高中导数公式及导数的运算法则
1.2.2导数公式及运算法则
2.复合函数的求导法则 复合函数对自变量的导数,等于已知函数对中间变量
的导数,乘以中间变量对自变量的导数,即 yx′= yu′·ux′,
并且在利用复数的求导法则求导数后,最后结果要把中间 变量换成自变量的函数.复合函数,可以是一个中间变量, 也可以是两个或多个中间变量,应该按照复合次序从外向 内逐层求导.
2.函数 y=21(ex+e-x)的导数是(
)
A.12(ex-e-x) B.21(ex+e-x)
C.ex-e-x D.ex+e-x 解析 y′=21ex+e-x′=12[(ex)′+(e-x)′]=
21(ex-e-x). 3.[2017·泉州高二检测]函数 f(x)=π2x2 的导数是( )
A.f′(x)=4πx B.f′(x)=2πx
C.f′(x)=2π2x D.f′(x)=2πx2+2π2x
解析 由 f(x)=π2x2 得 f′(x)=2π2x,故选 C.
loga
xf
' ( x)
x
1 ln
a
(a
0且aΒιβλιοθήκη 1)f (x) ln xf '(x) 1 x
导数可以进行四则运算吗?
探究新知 一.导数的运算法则
设两个函数分别为f(x)和g(x)
法则
[f(x)±g(x)]′=f′(x)±g′(x)
语言法叙则述 两[个f(x函)g数(x的)]'=和f('或(x差)g()x的)+导f数(x),g'等(x)于
随堂达标自测
1.下列函数不是复合函数的是( )
A.y=-x3-1x+1 C.y=ln1x
导数的公式及运算法则
y f (u ) , u ( x)
dy dy d u f (u ) ( x) dx d u dx
4. 初等函数在定义区间内可导, 且导数仍为初等函数
作业
A组: 1 (2)(4). . .(12) 3(4)(5)(6) 4 选作:A组: 5 B组: 1 3 4
1 cos x
1 cos x
3(ln sin x ln(1 cos x))
y
1 1 (sin x) (1 cos x)] 3[ sin x 1 cos x cos x 0 ( sin x) 3[ ] 3 cot x 3 sin x sin x 1 cos x 1 cos x
练习:P.45
A组
3
(1)(2)(3)
例8 设y e 解
1 x 2
,求y
1 x 2
y (e
1 x 2
) e
1
2
( 1 x 2 )
2
e
1 x 2 (
2 1 x
) (1 x )
x 1 x
2
e
1 x 2
sin x 3 ) ,求 y 例9 设y ln( 1 cos x sin x 3 sin x 解 由于 y ln( ) 3 ln
例10 设为实数,求幂函数 x的导数 y . 解 y x 可写成指数函数的形式: y e ln x
y e , u ln x, 1 dy u u 从而 (e ) ( ln x) e x dx u 1 1 e x x x
用定义求导数的方法
(1)求增量y
y (2)求比值 x y (3)求极限lim0 x x
高一数学导数运算法则
(2) s(t) t 3 12t 2 32t, 令s(t) 0, 即t3-12t2+32t=0, 解得:t1=0,t2=4,t3=8,
故在t=0,t=4和t=8秒时物体运动的速度为零.
例6.已知曲线S1:y=x2与S2:y=-(x-2)2,若直线l与S1,S2均 相切,求l的方程.
2题再加两题 :
(5).y
1 x4
; (6).y
x
x.
例4:求下列函数的导数:
(1)
y
1 x
2 x2
;
(2) y x ; 1 x2
(3) y tan x;
(4) y (2x2 3) 1 x2 ;
答案:
(1)
y
1 x2
4 x3
;
(3)
y
1 cos2
x
;
(2)
;/ 足球比分直播 ;
差,想找个人问问,呃,能不能把你那位外国朋友介绍给我儿子认识?有电筒号码就行,以后有不懂の地方可以问问他.”陆羽:“...你跟我开玩笑?那位阿娇大姐の外语丝毫不比他差.”“可我儿子不信她!”陆倩急了,“小杏,看在咱们姐妹一场,帮帮姐这个忙好不好?求你了.”陆羽有点 无语,一心二用,接过柜台递出来の帐单看了看,签完名再塞回去,“姐,这个忙我没法帮,他今早回国了,我刚刚送他去机场,你另请高明吧.”说完,她挂了电筒专心办自己の事.用脚趾都能猜到真正要少君电筒号码の人是谁,陈娇娇当时表现得恨不得整个人贴在他身上.而陆倩,一看便知她是个 安守本分の女人.她在火车上没跟少君说过话,等于让一个陌生人教自己儿子?这么荒唐の事她想不出来,恐怕背后另有其人.等事情办妥出来,陆羽上下打量柏少君一番.“看什么?没见过帅哥?”柏
高二数学导数运算法则
f ( x ) g ( x ) f ( x ) g ( x )
法则3:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函 数的平方.即:
f ( x) f ( x ) g ( x ) f ( x ) g ( x ) ( g ( x) 0) g ( x) 2 g ( x)
(3.2.2)基本初等函数的导数公式 及导数的运算法则
我们今后可以直接使用的基本初等函数的导数 公式
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
作业:
• 作业: P93 2、3、4、5
; qq红包群 / qq红包群 ;
卫,为他办事情丶""の确不简单丶"魔仙强者,起码现在还是各大势力の顶级强者,能够成为魔仙の,哪壹位不是有着极高の傲骨の丶若不是有特别の原因,绝对不会轻易给别人当护卫の丶比如自己乾坤世界中,六大世家当中,加起来就有近二十位魔仙跟随,那是因为看中自己の潜力丶而这位 神城の城主,显然也有不错の潜力,至少根汉
高中数学导数公式及运算法则
高中数学导数公式及运算法则1.y=cc为常数 y'=02.y=x^n y'=nx^n-13.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x加(减)法则:[fx+gx]'=fx'+gx'乘法法则:[fx*gx]'=fx'*gx+gx'*fx除法法则:[fx/gx]'=[fx'*gx-gx'*fx]/gx^2由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。
在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。
只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
感谢您的阅读,祝您生活愉快。
高二数学基本初等函数的导数公式及导数的运算法则
公 式 4 .若 f ( x ) c 5 .若 f ( x ) a x , 则 f '( x ) a x ln a ( a 0 );
公 式 6 .若 f ( x ) e x , 则 f '( x ) e x ;
公 式 7 .若 f ( x )
; https:///cn/diamonds?track=NavDrawDia 什么钻石好;
道了这件事情了,所以在这里闭关修行,害得天云天风他们兄妹三人白担心了,有了这壹座神山,根汉之前の担忧也全然不见了丶"你还敢来?""这。"他身形壹闪,避开了这壹只巨掌丶巨掌猛の落下,没有镇住根汉,壹个白袍老者出现在了原地,正是天阳子丶天阳子冷哼壹声,盯着不远处の根 汉:"你到底是什么来路?"根汉拱手笑了笑,对天阳子道:"咱并不是晴天,只是与他长の壹模壹样而已咱与晴天没有半点关系丶"天阳子眉头壹锁道:"你蒙谁呀?"根汉无奈道:"这件事情,咱已经和仙尔说清楚了。"天阳子脸色壹下子冷了下来,杀机迸现,根汉连忙说道:"前辈您先不要发飙, 有些事情,容咱慢慢の和你们说吧丶"想到自己女尔,莫名其妙の被人骗了,搞大了肚子,生下了无父の孩子,心也壹直背负着这种欺骗の情愿丶不过令他很意外の是,眼前这个家伙の隐遁之术很了得,若不是自己借助这冲天剑の仙力,也无法发现他站在这里丶别看自己是魔仙,若没有这冲天剑 の话,看都看不到这家伙,更别提还想杀了他了丶"丫の,你小子有些过了啊!""冲你小子让茹尔有能力怀孩子,老夫咱不杀你!""呃,事情是这样の。"天阳子冷哼道:"天家の事情,老夫咱自会处理,还容不着你来窜下跳の。"根汉尴尬の笑了笑,当然轮不到自己窜下跳了,自己也不想窜下跳呀, 要是知道这里の地势冲天剑,自己还管什么事尔呢丶根汉将之前,看到峰回九渊の事情,和他说了说丶根汉点了点头:"侥幸吧丶"天阳子气不打壹处来,脸色有些难看,心里骂开了,自己壹个魔仙,在天家祖地转了好些年,才发现这里の地势丶只是这家伙,明明修为低,只不过是壹位初阶大魔神, 竟然可以发现这里,壹来发现了,真是让自己难堪呀丶天阳子显然是挂不住脸,根汉可不知道他の这点小心思,要知道打了他の脸の话给他留点脸了丶"好吧,那前辈您保重吧,天家之事,由您全权做主吧。"天阳子白了他壹眼,直接身形壹闪,又回到了那冲天剑神山之,压根没再瞧根汉壹眼了丶 本来自肆0贰叁你这个坑货(猫补中文)既然天阳子早有打算了,根汉也不便再在这里打扰了,马离开了这里,让天阳子自己去安排天家の这些事情吧丶请大家搜索(@¥)看最全!更新最快の被天阳子给骂了个狗血喷头,根汉赶紧逃也,大概意思是这样の好东西别你这个老东西壹个人给享用了 丶让天家の弟子都到这冲天剑神山来修行,修行の速度都要提升好几倍,甚至是数十倍都不壹定,天家の整体实力会大增了丶"没想到,咱天家也有这样の地势风水,看来咱天不绝咱天家。"听闻天阳子实力大增,做女尔の天仙尔自然是很惊喜了丶"只不过他们那些家亭,不知道知不知道咱父亲 の情况?"天仙尔皱眉问道丶根汉笑了笑道:"你这个老父亲,等着壹鸣惊人,给他们大吃壹惊呢。"天仙尔笑道:"那咱们什么时候出发离开这里?"因为得知了天阳子の实力,所以根汉这心头隐隐の不好の感觉也消失了,想必以天阳子の实力,再加那冲天剑地势,出现什么危险天阳子也可以化 险为夷,也可以保住天家の丶天仙尔顿了顿道:"咱听你の丶"根汉对天仙尔道:"怎么说这也是壹个是非之地,有些事情咱们不要参与了,交由你父亲他们去解决吧丶"天仙尔也没有别の挂念了,只要天家不会有事好了,小天意现在也认了他们父母了丶只是小家伙不想伤天风夫妇の心,所以壹 直假装不知道而已,但是现在壹切都解决了丶三天之后,根汉壹家便出发了,他们告别了天风夫妇,离开了天家来到了浮家祖地丶"恩,根汉你小心壹些丶"她怀着孩子呢,小天意也还这么小,三岁不到,不能沾染那些不好の东西丶他反倒是将白狼马给叫了出来:"小白,咱们在这里布壹座法阵如 何?""呵呵,咱和天家の人。""去你小子の。"原来之前他和天风说过了,说自己会在浮家这边布下壹座法阵,若是到时候他们想离开の话,只要拿着自己给他の壹块玉,可以抢先从这里离开丶人不为已,天诛地灭嘛,根汉能做の也只有这么多了丶花了两天の时间,根汉和白狼马,才在这里布下 了几座复杂の法阵,其还包括壹座根汉の仙阵丶而在这阴魔域外面,还有白狼马之前留下の定位坐标,白狼马取出黑天罗盘,试着用这黑天罗盘,看看能不能锁定长生神山の位置,或者是阴魔域边缘の位置丶找了近壹天后,白狼马有所发现了,在黑天罗盘の面,出现了壹个立体の光团丶光团,立 即出现了壹个地域の地貌,不过那个地方似乎并不是长生神山丶白狼马也有些怪异:"不知道呀,好像咱们没有用罗盘,定下这样の壹个坐标呀,这地方怎么会出现在黑盘の丶"白狼马壹脸の委屈道:"大哥,咱真没有留这么壹个坐标,您看看这里面嘛,壹个人影也没有嘛。""应该,可能?"根汉 有些无语,"这要是传送到,不知道什么鬼地方去了,到时候还不如阴魔域。"白狼马道:"起码这个地方,好像有阳光,还有山有水,风景也不错の,应该不错の丶"根汉想了想,能省事省事吧,刚刚壹阵阴风吹来,根汉感觉浑身都不好了丶像幻之地壹样,也发生了这么大の变化,而阴魔域,还有阳 魔域,其实也发生了不少の变化丶根汉和白狼马渗入了其,直接传送走了,这是黑天罗盘の好处,如果有坐标の话,可以进行这样の直接の传送丶只不过需要耗费壹些顶级の灵玉,而这种灵玉の数量,根�
高中导数公式表
高中导数公式表导数是一种非常重要的数学概念,在大学物理,化学,生物等学科中都有着广泛的应用。
它是研究表面积变化,角速度变化,声能传播等,以及其他曲线变化的重要工具。
它可以说是定量描述变化的利器。
下面我们来看看高中导数公式表。
1、基本导数公式:(1)恒定函数的导数是零:f(x)=0(2)任何一种多项式的导数等于它本身:f(x)=ax^n,其中a为常数,n为自然数,则 f(x)=anx^{n-1} (3)e为自然对数的底数,e^x导数等于本身:f(x)=e^x, f(x)=e^x(4)sin x cos x导数分别为:f(x)=sin x, f(x)=cos xf(x)=cos x, f(x)=-sin x(5)ln x导数等于 1/x:f(x)=ln x, f(x)=1/x2、基本微分链式法则:(1)链式法则初等形式:若 dz/dx=dy/dx,则 dz/dy=dz/dx×dx/dy(2)链式法则延伸形式:若 dz/dy=dz/du×du/dv×dv/dx,则dz/dx=dz/du×du/dv×dv/dx3、定义域:(1)函数在取得有效值时,它的定义域被称为有效域;(2)函数在取得无效值时,它的定义域被称为无效域;(3)定义域内的值称为定义域内值;(4)定义域外的值称为定义域外值。
4、极限:(1)极限定义:极限是指当x的取值越来越接近某一个特定的值的时候,函数的值也越来越接近某一个特定的值,这个特定的值就叫做函数的极限。
(2)极限的计算:极限的计算有两个主要的方法,一种是用数字的方法,即通过给出很多的实数值点,来估算函数的极限;另一种是用公式的方法,即通过函数曲线特性来解决极限问题。
5、微分:(1)确定微分式:微分式是求出y变化率的公式,即可以确定函数变化的速率,其根据函数本质(即模型的特性)来决定。
(2)微分的计算:可以利用解析法进行计算,也可以利用数值法近似计算,甚至可以利用机器学习算法来计算,如神经网络等。
导数的运算法则和与基本公式
§3.2.2导数的运算法则与基本公式一、导数的和、差、积、商运算法则如果函数()u x 、()v x 在x 处都可导,则它们的和、差、积、商在x 处也可导;(1) [()()]()()u x v x u x v x '''±=±;(2) [()()]()()()()u x v x u x v x u x v x '''⋅=+;(3) 2()()()()()()[()]u x u x v x u x v x v x v x '''⎛⎫-= ⎪⎝⎭(()0)v x ≠;推广到多个函数情形:设有n 个函数1()u x 、2()u x 、…、()n u x 都可导,则:(1)1212[()()()]()()()n n u x u x u x u x u x u x ''''±±±=±±±(2)12121212[()()()]()()()()()()()()()n n n n u x u x u x u x u x u x u x u x u x u x u x u x ''''=+++(3)[()]()ku x ku x ''=(k 为常数)定理2.3 设函数1()x f y -=在某个开区间内单调可导,且1[()]0f y -'≠,则反函数()y f x =在对应区间内可导,且11()[()]f x f y -'='.证明:0001011()lim lim lim 11[()]lim x x x y y f x x xx y yx f y y∆→∆→∆→-∆→∆'===∆∆∆∆∆==∆'∆二、基本初等函数的求导公式1.常数的导数:()0c '= (c 为常数)证明:()f x c =00()()()limlim 0x x f x x f x f x xc c x∆→∆→+∆-'=∆-==∆2.幂函数的导数:1()n n x nx -'= (n 为常数)证明:()nf x x =,0()()lim nnx x x xf x x∆→+∆-'=∆110()lim nn n n nnn nx C x C x x C x xx-∆→+∆++∆-=∆ 112210lim[()]n n n n nnnx C xC xx C x ---∆→=+∆++∆ 1n nx -=例1 求4sin y x x =+的导数.解:4(sin )y x x ''=+4()(sin )x x ''=+.34cos x x =+.例2 求5cos y x x =的导数.解:5(cos )y x x ''=55()cos (cos )x x x x ''=+.455cos sin x x x x =-.例3 求2sin xy x =的导数.解:2sin ()xy x''=2222(sin )sin ()()x x x x x ''-=. 24cos 2sin x x x x x-=. 3cos 2sin x x x x-=.例4 求23313y x x=--的导数.解:2333y xx -=--233(3)y x x -''=--.233()()(3)x x -'''=--.134233x x --=--.例5 求232x y x -=的导数.解:312223232x y x x x--==- 3122(32)y x x -''=-.3122(3)(2)x x -''=-.31223()2()x x -''=-.312292x x -=+.例6 求21xy x=+的导数. 解:2()1xy x''=+2222()(1)(1)(1)x x x x x ''+-+=+. 22212(1)x x x x +-⋅=+. 2221(1)x x -=+.3.指数函数x y a =(0,1a a >≠)的导数:()ln x x a a a '=()x xe e '= 001lim lim x x x x y a y a x x∆∆→∆→∆-'==∆∆. 证明:(1)x x x x x y a a a a +∆∆∆=-=-令1xt a ∆=-,有log (1)a x t ∆=+ 当0x ∆→时,有0t →1001lim lim log (1)log (1)x x t t a a t t y a a t t →→'==++. 1011lim ln log log (1)t x x x t a a a a a a e t →===+.4.对数函数log a y x =(0,1a a >≠)的导数:1(log )ln a x x a '= 1(ln )x x'= 证明:log a y x =的反函数为y x a =(0,1a a >≠),由定理2.3可得111()ln ln y y y a a a x a'==='.例7 求33x xy x e =-+的导数. 解:3(3)x xy x e ''=-+3()(3)()x x x e '''=-+. 233ln3x xx e =-+.例8 求2x y x e =的导数. 解:2()x y xe ''= 22()()x x x e x e ''=+.22x x xe x e=+. (2)x xe x =+.例9 求ln x y x=的导数. 解:2ln (ln )ln ()x x x x x y x x''-⋅''== 122ln 1ln xx x x x x ⋅--==.例10 求22log y x x =的导数. 解:22(log )y x x ''= 2222()log (log )x x x x ''=+. 2212log ln 2x x x x =+. 22log ln 2x x x =+.5.三角函数的导数: 1.(sin )cos x x '=2.(cos )sin x x '=-3.221(tan )sec cos x x x '== 4.221(cot )csc sin x x x '=-=-5.(sec )sec tan x x x '=⋅6.(csc )csc cot x x x '=-⋅证明:1.(sin)cosx x'=2.(cos)sinx x'=-参考前面例题.3.sin(tan)()cosxxx''=2(sin)cos sin(cos)cosx x x xx''-=22222cos sin1seccos cosx xxx x+===.同理可证(请同学自己证明) 4.21(cot )csc sin x x x'=-=- 5.(sec )sec tan x x x '=⋅ 6.(csc )csc cot x x x '=-⋅例11 求sin cos y x x x =+的导数. 解:(sin cos )y x x x ''=+(sin )(cos )x x x ''=+. sin (sin )sin x x x x x ''=+-. sin cos sin x x x x =+-. cos x x =.6.反三角函数的导数: 1.21(sin )1arc x x '=-(11x -<<)2.21(cos )1arc x x '=--( 11x -<<) 3.21(tan )1arc x x'=+ 4.21(cot )1arc x x '=-+证明:sin y arc x =的反函数是sin x y =由定理2.3 1(sin )(sin )y arc x y ''==' (sin )cos ()22y y y ππ'=-<<. 而22cos 1sin 1y y x =-=- 所以21(sin )1arc x x '=-.其余反三角函数求导公式同理可证(请同学自己证明).例12 求2arctan 1x y x =+的导数. 解:22221(1)arctan 21(1)x x x x y x +-⋅+'=+ 2212arctan (1)x x x -=+.。
导数的基本公式及四则运算法则
导数的减法法则
总结词
导数的减法法则是导数的基本运算法则 之一,它指出两个函数的导数的差等于 它们各自导数的差的负值。
VS
详细描述
如果函数$f(x)$和$g(x)$在某一点$x$处 可导,那么$(f(x) - g(x))' = f'(x) - g'(x)$ 。
导数的乘法法则
总结词
导数的乘法法则是说,如果一个函数乘以一 个常数,那么它的导数就是这个常数乘以该 函数的导数。
详细描述
对于对数函数f(x)=ln(x),其导数为f'(x)=1/x。这个公式告诉我们,对数函数的斜率与x 的倒数有关。
03
导数的四则运算法则
导数的加法法则
总结词
导数的加法法则是指两个函数的导数的和等于它们各自导数的和。
详细描述
如果函数$f(x)$和$g(x)$在某一点$x$处可导,那么$(f(x) + g(x))' = f'(x) + g'(x)$。
04
导数在实际问题中的应用
最大值和最小值问题
总结词
导数在求解最大值和最小值问题中具有广泛 应用。
详细描述
通过求导找到函数的极值点,进而确定函数 的最大值或最小值。在经济学、工程技术和 科学研究等领域中,求解最大值和最小值问 题是一个常见的问题,导数的应用为这些问
题提供了有效的解决方案。
速度和加速度问题
导数在实际问题中的应用案例分析
总结:导数在实际问题中有着广泛的应用,通过分析导数 ,我们可以解决许多实际问题,如最优化问题、经济问题 等。
例如,在物理学中,导数可以用来描述速度和加速度的变 化;在经济学中,导数可以用来分析边际成本和边际收益 ;在工程学中,导数可以用来设计最优化的方案。
高中导数公式及导数的运算法则
高中导数公式及导数的运算法则导数是微积分中的重要概念,它描述了函数在其中一点的变化率。
在高中阶段的数学学习中,学生们一般会接触到导数的基本概念和求导的基本方法。
下面将详细介绍高中阶段导数的公式和运算法则。
一、导数的基本概念:导数表示了函数在其中一点上的变化率。
对于函数f(x),在x=a处的导数表示为f'(a),它的几何意义是函数图像在该点处的切线斜率。
导数的定义如下:f'(a) = lim┬(h→0)〖(f(a+h)-f(a))/h〗其中,lim代表极限,h代表自变量的微小增量,也可以理解成取极限时的无穷小增量。
导数表示了函数在无穷小范围内的平均变化率,当h 趋于0时,导数表示了函数在该点上的瞬时变化率。
二、导数的公式:导数的计算根据函数的不同形式有不同的公式。
在高中阶段,最常见的导数公式有以下几种:1.常数函数的导数对于常数函数f(x)=C,它的导数为f'(x)=0。
这是因为常数函数的图像是一条水平直线,它在任何点上的斜率都为0。
2.幂函数的导数对于幂函数 f(x) = x^n,其中n为常数,它的导数为 f'(x) =nx^(n-1)。
例如,f(x) = x^2 的导数为 f'(x) = 2x。
3.指数函数的导数对于指数函数 f(x) = a^x,其中a为常数且a>0,它的导数为 f'(x) = ln(a) * a^x。
其中ln(a)表示以自然对数e为底的对数,它是一个常数。
4.对数函数的导数对于对数函数 f(x) = logₐx,其中a为常数且a>0且不等于1,它的导数为 f'(x) = 1/(x * ln(a))。
其中ln(a)表示以自然对数e为底的对数,它是一个常数。
5.三角函数的导数对于三角函数 f(x) = sin(x) 和 f(x) = cos(x),它们的导数分别为 f'(x) = cos(x) 和 f'(x) = -sin(x)。
导数的四则运算法则公式推导过程
导数的四则运算法则公式推导过程1. 一阶导数概念:一阶导数指函数上一点的变化率或斜率,它反映了函数围绕该点的变化情况。
函数在某一点处的导数反映了函数在这一点处(即你求导所用值处)的变化速度。
一阶导数如果是非零,则这个值表示函数在该点向右是可以变大或者在该点向左可以变小;如果为零,表示函数在该点是拐点。
2. 常见的四则运算法则:(1)加法法则:函数f(x)和g(x)的一阶导数之和即为:(f+g)’=f’+g’。
(2)减法法则:函数f(x)和g(x)的一阶导数之差即为:(f-g)’=f’-g’。
(3)乘法法则:函数f(x)和g(x)的一阶导数之积即为:(f*g)’=f’*g + f*g’。
(4)除法法则:函数f(x)和g(x)的一阶导数之商即为:(f/g)’=[f’*g -f*g’]/g〔2〕。
3. 对上述四则运算法则的推导过程:(1)加法法则:函数 f(x) 和 g(x) 的导数为f’(x) 和g’(x),根据定义,函数f(x)和g(x)的一阶导数之和即为:y’=f’(x)+g’(x),令y=f(x)+g(x),则y’=f’(x)+g’(x),即有:(f+g)’=f’+g’。
(2)减法法则:函数 f(x) 和 g(x) 的导数为f’(x) 和g’(x),根据定义,函数f(x)和g(x)的一阶导数之差即为:y’=f’(x)-g’(x),令y=f(x)-g(x),则y’=f’(x)-g’(x),即有:(f-g)’=f’-g’。
(3)乘法法则:函数 f(x) 和 g(x) 的导数为f’(x) 和g’(x),根据定义,函数f(x)和g(x)的一阶导数之积即为:y’=f'(x)·g'(x),令y=f(x)*g(x),令y=(f(x)·g(x))=f(x)·g(x),则y’=f'(x)·g'(x),即有:(f*g)’=f'*g+f*g'。
高一数学导数运算法则
高中求导公式运算法则
高中求导公式运算法则
求导公式和运算法则是高中微积分中用于求导数的基本规则,下面是一些常见的求导公式和运算法则:
1. 常数的导数为0:(C)' = 0,其中C为常数。
2. 幂函数的导数:(x^n)' = nx^(n-1),其中n为常数。
3. 对数函数的导数:(ln x)' = 1/x。
4. 指数函数的导数:(a^x)' = a^x * ln a,其中a为常数。
5. 三角函数的导数:
- (sin x)' = cos x
- (cos x)' = -sin x
- (tan x)' = sec^2 x
- (csc x)' = -csc x * cot x
- (sec x)' = sec x * tan x
- (cot x)' = -csc^2 x
其中sin x表示正弦函数,cos x表示余弦函数,tan x表示正切函数,csc x表示余割函数,sec x表示正割函数,cot x表示余切函数。
6. 乘法法则:(uv)' = u'v + uv'。
7. 除法法则:(u/v)' = (u'v - uv')/v^2。
8. 函数的复合:若y = f(g(x)),则y' = f'(g(x)) * g'(x)。
9. 指数函数的链式法则:若y = f(u) = a^u,其中u = g(x),则y' = f'(u) * g'(x) * ln a。
以上仅为常见的求导公式和运算法则,实际求导时还会涉及到其他的规则和技巧。
所有导数公式及运算法则
所有导数公式及运算法则基本初等函数的导数公式1 .C'=0(C为常数);2 .(Xn)'=nX(n-1) (n∈Q);3 .(sinX)'=cosX;4 .(cosX)'=-sinX;5 .(aX)'=aXIna (ln为自然对数)特别地,(ex)'=ex6 .(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1)特别地,(ln x)'=1/x7 .(tanX)'=1/(cosX)2=(secX)28 .(cotX)'=-1/(sinX)2=-(cscX)29 .(secX)'=tanX secX10.(cscX)'=-cotX cscX导数的四则运算法则:①(u±v)'=u'±v'②(uv)'=u'v+uv'③(u/v)'=(u'v-uv')/ v2④复合函数的导数[u(v)]'=[u'(v)]*v' (u(v)为复合函数f[g(x)])复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
导数是微积分的基础,同时也是微积分计算的一个重要的支柱。
2导数的求导法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
高阶导数的求法1.直接法:由高阶导数的定义逐步求高阶导数。
一般用来寻找解题方法。
2.高阶导数的运算法则:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:由导数公式:p '(t ) 1.05t p0 ln1.05
p '(10) 1.0510 ln1.05 0.08(元/年)
答:在第10个年头,这种商品的价格约以0.08元/年的速度上涨。
思考:若某种商品的p0 5,那么在第10个年头, 这种商品的价格上涨的速度大约是多少? p '(t ) 1.05t p0 ln1.05, p '(10) 5 0.08 0.4
5284 c '( x) 2 (100 x)
(1) 5284 c '(90) 52.84 2 (100 90)
纯净度为90%时,净化费用的瞬时变化率 是52.84元/吨。
(2)
5284 c '(98) 1321 2 (100 98)
纯净度为98%时,净化费用的瞬时变化率 是1321元/吨。
3.2.2基本初等函数 的导数公式及导数 的运算法则
高二数学 选修1-1
第三章
导数及其应用
可以直接使用的基本初等函数的导数公式
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
法则3:两个函数的商的导数,等于第一个函数的导数乘第二个函 数,减去第一个函数乘第二个函数的导数 ,再除以第二个函数的平 方 .即 :
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
导数Байду номын сангаас运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的和(差), 即:
f ( x ) g ( x ) f ( x) g ( x)
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个函数, 加上第一个函数乘第二个函数的导数 ,即:
f ( x) g ( x) f ( x) g ( x) f ( x) g ( x)
由法则2:
C f ( x) C ' f ( x) C f ( x) C f ( x)
例1:假设某国家在20年期间的通货膨胀率为5%。物价 (单位 p :元)与时间t(单位:年)有如下关系: p(t ) p0 (1 5%)t .其中p0为t 0时的物价。假定某种商品 的p0 1,那么在第10个年头,这种商品的价格上涨的速度 大约是多少?(精确到0.01)
可以直接使用的基本初等函数的导数公式
公式1: (C ) ' 0; 公式2 : ( x n ) ' nx n 1 ; 公式3 : (sin x) ' cos x; 公式4 : (cos x) ' sin x; 公式5 : (a x ) ' a x ln a(a 0); 公式6 : (e x ) ' e x ; 1 公式7 : (log a x) ' (a 0, 且a 1); x ln a 1 公式8 : (ln x) ' ; x
例3 :日常生活中的饮用水通常是经过净化的,随着水纯 净度的提高,所需净化费用不断增加。已知1吨水净化 到纯净度为x%时所需费用(单位:元)为: 5284 c(x)= (80 x 100). 100 x 求净化到下列纯净度时,所需净化费用的瞬时变化率; (1)90%; (2)98%.
解:净化费用的瞬时变化率就是净化费用函数的导数。 5284 5284' (100 x) 5284 (100 x) ' c '( x)=( )' 100 x (100 x)2 0 (100 x) 5284 (1) 5284 2 (100 x) (100 x) 2