《圆的对称性》课件ppt
合集下载
华师大版圆的对称性第一课时课件
弦的定义和性质
解释弦的定义、性质以及与弦相关的弧长和圆角,帮助您理解弦和圆的几 何关系。
圆心角和圆周角探究
通过具体案例和图形演示,揭示圆心角和圆周角的概念、计算方法以及它们 与弦和弧长的关系。
对称轴和对称中心
探索圆的对称性质,深入研究对称轴、对称中心等概念,并展示对称性在圆上的应用。
圆的对称性质及应用
华师大版圆的对称性第一 课时ppt课件
这个PPT课件将带您探索圆的定义、性质和对称性质,并结合实例和练习帮助 您更好地理解圆的概念与特点。
圆的定义和性质
通过详细介绍圆的定义、半径、直径、弧、弦等基本概念,让您全面理解圆 的性质和基本要素。
弧的定义和测量
深入讨论弧的定义、测量方法和相关的圆心角和圆周角,让您准确理解弧的 概念和测量技巧。
介绍圆的各种对称性质,如旋转对称、轴对称、中心对称等,以及在几何问题中应用对称性的方法和技巧。
习题讲解与课堂练习
通过针对性的习题讲解和课堂练习,帮助您巩固所学的知识,并提升解题能力与应用能力。
3.2.2圆的对称性上课课件
B
o
C
如果: ∠AOB=∠ COD
D
下面我们一起来观察一下圆心角与它所对的 弦、弧有什么关系?A
B
o
C
如果: ∠AOB=∠ COD
D
下面我们一起来观察一下圆心角与它所对的 弦、弧有什么关系?A
B
o
C
如果: ∠AOB=∠ COD
D
下面我们一起来观察一下圆心角与它所对的 弦、弧有什么关系?A
B
o
C
3.2 圆的对称性(2)
圆心角、弧、弦、 弦心距之间的关系
想一想
2
驶向胜利 的彼岸
圆的对称性及特性
• 圆是轴对称图形,圆的对称轴是任意一条经过圆 心的直线,它有无数条对称轴.
●
O
做一做
做如下实验:
在两张透明的纸上,分别作半径相等的⊙O和⊙O´, 把两张纸叠在一起,使⊙ O与⊙O´重合,然后固定圆心.
A B′ O B′ A′ A′ A
D′
● ●
O′
B′ B
● ●
O′ O
你又能发现那些等量关系?说一说你的理由.
如图,⊙O 和⊙O' 是等圆, 如果 ∠AOB= ∠ A'O'B' 那么 AB=A'B' 、AB= A'B' 、OM=O'M', 为什么?
D B C
B O A O'
B' A'
O A
前提条件
O'
等圆
O
同圆或等圆的半径相等
D
弦
C
弧
A BLeabharlann 等弧在同圆或等圆中,能够互相重合的 两条弧叫做等弧
o
C
如果: ∠AOB=∠ COD
D
下面我们一起来观察一下圆心角与它所对的 弦、弧有什么关系?A
B
o
C
如果: ∠AOB=∠ COD
D
下面我们一起来观察一下圆心角与它所对的 弦、弧有什么关系?A
B
o
C
如果: ∠AOB=∠ COD
D
下面我们一起来观察一下圆心角与它所对的 弦、弧有什么关系?A
B
o
C
3.2 圆的对称性(2)
圆心角、弧、弦、 弦心距之间的关系
想一想
2
驶向胜利 的彼岸
圆的对称性及特性
• 圆是轴对称图形,圆的对称轴是任意一条经过圆 心的直线,它有无数条对称轴.
●
O
做一做
做如下实验:
在两张透明的纸上,分别作半径相等的⊙O和⊙O´, 把两张纸叠在一起,使⊙ O与⊙O´重合,然后固定圆心.
A B′ O B′ A′ A′ A
D′
● ●
O′
B′ B
● ●
O′ O
你又能发现那些等量关系?说一说你的理由.
如图,⊙O 和⊙O' 是等圆, 如果 ∠AOB= ∠ A'O'B' 那么 AB=A'B' 、AB= A'B' 、OM=O'M', 为什么?
D B C
B O A O'
B' A'
O A
前提条件
O'
等圆
O
同圆或等圆的半径相等
D
弦
C
弧
A BLeabharlann 等弧在同圆或等圆中,能够互相重合的 两条弧叫做等弧
《圆的对称性》课件
总结词
阐述圆的基本属性
详细描述
圆具有许多基本的性质,包括其对称性、弧长与角度的关系、圆周角定理等。这 些性质是理解圆更深层次特性的基础。
圆的应用
总结词
列举圆在日常生活中的实际应用
详细描述
圆在日常生活和科学中有着广泛的应用,包括几何学、物理学、工程学和天文学等领域。例如,轮胎的设计、管 道的铺设、天文望远镜的制造等都涉及到圆的知识。
详细描述
自然界中的圆对称性,如花朵、树叶、果实 等,这些自然形态的圆对称性不仅美化了我 们的生活,还揭示了生命的奥秘和自然法则 。这种圆对称性的存在,使得生物能够更好 地适应环境,提高生存和繁衍的机会。
艺术创作中的圆对称性
要点一
总结词
艺术创作中的圆对称性,能够创造出和谐、平衡和完美的 艺术效果,是艺术家们常用的表现手法之一。
旋转变换
旋转变换定义
在平面内,将图形绕某一 定点旋转一定的角度,但 不改变图形的大小和形状 。
旋转变换性质
图形在旋转过程中,其内 部任意两点之间的距离保 持不变,且与旋转的角度 和中心点位置无关。
旋转变换的应用
在几何、解析几何等领域 中都有广泛的应用,如三 角形的旋转、极坐标系中 的角度变化等。
轴对称变换
平移变换
01Leabharlann 0203平移变换定义
在平面内,将图形沿某一 方向平行移动一定的距离 ,但不改变图形的大小和 形状。
平移变换性质
图形在平移过程中,其内 部任意两点之间的距离保 持不变,且与平移的方向 和距离无关。
平移变换的应用
在几何、代数、解析几何 等领域中都有广泛的应用 ,如平行线、平行四边形 、函数图像等。
02
圆的对称性
圆的对称性PPT
23.1圆的对称性
(第一课时)
B
1
学习目标
• 理解并掌握:在同圆或等 圆中,如果两个圆心角、两条 弧、两条弦中有一组量相等, 那么其余各组量都分别相等。
B
2
自学指导
•认真阅读P47_P48例1的内容. 并思考下列问题:
1、圆是旋转对称图形吗?它的对称中心是 哪里? 2、你能填写课本P47页和P48页的空格吗? 3、你能完成与课本P48页例1相似的练习 吗?
相垂直的直径.
A
求证:A⌒B=B⌒C=C⌒D=D⌒A; B
AB=BC=CD=DA.
OD
分析
C
要想证明在圆里面有关弧、弦相等,
根据这节课所学的圆心角定理,应
先证明什么相等?
B
21
例 相垂如直图的,直径AC. 与BD为⊙O的两条互A
求证:A⌒B=B⌒C=C⌒D=D⌒A; B
AB=BC=CD=DA.
OD
B
24
• 圆的基本性质
• 1.弧、弦、弦心距与圆心角 之间的关系:
• 在同圆或等圆中,如果两个
圆心角、两条弧、两条弦、
两弦的弦心距中,有一组量
相等,那么它们所对应的其
余各组量也分别相等.
B
25
B
26
证明:
C ∵AC与BD为⊙O的两条互相垂直的直径,
∴∠AOB=∠BOC=∠COD=∠DOA=90º
∴
⌒ ⌒⌒ ⌒
AB=BC=CD=DA
AB=BC=CD=DA(圆心角定理)
B
22
∵把圆心角等分成功360份,则每一份的圆 心角是1º.同时整个圆也被分成了360份. 则每一份这样的弧叫做1º的弧.
这样,1º的圆心角对着1º的弧,
(第一课时)
B
1
学习目标
• 理解并掌握:在同圆或等 圆中,如果两个圆心角、两条 弧、两条弦中有一组量相等, 那么其余各组量都分别相等。
B
2
自学指导
•认真阅读P47_P48例1的内容. 并思考下列问题:
1、圆是旋转对称图形吗?它的对称中心是 哪里? 2、你能填写课本P47页和P48页的空格吗? 3、你能完成与课本P48页例1相似的练习 吗?
相垂直的直径.
A
求证:A⌒B=B⌒C=C⌒D=D⌒A; B
AB=BC=CD=DA.
OD
分析
C
要想证明在圆里面有关弧、弦相等,
根据这节课所学的圆心角定理,应
先证明什么相等?
B
21
例 相垂如直图的,直径AC. 与BD为⊙O的两条互A
求证:A⌒B=B⌒C=C⌒D=D⌒A; B
AB=BC=CD=DA.
OD
B
24
• 圆的基本性质
• 1.弧、弦、弦心距与圆心角 之间的关系:
• 在同圆或等圆中,如果两个
圆心角、两条弧、两条弦、
两弦的弦心距中,有一组量
相等,那么它们所对应的其
余各组量也分别相等.
B
25
B
26
证明:
C ∵AC与BD为⊙O的两条互相垂直的直径,
∴∠AOB=∠BOC=∠COD=∠DOA=90º
∴
⌒ ⌒⌒ ⌒
AB=BC=CD=DA
AB=BC=CD=DA(圆心角定理)
B
22
∵把圆心角等分成功360份,则每一份的圆 心角是1º.同时整个圆也被分成了360份. 则每一份这样的弧叫做1º的弧.
这样,1º的圆心角对着1º的弧,
圆的对称性PPT市公开课一等奖省优质课获奖课件
2.总结得出垂径定理逆定理:平分弦(不是直径)直径垂 直于弦,而且平分弦所正确弧。
推理格式:如图所表示
∵∴ACMD=⊥MABB,于CMD,为A⌒⊙D=OB⌒直D径,,A⌒C=B⌒C
2024/7/17
第9页
驶向胜利 彼岸
–练一练:完成书本随堂练习第2题.
2024/7/17
第10页
Ⅲ.课时小结
驶向胜利 彼岸
2024/7/17
第7页
驶向胜利 彼岸
– 练一练:完成书本随堂练习第1题.
2024/7/17
第8页
(五)探索垂径定理逆定理
驶向胜利 彼岸
– 1.想一想:以下列图示,AB是⊙O弦(不是直径),作一条 平分AB直径CD,交AB于点M.
– 同学们利用圆纸片动手做一做,然后回答:(1)此图是 轴对称图形吗?假如是,其对称轴是什么?(2)你能发觉 图中有哪些等量关系?说一说你理由。
I.创设问题情境,引入新课
驶向胜利 彼岸
问题:
前面我们已探讨过轴对称图形,哪位同学 能叙述一下轴对称图形定义?我们是用什 么方法研究轴对称图形?
2024/7/17
第2页
Ⅱ.讲授新课
驶向胜利 彼岸
(一)想一想
圆是轴对称图形吗? 假如是,它对称轴是什么? 你能找到多少条对称轴? 讨论:你是用什么方法处理上述问题?
1.本节课我们探索了圆对称性.
2.利用圆轴对称性研究了垂径定理及其逆定理.
3.垂径定理和勾股定理相结合,结构直角三角形,可 处理弦长、半径、弦心距等计算问题.
2024/7/17
第11页
Ⅳ .课后作业
(一)书本习题3.2,1、2.试一试1. (二) 预习书本:P94~97内容
《圆的对称性》PPT课件2
∵ CD是直径,
∴ AM=BM,
在下列图形中,你能否利用垂径定理找到相等的线段或相等的圆弧?
同步训练:
探究二:垂径定理的应用
例1:如图,以△OAB的顶点O为圆心的⊙O交AB于点C、D,且AC=BD。求证:OA=OB。
例2:如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径。
连接OA,OB,
则Байду номын сангаасA=OB.
∴AM=BM.
∴点A和点B关于CD对称.
∵⊙O关于直径CD对称,
∴当圆沿着直径CD对折时,点A与点B重合,
∵CD⊥AB于M
证明:
自主学习:
能不能试着利用构造等腰三角形得出上面的等量关系?
探究一:垂径定理的三种语言
定理 垂直于弦的直径平分弦以及弦所对的两条弧.
CD⊥AB,
E
探究二:垂径定理的应用
利用折叠的方法即可解决上述问题.
2、按下面的步骤做一做:1)拿出一张圆形纸片,把这个圆对折,使圆的两半部分重合.2)得到一条折痕CD.3)在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中,点M是两条折痕的交点,即垂足.4)将纸打开,新的折痕与圆交于另一点B,如上图.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?它们为什么相等呢?
自主学习:
如图,小明的理由是:
连接OA,OB,
则OA=OB.
在Rt△OAM和Rt△OBM中,
∵OA=OB,OM=OM,
∴Rt△OAM≌Rt△OBM.
∴AM=BM.
∴点A和点B关于CD对称.
∵⊙O关于直径CD对称,
∴当圆沿着直径CD对折时,点A与点B重合,
自主学习:
∴ AM=BM,
在下列图形中,你能否利用垂径定理找到相等的线段或相等的圆弧?
同步训练:
探究二:垂径定理的应用
例1:如图,以△OAB的顶点O为圆心的⊙O交AB于点C、D,且AC=BD。求证:OA=OB。
例2:如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径。
连接OA,OB,
则Байду номын сангаасA=OB.
∴AM=BM.
∴点A和点B关于CD对称.
∵⊙O关于直径CD对称,
∴当圆沿着直径CD对折时,点A与点B重合,
∵CD⊥AB于M
证明:
自主学习:
能不能试着利用构造等腰三角形得出上面的等量关系?
探究一:垂径定理的三种语言
定理 垂直于弦的直径平分弦以及弦所对的两条弧.
CD⊥AB,
E
探究二:垂径定理的应用
利用折叠的方法即可解决上述问题.
2、按下面的步骤做一做:1)拿出一张圆形纸片,把这个圆对折,使圆的两半部分重合.2)得到一条折痕CD.3)在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中,点M是两条折痕的交点,即垂足.4)将纸打开,新的折痕与圆交于另一点B,如上图.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?它们为什么相等呢?
自主学习:
如图,小明的理由是:
连接OA,OB,
则OA=OB.
在Rt△OAM和Rt△OBM中,
∵OA=OB,OM=OM,
∴Rt△OAM≌Rt△OBM.
∴AM=BM.
∴点A和点B关于CD对称.
∵⊙O关于直径CD对称,
∴当圆沿着直径CD对折时,点A与点B重合,
自主学习:
《圆的对称性》PPT精选教学课件
题设
结论
} (1)直径
(2)垂直于弦
{(3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧
垂径定理三种语言
• 定理: 垂直于弦的直径平分弦, 并且平分弦所对的两条弧.
C
如图∵ CD是直径, CD⊥AB,
• 老师提示: • 垂径定理是
A M└
B
●O
∴AM=BM,
A⌒C =B⌒C, A⌒D=B⌒D.
这两天酒喝得真是不少,身体实在受不 了,呵 呵…… 懒得起 来上班 ,晚去 一会, 写点东 西与朋 友们一 起分享 我的快 乐,今 天我的 小店一 岁了, 在这里 我很感 激我的 媳妇的 努力, 所有的 功劳都 归于她 !也感 谢所有 心中还 记得我 的朋友 们,尽 管我们 现在来 往的少 了,联 系的少 了但是 我的心 里永远 记得你 们! 祝我的店生意越来越好,我的媳妇越来 越漂亮 ,将来 结婚生 一个大 胖小子 ,也祝 我的朋 友们天 天开心 ,工作 顺利, 感情美 满,生 活幸福 !当然 前提是 身体健 健康一 个关于 人生的 残忍故 事。 看完可能会不太开心,如果不喜欢压抑 的话题 ,可以 直接退 出了。 跟许多女生一样,18岁的M想要一个大 大的衣 帽间, 里面塞 满了漂 亮的衣 裙和昂 贵的名 牌包包 。 最好能拥有一只爱马仕,最好在30岁之 前就拥 有。 年轻的女孩聊起人生,是不考虑房价和 收入等 现实问 题的。 那一年,梦想遥远而崭新,闪耀着迷人 的金光 。 M不是空想,她为此奋斗过。 从小镇上的普通家庭,一路过关斩将, 考上了 重点大 学,又 考上了 研究生 。 这就意味着,从小到大,她都是班上的 佼佼者 。至少 在整个 义务教 育阶段 ,她始 终保持 着第一 的姿态 。天之 骄子。 后来呢? 研究生毕业,她找了一份收入还可以的 工作, 虽然买 不起带 衣帽间 的大房 子,也 买不起 爱马仕 ,但坚 持几年 ,攒套 小公寓 的首付 是没问 题。 可是M结婚了。 丈夫跟她一样,是个普通的上班族。 两人在家里的支持下,买了一套小房子 ,以及 一辆十 万以下 的代步 车。 这样的经济条件,在年轻人里倒不差。 只是可惜,丈夫的母亲几年前去世了, 父亲身 体又不 好。这 就意味 着,在 生儿育 女这件 事上, 没有长 辈可以 帮忙搭 把手。 那怎么办呢,总不能不生吧? M和丈夫考虑再三,终于在30岁这年, 要了一 个孩子 。 夫家没有人帮忙带,娘家又正在带哥嫂 的孩子 ,网上 又频繁 传出保 姆打孩 子的视 频,M 实在不 放心请 人,没 法子, 只能从 公司辞 职了。 把孩子带到幼儿园,至少需要3年时间。 对于技术创新要求很强的理工科而言, 如果没 有奇迹 ,三年 以后, 年近35岁的她 ,将丧 失大半 的职场 竞争力 ,薪资 和晋升 前景都 大大缩 水。 当然,这只是后话。 摆在她跟前的,是更现实的问题——夫 妻感情 出现了 裂痕。 当过全职太太的朋友都知道,这是一份 全世界 最憋屈 的工作 。 累得要死,一天下来腰酸背痛,连喘气 的力气 都没有 ,还要 丧失所 有的人 身自由 ,连上 厕所腿 上都趴 着一个 孩子。 但辛苦没用,对于旁人而言,你不挣钱 ,就是 废人。 丈夫很快就忘了,当初是怎么恳求她辞 职的。 他开始不断跟她抱怨,独自养家有多辛 苦。 是啊,他的确辛苦,一份工资养三个人 ,房贷 、车贷 、奶粉 、尿布 都要钱 ,不到 一万的 工资, 根本支 撑不起 一个家 的开支 。 他有他的怨气。 可妻子想要的,是一个下了班回家,能 够帮忙 搭把手 ,抱一 抱孩子 的人啊 。 于是家庭的矛盾陷入了死循环中。 “我带孩子那么累,你下班了就不能帮我 搭把手 吗?” “我上班那么累,下班了还不能好好休息 吗?” M很孤独,这地球70亿人口,没有一个 理解她 ,更没 有一个 能帮她 。 丈夫同样孤独,作为整个家的经济支柱 ,他不 明白, 为什么 工作12个小时 ,回家 等待他 的,依 旧是争 吵和诉 苦。 M早在疲惫的家庭生活中,遗忘了曾经 的梦想 。 衣帽间太遥远了,她只想在孩子上学之 前,把 两居室 换成三 居室, 这样就 能腾出 一间杂 物间。 爱马仕 更不用 提了, 如果这 种档次 的包都 能唾手 可得, 奢侈品 还叫什 么奢侈 品? 她成了一个彻头彻尾地,为生活奔波的 中年人 ,偶尔 发发朋 友圈, 也是数 不尽的 牢骚, 再不见 青春期 的明艳 和开朗 。 最近一次跟她聊天,是在微信上,我们 交流了 一些带 宝宝的 心得, 她突然 感慨了 一句:“ 我觉得 自己挺 对不起 爸妈的 ,他们 培养我 花了多 大的力 气啊, 但我… …” 那一瞬间,我都不再忍心看聊天框。 甚至光是想想,都觉得是件很残忍的事 。 一个小镇姑娘,考上985的研究生,她曾 经付出 了多少 努力, 又曾对 未来有 过多少 美好的 期望啊 。那一 年,她 一定以 为只要 努力, 就没有 实现不 了的梦 想。 她也一定有过许多公主般的幻想。 嫁一个什么样的人,办一场什么样的婚 礼,要 住上什 么样的 房子, 开上什 么样的 车,取 得怎样 的职场 成就, 又跟谁 去环游 世界… … 几乎每一个人的青春期,都曾怀有这样 的幻想 啊! 可是,后来呢? 又有多少人能实现这些理想? 抖音上有过一段非常火的视频。 十年前的自己遇见了十年后的自己。十 年前咋 咋呼呼 的少女 ,问十 年后不 太爱笑 的女人 :“10年 后,我 买房了 吗,我 买车了 吗,我 嫁给他 了吗? ” 听到答案后,少女噙着眼泪道:“你走吧 ,我不 喜欢这 样的你 !” 那么你我呢,对得起十年前那个少女吗 ? 早两天跟朋友聊天,她说这两年越来越 没有安 全感, 总觉得 眼前的 一切, 不是自 己想要 的人生 。 我安慰她:“这世上大多数的人,最后都 只能过 平凡的 人生啊 。” 原来辛苦工作,真的可能买不起房。 原来一年两次旅行,竟都是一种奢望。 原来不管怎么保养,鱼尾纹都会爬出来 。 原来人到中年,真的会没来由地发胖啊 ! 这也是近年来,为什么我会越来越讨厌 那种无 限度地 给人打 鸡血, 好像不 住上大 房子、 背不上 名牌包 包,就 连一条 咸鱼都 不如的 励志鸡 汤。 可是大部分的人,真的住不上大房子, 也真的 背不上 名牌包 包啊! 他不够努力吗,好像不是。他不够聪明 吗,好 像也不 是。 就像我们看电视剧一样,原本第一集女 主角就 能嫁给 男主角 的,天 知道是 为什么 ,他们 会阴差 阳错地 经历那 么多磨 难,最 后遗憾 地分开 ? 不要指责M为什么要结婚,也不要指责 M为什 么要生 孩子。 如果人生每一步都能按预想发展,M不 会是M ,你我 也不会 是你我 。 - 甘北原创今日荐读 “丈夫出轨后,她只用了48小时离婚。” 姚晨:凭什么原谅打我的男人? “老子拆迁7套房,女朋友却跟Loser跑了 。”
圆的轴对称性PPT课件
C
CC
C C
A A
A
CC C D D C
O
O
OO
A
AA
B BB
O O
B B
O O
O
A A
O O B
AA
①
D DD
DD D
② ②
③
B B B
④
① ①
③ ③
⑤ ⑤
探索规律
• AB是⊙O的一条弦. 作直径CD,使CD⊥AB,垂足为M.
下图是轴对称图形吗?如果是,其对称轴是什么?
C
A
• 你能发现图中有哪些等量关系?与同伴说 说你的想法和理由.
A O
B D
2.在半径为5cm的⊙ O中,弦AB∥CD,且 AB=6cm,CD=8cm,求AB,CD之间的距离 3.如图,∠C=90°,⊙C与 AB交于点D,AC=5,CB=12, 求AD的长
A C B D
一、圆是轴对称图形,其对称轴是 任意一 条过圆心的直线(或直径所在直线.) 并且平分弦所对的弧. 三、垂径定理和勾股定理相结合,构造 直角三角形,可解决计算弦长、半 径、圆心到弦的距离等问题.
●
O
如何确定圆形纸片的圆心?说 说你的想法。
将圆纸片对折,确定出圆的一条直径; 用同样的方法,再确定出圆的另一条直 径.两条直径的交点即为圆形纸片的圆 心.
(1)判断下列图形是否具有对称性? 如果一个对称图形与圆具有相同 如果是中心对称图形,指出它的对称 的对称中心或对称轴,那么它和 中心,如果是轴对称图形,指出它的 对称轴。 圆组成的新图形也是对称图形.
O
解:过O点作OE⊥AB, 垂径定理和勾股定理相结合,构
造直角三角形,把圆的问题化归 并延长OE交⊙O于F,连接 为直线形问题解决。
CC
C C
A A
A
CC C D D C
O
O
OO
A
AA
B BB
O O
B B
O O
O
A A
O O B
AA
①
D DD
DD D
② ②
③
B B B
④
① ①
③ ③
⑤ ⑤
探索规律
• AB是⊙O的一条弦. 作直径CD,使CD⊥AB,垂足为M.
下图是轴对称图形吗?如果是,其对称轴是什么?
C
A
• 你能发现图中有哪些等量关系?与同伴说 说你的想法和理由.
A O
B D
2.在半径为5cm的⊙ O中,弦AB∥CD,且 AB=6cm,CD=8cm,求AB,CD之间的距离 3.如图,∠C=90°,⊙C与 AB交于点D,AC=5,CB=12, 求AD的长
A C B D
一、圆是轴对称图形,其对称轴是 任意一 条过圆心的直线(或直径所在直线.) 并且平分弦所对的弧. 三、垂径定理和勾股定理相结合,构造 直角三角形,可解决计算弦长、半 径、圆心到弦的距离等问题.
●
O
如何确定圆形纸片的圆心?说 说你的想法。
将圆纸片对折,确定出圆的一条直径; 用同样的方法,再确定出圆的另一条直 径.两条直径的交点即为圆形纸片的圆 心.
(1)判断下列图形是否具有对称性? 如果一个对称图形与圆具有相同 如果是中心对称图形,指出它的对称 的对称中心或对称轴,那么它和 中心,如果是轴对称图形,指出它的 对称轴。 圆组成的新图形也是对称图形.
O
解:过O点作OE⊥AB, 垂径定理和勾股定理相结合,构
造直角三角形,把圆的问题化归 并延长OE交⊙O于F,连接 为直线形问题解决。
圆的对称性精选教学PPT课件
敞开心胸,便会云蒸霞蔚,快乐将永远伴随着你!
我开始虚伪,听着谎言却装做一无所知;我学会窥探,四处打听如蛇之祟行,而十分看轻自己; 我的故事越编越好,好莱坞金牌编剧也没这般丰富多采,只为让他多留一分钟。
最后,我打他一巴掌。干脆痛快,出手的瞬间,像那位绝望的母亲,远远掷出她的高跟鞋。掷中没有?并不重要。 有多爱,就有多不舍;有多温柔,就有多暴烈,爱得唇边有血,眼中有泪,胸口有纠缠的爱与恨,爱到如连体婴般骨肉相连。割爱,就一定不可能如拈去一片花叶般轻松微笑。 明知留不住,收不下,却不能自控我颠倒狂乱的脚步。那一遭,我是夜深街上,追逐汽车的女子。而我无声的哭泣,他没有听见。快乐是人类社会众望所归的最高境界。所谓君子之交谈如水。一个把名缰利锁看得太重的人。注定是不快乐的。快乐就是看淡尘世的物欲、烦恼,不慕荣利。假如你喜欢武侠小说,你没有必要愧对红楼梦; 假如你喜欢的人突然销声匿迹,你没有必要寻死觅活地断言他一定洒脱地离去;假如你的朋友不幸,你没有必要怨天尤人;假如你认为张曼玉艳美绝俗,你没有必要眼馋肚饱虐待老婆;假如你已经身心交病,那就去教堂忏悔,没有必要仇视别人的平庸;坦然面对心融神会,快乐就在你心里。我怜悯一个有点荣誉的人,就旁若无人而因此失 去快乐的人。能把名利得失置之度外,而凡事都能以诚相待的人一生将是快乐的。我们应从平谈的生活中去提炼体会,如:赤城待人的那种快乐。低待遇下一如既往工作的快乐,助人为乐一介不取的快乐,一片至诚去感化恶人的快乐,热心被人误解依然如故的快乐,信实可靠的服务态度为目的的快乐,尽责任吃苦耐劳的快乐,因为这些 “快乐”能保持住人内心的快乐,使人的容貌永远那么牵挂,一句亲切的问候。甚至一个关切的眼神,快乐无处不有,唯有胸襟开阔的人,才能体会到。形单影只的人仍然可以享受着闲情逸致的快乐。乐山乐水各不相同。爱静的人可以看书、听音乐、上网、写作、画画、搜集各种收藏品。爱动的人则不妨练习舞蹈、慢跑、爬山、游泳。看 电影、上健身房。做编织、陶艺。练瑜枷、潜心发明、闭门创作,摄影、观鸟,我们仍然兴复不浅,乐不可支。人生苦短,岁月如流,乐天知命,为什么不乐乐陶陶的。为什么要疾首蹙额,为眼前一时的顿挫心胆俱碎?为什么要对那些你看不惯的人和事心烦率乱?岂不知我们都是尘世间相映成趣的战友。人世一切冤天屈地,无妄之灾,荣 华富贵,香娇玉嫩……都将随身亡命殒。而人生长着百年,短则数十寒暑,又有何值得耀武扬威的,不过是烟云过眼矣?人生如月,月满则亏,凡事岂能尽人意,但求于心无愧。无愧我心,则恩同再造,那些得失又算不了甚么。世界上没有完美无缺得事物。奉劝多愁善感的朋友。饮醇自醉,快乐起来吧!芸芸众生,绿水青山,名胜古迹,
我开始虚伪,听着谎言却装做一无所知;我学会窥探,四处打听如蛇之祟行,而十分看轻自己; 我的故事越编越好,好莱坞金牌编剧也没这般丰富多采,只为让他多留一分钟。
最后,我打他一巴掌。干脆痛快,出手的瞬间,像那位绝望的母亲,远远掷出她的高跟鞋。掷中没有?并不重要。 有多爱,就有多不舍;有多温柔,就有多暴烈,爱得唇边有血,眼中有泪,胸口有纠缠的爱与恨,爱到如连体婴般骨肉相连。割爱,就一定不可能如拈去一片花叶般轻松微笑。 明知留不住,收不下,却不能自控我颠倒狂乱的脚步。那一遭,我是夜深街上,追逐汽车的女子。而我无声的哭泣,他没有听见。快乐是人类社会众望所归的最高境界。所谓君子之交谈如水。一个把名缰利锁看得太重的人。注定是不快乐的。快乐就是看淡尘世的物欲、烦恼,不慕荣利。假如你喜欢武侠小说,你没有必要愧对红楼梦; 假如你喜欢的人突然销声匿迹,你没有必要寻死觅活地断言他一定洒脱地离去;假如你的朋友不幸,你没有必要怨天尤人;假如你认为张曼玉艳美绝俗,你没有必要眼馋肚饱虐待老婆;假如你已经身心交病,那就去教堂忏悔,没有必要仇视别人的平庸;坦然面对心融神会,快乐就在你心里。我怜悯一个有点荣誉的人,就旁若无人而因此失 去快乐的人。能把名利得失置之度外,而凡事都能以诚相待的人一生将是快乐的。我们应从平谈的生活中去提炼体会,如:赤城待人的那种快乐。低待遇下一如既往工作的快乐,助人为乐一介不取的快乐,一片至诚去感化恶人的快乐,热心被人误解依然如故的快乐,信实可靠的服务态度为目的的快乐,尽责任吃苦耐劳的快乐,因为这些 “快乐”能保持住人内心的快乐,使人的容貌永远那么牵挂,一句亲切的问候。甚至一个关切的眼神,快乐无处不有,唯有胸襟开阔的人,才能体会到。形单影只的人仍然可以享受着闲情逸致的快乐。乐山乐水各不相同。爱静的人可以看书、听音乐、上网、写作、画画、搜集各种收藏品。爱动的人则不妨练习舞蹈、慢跑、爬山、游泳。看 电影、上健身房。做编织、陶艺。练瑜枷、潜心发明、闭门创作,摄影、观鸟,我们仍然兴复不浅,乐不可支。人生苦短,岁月如流,乐天知命,为什么不乐乐陶陶的。为什么要疾首蹙额,为眼前一时的顿挫心胆俱碎?为什么要对那些你看不惯的人和事心烦率乱?岂不知我们都是尘世间相映成趣的战友。人世一切冤天屈地,无妄之灾,荣 华富贵,香娇玉嫩……都将随身亡命殒。而人生长着百年,短则数十寒暑,又有何值得耀武扬威的,不过是烟云过眼矣?人生如月,月满则亏,凡事岂能尽人意,但求于心无愧。无愧我心,则恩同再造,那些得失又算不了甚么。世界上没有完美无缺得事物。奉劝多愁善感的朋友。饮醇自醉,快乐起来吧!芸芸众生,绿水青山,名胜古迹,
25.2.1圆的对称性(一)PPT课件
一只羊,请画出
羊的活动区域.
2021/3/2
16
5m
× 4m o
5m
× 4m o
5m 1m
2021/3/2
正确答案
17
课时小结
1、圆的定义: 2、点与圆的位置关系: 3、圆的有关概念: 4、圆的性质 :
2021/3/2
18
作业:
❖ 课本第20页习题25.2第1、2题
2021/3/2
19
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
如圆图弧以,A简、称B弧为。端用点符的号弧⌒记表作示A︵B,
·B
O
读作弧AB。
弦:连接圆上任意两点的线段叫做弦。
直径:经过圆心的弦叫做直径。
同圆中如(图1):半OC径、相O等D是⊙O的两CA·· 条半径(,2它)们直之径间等有于怎半样径的的大2倍小
O
·B ·D
关系?它们与直径CD又有怎样的
大注小意关:半系径?、直径都是线段,为了方便,通常
我们把半径、直径的长也称为半径、直径。
2021/3/2
11
半圆:圆的任意一条直径的两
A
B
个端点分圆成两条弧,每一条
C
O D 弧都叫做半圆。小︵于半︵圆的︵弧
叫做劣弧,如: AB、AC、BD
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴当圆沿着直径CD对折时,点A与点B
重合, ⌒AC和⌒BC重合, ⌒ AD和B⌒D重合. ∴ A⌒C = ⌒BC, ⌒AD = ⌒BD.
自主学习:
能不能试着利用构造等腰三角形得出上面的等量关
系?证明:连接OA,OB, 则OA=OB.
C
∵CD⊥AB于M
A
M└
●O
B ∴AM=BM.
∴点A和点B关于CD对称. ∵⊙O关于直径CD对称,
A
●O
C
D
自主学习:
1、圆是轴对称图形吗? • 圆是轴对称图形.
如果是,它的对称轴是什么?你能找到多 PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuwen/
圆的相关概念
• 圆上任意两点间的部分叫做圆弧,简称弧.
以A,B两点为端点的弧.记作 A⌒B,读作“弧AB”. 小于半圆的弧叫做劣弧,如记作 A⌒B (用两个字母). 大于半圆的弧叫做优弧,如记作 A⌒DB
(用三个字母).
连接圆上任意两点间的线段叫做弦
B
(如弦AB).
经过圆心的弦叫做直径(如直径AC).
3.1 圆的对称性
---垂径定理
学习目标:
• 理解圆的轴对称性及其相关性质; • 理解垂径定理; • 会运用垂径定理解决有关问题。
重点、难点:
垂径定理及其应用。
预习案的交流与展示:
知识准备:
什么是轴对称图形?我们曾经学过哪些轴 对称图形?
如果一个图形沿一条直线对折, 直线两旁的部分能够互相重合,那 么这个图形叫轴对称图形。如线段、 角、等腰三角形、矩形、菱形、等 腰梯形、正方形等。
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/
PPT课件:/kejian/ 数学课件:/kejian/shuxue/
英语课件:/kejian/yingyu/ 美术课件:/kejian/meishu/
自主学习:
• 如图,小明的理由是:
角 能 • 连接OA,OB, 则OA=OB.
形不 得能 出试
在Rt△OAM和Rt△OBM中,
C
∵OA=OB,OM=OM,
A
M└
B
上 着 ∴Rt△OAM≌Rt△OBM.
●O
面利 的用
∴AM=BM.
等 构 ∴点A和点B关于CD对称.
D
量 造 ∵⊙O关于直径CD对称,
关等 系腰 ?B
D
O
BA
E
B
C
探究二:垂径定理的应用
例1:如图,以△OAB的顶点O为圆心的⊙O 交AB于点C、D,且AC=BD。
求证:OA=OB。
探究二:垂径定理的应用
A
例2:如图,已知在⊙O 中,弦AB的长为8厘米, 圆心O到AB的距离为3厘 米,求⊙O的半径。
E
B
.
O
实际应用
如(中即图C图D,中=一60C⌒条0Dm公,,E路点为的oC是⌒转D弯C⌒上D处一的是点圆一,段心且圆),弧其
课后提升:
船能过拱桥吗
如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出 水面2.4米.现有一艘宽3米、船舱顶部为长方形并高出 水面2米的货船要经过这里,此货船能顺利通过这座拱 桥吗?
●O
你是用什么方法找到对称轴的? 利用折叠的方法即可解决上述问题.
自主学习:
2、按下面的步骤做一做: 1)拿出一张圆形纸片,把这个圆对折, 使圆的两半部分重合. 2)得到一条折痕CD. 3)在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,
其中,点M是两条折痕的交点,即垂足. 4)将纸打开,新的折痕与圆交于另一点B,如上图. 在上述的操作过程中,你发现了哪些相等 的线段和相等的弧? 它们为什么相等呢?
∴当圆沿着直径CD对折时,点A与点B
D
重合, ⌒ AC和B⌒C重合, ⌒ AD和B⌒D重合.
∴ A⌒C = B⌒C,
⌒AD = ⌒BD.
感谢您的阅读! 为了便于学习和使用,本文 档下载后内容可随意修改调 整及打印,欢迎下载!
探究一:垂径定理的三种语言
定理 垂直于弦的直径平分弦以及弦所对的两条弧.
OE⊥CD ,垂足为F,EF=90m,求这段 弯路的半径。
C E
FD O
挑战自我:
如图,P为⊙O内一点,你能用尺规作⊙O的 一 条弦AB,使点P恰为AB的中点吗? 说明你的理由。
你说、我说、大家说:
当堂达标:
1.在⊙O中,若CD ⊥AB于M,AB为直径, A
则下A列、结A⌒C论=不A⌒D正确的B、是B(⌒C=CB⌒)D
C
∵ CD是直径,
A
B
M└
CD⊥AB,
●O
∴ AM=BM,
⌒ ⌒⌒ ⌒
AC = BC, AD = BD.
D
①一条直径 条件
②垂直于弦
③直径平分弦 结论 ④平分弦所对的劣弧
⑤平分弦所对的优弧
同步训练:
在下列图形中,你能否利用垂径定理找到相等的线段
或相等的圆弧?
D
A
B
E
A
O
O
CE
O
A
E
B
B
C
A
C D
O
科学课件:/kejian/kexue/ 物理课件:/kejian/wuli/
化学课件:/kejian/huaxue/ 生物课件:/kejian/shengwu/
地理课件:/kejian/dili/
历史课件:/kejian/lishi/
少条对称轴?
圆的对称轴是任意一条经过
圆心的直线,它有无数条对称轴.
C
D
M└
C、AM=OM D、CM=DM
●O
2.已知⊙O的直径AB=10,弦CD ⊥AB,
垂足为M,OM=3,则CD= 8 .
B
3.在⊙O中,CD ⊥AB于M,AB为直径, 若CD=10,AM=1,则⊙O的半径是 13 .
赵州石拱桥
• 1400多年前,我国隋朝建造的赵州石拱桥(如图) 的桥拱是圆弧形,它的跨度(弧所对是弦的长)为 37.02m,拱高(弧的中点到弦的距离,也叫弓形高) 为7.23m,求桥拱的半径(精确到0.1m).