在通过狭窄的通道时,产生湍动的现象。
本文将介绍湍流射流的基本概念、湍流射流的产生机制以及在流体力学中的应用。
一、湍流射流的基本概念湍流射流是指流体通过管道或喷口时,随着速度增加,流动发生分离,形成复杂的湍动现象。
与层流射流相比,湍流射流具有非线性、不稳定、随机的特点。
射流的湍流性质对于理解和预测流体力学中的许多现象和问题至关重要。
湍流射流的特点主要包括:湍流核心区、回流区和边缘层。
湍流核心区内速度梯度较小,流速较大,流动较为混乱;回流区指的是在射流喷出口附近产生的湍流结构;边缘层是指流动中速度逐渐下降的区域。
这些特点对于湍流射流的研究和应用具有重要意义。
二、湍流射流的产生机制湍流射流的产生机制复杂而多样,主要包括层流-湍流转捩和自激振荡两种机制。
层流-湍流转捩是指流体在射流过程中,由于某些不稳定性机制的作用,从层流状态逐渐转变为湍流状态。
层流过程中存在很多不稳定性机制,例如边界层分离、剪切层不稳定性、传播破坏等,这些机制会导致射流的湍流转捩。
自激振荡是指射流自身扰动的放大和增强现象。
湍流射流中存在很多扰动源,例如射流出口的不均匀性和射流周围环境扰动等。
当这些扰动源激发和扩大时,会导致射流的湍流振荡。
三、湍流射流在流体力学中的应用1. 工业喷雾技术湍流射流在工业喷雾技术中有着广泛的应用。
通过控制射流的速度和角度,可以实现对液体喷雾的细化和扩散。
工业喷雾技术在化工、冶金、石油等领域广泛应用,例如喷雾冷却、喷雾干燥、喷雾燃烧等。
2. 河流动力学在河流动力学中,湍流射流的研究可以帮助理解水流的混合和输运过程。
河流中的湍流射流具有很高的速度和湍流强度,对于河床的侵蚀和沉积过程有着重要的影响。
3. 空气动力学在航空航天领域,湍流射流的研究对于飞行器的气动稳定性和控制具有重要意义。
流体力学中的流体中的湍流射流与气泡运动

流体力学中的流体中的湍流射流与气泡运动流体力学是研究流体的运动和力学性质的学科。
在流体力学中,湍流射流和气泡运动是重要的研究领域。
本文将介绍湍流射流和气泡运动的基本概念、特点以及相关应用。
一、湍流射流湍流射流是指流体在射流过程中产生湍流现象。
湍流是一种流体运动的不规则状态,具有高速、不稳定、乱流等特点。
湍流射流常见于喷射器、燃烧器和涡轮机中,对于流体的输送和能量传递具有重要意义。
湍流射流的形成主要受到雷诺数的影响。
雷诺数是流体力学中用于描述流体流动稳定性的无量纲数,由密度、速度和长度尺度决定。
当雷诺数超过一定阈值时,流体流动将转变为湍流状态。
湍流射流具有高速和不规则的特点,流体颗粒混合程度高,能量损失较大。
湍流射流在工业制造、能源利用和环境保护等领域具有广泛的应用。
例如,在喷气发动机中,湍流射流能够提供强大的推力,驱动飞机飞行。
此外,湍流射流还可应用于燃烧过程的增强、污水混合和废气处理等方面。
二、气泡运动气泡运动是指气体在液体中形成气泡并参与流体运动的过程。
气泡可以通过固体表面的气体喷射、气体生成或气体弛豫等方式形成,并在液体中沿着流动方向传播。
气泡运动在化工、生物医学、环境处理等领域具有重要的研究和应用价值。
气泡运动的特点包括形成、成长、漂浮和破裂等过程。
气泡在液体中的形成主要受到压力和温度等因素的影响。
一旦形成,气泡会随着液体的流动而漂浮,并参与到流体的混合和传热过程中。
在一些生物医学领域,气泡运动被广泛应用于诊断和治疗,例如超声造影和气囊扩张等。
气泡运动的研究有助于理解流体中气体-液体界面的物理现象。
例如,气泡破裂过程中产生的声音和光信号可以用于测量气泡大小和测定液体的性质。
此外,气泡运动还对于污水处理、海洋环境保护和地下水资源开发等方面具有重要意义。
总结在流体力学中,湍流射流和气泡运动是两个重要的研究方向。
湍流射流的研究可以帮助人们深入了解流体流动的不稳定状态和能量传递过程,而气泡运动的研究则有助于揭示流体中气泡形成、漂浮和破裂的物理现象。
流体力学中的流体中的湍流射流动力学

流体力学中的流体中的湍流射流动力学流体力学是研究流体运动规律和力学性质的学科。
在流体力学中,湍流是一种流动状态,具有不规则、混沌和难以预测的特点。
湍流流动具有高速度、各向异性和旋转等特点,广泛应用于工业生产、能源转换和自然界中的诸多领域。
湍流射流是流体力学中的一个重要研究课题。
射流是指通过限制区域内的一个孔道或喷嘴,使流体以较高速度射出。
湍流射流的运动过程复杂多样,涉及到湍流结构、湍流能量耗散和湍流边界层等问题。
湍流射流的动力学是研究湍流射流中流体运动规律和力学性质的科学。
在湍流射流中,流体以高速度从喷嘴中射出,形成射流,并在周围环境中发生与射流相互作用的复杂现象。
湍流射流的动力学研究涉及到湍流射流的生成机理、能量耗散、湍流结构分析以及流动特性的数值模拟等内容。
湍流射流的生成机理是湍流射流动力学研究的首要问题。
湍流射流的生成过程涉及到流体的压力、速度、密度和温度等物理参数的相互作用。
由于射流的高速度和高能量,射流与周围环境发生相互作用时,会产生涡旋、涡流和湍流结构等现象。
湍流射流的能量耗散是湍流射流动力学研究中的重要内容。
射流在流动过程中具有高速度和强烈的湍流运动,会导致能量的损失和耗散。
湍流的能量耗散与湍流结构的演化密切相关,对于理解湍流射流的动力学行为具有重要意义。
湍流射流的湍流结构分析是湍流射流动力学研究的核心内容之一。
湍流结构是指湍流中存在的各种涡旋和湍流涡旋的集合体。
湍流射流的湍流结构分析可以通过实验和数值模拟等手段进行研究,为湍流射流的动态行为提供详细的描述和分析。
湍流射流的流动特性的数值模拟是湍流射流动力学研究的重要方法之一。
通过数值模拟可以模拟湍流射流的流动过程,获得湍流射流中各种物理参数的分布和变化规律。
数值模拟方法的应用可以为湍流射流的优化设计和控制提供理论依据和技术支持。
综上所述,流体力学中的湍流射流动力学是一个涉及湍流生成机理、能量耗散、湍流结构分析和流动特性数值模拟等内容的研究领域。
流体力学教案第9章绕流与射流

第九章 绕流与射流重点阐述不可压缩粘性流体绕流二维和回转物体绕流现象及其绕流阻力的计算,分析工业生产中常遇到的紊流射流问题。
§9-1 绕流阻力与阻力系数当粘性流体绕流物体时,物体总是受到压力和摩擦力的作用。
作用在整个物体一表面上的压力和摩擦力的合力F 可分解为两个分力,即绕流物体的未受干扰时来流速度∞V 方向上的分力F D ,及垂直来流速度∞V 方向上的分力F L 。
对于在静止流体中运动的物体来讲,由于F D 与物体运动方向相反,是阻碍物体运动的力,故称之为绕流阻力;F L 称为绕流升力。
于是D L F F F +=绕流阻力和升力二者都包含摩擦力和压力两个分量,因此,物体所受摩擦力和压力的大小及二者的变化是分析绕流阻力的基础。
一、绕流阻力一般分析物体壁面所受摩擦阻力是粘性直接作用的结果,所受压力又称压差阻力,是粘性间接作用的结果,当粘生流体绕流物体时,边界层分离是引起压差阻力的主要原因。
下面以圆柱绕流为例来说明绕流阻力的变化规律。
在绕流未分离的情况下,由理想流体所确定的物面上的压强分布如图6-12所示,在第六章的第四节详细地讨论过这个解,物体所受压力阻力为零。
在绕流圆柱体发生严重分离的情况下,由于柱体后部背流面存在分离区,此时主流区的边界处在分离区的外缘,柱面上的压强分布不同于未分离时的压强分布,从分离点开始,柱体后部受到的流体压强大约等于分离处的压强,而不能恢复到理想流体绕圆柱体流动时应有的压强数值,从而产生对圆柱体的压差阻力。
图9-1(b)所示是有边界层分离的圆柱面上的无因次压强分布,实验曲线见图6-12中的II 、III 曲线。
对于摩擦阻力,其形成过程比较清楚。
实验表时,象机翼、船只和其它一些流线型物DF体都有较大的摩擦阻力。
钝体如圆柱、球、桥墩和汽车等都有较大的甚至压倒优势的压差阻力。
由于压差阻力的大小与物体的形状有很大关系,因此,压差阻力又称为形状阻力。
二、阻力系数虽然绕流物体阻力的形成过程从物理观点看完全清楚,但要想从理论上通过面积分求解一个任意形状物体的阻力是十分困难的,目前都是由实验测得,工程上习惯借助无因次阻力系数来确定总阻力的大小,即A V C F 2DD 21∞=ρ (1)AV F C 2D D 21∞=ρ (2)式中A 为物体的投影面积,当物体主要受压差阻力时,采用物体垂直于来流速度方向的投影面积,即迎流面积。
流体力学中的流体中的湍流射流动力学建模

流体力学中的流体中的湍流射流动力学建模流体动力学研究了液体和气体在不同条件下的运动行为,其中湍流射流是流体力学中一个重要的研究领域。
本文将介绍湍流射流的动力学建模,并探讨其在流体力学中的应用。
一、湍流射流的定义湍流射流是指在流体中由一种流体以高速射出形成的湍动流动。
湍流射流具有不规则的流动特性,以及复杂的涡旋结构。
湍流射流的动力学行为包括湍流的发展、湍流边界层的形成等。
二、湍流射流的建模方法为了理解和预测湍流射流的行为,研究人员根据现有的实验数据和理论知识,提出了一系列的湍流射流建模方法。
其中,最常用的方法是雷诺平均Navier-Stokes方程(RANS)模拟和大涡模拟(LES)。
1. 雷诺平均Navier-Stokes方程(RANS)模拟雷诺平均Navier-Stokes方程模拟是一种基于时间平均的方法,它假设流场的特性可以分解为一个时间平均分量和一个涨落分量。
通过求解雷诺平均Navier-Stokes方程,可以得到平均流场的信息,从而对湍流射流的平均流动行为进行预测。
2. 大涡模拟(LES)大涡模拟是一种基于直接数值模拟(DNS)的方法,它通过直接求解Navier-Stokes方程来模拟湍流射流。
与RANS模拟不同,LES模拟可以解析地捕捉到湍流尺度上的涡旋结构,从而更精确地预测湍流射流的行为。
三、湍流射流的应用湍流射流的研究在流体力学中有着广泛的应用。
以下列举了其中几个常见的应用领域:1. 空气动力学在航空航天领域,湍流射流的研究对于飞行器的设计和空气动力学性能的预测具有重要意义。
通过模拟和分析湍流射流的动力学行为,可以优化飞行器的气动外形,提高飞行性能和操控稳定性。
2. 燃烧工程在燃烧工程中,湍流射流的研究对于燃烧过程的稳定性和效率有着重要影响。
通过对湍流射流中的燃烧过程进行模拟和分析,可以优化燃烧器的设计和燃烧参数的调节,提高燃烧效率和减少污染物的生成。
3. 环境保护湍流射流的研究也在环境保护领域发挥着重要作用。
流体力学中的流体中的湍流射流与污染物扩散

流体力学中的流体中的湍流射流与污染物扩散流体力学是研究流体运动规律以及力学效应的学科,涉及到了许多重要的应用领域,其中之一就是湍流射流与污染物扩散的研究。
湍流射流是指射流中存在的湍流现象,污染物扩散则是指在湍流射流中污染物的展散和传播过程。
本文将从湍流射流的形成机制、湍流射流对污染物扩散的影响以及相关研究方法等方面进行论述。
一、湍流射流的形成机制湍流射流是流体中湍流现象和射流现象的结合体,它的形成机制主要有两个方面的影响:惯性与湍流扩散。
首先是惯性的作用。
在射流过程中,由于射流速度较快,流体的惯性作用会导致流体产生不稳定运动,使流体形成湍动。
随着射流的远离源头,惯性效应逐渐减弱,湍流现象也相应减弱。
其次是湍流扩散的作用。
湍流扩散是指射流中涡旋运动的发生和发展。
在射流时,涡旋的形成是由于高速流体与低速流体互相混合而产生的。
这种混合过程会导致湍流扩散,使得流体中的湍流现象得以延续并形成湍流射流。
二、湍流射流对污染物扩散的影响湍流射流对污染物扩散的影响较为显著,主要表现在以下几个方面。
首先是湍流射流能够加速污染物的扩散。
由于湍流射流中存在的涡旋运动和高度混合的特性,使得污染物在射流中的传播过程中更为迅速,扩散范围更广。
其次是湍流射流能够改变污染物的浓度分布。
湍流射流中的湍流现象导致污染物浓度分布的不均匀性,即某些地点的浓度较高,而其他地点的浓度较低。
这对于污染物的监测和治理提供了重要的依据。
最后是湍流射流能够影响污染物的输运路径。
由于湍流射流中存在的不稳定性,污染物的输运路径可能会发生变化,导致污染物传播方向的改变,从而对环境产生不同程度的影响。
三、研究方法与应用为了更好地理解和研究湍流射流与污染物扩散的关系,科学家们提出了一系列的研究方法和应用。
首先是数值模拟方法。
数值模拟方法利用计算机技术模拟和计算湍流射流与污染物扩散的过程,通过建立数学模型和物理模型,对流体运动和污染物传输进行模拟和预测。
这种方法具有成本低、实验周期短的优势,被广泛应用于湍流射流与污染物扩散研究中。
第九章 射流

§9.1 射流的一般属性 §9.2 圆断面淹没射流 §9.3 平面淹没射流 §9.4 温差或浓差射流
§9.1 射流的一般属性
一 射流的分类
射流可以按不同的特征进行分类。 射流可以按不同的特征进行分类。 1 按流动型态,可分为层流射流和湍流射流。在实际工程中,遇到的多为 按流动型态,可分为层流射流和湍流射流。在实际工程中, 湍流射流,所以本章只介绍湍流射流。 湍流射流,所以本章只介绍湍流射流。 2 按射流周围介质(流体)的性质,可分为淹没射流和非淹没射流。 按射流周围介质(流体)的性质,可分为淹没射流和非淹没射流。 若射流与周围介质的物理性质相同,则为淹没射流;若不相同,则为非淹 若射流与周围介质的物理性质相同,则为淹没射流;若不相同, 没射流。 没射流。 3 按射流周围固体边界的情况,可分为自由射流和非自由射流。 按射流周围固体边界的情况,可分为自由射流和非自由射流。 若射流进入一个无限空间,完全不受固体边界限制,称为自由射流或无限 若射流进入一个无限空间,完全不受固体边界限制, 空间射流;若进入一个有限空间,射流多少要受固体边界限制,称为非自 空间射流;若进入一个有限空间,射流多少要受固体边界限制, 由射流或有限空间射流。 由射流或有限空间射流。
L0 = 6.2d0 + 0.6d0 = 6.8d0
(9.12)
二 流量沿程变化
射流断面上的流量Q 射流断面上的流量Q为
Q= ∫
∞
0
r2 u2πrdr = 2π∫ um exp(− 2 )rdr 0 be
∞
2 be = 2πum 2
∫
∞
0
r2 r2 2 exp( − 2 )d( 2 ) = πumbe be be
r2 u = um exp(− 2 ) be
流体力学中的流体中的湍流射流传热

流体力学中的流体中的湍流射流传热流体力学是一门研究流体静力学和流体动力学的学科,其中流体动力学研究了液体和气体的流动性质。
湍流射流传热是流体力学中一个重要的研究领域。
本文将探讨流体力学中的湍流射流传热现象,以及与之相关的机理和应用。
一、湍流射流传热的基本概念湍流射流传热是指通过射流使流体发生湍流,并借助湍流的特性来实现传热的过程。
在湍流射流传热中,射流的动能转化为流体内部的湍流能量,从而形成湍流现象。
湍流能够增加流体的混合程度,使得传热效率得到提高。
二、湍流射流传热的机理1. 湍流的形成湍流的形成取决于流体的雷诺数(Reynolds number),雷诺数越大,流体越容易产生湍流。
雷诺数的定义为惯性力与粘性力之比。
当惯性力占优势时,流体容易形成湍流。
2. 湍流的传热特性湍流的传热特性主要表现为湍流的混合程度高,传热速度快。
湍流能够将热量迅速分布到整个流体,实现了高效的传热。
此外,湍流中的涡旋结构也有利于传热。
3. 湍流射流传热的机理湍流射流传热的机理主要包括湍流混合、湍流涡旋结构和湍流传热效应。
湍流混合是指射流流体和周围流体的相互作用,使得热量迅速传递。
湍流涡旋结构则是湍流中形成的旋转涡流,具有较强的热传导性能。
湍流传热效应是指湍流的特性使得传热效率提高。
三、湍流射流传热的应用湍流射流传热在工程领域具有广泛的应用价值。
以下列举几个常见的应用领域:1. 燃烧器湍流射流传热可以增加燃烧器的燃烧效率。
通过射流的湍流特性,可以更好地将燃料和氧气混合,提高燃烧效率。
2. 热交换器热交换器是一种用于传递热量的装置,利用湍流射流传热可以提高热交换器的传热效率。
通过射流的湍流混合作用,可以加快热量的传递速度,提高传热效果。
3. 流体循环湍流射流传热可以改善流体循环的效果。
通过射流的湍流涡旋结构,可以增加流体的混合程度,提高流动性能,进而提高流体循环系统的效率。
四、结语流体力学中的湍流射流传热是一门重要的研究领域,湍流射流传热机理的研究可以为工程领域的优化设计提供理论支持。
流体力学中的流体中的湍流射流振动

流体力学中的流体中的湍流射流振动射流是指液体或气体通过窄孔或喷嘴形成高速射流的现象。
在流体力学中,我们经常遇到液体中的射流现象。
而湍流射流振动则是指在这样的射流中存在的湍流现象及其振动特性。
一、湍流射流的形成与特征湍流射流形成的一个重要条件是流体速度的差异,即在射流出口附近速度较高,而远离射流中心速度逐渐减小。
当流体通过射流出口,速度的梯度会导致涡旋和涡流的生成,从而引发湍流的产生。
湍流射流的特征是速度和压力的不规则变化,以及流体的各种湍流涡旋结构的存在。
这些湍流涡旋结构会随时间和空间发生变化,并产生湍流振动。
二、湍流射流振动的机制湍流射流振动主要由两个机制引起:自激振荡和外激振荡。
1. 自激振荡:湍流射流在流动过程中,由于速度和压力的不规则变化,会导致流体局部的压力波动。
这些压力波动会通过反馈作用,使得射流自身的湍流结构发生变化,从而产生振动。
2. 外激振荡:湍流射流周围的环境条件(如空气流动)或外部干扰(如声波或振动源)也会对射流产生影响,引起湍流射流的振动。
三、湍流射流振动的应用湍流射流振动在工程和科学领域有着广泛的应用。
1. 射流喷射器:湍流射流的特性使其成为一种常用的喷射器。
通过控制射流的速度和角度,可以实现对流体的定向喷射,应用于喷雾器、喷泉、火焰喷射器等设备中。
2. 涡流衰减:利用湍流射流产生的涡流作用,可以有效地降低流体中杂质的浓度。
这一原理在废水处理、污水处理和液体混合等工艺中得到了广泛应用。
3. 噪声控制:湍流射流振动对噪声的产生起重要作用。
通过研究湍流射流振动的机制,可以设计有效的噪声控制措施,降低噪声的产生和传播。
4. 燃烧工程:湍流射流振动对燃烧过程有着直接的影响。
燃烧器中的射流振动可以促进燃烧反应,提高燃烧效率。
在流体力学中,对湍流射流振动的研究可以帮助我们更好地理解流体的运动规律,进一步提高流体力学的应用水平。
随着计算机技术和实验手段的不断发展,对湍流射流振动的深入研究将为众多领域的工程和科学问题提供新的解决方案。
第九章 射流

9.2 常见射流问题的动量积分解
前提:等密度自由紊动射流,环境为静止的同种流体。
平面射流 断面流速分布 (高斯分布) 主 体 段 半厚度 be u 1 0.368 um e 轴线流速 流量 卷吸系数
u y2 exp( 2 ) um be
圆断面射流
u r2 exp( 2 ) um be
流体
非淹没射流:不同性质流体(如大气中的水射流)。 淹没射流:同种流体 平面射流(无限宽条缝)
出口断面形状
圆断面射流(轴对称) 矩形出口 动量射流:较大初始动量
射流原动力
浮力羽流:密度差产生的浮力 浮射流:初始动量和浮力双重作用
横向尺度<<纵向尺度 边界层特点 横向速度梯度>>纵向
横向压强梯度=0
0.056
L0 6.2 D, 6.8D 距离源点 距离喷口
起始段长度
L0 5.2(2b0 )
平面射流 主 体 段 轴线浓度 断面浓度分布 (高斯分布) 浓度分布与速度 分布的宽度比
c y2 exp( 2 2 ) cm be
圆断面射流
c r2 exp( 2 2 ) cm be
z
为y-z平面上的二维流动。
o
y
方程组:6.137, 6.138, 6.139, 状态方程6.105, 6.106
2 羽流参数的计算 方法一:求解控制方程组。需采用一定的紊流模型对脉动项 进行处理; 方法二:利用合理假定,积分求解常微分方程。 相似性假定 卷吸假定
计算结果:P.234表6.1
9.4 浮射流
be x 0.154 x
(边界线性扩展)
um 2b0 12 2.28( ) u0 x
流体力学中的流体中的湍流射流传质

流体力学中的流体中的湍流射流传质流体力学是研究流体行为和流体运动规律的学科。
其中一个重要的研究方向是湍流射流传质。
本文将介绍流体力学中湍流射流传质的基本概念、应用以及相关的数学模型。
1. 湍流射流传质的基本概念湍流指的是流体中的无序和混乱运动。
相比于层流,湍流具有更高的混合程度和能量耗散率,从而对流体中物质的传输和混合起到了重要作用。
而射流是指流体从一个孔或管道中高速喷射出来形成的流动现象。
湍流射流传质即是指湍流流体射流中溶质的传输和扩散过程。
2. 湍流射流传质的应用湍流射流传质在工程领域有着广泛的应用。
例如,喷雾器通过湍流射流传质将液体转化为雾状颗粒,实现了喷雾、喷涂等工艺过程。
另外,湍流射流传质还广泛应用于风洞试验、燃烧技术以及化工反应器等领域,为相关工艺和设备的优化提供了重要依据。
3. 湍流射流传质的数学模型湍流射流传质过程涉及到流体动力学、传热学和传质学等多个学科。
其中,湍流的特性通常用雷诺平均法进行描述,即通过对流场的平均速度和涡动强度进行统计分析。
而湍流射流传质的数学模型则需要考虑湍流扩散的紊流效应,其中包括湍流输运方程、湍流动量传输方程和湍流能量传输方程等。
4. 湍流射流传质的研究方法湍流射流传质的研究通常采用实验和数值模拟相结合的方法。
在实验研究中,通过测量流场的速度和浓度分布,获得湍流射流传质的关键参数。
而数值模拟则可以通过计算流体力学方程和传质方程,得到湍流射流传质的详细信息和传质特性。
综上所述,湍流射流传质是流体力学中重要的研究领域,它对于理解和应用流体行为和流体运动规律具有重要意义。
我们需要进一步深入研究湍流射流传质的机理和数学模型,以实现在工程实践中的更好应用。
在未来的研究中,我们可以借助先进的实验和数值模拟手段,不断优化湍流射流传质的相关技术,为工程领域的发展做出更大的贡献。
九章 湍流基础

单位质量流体的平均运动的动能 单位质量流体的湍动能 (2)湍流度e:脉动速度的均方根与当地平均速度绝对值之比, 反映当地脉动运动的强度 1
e i ) 2 (V iV
1
(V iV i ) 2
(3)关联函数
利用关联来考察脉动量在时间序列上或空间分布的统计相关特性
(b)二阶空间关联Rij(x,t;r):同一时刻,相隔给定空间位移r的两个 脉动量之积的平均值定义为两脉动量之间的二阶空间关联
V j j) (ViV Vi x j x j
按时间平均概念,单位时间内 通过控制面的时均脉动动量为:
1, V1V 2, V1V 3 V1V
1 V1V
0
x2
2 V1V
x1
平均脉动动量在微元体控制面dx2dx3上产生反作用力,如 规定脉动动量方向与坐标一致为正,则单位面积上三个反作用
假设各态遍历假说成立用时均值表示统计平均值假设各态遍历假说成立用时均值表示统计平均值时均流动的连续性方程时均流动的连续性方程多年实践证明粘性流体的运动方程和连续性方程对于湍流的0???iixviiivvv???0???iixviiiiiiiiiixvxvvxvvxv???????????????0???iixv脉动流动的连续性方程脉动流动的连续性方程由不计质量力的不可压缩流体的瞬时流动的ns方程由不计质量力的不可压缩流体的瞬时流动的ns方程vvt??对上式求平均值得对上式求平均值得0????iixv2雷诺方程2雷诺方程2j2iijijixvxpxv?????????????将将表示并代入上式得表示并代入上式得iiivvv???ppp???2j2???iixijiij?jii?vv?xpp?xvvvvtvv??????????????????2j2iijij?jijixvxpxvvxvvtv????????????????????3雷诺方程湍流时均方程雷诺方程湍流时均方程??ij?jjj?iij?jjij?vvxxvvvvxxvv??????????????2j2ij?jiijijivvxxvxpxvvtv??????????????????jijiijijjjijijjij?jixsxvxvxxvxxvxxvxxv???????????????????????????222?jijjiijijxxvs???????????222因此雷诺方程又可以表示为因此雷诺方程又可以表示为用应力表示的雷诺方程可用于非牛顿流体
九章 湍流基础

单位质量流体的平均运动的动能 单位质量流体的湍动能 (2)湍流度e:脉动速度的均方根与当地平均速度绝对值之比, 反映当地脉动运动的强度 1
e i ) 2 (V iV
1
(V iV i ) 2
(3)关联函数
利用关联来考察脉动量在时间序列上或空间分布的统计相关特性
(b)二阶空间关联Rij(x,t;r):同一时刻,相隔给定空间位移r的两个 脉动量之积的平均值定义为两脉动量之间的二阶空间关联
j ij ViV
单位时间内,过dx2dx3的质量为ρV1/dx2dx3 它在三个坐标轴方向具有的动量为:
1dx 2 dx 3 , V1V 2dx 2 dx 3 , V1V 3dx 2 dx 3 V1V
9.1.5 雷诺应力输运方程和湍动能输运方程 x3
t x j
u w v w w w
x j
j 表示单位质量流体所具有雷 说明:在本教材中引入 Rij ViV 诺应力。在均质不可压湍流中,密度为常数,常常可用单位质量 流体所具有的雷诺应力表示。
(ViV j ) 1 p ij pij 雷诺方程也可写成 Vi ( )
湍流研究大致有三方面内容:
(1)湍流机理 (2)湍流的流动结构 (3)湍流预测(湍流模型) 9.1 湍流统计理论 9.1.1 湍流的统计方法 (1) 各态遍历假说 最常用的描述湍流统计的近似方法是平均方法。平均方法有 时均法、体均法及概率平均法(系综平均法)。 a. 时均法:定义物理量V(x,t)对时间的平均值 V ( x, t ) ,适合定 常湍流
A( p ) ( x i , t )
以下的讨论均建立在各态遍历假说成立的前提下! (2)时均值和脉动值的性质 流体力学中讨论湍流问题,通常采用时均的方法。 瞬时量=平均值A +脉动值A/ ,即
第九章紊流射流

在日常生活和工程实际中,会遇到许多射流问题,如冶金工程中的高炉喷吹燃料、转炉 吹氧、火焰炉内各种燃料通过烧嘴喷射燃烧等;又如通风空调工程中通过风口的送风等,都 属于射流问题。所谓射流是指:流体经由孔口或管嘴喷射到一个足够大的空间后,不再受边 壁的限制而继续扩散流动,这种流动则称为射流。射流按不同的分类方法,可分为不同的类 型。如:
(9-3)
u
=
[1
−
(
y
)
3 2
]2
um
B
(9-4)
对于自由射流的起始段,射流边界层内的速度分布规律也有类似的结果(包括轴对称射流 和平面射流),即
u
=
[1
−
(
y
)
3 2
]2
u0
b
(9-5)
式中:u0 为射流核心速度,即喷口速度,b 为射流边界层的厚度,y 为流体质点至内边界的 距离,u 为流体质点的速度。
R0
R0
R0
2.中心速度 um 沿程的变化 根据射流各截面动量守恒的特征,由式(9-2)得
前面曾指出,紊流射流的外边界为一条直线,这是从统计平均意义上来说的。实际上,
在射流的外边界处是由射流内部的紊流涡团与周围流体介质交错组成的具有间歇性的不规
PDF pdfFactory Pro
则流动,射流流体与周围流体介质之间的分界线是很难分辩清楚的。因此,测量射流的实际 边界是很困难的。工程上应用射流技术时,常常以射流的某一有效速度层作为边界,这一射 流的有效速度边界称为射流的有效边界。对于不同的工程领域,有效边界选取的数值是不同 的,它是根据特定条件下工程需要确定的。随着射流的有效边界选定的流速不同,射流的截 面有效半径和扩张角也不一样,如以 0.5um、0.1um 及 0.01um 的速度边界作为射流的有效边界, 其有效半径和扩张角是不相同的。提出有效边界的概念,有利于把射流的研究与应用技术密 切地结合起来。
第九章工程湍流及其应用

脉动值: ui
乘积的均值非零:
uiuj 0, (i, j 1, 2, 3)
湍流的脉动运动总是三维的。 湍流脉动量的大小:(以平均速度为U的均匀湍流为例)
1 u2 v2 w2 (湍流度)
U
风洞或水洞试验段的来流湍流度 对边界层、阻力和升力 的试验影响很大,要尽可能降低。一般的风洞约为1%。
LES的基本假设:1,动量、能量、质量及其它 标量主要由大涡输运;2,流动的几何和边界条件决 定了大涡的特性,而流动特性主要在大涡中体现;3, 小尺度涡旋受几何和边界条件影响较小,并且各向同 性;大涡模拟过程中,直接求解大涡,小尺度涡旋模 拟,从而使得网格要求比DNS低。
大涡的运动方程
LES的控制方程是对Navier-Stokes方程在波数空间 或者物理空间进行过滤得到的。过滤的过程是去掉比 过滤宽度或者给定物理宽度小的涡旋,从而得到大涡 旋的控制方程。
wall
2 ft
1 ft
2 ft
wall
5 ft
14.5 ft
Compute drag coefficient of the cylinder
步骤:
1. 确定雷诺数, 2.钝体绕流,后面有不稳定的涡旋脱落。采用 RNG 模型,壁面处理是双层区模型; 3.网格处理:近壁网格加密,由于是双层区模型,需要网格划
湍流场基本方程
所以期以来将流体运动N - S方程作为湍 流运动基本方程,即湍流场中任一空间点 速度、压强、密度等瞬时值都必须满足该 方程。尽管有学者对这一模型产生疑问, 也试图另辟蹊径, 寻找其它数学模型,但 都没有令人信服依据和结果。而基于 N – S 方程所得到的一些理论、计算结果 和实验结果吻合得很好。
第九章 射流

u y 1.5 2 [1 ( ) ] um R
特留彼尔在轴对称射流主体段的实验结果
阿勃拉莫维奇在起始段内的测定结果
(3)动力性质:等密度射流的动量守恒性质。
u dA Const.
2 A
以圆断面射流为例应用动量守恒原理
r 2 2 ydy
2 2 0 0 0
0.056
L0 6.2 D, 6.8D 距离源点 距离喷口
起始段长度
L0 5.2(2b0 )
平面射流 主 体 段 轴线浓度 断面浓度分布 (高斯分布) 浓度分布与速度 分布的宽度比
c y2 exp( 2 2 ) cm be
圆断面射流
c r2 exp( 2 2 ) cm be
第九章
射 流
9.1 概述
1 射流及其分类 射流是指从各种形式的孔口或喷嘴射入另一流体域内的一股 流体的流动。(流动的周界是另一种或同一种流体,不受固 体边界的制约。附壁射流除外。) 射流的形式多种多样,既受射流本身性质制约,又受周围环 境流体性质和射流空间几何条件等多方面因素的影响。
流态 层流射流 紊动射流 射流空间 有限空间射流:非自由射流,受限射流。(如附壁射流) 无限空间射流:自由射流
be x 0.154 x
(边界线性扩展)
um 2b0 12 2.28( ) u0 x
Q x 12 0.62 ( ) Q0 2b0
扩展系数
0.114
um
um D 6.2 , D 2r0 u0 x
Q x 0.32 Q0 D
含有物浓度的断面平均稀释度
ve 0.069 um
9.2 常见射流问题的动量积分解
前提:等密度自由紊动射流,环境为静止的同种流体。
流体力学中的流体中的湍流射流传质与传热

流体力学中的流体中的湍流射流传质与传热在流体力学中,湍流射流是指流体在加速过程中产生的不规则、混乱的流动。
湍流射流具有高速度和不稳定性的特点,广泛应用于传质与传热领域。
本文将探讨流体中的湍流射流对传质与传热的影响。
1. 湍流射流的形成机制湍流射流的形成是由于流体的加速过程中,流动速度超过一定临界值,使得流动变得不稳定而产生的。
在射流过程中,流体中的速度梯度较大,形成了各种旋转和湍流结构。
这些湍流结构破坏了流体的层流性质,使得流动不规则并且出现混乱的涡旋运动。
2. 湍流射流的传质特性湍流射流的湍流结构具有较大的内部表面积,使得湍流射流对传质有较高的效率。
湍流射流中的湍动剪切作用会破坏流体的边界层,并加强流体与环境之间的质量交换。
因此,在湍流射流中,质量传输速率比层流流动更高。
3. 湍流射流的传热特性湍流射流中的湍流结构也使得湍流射流具有较高的传热效率。
湍流射流中存在较强的涡旋运动和湍流混合,加强了流体内部的热量传递。
湍流射流中的湍动剪切作用也可以通过增强流体与周围环境之间的热量交换,提高传热速率。
4. 湍流射流传质与传热的应用湍流射流的传质与传热特性在许多工程领域具有重要应用价值。
例如,在化工工艺中,湍流射流可以用于混合反应器中的流体混合与传质过程。
在环境工程中,湍流射流被广泛应用于废气处理和废水处理中的气液传质过程。
此外,湍流射流还被用于燃烧室中的燃烧传热以及喷雾干燥中的传质传热过程。
总结:流体力学中的湍流射流在传质与传热领域具有重要意义。
湍流射流的形成机制与传质传热特性使其成为一种高效的传质传热方式。
湍流射流的应用范围广泛,可以在化工、环境、能源等领域中发挥重要作用。
随着对湍流射流研究的不断深入,相信在未来会有更多的创新应用涌现出来。
流体力学中的流体中的湍流射流控制

流体力学中的流体中的湍流射流控制湍流是流体力学中一个复杂而广泛研究的现象,湍流的控制一直是科学家和工程师们的关注焦点之一。
湍流射流控制是一种常见的湍流控制方法,通过射入较高速度的流体来影响湍流的产生和发展,以实现湍流控制的目的。
本文将探讨流体力学中的流体中的湍流射流控制的原理、方法和应用。
一、湍流射流控制的原理湍流射流控制的原理基于两个重要的概念:动量传输和动能耗散。
当高速射流进入低速流体中时,射流会传输动量和能量,导致原本存在的湍流结构受到破坏。
通过选择合适的射入速度和方向,可以改变湍流的能量分布和湍流结构,从而实现湍流的控制。
二、湍流射流控制的方法湍流射流控制的方法多种多样,常见的包括气体射流和液体射流两种。
1. 气体射流控制:通过向流体中射入气体,形成相对较高速度的气流,以干扰原有的湍流结构。
气体射流控制被广泛应用于飞行器、汽车和建筑物等领域,可以减小湍流阻力,提高流体传输性能。
2. 液体射流控制:液体射流控制是一种较为新颖的湍流控制方式,通过向流体中注入液体,形成射流。
液体射流控制相较于气体射流控制具有更高的密度和较低的可压缩性,能够在更小的空间范围内产生更大的物理效应。
近年来,液体射流控制在汽车空调、工业冷却和消防等领域得到了广泛应用。
三、湍流射流控制的应用湍流射流控制在工程和科学研究中有着广泛的应用。
1. 汽车空气动力学研究:湍流射流控制被应用于改善汽车的空气动力学性能,减小湍流阻力,提高汽车行驶的稳定性和燃油效率。
2. 飞行器气动性能优化:湍流射流控制可以减小飞行器的湍流阻力,提高飞行器的燃油效率和飞行性能,有助于实现更高的飞行速度和更长的航程。
3. 工业流体控制:湍流射流控制在工业领域中被应用于液体冷却、管道清洗和废物处理等方面。
通过射流控制,可以提高流体传热效率,减少能源消耗,降低环境污染。
四、湍流射流控制的挑战与展望湍流射流控制虽然在很多领域都取得了一定的成功,但仍然存在一些挑战和限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q vP R2
vP 0.190v0
vP 0.197vm 0.2vm
四、质量平均流速
定义: 以质量平均流速 vZ 乘以流量即得单位时间通过 该断面得流体所具有得动量。
vZ
0.455
v0
vm : vZ : v P : v0 0.966 : 0.455 : 0.190 : 1
根据射流出流后继续运动的动力分
动量射流(简称射流) 浮力羽流 浮射流(浮力射流) 根据出口断面形状分 圆断面射流 平面射流 矩形射流
二、湍流射流的形成
三、湍流射流的特性
射流边界层的宽度远小于射流的长度
在射流边界层的任何阿横断面上,,横向分速度远比纵向
(轴向)分速度小得多,可以认为,射流速度就等于纵向速 度。
gd 0 T0 y x x as 2 tg ( 2 )( ) (0.51 0.35) d0 d0 v0 Te d 0 cos d 0 cos
令:
gd 0 T0 Ar 2 v0 Te
称为阿基米德准则数,
阿基米德准则数的物理意义为:射流浮升力的大小。 它是非等温射流的重力相似性准则。 上式变为: y
2
其中,
1 0
1
1.5 2
d 0.0464
2
∴
vm 0.966 v0
式中:
0.078
s 0.294 s 3.769 R0 R0
二、断面流量
由于射流的卷吸和混掺作用,射流的断面流量沿流向逐渐增加。 断面流量与喷口流量之比:
w(切向速度)
⒈ 旋转射流的特性
wx(轴向速度) wr(径向速度)
⑴ 存在一个回流区: 实线 wx 虚线 w
在轴心处wx<0,回流区边界上wx = 0,回流区边界与射流边界(wx = 0) 之间wx有一最大值wmax,x,wmax,wx分布趋于平坦均匀, 回流区变小直到消失。 ⑵ 速度沿程衰减快 wx、w、wr轴心速度wm。
近似的方法:取轴心线上的单 位体积流体作为研究对象,只考虑 受重力与浮力作用,应用牛顿定律 导出公式。
四、射流弯曲 有一热射流自直径为d的喷 嘴喷出,射流轴线与水平线成a 角,现分析弯曲轨迹。 对图中的A点即为轴心线上 单位体积射流,其上所受重力为 ρm g,浮力为ρe g0,总的向上 合力为(ρe-ρm)g。 根据牛顿定律:F=ρm· j →(ρe-ρm)g=ρm· j 式中j为垂直方向上的的加速度
x x as 2 tg Ar ( ) (0.51 0.35) d0 d0 d 0 cos d 0 cos
5 Te 0.226 y 2 ( a x 0 . 205 ) Ar T0 a2
对于平面射流:
y x y ,x 2b0 2b0
旋转射流
定义:流体在喷出前就被强制旋转,喷出后脱离了固体壁面的约束, 在无限大空间处于静止的介质中继续流动。
e Tm Tm Te Tm T0 1 1 m Te Te T0 Te
Tm vm 0.706 v m ( ) 0.73( ) T0 0.965 v0 v0
e v m T0 1 0.73( ) m v0 Te
v m T0 y dt 0.73( ) gdt v0 Te 0.73g T0 v0 Te
当 x d 5以后, w、wy 基本消失,只有 wx 存在
⑶ 射流中心有很强的卷吸力 射流轴线上的静压力低于大气压力(负压),说明旋转射流中心有很强的 卷吸作用,x,静压力大气压力,卷吸作用。 ⒉ 旋流强度 ⑴ 旋流强度的定义及计算 定义:表明旋流设备所产生旋转射流特性的几何特征数,用S 表示。
S,回流区尺寸,稳定火焰的手段。
以S 来区分旋转射流的状态,一般认为: S = 0 无旋流 自由射流 6 强旋流 S > 0. < 6 弱旋流 S 0.
rot w = 0
无旋流?
特点:回流区、旋涡区
射流射向限制空间—限制射流
射流相似,所得的公式列于表10-2中,只不过公式中的B0为条缝
的半高,在使用时要注意。
温差射流与浓差射流
在质量交换和热量交换中,热量的扩散比动量的扩散要快一些, 因此,温差射流的边界层要比速度边界层厚一些,由于相差不大, 在实际应用时就把温度场,浓度场的内外边界同速度场的内外边界 重合在一起了,即认为他们的扩张情况一样,几何特性相同。
Q0 v0 r v
2 2 0 0
对于任意截面的动量可以 取一个微环进行积分:
2 2 v dQ v vdA v 2 ydy 2 v ydy 0
R
R
2 Q0 v 0 r02 v 0 2v 2 ydy 0
圆断面射流
e m j g m
d 2 y j 2 dt dt u y jdt du y
y u y dt dt jdt
e y dt ( 1) g dt m
e Tm Tm Te Tm T0 1 1 m Te Te T0 Te
q q0
R
0
v2 rdr
2 R0 v0
2
R R0 0
v r r d v R R 0 0 0
r r R R0 R R0
又
v v vm v0 vm v0
整个射流区内压强值不便。
射流主体段各断面上横向流速分布具有相似性。 射流各断面上动量守恒。
湍流射流的一般属性
主体段 起始段
运动特征
y y0.5vm
截面上任意一点至轴心 的距离 同截面上0.5v m点至轴心的距离
y y 0 .5 v 0 y c yb y0.9 v 0 y0.1v 0 v y点速度 v0 核心速度
此,动量守恒,运动的气体把动量给了静止的气体,使原来 静止的气体运动起来,实际上又回到了射流中。
热力特性:扩张区域同静止气体交换热量,由于过程为等压过程,由热
力学的知识可知,Q=ΔH-VdP 即交换的热量等于运动区域与
静止区域的焓差,因此,热力特性为焓差守恒。运动的气体
把热量给了静止的气体,使原来静止的气体温度升高又回到 了射流中。
dt v
m
dt
ds ds ds ds 1 v0 vm dt vm dt dt s sds dt vm dt v m v0 v m
再用vm/v0倒数代入,且一并代入y’的计算式,得:
0.73g T0 y 2 v0 Te
as 0.294 r0 sds 0.965
气体在等压过程的状态方程为ρT=const
e Tm m Te
将轴心温差转换为轴心速度关系,应用前面介绍的温差和速度的计算式, 可得: Tm 0.706 as T0 0.294 r0 Tm v 0.706 v m ( ) 0.73( m ) T0 0.965 v0 v0 vm 0.966 as v0 0.294 r0
Q0CT0 CTdQ
一、轴心温差ΔTm
二、质量平均温差ΔT2
T m 0.706 as T0 0.294 r0
T2 T0
0. 4545
as r 0
0. 294
三、起始段质量平均温差ΔT2
T2 T0
1 1 0.76 as as 2 1.32( ) r0 r0
y:所求的点到内边界的距离 R:边界层的厚度 Vm:vm=v0
v 截面上y点的速度 v m 同截面上轴心点的速度
y:所求的点到轴心的距离 R:边界层的厚度 Vm:轴心速度
ห้องสมุดไป่ตู้
v y 1.5 2 1.5 2 [1 ( ) ] [1 ] vm R
动力特征 对于孔口的出口处: 动量为:
2
得
vm R q 2 q0 v0 R0
v r r vm R d 2 0 v m R R v0 R0
1
2
1
0
1
1.5
T x v y 1.5 [1 ( ) ] Tm xm vm R
T T Te Tm Tm Te x x x e x m x m x e
其中:下标m为轴心参数,e为环境参数。
动力特性:扩张区域同静止气体交换动量,由于各个截面静压相等,因
第十章 湍流射流
湍流射流的一般属性
圆断面射流 平面射流 温差射流与浓差射流 旋转射流
湍流射流的一般属性
一、射流的分类
根据射流中流体流态分 层流射流 湍流射流
根据射流与射入空间的流体是否相同分
淹没射流 非淹没射流
根据射流周围边界情况分
自由射流(无限空间射流) 非自由射流(有限空间射流)
d
2
式中:
R s 1 3.4 R0 R0
整理可得:
1
0
1
1.5
d B1 0.0985
2
s q 2.2 0.294 2.2 q0 R0
或
q 2.2q0
三、断面平均流速
以 vP 表示:
g T0 a 3 2 ( 0 . 51 s 0 . 11 s ) 2 v 0 Te 2r0
将0.11改为0.35以符合实验数据
g T0 a 3 2 y 2 (0.51 s 0.35s ) v0 Te 2r0
s=x/cosa,且以喷嘴直径d0除之,便得出无因次的轨迹方程为:
五、初始段长度