33、最小公倍数法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2×2×3×4=48
12与16的最小公倍数是48。
48+1=49(人)
49<50,正好符合题中全班不足50人的要求。
答:这个班有49人。
例4某公共汽车站有三条线路通往不同的地方。第一条线路每隔8分钟发一次车;第二条线路每隔10分钟发一次车;第三条线路每隔12分钟发一次车。三条线路的汽车在同一时间发车以后,至少再经过多少分钟又在同一时间发车?(适于六年级程度)
解:从题中的已知条件可以看出.不论是4个4个地数,还是5个5个地数、6个6个地数,筐中的鸡蛋数都是只差2个就正好是能被4、5、6整除的数。因为要求这筐鸡蛋最少是多少个,所以求出4、5、6的最小公倍数后再减去2,就得到鸡蛋的个数。
2×2×5×3=60
4、5、6的最小公倍数是60。
60-2=58(个)
答:这筐鸡蛋最少有58个。
每一份是:
234÷117=2(千米)
静水中船的速度占总份数的:
(13+9)÷2=11(份)
船在静水中每小时行:
2×11=22(千米)
答略。
*例11王勇从山脚下登上山顶,再按原路返回。他上山的速度为每小时3千米,下山的速度为每小时5千米。他上、下山的平均速度是每小时多少千米?(适于六年级程度)
解:设山脚到山顶的距离为3与5的最小公倍数。
解:求三条线路的汽车在同一时间发车以后,至少再经过多少分钟又在同一时间发车,就是要求出三条线路汽车发车时间间隔的最小公倍数,即8、10、12的最小公倍数。
2×2×2×5×3=120
答:至少经过120分钟又在同一时间发车。
例5有一筐鸡蛋,4个4个地数余2个,5个5个地数余3个,6个6个地数余4个。这筐鸡蛋最少有多少个?(适于六年级程度)
60与9的最小公倍数是180。
180÷60=3(小时)
由于是中午12点时既响铃又亮灯,所以下一次既响铃又亮灯是下午3点钟。
答略。
*例8一个植树小组原计划在96米长的一段土地上每隔4米栽一棵树,并且已经挖好坑。后来改为每隔6米栽一棵树。求重新挖树坑时可以少挖几个?(适于六年级程度)
解:这一段地全长96米,从一端每隔4米挖一个坑,一共要挖树坑:
72-56=16(份)…………余下工程的份数
16÷4=4(天)……………甲还要做的天数
答略。
*例10甲、乙两个码头之间的水路长234千米,某船从甲码头到乙码头需要9小时,从乙码头返回甲码头需要13小时。求此船在静水中的速度?(适于高年级程度)
解:9、13的最小公倍数是117,可以把两码头之间的水路234千米分成117等份。
3×5=15(千米)
上山用:
15÷3=5(小时)
下山用:
15÷5=3(小时)
总距离÷总时间=平均速度
(15×2)÷(5+3)=3.75(千米)
答:他上、下山的平均速度是每小时3.75千米。
*例12某工厂生产一种零件,要经过三道工序。第一道工序每个工人每小时做50个;第二道工序每个工人每小时做30个;第三道工序每个工人每小时做25个。在要求均衡生产的条件下,这三道工序至少各应分配多少名工人?(适于六年级程度)
解:50、30、25三个数的最小公倍数是150。
第一道工序至少应分配:
150÷50=3(人)
第二道工序至少应分配:
150÷30=5(人)
第三道工序至少应分配:
150÷25=6(人)
答略。
正方体模型的体积为:
12×12×12=1728(立方厘米)
长方体木块Leabharlann Baidu块数是:
1728÷(6×4×3)
=1728÷72
=24(块)
答略。
例3有一个不足50人的班级,每12人分为一组余1人,每16人分为一组也余1人。这个班级有多少人?(适于六年级程度)
解:这个班的学生每12人分为一组余1人,每16人分为一组也余1人,这说明这个班的人数比12与16的公倍数(50以内)多1人。所以先求12与16的最小公倍数。
最小公倍数法
通过计算出几个数的最小公倍数,从而解答出问题的解题方法叫做最小公倍数法。
例1用长36厘米,宽24厘米的长方形瓷砖铺一个正方形地面,最少需要多少块瓷砖?(适于六年级程度)
解:因为求这个正方形地面所需要的长方形瓷砖最少,所以正方形的边长应是36、24的最小公倍数。
2×2×3×3×2=72
36、24的最小公倍数是72,即正方形的边长是72厘米。
96÷4+1=25(个)
后来,改为每隔6米栽一棵树,原来挖的坑有的正好赶在6米一棵的坑位上,可不重新挖。由于4和6的最小公倍数是12,所以从第一个坑开始,每隔12米的那个坑不必挖。
96÷12+1=9(个)
96米中有8个12米,有8个坑是已挖好的,再加上已挖好的第一个坑,一共有9个坑不必重新挖。
答略。
72÷36=2
72÷24=3
2×3=6(块)
答:最少需要6块瓷砖。
*例2王光用长6厘米、宽4厘米、高3厘米的长方体木块拼最小的正方体模型。这个正方体模型的体积是多大?用多少块上面那样的长方体木块?(适于六年级程度)
解:此题应先求正方体模型的棱长,这个棱长就是6、4和3的最小公倍数。
2×3×2=12
6、4和3的最小公倍数是12,即正方体模型的棱长是12厘米。
得一等奖的人数是:
3×(120÷15)=24(人)
得二等奖的人数是:
2×(120÷8)=30(人)
得三等奖的人数是:
4×(120÷12)=40(人)
答略。
*例7有一个电子钟,每到整点响一次铃,每走9分钟亮一次灯。中午12点整时,电子钟既响铃又亮灯。求下一次既响铃又亮灯是几点钟?(适于六年级程度)
解:每到整点响一次铃,就是每到60分钟响一次铃。求间隔多长时间后,电子钟既响铃又亮灯,就是求60与9的最小公倍数。
例9一项工程,甲队单独做需要18天,乙队单独做需要24天。两队合作8天后,余下的工程由甲队单独做,甲队还要做几天?(适于六年级程度)
解:由18、24的最小公倍数是72,可把全工程分为72等份。
72÷18=4(份)…………是甲一天做的份数
72÷24=3(份)…………是乙一天做的份数
(4+3)×8=56份)………两队8天合作的份数
*例6文化路小学举行了一次智力竞赛。参加竞赛的人中,平均每15人有3个人得一等奖,每8人有2个人得二等奖,每12人有4个人得三等奖。参加这次竞赛的共有94人得奖。求有多少人参加了这次竞赛?得一、二、三等奖的各有多少人?(适于六年级程度)
解:15、8和12的最小公倍数是120,参加这次竞赛的人数是120人。
相关文档
最新文档