净化空调程序控制逻辑图

合集下载

AHU-01空调净化系统确认方案

AHU-01空调净化系统确认方案

AHU-01空调净化系统确认方案您的签名表明您已清楚了解本文件及附件内容,充分理解并认可本文件的所有条款。

目录1.概述 (2)1.1 基本情况描述 (2)1.2 洁净区技术要求 (2)2.目的和适用范围 (2)2.1 目的 (2)2.2 适用范围 (2)3.风险评估 (2)4.实施计划 (6)5.职责分工和培训 (6)5.1 职责分工 (6)5.2 培训 (6)6.确认前检查 (6)7.确认内容 (6)7.1安装确认(IQ) (6)7.2运行确认(OQ) (12)7.3性能确认(PQ) (15)8.变更与偏差处理 (16)8.1变更控制 (16)8.2偏差管理 (17)9.分析与评价 (17)10.再验证 (17)11.制定依据(参考文献) (17)12.术语或名词解释 (18)13.附件 (18)1.概述1.1基本情况描述本公司质检实验室空调净化系统(AHU-01)为万级净化级别设计,净化流程如下:1.2洁净区技术要求洁净级别换气次数(次/h)温度(℃)湿度(%RH)10000级>20 18-28 45-65 悬浮粒子浮游菌沉降菌≥0.5μm 350000,≥5μm 2000≤100CFU/皿≤3CFU/皿2.目的和适用范围2.1 目的通过对空气净化系统的安装确认、运行确认、性能确认,证明空气净化系统能否达到设计要求及规定的技术要求,是否符合GMP及工艺要求,是否具有可靠性和重现性。

2.2 适用范围本方案适用于xx质检实验室(AHU-01)空调系统安装确认、运行确认、性能确认。

3.风险评估结合法规要求和使用需要,对AHU-01空调系统从配置、人员、法规符合性等方面进行评估,采取严重性(高中低)和可能性(高中低)两个因素进行评估。

严重性:严重性描述严重直接影响产品质量、质量要素或工艺与质量数据的可靠性、完整性与可跟踪性。

此风险导致产品不能使用,直接违反GMP原则,危害产品生产活动或人员健康安全。

7学习单元七 汽车空调控制电路分析

7学习单元七  汽车空调控制电路分析

二、自动空调系统的组成
如图7-6所示,一般的自动空调系统由以下部件组成:
1)传感器 ①车内及车外温度传感器
②蒸发器温度传感器
③水温传感器 ④阳光传感器
2)执行元件 执行元件一般包括控制伺服电机、风机及压缩机电磁离合器等。有的
3)控制器总成
控制器总成俗称空调电脑。它根据来自传感器和控制器总成上各键的
6.学习6S管理工作规范
学习任务二 汽车自动空调控制电路分析
【学习目标】
1.能够识别汽车全自动空调系统的组成元件
பைடு நூலகம் 2.能够清楚地讲解全自动空调系统组成元件的功能与工作
原理
3.学会对全自动空调系统工作电路进行分析 4.能根据电路图正确连接全自动空调系统实物
5.培养安全文明操作的良好职业素养
汽车电路分析
xue
xi
dan
yuan
qi
学 习 单 元 七
学习目标描述:通过本单元的学习,能够掌握汽车空调制冷的工作 原理、手动空调与自动空调的概念,熟知空调系统的组成与各控制 系统的功能,并能够识读与分析典型的手动空调与自动空调电路图。
学习任务一 汽车手动空调控制电路分析
一辆 2008 款一汽丰田花冠轿车带手动空调系统,车主反映打开 空调时感觉不制冷。维修技师接车后,检查了风机风速正常, 就是出风口感觉不凉。经查阅相关电路图,就车查实相关元件 的连接与工作情况,结果发现空调在制冷状态时空调压缩机未 动作,维修技师进一步检查空调电磁离合器,发现其内部开路, 更换空调电磁离合器后,故障排除。
6.学习6S管理工作规范
相关知识
相关知识一 汽车空调系统的功用与组成
一、汽车空调系统的功用 汽车空调系统的作用是根据驾驶员和乘客的需要,调节汽车车厢内空

标准洁净手术室净化空调智能控制系统技术方案

标准洁净手术室净化空调智能控制系统技术方案

标准洁净手术室净化空调智能控制系统技术方案一.概述手术室净化空调可以调节室内温度和湿度达到手术环境的要求,对送入手术室内的空气进行过滤处理并排出室内被污染的空气实现手术室环境的洁净。

还可以通过对室内压力进行调节,使手术室保持在正压状态,有效地阻止室外污染物侵入手术室,创造一个洁净无菌得手术环境,这样能大大降低术后的感染率。

再有效阻止污染物侵入室内的同时还可以给病人和医务人员提供舒适的服务和工作环境,提高工作效率。

《医院洁净手术部建筑技术规范》中对洁净手术室温度,湿度,压力,风量等指标进行了规定,手术室净化空调系统需要控制的部分参数如下所示。

洁净手术室主要参数指标从上表可以看出:1.为防止非洁净空气进入手术室内造成空气污染,《规范》中要求高级别手术室对相邻低级别洁净室保持一定正压差,要求相邻2室的最小静压差为+8帕,专为传染病人做手术的手术室应保持在负压状态,可以避免室被污染空气排出室外造成传染。

2.合理的温湿度是避免病人术中感染的重要保证,同时还要满足病人和医护人员的工作环境舒适要求,所以对温度的要求是22~25℃。

《规范》中对Ⅰ级和Ⅱ级手术室相对湿度要求为40~60%,对Ⅲ级和Ⅳ级手术室的相对湿度要求为35~60%。

另外洁净手术室中温湿度控制要遵循湿度优先的原则,因为湿度对细菌存活时间影响很大。

洁净手术部是医院中一个重要的治疗部门,病人在手术过程中及术后都有感染的危险,有研究人员提出医院空调系统是预防和治疗疾病的重要手段之一。

研究表明,患者在适宜的空调环境中,一般比无空调环境体质恢复的更快。

手术室净化空调系统除传统意义上对室内的温湿度进行控制外,另一个重要目的就是通过通风并过滤空气控制室内空气中悬浮微生物的数量。

因此作为洁净手术部中重要的组成部分的洁净手术室在防止术中病人感染方面有着重要作用,而实现洁净手术室达到控制传染的一个重要途径就是净化空调系统。

二.净化空调系统按空气处理设备的情况划分,空调系统可分为集中式系统,半集中式系统和分散式系统,目前医院中常用的是集中式空调系统,集中式系统由冷站系统和空调风系统组成。

新能源汽车空调检测与维修第一章新能源汽车空调系统认知

新能源汽车空调检测与维修第一章新能源汽车空调系统认知

空气过滤式净化方式
(2)静电集尘式 下图所示为静电集尘式空气净化装置结构示意图。静电集尘式空气净 化方式是在空气过滤器的基础上再增设一套静电集尘装置。静电集尘是利 用高压电极产生高压电场,使空气电离、带电,带电尘粒在电场作用下产 生定向运动,沉降在正、负电极上,实现对空气的过滤集尘。灭菌灯放出 紫外线,对吸附在集尘板上的尘埃进行照射,将其中的细菌杀死,除尘后 的空气被强制通过活性炭滤清器,将其中的烟尘和臭味滤除,保持车内空 气清洁。
下图所示为新能源汽车空调核心部件实物图。
2. 制冷系统 制冷系统的作用是对车内空气或由外部进入车内的新鲜空气进行冷却, 从而降低车内温度。新能源汽车空调制冷系统与传统汽车空调制冷系统的 组成基本相同,主要差别在于压缩机的结构及驱动方式。 传统汽车空调制冷系统中的压缩机是由发动机传动带带动进行工作的, 无法对压缩机的转速进行有效调节。
纯电动汽车空调制冷系统中的变频器在压缩机控制器的控制下,可将 动力蓄电池提供的高压直流电逆变为电压பைடு நூலகம்频率可调的三相交流电,驱动 压缩机工作。压缩机可采用全封闭式电动压缩机,如涡旋式压缩机。压缩 机控制器可以根据车内与车外的温差变化,
目前通过动力蓄电池加热的方法有两种,一种是利用动力蓄电池直 接加热空气,这种方法结构简单、热效率高,但具有一定的安全隐患; 另一种方法是利用动力蓄电池加热冷却液,再通过冷却液加热空气,这 样做可以沿用传统燃油汽车上的暖风散热器,但系统比较复杂,热效率 较低。
2. 混合动力电动汽车空调系统 混合动力电动汽车就是在纯电动汽车上加装一套内燃机,其能源配 备结构与传统汽车相比变化不大,由发动机和电动机共同或各自单独驱 动汽车行驶,其空调系统与传统汽车空调系统基本没有太大变化,但当 驱动压缩机工作的动力来源不同时,要改变相应的配置,以保证空调功 能正常。当发动机、电动机都参与动力驱动时,汽车上要配置动力蓄电 池,这样就有可能用电力驱动压缩机制冷;当发动机停止运行时,也可 用电动压缩机制冷。但受动力蓄电池电压和容量的限制,电动压缩机的 功率不可能很大,因此,在发动机运行时,还需要使用发动机带动压缩 机,所以理想状态下,使用机械、电力双模式压缩机制冷。

MB40可编程控制器在车间空调自控系统中的应用

MB40可编程控制器在车间空调自控系统中的应用
其在 MB 0 P C控制系统 中有严密 的控 制逻辑 , 4 L 以实现
连锁 控制 , 个相 当重要 。 这
系统 中设 计 冷却 水供 水 温度 与屋 顶 冷却 塔 风机 变频 器
的连 锁控 制 , 以实 现节 能 目的。
冷却水 系统 的循环状 态 同样通 过水 流状态 来监 测 。
3 2 系统 分析 .
本 空调 自控系统 采用 南瑞 MB 0 P C作为 主机 , 4 L 采
用 业界通 用 的双 机冗余 配置 , 确保 系统 的安全性 。主机
4 风机可在手动变 频和 自动变 频两种工况 下任 意 )
自 化 与 用 1 第3卷 期 动 技术 应 2l年 0 第9 0
产 过 程 采 用 先进 的 生产 加 工 工 艺 和 精 制 的外 观 设 计 。 它 的主要特 点包括 : 高性能 的监控( PU) 件 、全 智能 C 模 化 的 I O模件 、开放 、标准 的通讯 网络、强大 的串 口通 / 讯功 能 、先进 的现场总线 网络 、灵活 、可靠 的双机 热备 冗余 方案等 。本文基 于性价 比极 高的南瑞 MB 0 LC 4 P 和北 京 昆仑通 态 组态 软件 成 功 的开 发 出车 间空 调 智 能
( ) 供 回水子系统 g
( 换气排风机 子系统 h)
自控 系统 , 运行 稳定 , 效率 较 高 , 到 了客 户 的赞扬 。 得
2 空调 暖通 系统
空 调 的 概 念 根 据 美 国 暖 通 制 冷 工 程 师 协 会
A HRAEAmei n S ce fHet g S ( r a oi y o ai ,Rer eain c t n f g rt i o
果 回风湿度低于 HT S , L — P P C控制系统关小冷冻水 电动

汽车空调系统控制

汽车空调系统控制
控制目的
汽车在不同运行情况下既满足发动机的 要求,又保证空调系统的正常工作。
控制作用内容及装置
发动机怠速控制装置 加速断开装置
空调的怠速调节控制
怠速时开空调的问题
对发动机不利
负荷重,可能熄火
对空调不利
冷凝器风扇转速太低,散热差,温度压力均较高 压缩机转速太低,制冷量小,开动时间长
作用:起保护作用。当冷凝器故障、冷凝压力 异常上升时,接通冷却风扇高速挡或切断离合 器电路,以降低冷凝温度压力
压力控制范围: 高压>1.6MPa时接通冷凝器风扇高速档 高压>3.2MPa时断开压缩机离合器 (具体数值与车型有关)
低压开关
可能安装在高压回路或低压回路,作用 不同
安装在高压回路中的低压开关
送风方式伺服电机
通风系统图
冷气最足伺服电机 冷暖混合伺服电机
进气伺服电机
新风门
内循环
LS-400空调的伺服电机动作控制
伺服电机:带减速机、惯性小、响应 快。信号电压控制转动角度
以送风方式伺服电机为例:5个位置
LS-400空调伺服电机控制举例
送风方式伺服电机动作(一)
当伺服电机转动时位置开 关活动触点随之移动。
LS-400空调的温度控制
传感器信号
包括室温、车外、蒸发器温度、水温、 阳光等传感器信号
除阳光传感器(光敏二极管)外,其它 都采用半导体热敏电阻元件
LS-400空调的温度控制
温度控制方案 Tao=a·Tset-b·Tr-c·Ta-d·Tb+e
其中 Tao:所需送风温度,计算结果若: Tao >0:升温;Tao <0:降温 Tset:设定温度(期望值) Tr:车内温度 Ta:车外环境温度 Tb:光照传感器信号数据 a、b、c、d、e:系数

PLC在洁净手术室空调温湿度控制系统中的应用

PLC在洁净手术室空调温湿度控制系统中的应用
出接 口控 制表 冷 阀、电加湿 器和 电加热器模块 ,分别 进 行 阀门开度 、加湿量和加 热量 的控 制 。 手术室控 制
面板采用 O MC .0 0 S5 0 C,表 冷控制器选 用 SE N IME S
( ) 工况 1工作 过 程 a
公司 S X6 执 行器和 v F 1 Q 2 V 3 二通 阀进行控制 , 电加 热选用 S Y 3 0 T -8D三 相调压模块 控制 电阻丝的加热 。 通过手术控 制面板对温 度和湿度 进行设 定, 手术 控制 面板将 温湿度 设 定值转 换为 0 1V 电压 信号 ,与 ~ 0
提 升至 设定湿 度 ,然后 送风 到室 内。工作 过程 如 图 3 ( )所 示 。 b
= c 一 + c / / 一 K ( P ) K I I P ) (
f ’ ,\ 1
( 2)
3 )环境温度< 设定温度 ,环境相对湿度< 设定相对
湿度 。新风与 回风混合后 ,由表冷器升温至设 定温度,
2 第 期 | 燕I 0 年 8 喀_ 1 1 l 3 技 3
技 术 与 应 用
使得温度 等于设定温度 ,电加湿工作将湿度提升至设
定湿度 ,然后送风到室内。工作过程如图 3( ) b 所示 。
图 2 系统结构 框 图
输 出模 块 E 3 ,E 3 为四模 拟 量输 入模 块 , M2 2 M2 1
序 中完成 PD运 算 。 I
E 3 模块连接 。 P 2 M2 l C U2 4用于 实现逻辑控制和 模拟
运算 , 过 I 口控制风机 、 通 / O 电加湿 和 电加热 的启停 ,
通过模拟 量输 出控制 表冷 阀的开度 、电加湿 、电加热
的工作 ,最终对 室内温 湿度进 行控制 。

关于风量压差余度平衡自动化控制系统在制药企业净化空调系统上的运用

关于风量压差余度平衡自动化控制系统在制药企业净化空调系统上的运用

关于风量压差余度平衡自动化控制系统在制药企业净化空调系统上的运用摘要:分析传统的制药净化空调系统在调试、运行、维护中存在的问题,重点介绍了风量压差余度平衡自动化控制系统的功能,对净化空调带来的技术提升,此系统能解决那些问题,具有那些技术优势。

关键词:净化空调系统、风量压差余度平衡自动化控制系统、远程、电子数据引言近年来国家相继出台政策法规,规范药品生产,加强生产过程的监管。

2015年5月26日,国家食品药品监督管理总局(CFDA)正式发布了2010版GMP的新附录之一《计算机化系统》,并于2015年12月1日起执行。

《工业洁净室通用规范》(征求意见稿)要求净化空调系统能有效控制环境的压差梯度,防止污染与交叉污染,跨级别净化区域必须实施压差控制与监测。

2019年9月25日,国家药监局正式下发通知,明确取消GSP、GMP认证,改为动态监管。

今后药监局检查时关注的重点将是:1、数据完整性、计算机化系统;2、飞行检查,交叉污染,人为差错;3、静态监测改为动态监测;4、数据的电子记录、人员操作审计追踪。

本文以某制药厂的净化空调系统为例,阐述风量压差余度平衡自动化控制系统在自动调节压差和风量的具体作用。

一、制药净化空调系统的相关法规要求净化空调系统:1、保持不同级别区域间的压差或者同级房间的适当压差梯度符合要求是减少外部污染,防止交叉污染的重要手段。

2、风量与压差:风量与压差是制药净化环境的洁净度、污染与交叉污染的重要保障。

净化环境的洁净度需要对整个净化区域的送风量进行有效控制,确保洁净室内有可靠的送风以保证洁净环境的风量置换需要。

3、净化空调必须对外界保持≥15PA的压差,这就要求净化空调系统的新风量、系统排风量保持一定(稳定)的风量差。

新风量与排风量必须联动控制。

4、生产过程的动态性要求系统能够具备动态调节功能。

5、在药品生产质量管理过程中运用的计算机化系统存储的电子数据要具备可访问性、完整性和审计跟踪。

组合逻辑控制器原理

组合逻辑控制器原理
CATALOGUE
组合逻辑控制器的设计方法
解析法
总结词
解析法是一种基于数学逻辑和布尔代数的方法,通过将逻辑表达式转换为电路结构来实现组合逻辑控 制器的设计。
详细描述
解析法的基本步骤包括将逻辑表达式进行化简、因式分解和化简,然后根据化简后的表达式设计相应 的电路结构。这种方法能够得到最简电路结构,但计算过程较为复杂,需要较高的数学基础。
在智能家居中的应用
智能照明系统
组合逻辑控制器能够根据环境光线、时间等 因素,自动调节家庭照明系统的亮度和色温 ,提供舒适的照明环境。
智能安防系统
组合逻辑控制器可以集成各种安防设备,如摄像头 、烟雾报警器等,实现家庭安全监控和预警。
智能环境控制系统
通过组合逻辑控制器,可以控制家庭中的空 调、暖气、空气净化器等设备,实现智能环 境调节。
定时器/计数器
用于产生时间基准和控制脉冲,实现定时控制和计数控制等功能 。
输出部分
驱动电路
将控制部分输出的控制信号转换为能够驱动执行机构 的大功率信号。
执行机构
根据控制信号驱动相应的设备或机构,实现控制目标 。
反馈电路
将执行机构的输出信号反馈给输入部分,形成闭环控 制系统,提高控制精度和稳定性。
03
特点
组合逻辑控制器具有结构简单、可靠 性高、易于编程和调试等优点,广泛 应用于工业自动化控制领域。
组合逻辑控制器的重要性
提高生产效率
通过自动化控制,组合逻辑控制 器能够提高生产效率,减少人工 干预,降低生产成本。
保证产品质量
精确的控制逻辑能够保证产品质 量的一致性和稳定性,提高产品 合格率。
增强系统可靠性
信号调理
02
对采集到的信号进行滤波、放大、去噪等处理,以消除干扰和

PLC在洁净手术室空调温湿度控制系统中的应用

PLC在洁净手术室空调温湿度控制系统中的应用

PLC在洁净手术室空调温湿度控制系统中的应用武培雄【摘要】在洁净手术室的温湿度控制系统中,温湿度控制是一种非线性、大滞后、时变的复杂过程。

本文介绍了以S7-200PLC为主控制器,实现在不同工况下温湿度的PID控制。

运行结果表明,该温湿度控制系统具有较高的抗干扰能力,可靠性高,运行稳定,温湿度控制精确,完全能满足洁净手术室应用要求。

%In the humidity temperature-conditioning system for the ultra-clean operation-room,the humidity and temperature conditioning process is non-linear,time-lagging and complicated.This paper mainly focuses on the S7-200PLC system and intends to clarify the PI【期刊名称】《电气技术》【年(卷),期】2011(000)008【总页数】3页(P33-34,44)【关键词】PLC;温湿度;空调机组;PID【作者】武培雄【作者单位】太原理工大学电气与动力工程学院,太原030024【正文语种】中文【中图分类】TP273在洁净手术室空调控制系统中,主要完成空气的热、湿交换处理过程,使其达到通风状态点以满足室内温、湿度要求[1]。

其控制对象——温度和相对湿度是两个相关联的参数,在调节温度的同时,相对湿度也会随之变化。

以往的仪表和DDC控制器往往根据需要,选择了温度优先或是湿度优先进行控制,使得温湿度控制的调节时间过长,控制精度低,难以实现温湿度同时控制。

本文结合洁净手术室的温湿度控制,介绍利用PLC强大的数字运算处理功能实现对洁净空调的温湿度控制,在组合式空调机组的功能段有选择性的对空气进行混合、降温、除湿、加温、加湿等处理,实现温湿度的最佳控制,此方案温湿度控制系统响应速度快、稳定性好,也可用于其它空调的温湿度控制中。

变频空调电气控制设计说明

变频空调电气控制设计说明

变频空调电气控制设计目录绪论31.1 实训背景来源与其探究意义31.2 空调器控制技术开展概况44671.3 用主要设计容7第 2 章方案论证92.1 空调器电控系统总设计方案92.2 空调器压缩机控制方案91112132.3 温度控制方案选择142.4 本章小结14第 3 章变频空调器电控系统设计163.1 电控系统总体结构163.2 室机组设计171718183.3 室外机组设计2020212223233.4 温度检测电路243.5 变频电路设计253.6 本章小结26第 4 章模糊控制器的设计274.1 模糊控制的根本原理274.2 变量模糊化274.3 模糊控制规那么确实定2930304.4 基于模糊推理的自调器PID控制器314.5 PID控制器参数自整定原那么324.6 模糊控制器的仿真334.7 本章小结34结论36致 37参考资料38绪论1.1 实训背景来源与其探究意义空调是空气调节器的简称,它的作用是通过空调器对室空气进展处理,使它的温度、湿度、气流速度和干净度到达所需的要求,为人们提供舒适生活条件和为生产工艺提供一定的环境条件效劳。

空调器一般有冷风型空调器、电热冷风型空调器、热泵型空调器几种。

冷风型空调器只能用于降温调节;电热冷风型空调器一般是在原冷风型空调器上进展局部改进,增加电热局部而成;热泵型冷热两用空调是目前普遍采用的空调器。

制冷循环中,低温低压的液态制冷剂在蒸发器处吸收热量而汽化,经压缩机压缩成为高压、高温气体,在冷凝器散热冷凝成液态制冷剂,然后又经毛细管(或膨胀阀)降压节流成为低压、低温状态,如此反复循环,就可将室的热量排到室外,并通过室的风扇将冷却后的空气均匀地分布到室。

制热时,制冷剂的循环与此相反。

温度控制技术是热泵型冷热两用空调中最主要的控制技术,一个完整的温度控制系统主要包括三局部:温度传感器、温度控制器和温度调节器。

传统空调器的温度控制是通过温度传感器感受室温度变化来控制压缩机的运行和停止的,风扇那么在设定的速度下工作,这会造成受控环境温度变化较大,使人们在使用空调时仍不断感受到冷热的变化。

净化空调工程设计方案(3篇)

净化空调工程设计方案(3篇)

第1篇一、项目背景随着我国经济的快速发展,工业、医疗、科研等领域对空气净化设备的需求日益增长。

净化空调设备作为空气净化的重要手段,其设计质量直接影响到空气净化效果和使用效果。

本方案针对净化空调工程设计,提出了一套全面、科学、合理的方案,以满足不同领域的空气净化需求。

二、设计原则1. 安全可靠:保证净化空调设备在运行过程中,确保人身安全和设备稳定运行。

2. 高效节能:提高空气净化效果,降低能耗,降低运行成本。

3. 易于维护:便于操作和维护,延长设备使用寿命。

4. 经济合理:在保证质量的前提下,降低设备成本。

5. 环保节能:采用环保材料,降低对环境的影响。

三、设计方案1. 空气净化系统(1)高效过滤器:选用高效过滤器,如HEPA过滤器,保证净化效果。

过滤器应具备以下特点:1)高效过滤:对0.3μm以上颗粒物的过滤效率应达到99.97%以上;2)低阻力:降低系统阻力,提高风量;3)抗细菌、霉菌:具有良好的抗细菌、霉菌性能;4)耐用性:延长使用寿命。

(2)风机:选用高效、低噪音、低能耗的风机,保证风量、风压和噪音要求。

(3)风机箱:选用优质风机箱,确保风机运行稳定。

(4)净化空调机组:根据净化级别和风量要求,选用合适的净化空调机组。

2. 空调系统(1)新风系统:引入新鲜空气,保证室内空气质量。

新风量应满足室内人员需求,一般按每人30m³/h计算。

(2)排风系统:排除室内污浊空气,降低室内污染物浓度。

排风量应满足室内空气交换需求,一般按新风量的1.2倍计算。

(3)冷却系统:采用高效冷却设备,如冷冻水系统、风冷系统等,保证室内温度满足使用要求。

(4)加热系统:采用高效加热设备,如电加热器、燃气加热器等,保证室内温度满足使用要求。

3. 自动控制系统(1)温湿度控制:通过温湿度传感器,自动调节空调系统运行,保证室内温湿度稳定。

(2)空气净化效果控制:通过空气净化效果传感器,实时监测净化效果,自动调节净化系统运行。

浅析药厂洁净室空调控制系统及其设计要求

浅析药厂洁净室空调控制系统及其设计要求

浅析药厂洁净室空调控制系统及其设计要求摘要:有效地控制洁净空调系统是保证药品质量的必要条件,本文从压差控制、风量控制、温/湿度控制以及多源信息检测等几个方面阐述了药厂洁净室空调控制系统的特点,进而分析了洁净室空调控制系统设计的功能要求、硬件要求和软件要求。

关键词:洁净室;洁净空调控制系统;压差控制;风量控制;温/湿度控制0引言随着国家对药品质量要求的不断提高,促使药品生产环境要达到更高的标准。

符合净化标准的生产环境是药品生产的必要条件,制药企业洁净空调系统能够使洁净室内保持所需要的风速、压力、洁净度和温、湿度等,从而防止药品生产中的混批、污染和交叉污染,洁净空调系统的设计对制药企业具有重要的意义。

自GMP(《药品生产质量管理规范(2010年修订)》)的颁布实施和近年来洁净空调系统相关技术的快速发展,制药企业对洁净区域的控制要求越来越严格,洁净空调控制系统设计的复杂度和难度也在不断提升。

本文介绍了药厂洁净室空调控制系统特点,进而对其设计要求进行了简要分析。

1.药厂洁净室空调控制系统特点洁净室空调系统按物理布置形式,可分为集中式洁净空调系统、分散式洁净空调系统和半集中式洁净空调系统三种。

洁净室空调控制系统是为了保证药厂空调系统在无人值守的情况下,通过计算机程序实现自动化控制,使被控空调系统按照预先设置的被控环境参数保持正常的运行。

与传统空调系统相比,洁净室空调控制系统的主要有如下特点:1.1 压差控制为了避免出现相邻洁净级别区域或相邻洁净室出现交叉污染的情况,制药厂房洁净区域与普通区域(非洁净)之间、洁净等级不同的相邻区域之间、相同洁净等级但污染程度不同的洁净室间都必须保持适当的相对压差。

高洁净级别区域、高风险区域的相对大气压力设置要高于低洁净级别区域、低风险区域,能够保证低级别、低风险区域的空气不会对高级别、高风险区域的空气造成污染,从而能有效降低产品污染的风险。

1.2 风量控制风量控制是洁净室空调系统控制的基础,维持洁净室正压、保证洁净室内的洁净度等都与风量有关。

车间净化空调系统验证方案

车间净化空调系统验证方案

和安全性
03
验证系统的节能性和环保性,提高运行效率和降低对
环境的影响
验证范围
01
空气处理机组性能的验证,包 括送风、回风、过滤、冷热处 理等环节
02
洁净室(车间)环境的验证, 包括尘埃粒子数、温湿度、压 力梯度、气流组织等指标
03
空调自控系统的验证,包括传 感器、执行器、控制器等硬件 及控制逻辑的验证
数据来源
02 收集车间净化空调系统的各项性能指标数据,包括温
度、湿度、空气质量等。
数据处理工具
03
使用Excel、SPSS等数据处理软件进行数据整理和分
析。
实验结果与理论预测比较
预测模型选择
选择适合的车间净化空调系统的理论模型,如传热传质模型、空 气动力学模型等。
实验结果与预测值比较
将实验测得的数据与理论预测值进行比较,分析实验结果与理论预 测的差异。
车间净化空调系统验证方案
汇报人: 2023-12-03
目录
• 验证方案概述 • 车间净化空调系统介绍 • 验证计划 • 验证实验设计 • 验证实验结果分析 • 验证结论与建议 • 参考文献
01
验证方案概述
验证目的
01
确保车间净化空调系统的性能和效果达到预期要求
02
验证系统的稳定性和可靠性,保证长期运行的稳定性
误差分析
对实验与理论预测之间的误差进行分析,探究误差产生的原因。
实验结果不确定性分析
01
不确定性来源
分析实验结果不确定性的来源, 如测量误差、环境干扰、仪器误 差等。
02
不确定性评估
采用概率统计方法对实验结果的 不确定性进行评估,计算不确定 度的置信区间。

模糊控制与PID传统控制比较

模糊控制与PID传统控制比较

模糊控制与传统PID控制比较目录引言 (3)第一章开环测试 (3)1.1开环测试 (3)1.2 PID控制 (4)1.2.1 PID概述: (4)1.2.2 PID结构 (4)1.2.3 PID参数作用 (5)1.2.4 PID调节方法(自整定过程) (6)第二章:模糊控制 (10)2.1模糊控制技术的起源与特点 (10)2.2模糊控制论的特点: (11)2.3模糊控制研究现状: (11)2.4模糊控制的发展趋势: (12)2.5设计一个模糊控制器规则: (12)2.6一个基本模糊控制器主要有三个功能 (13)2.7模糊控制器主要步骤: (13)2.9 simulink仿真 (15)第三章:模糊控制与传统PID控制比较: (16)3.1 死区、迟滞 (16)3.2 PID控制器和模糊控制器对比: (17)参考文献: (20)引言模糊控制不需要确定系统的精确数学模型,是一种基于规则的控制。

模糊控制在智能控制领域由于理论研究比较成熟、实现相对比较简单、适应面宽而得到广泛的应用。

不论是对复杂的水泥回转窑的控制,还是在智能化家用电器中的应用,模糊控制都充当着重要的角色。

以下我们从一个典型工业过程通常可以等效为二阶系统加上一个非线性环节(如纯滞后),给出如下典型控制对象传递函数的一般形式:[1]Gp(s)=K*e-τs/(T1s+1)(T2s+1)第一章开环测试1.1开环测试:取K=1,T1=2,T2=4,τ=0.1;在simulink中搭建开环测试框架图:图1 开环测试图仿真结果:图2 开环仿真结果图1.2 PID控制1.2.1 PID概述:在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

实验室通风系统控制方案解决!!

实验室通风系统控制方案解决!!

通风系统控制方案第一章:概述一、实验室通风系统构成。

1、室内需要排风的设备:如:通风柜、原子吸收罩、万向排气罩、需要排风的储存柜等等,排风设备一般配有电动或手动的阀门。

2、通风管道:如:圆形管(PVC、PP、玻璃钢)、方管(PVC、PP、玻璃钢)、弯头三通等其它异型3、阀门如:手动/电动分流阀、止回阀、手动/电动防火阀、软接头.4、补/排风机:如:方型/圆形轴流风机、斜流风机、离心风机。

5、控制系统如:开关控制、普通启动控制、变频启动控制系统、静压变频节能系统、一站式智能控制系统、电脑中央控制系统、远程协助控制系统。

6、净化设备如:直排式喷淋净化塔、加药式循环喷淋塔、活性碳吸附箱。

7、动力电缆.如:YJV交互电缆、VV动力电缆。

二、名词解析:1、通风柜:通风柜是实验室常用的通风设备,主要应用在实验过程中产生异味、烟雾、有毒有害气体的实验当中,如:消解、分解、干蒸、乳化、雾化、高温融化、高温炭化等等.配有照明、插座、供水、供气,有一道上下推动的门、有些门上还带平移窗,柜顶上有风阀控制排气量,风阀有电动/手动,电动阀有普通开关阀和积分比例阀,普通开关阀通过控制开关,定位风阀的开度,定量排风,积分比例阀通过V A V控制器的面风速设定,通风柜门开度变化时,自动调节风阀的开度,保持恒定的面风速,变风量排风,起到节能作用,风阀在实际工程中,通常是通过软管或圆管接到排风主或支管上,在实际工程中通常几个通风柜共接一台排风机。

通风柜规格按照柜门尺寸分一般有三种: 1200型、1500型、1800型,按照外型分也有三种:落地式、中央柜式、台式,最大排风量一般算法,台式:1200型的1200m3/h、1500型的1500m3/h、1800型的1800m3/h,中央柜式:1200型的1500m3/h、1500型的2000m3/h、1800型的2300m3/h,落地式:1200型的1500m3/h、1500型的2000m3/h、1800型的2300m3/h.在实际工程中,验收时(V A V通风柜不算),通风柜柜门打开高度300mm时,面风速达到0。

空气洁净技术

空气洁净技术

洁净空调自动控制摘要:洁净空调系统作为一种重要的空调系统分类,目前在医药、电子和化工等行业应用十分广泛.从控制和数据分析处理的角度来看, 洁净空调控制系统除了具有普通空调控制系统的数据量大、模拟量多、系统运行不间断和数据需要存储等特点以外, 还带有控制因素多和控制精度高等特点. 通常的洁净空调系统要求室内环境中的温度、湿度、压差和空气洁净度等状态参数均保持在一定的阈值范围内. 对这种要求,靠维护人员的手工操作或者传统的继电器控制是根本无法实现的.关键词:洁净、空调、控制洁净空调系统作为一种重要的空调系统分类,目前在医药、电子和化工等行业应用十分广泛.从控制和数据分析处理的角度来看, 洁净空调控制系统除了具有普通空调控制系统的数据量大、模拟量多、系统运行不间断和数据需要存储等特点以外, 还带有控制因素多和控制精度高等特点. 通常的洁净空调系统要求室内环境中的温度、湿度、压差和空气洁净度等状态参数均保持在一定的阈值范围内. 对这种要求,靠维护人员的手工操作或者传统的继电器控制是根本无法实现的.一、空调系统分析1.2工程概况某地区某制药厂的生产车间有五层楼, 每层楼的内区为生产区,各层楼的外区通道、操作人员更衣室等连通, 构成过渡区. 各生产区域的设备负荷差异较大. 因为生产工艺的要求, 内外区间以及车间与外界之间的门开关频繁, 造成室内环境状态波动较大. 而且该工厂地处海边, 室外空气湿度较大.1.2 空调系统要求根据“药品生产质量管理条例”(药品生产GMP), 业主要求生产区的空气洁净度达到30 万级洁净室标准, 温度在20~26℃之间, 相对湿度在40%~60%之间. 压差按粉剂车间要求设计, 过渡区对室外环境保持12~15 Pa 的正压,生产区对过渡区保持2~5 Pa 的负压. 要求利用PLC 自动对空调系统进行调节控制. 可根据季节不同和生产工艺的改变, 通过触摸屏对运行参数进行修改. 室外环境的气象资料和室内空调运行的状态和能耗等参数记录在计算机内以供查询和进一步的分析优化处理.二、空调系统设计2.1 空气处理系统设计系统为全空气系统, 各个房间的气流组织均为上侧送、下侧回. 冷源为两台工厂冷冻站提供的7~9℃的冷冻水, 热源为工厂锅炉房提供的蒸汽. 送风机由变频器驱动控制, 回风机则为开停控制. 送风总管分为两路, 一路通向各生产区, 另一路向过渡区送风. 系统采用变风量系统, 各个房间的送风阀和回风阀均装有电动风阀执行器用来调节风阀开度, 以调节各个房间的送回风量.空气循环回路的新风段、一次回风段和送风段分别装有初效、中效和高中效过滤器.2.2 控制系统设计系统的主要控制参数为: a. 保持空气洁净度必须的送风量; b. 内外区之间的负压压差和过渡区与环境间的正压压差; c. 室内环境的湿度; d. 室内环境的温度.空气洁净度和温度可根据各生产区的生产工艺要求和“药品生产质量管理规范”的规定,利用PLC 调节装在送回风阀上的风阀执行器来改变风门开度;压差的控制同样是根据现场传感器的采样数据, 利用PLC 对数据进行分析, 输出控制量来控制风阀的开度以保证各区域的压差;因该工厂地处海边,常年湿度较大,所以湿度控制方式以去湿为主,可通过调节冷冻水的流量和温度来实现.图1 为洁净空调自动控制系统的控制框图.除冷冻水的流量和温度由操作人员人工调节(根据远程监视器显示的系统参数调节冷冻机冷量和冷冻水开度)外,其余参数的采集、逻辑判断、数值计算和执行器动作均为自动实施. 但是, 由于此系统的控制对象较多, 且各对象的控制精度要求较高,各控制因子的耦合性很强, 所以控制模型比较复杂. 加之各参数的波动很大, 不易稳定.故采用一般的控制算法容易使系统产生很大的波动,甚至偏差. 但复杂的算法又使得系统的开发、调试和维护的难度以及工作量大大增加. 故作者在设计中使用了PLC 内部集成的模糊PID 算法函数为控制函数, 对PLC 控制范围的上下限做了限制, 在此范围内仍以PID 算法控制, 一旦控制值超出阈值, 则停在阈值限上,这样大大提高了控制精度和稳定性. 各风阀的上下限阈值均通过在标准运行工况下的测试得到.现以夏季运行工况下某房间的送回风阀上、下限阈值的设定方法为例.a. 根据房间的标准换气次数, 测量得到对应的回风阀开度, 以此为回风阀的下限阈值Rl,ex(因为房间为负压, 应以回风阀下限为准;如为正压,则应设定送风阀下限), 从而保证房间的最小换气次数;b. 根据房间设定温度的精度范围设定送风阀的上、下限阈值Sh,t 和Sl,t, 使得在标准送风温度的情况下, 房间温度不会超出GMP 规定的温度范围;c. 根据送风量最小时的最不利情况, 即送风阀处于最小阀位Sl, t 时, 设定回风阀上限阈值Rh,p,使房间在最不利情况下的负压压差小于10 Pa;d. 根据回风阀的阀位阈值 Rh,p 和Rl,ex, 重新设定送风阀的上下限阀位Sh,p 和Sl,p,使得在回风阀处于最不利情况时, 即回风阀开度为上限或下限阈值时,房间能够保持最低负压压差5 Pa 的压差下限.本系统在节能方面也采取了一些措施. 生产过程中有些房间的使用是间断性或季节性的, 有些房间是作为临时存储地点而无操作人员驻留的,这些房间及其他夜间不生产的房间(该车间不是三班制, 每天工作时间为16 h)需维持洁净状态和保持湿度, 其要求低于生产时的工况(房间换气次数可减少到只要维持状态要求). 使用这种做法大大降低了系统的运行费用,提高了系统运行的节能性.利用工厂内部的局域网, 生产、质量、动力以及管理部门可以实时地得到现场的数据, 进而作出分析和决策.三、运行效果3.1 室内环境的保持工程完成以后运行至今已超过 12 个月, 时间跨越夏季和冬季. 室内环境完全达到用户的要求,符合“药品生产质量管理条例”标准. 且系统软硬件的运行均十分稳定, 除在运行期间对一些控制参数微调以外, 无故障和波动等异常情况. 由于采取了多工作模式组合和变风量的控制方式, 整个空调系统的运行费用也大大降低, 节能超过30%.以夏季工况下某生产主操作区的房间为例.作出房间的温度、湿度和房间-过渡区的负压差等控制参数随时间变化的曲线, 以及空调系统送风机变频器的日工作时间曲线.图2 是某主要生产区的温度时间曲线图. 在洁净空调系统中, 由于室内洁净度所要求的换气次数远大于由热负荷所要求的换气次数, 因此, 白天工作时, 当空气经过表冷器去湿后必须用蒸汽加热到一定的送风温度以防止室内的温度过冷超调. 在夜间22 点和第二天早上8 点之前该车间不生产, 所以在这段时间内系统处于最小能耗状态,室内的热负荷较小, 这种情况仍然处于PLC 控制阈值的范围内. 从图中亦可看出, 室内温度较好地与设定温度相符合. 从该车间一天的温度曲线来看, 温度比较平稳, 与设定值的误差在5%以下,完全符合该洁净空调系统的温度控制要求.图3 是同一生产区同一时间的湿度时间曲线图. 业主要求相对湿度为40%~60%, 从图中可以看到, 白天生产时该区的相对湿度保持在此控制范围内. 夜间送风量大大减少, 相对湿度处于比较高的水平, 但由于夜间不生产, 此种情况仍满足控制要求. 因该厂地处滨海地区, 湿度较大, 季节性变化不大, 所以,运行时季节变换对表冷段冷冻水的要求没有太大的波动. 根据运行的实际情况保持恒定的冷冻水量和温度基本可以保证系统的湿度要求.图4 是同一生产区的压差时间曲线图. 从图中可看出, 在白天生产期内室内环境压差比较稳定, 基本符合洁净空调系统必需的压差条件. 因该房间经常搬运货物, 外门开关次数较多, 造成了整个工作区的压差波动. 但仍能保持对过渡区的负压并很快恢复到设定的压差值.图5 为同一时间系统送风机变频器的时间曲线图. 该图反映了整个空气系统的风量变化, 同样也可作为反映系统能耗的指标. 白天变频器的波动是由各工作区工作模式组合的变化以及各工作区室内状态的变化共同作用引起的. 进入夜间,系统处于最低能耗阶段——夜间模式, 系统仅维持环境必需的最低要求. 这样大大节约了整个系统的运行费用.结合以上图线进行分析可以看出, 在白天生产期间被控参数均很好地达到了设计时的精度要求. 系统在夜间运行模式下, 值班风机的电机频率降至最低值, 大大节约了能量, 整个车间的环境基本上能保持与白天相同的参数条件.3.2 数据对工况和运行策略的分析和预测通过对运行一年来的数据进行分析, 可以重新对初设的空调系统运行参数进行设定, 使之运行更加准确和稳定. 利用新风口的传感器得到的气象资料可为工厂以及其他相关部门的研究积累数据. 生产环境的数据与相应的产品相联系, 为质量检验、产品工艺改进和企业管理等方面提供了依据. 从综合方面来说, 环境参数和控制参数的保存给企业的发展带来更大的长远利益.四、净化空调的运行管理的日常工作对净化空调系统、洁净室的运行管理主要应做好以下几项工作:保证洁净室内要求的空气温度和相对湿度;保证洁净室内洁净度;制定严格的管理规章制度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
பைடு நூலகம்
回风温度高 于设定温度
是 冷水降温 PI 控制
Y1 DC 0~10V 输出
热水阀
6
全开
6
X6 DC 0~10V 输出
6
是 风机缺风
否 电加热 PI 控制
是 3
Q1~Q3 以二进 制方式输出
6
1
(续)
2
X2 温度信号输入
回风湿度低于

设定湿度下限
2
D4 输入
D3 输入
X4 输入
X5 输入

风机缺风 否
机组正常运行控制流程图(逻辑图)
程序开始
D1 脉冲输入
否 停机状态
延时 3 分钟

4
机组故障

延 时 时否 间到

1

控制停止输出
否 D3 电平输入
风机运行 是
Q5 启停 输出
2
X1 温度信号输入
风机正常运行时,程序根 据温湿度输入信号控制
回风温度低

于设定温度
是 X8 冷热水信号
否 热水状态
是 热水加热 PI 控制

流程线
连接点
4
新风机组控制流程图(逻辑图)
程序开始
D1 电平输入
3

停机状态
延时 3 分钟 低温延时 时间到
是 4
机组故障



D53 电平输入
1

控制停止输出
风机运行 是
Q6 启停 输出
2 X2 送风温度信号
送风温度低于

冬天设定温度

X8 冷热水信号
送风温度高于 夏天设定温度

否 热水状态

X5 输入

风机缺风 否
是 3
回风湿度高于 设定湿度上限

加湿 PI 控制
冷水除湿 PI 控制
Y2 DC 0~10V 输出
6
Y1 DC 0~10V 输出
机组 故障
风机 缺风
是 4
是 3
机组故障报警
中效 报警

高效 报警

中效滤网报警
风机缺风报警
1
停止电再热
停止加湿
高效滤网报警
说明:
程序结束 注释说明框 起止框 输入输出框 判断框 处理框

流程线
连接点
2
机组值机控制流程图(逻辑图)
程序开始
D2 脉冲输入
否 正常运行
机组停机 延时 3 分钟



机组故障
5

D3 电平输入
4 是
否 风机运行
控制停止输出 是
5
Q5 启停 输出
2
X1 温度信号输入
风机正常运行时,程序根 据温湿度输入信号控制
回风温度低于

设定温度下限
是 X8 冷热水信号
否 热水状态
5
高效滤网报警 Q5 电平输出
程序结束
6
变频 PI 控制
X6 DC 0~10V 输出
程序根据送风压力 大小与设定值相比 较进行变频控制
5 2
5
D4 输入
D3 输入
X4 输入
X5 输入
D2 输入
机组 故障 是 4
机组故障报警
风机 缺风

中效 报警

高效 报警

中效滤网报警
低温 报警 是
3
低温故障报警
1
风机缺风报警
Q4 电平输出
停止电再热
停止加湿
是 热水加热 PI 控制
回风温度高于 设定温度上限
是 冷水降温 PI 控制
Y1 DC 0~10V 输出
热水阀
6
全开
6
X6 DC 0~10V 输出
6
是 风机缺风
否 电加热 PI 控制
是 3
Q1~Q3 以二进 制方式输出
6
3
(续)
2 X2 温度信号输入
回风湿度低于

设定湿度下限
2
D4 输入
D3 输入
X4 输入
热水加热 PI 控制
冷水降温 PI 控制
说明:
Y1 DC 0~10V
5
输出
X6 DC 0~10V 输出
注释说明框
5 输入输出框
起止框
判断框
处理框
连接点

流程线
5
(续)
2 X1 新风温度信号
新风温度低于新 风温度设定值

电预热 PI 控制
Q1~Q3 电平输出
程序内部默认低于 3℃,投入电预热
2 X3 送风压力信号
是 3
回风湿度高于 设定湿度上限

加湿 PI 控制
冷水除湿 PI 控制
Y2 DC 0~10V 输出
6
Y1 DC 0~10V 输出
机组 故障
风机 缺风
是 4
是 3
机组故障报警
中效 报警

高效 报警

中效滤网报警
风机缺风报警
1
停止电再热
停止加湿
高效滤网报警
说明:
程序结束
注释说明框 起止框 输入输出框 判断框 处理框
相关文档
最新文档