物理竞赛习题运动学
中学生物理竞赛系列练习试题运动学
中学生物理竞赛系列练习题第一章 质点的运动1、合页连杆机构由三个菱形组成,其边长之比为3:2:1,如图所示,顶点3A 以速度v 往水平向右移动,求当连接点的所有角都为直角时,顶点1A 、2A 、2B 的速度量值。
教学参考04.102、轮子在直线轨道上做纯滚动,轮子边缘点的运动轨道曲线称为滚轮线,设轮子半径为R ,轮子边缘点P 对应的滚轮线如图所示,试求此滚轮线在最高点的曲率半径ρ1和在最低点的曲率半径ρ2。
题库p143、一小球自高于斜面上h 处自由落下后击中斜面,斜面之斜角为θ,假设小球与斜面作完全弹性碰撞(碰撞斜面前后速率不变且入射角等于反射角),如图所示。
求(1)再经多长时间后球与斜面再度碰撞?(2)两次碰撞位置间距离d 为多少?(3)假设斜面甚长,小球与斜面可以作连续碰撞,证明小球与斜面在任意连续两次碰撞之时间间隔均相等。
并计算在连续两次碰撞点之距离依次为1d ,2d ,3d ,……n d 之数值。
(1)t=g h 22(2)d=θsin h 8 (3)θsin nh 8=d n4、以初速0v 铅直上抛一小球A ,当A 到达最高点的瞬间,在同一抛出点以同一初速0v 沿同一直线铅直上抛同样的小球B ,当A 、B 在空中相碰的瞬间,又从同一抛出点以同一初速0v 沿同一直线铅直上抛出第三个同样的小球C 。
设各球相遇时均发生弹性碰撞,且空气阻力不计,从抛出A 球的瞬时开始计时。
试求:(1)各球落地的时间;(2)各球在空中相遇的时间。
(1)g v 2=t 0C ,g v 3=t 0B ,gv 7=t 0A ,即C 最先落地,A 最慢落地 (2)A 、B 相遇在g 2v 3=t 01,其次B 、C 相遇在g 4v 7=t 02,最后A 、B 再相遇于g4v 9=t 03,共有三次碰撞。
5、由t=0时刻从水平面上的O 点,在同一铅垂面上同时朝两方向发射初速率分别为A ν=10公尺/秒、B ν=20公尺/秒两质点A 、B ,(如图)求:(1)t=1秒时A、B相距多远? (2)在铅垂面xOy上,从原点O出发朝平面各方向射出相同速率ν的质点,今以朝正x方向(水平)射出的质点为参考点,判定其他质点在未落地前的t时刻的位置组成的曲线。
物理竞赛运动学专题一:斜坡斜抛问题
1物理竞赛运动学专题一:斜坡斜抛问题例1、斜坡上斜抛问题(向下坡抛):如图为抛射面截面,设在此截面内斜坡倾角α,物体抛出速度v ,求当抛射角θ多大时,射程S 最大。
(忽略空气阻力)分析:此题使用解析几何的方法较自然,问题将转化为求抛物线被直线所截长度,这是高中解析几何中的典型问题。
解法1:如图建立坐标,斜坡所在的直线方程为:x y ⋅-=αtan (1)物体斜上抛的轨迹为抛物线,时间t 从抛出开始,其参数方程是: )3(21sin )2(cos 2 gt t v y t v x -⋅=⋅=θθ 将(2)(3)代入(1)两边,可求得物体下落到斜坡上的时间0t :gv t t )cos tan (sin 20θαθ+== (4) 设落点P 坐标为),(00y x ,则有:00cos t v x ⋅=θ (5)2αcos 0x OP S ==射程 (6)由(4)(5)(6)可解得:(其中注意三角函数倍角公式))sin 1(cos )sin 1(24,22)7()sin )2(sin(cos )tan 2cos tan 2(sin cos 222max 222ααααπθπαθααθααθαθα-=+=-==+++=++=g v g v S S g v S g v S 取极大值时当进一步简化为讨论:1)、对于向上坡抛的情况,只要把上式中的 α改为-α (假设抛射面内斜坡与水平面夹角的锐角为α),(7)变为)sin 1(24,22)7()sin )2(sin(cos 2max 22ααπθπαθααθα+=+==---=g v S S g v S 取极大值时当综合两种情况,在斜坡上,要使抛出物体的射程最远,初速度方向应沿斜面与竖直面夹角的平分线。
2).(7)式中如果射程S 不变,可转化为求θ多大时,v 最小的一类问题。
下面举例说明。
17、(15分)在一山坡上有一个敌人据点,现要在山脚下架炮轰击该据点,经侦知据点与架炮处的距离约1500米,山坡斜度为30度,试估算炮弹射出时的速度至少要多大才能击中?(g 取10m/s 2, 忽略空气阻力)。
初中物理竞赛试题精选运动学资料讲解
初中物理竞赛试题精选运动学初中物理竞赛试题精选:运动学1.A、B两辆车以相同速度v0同方向作匀速直线运动,A车在前,B车在后.在两车上有甲、乙两人分别用皮球瞄准对方,同时以相对自身为2v0的初速度水平射出,如不考虑皮球的竖直下落及空气阻力,则()A.甲先被击中B.乙先被击中C.两人同时被击中D.皮球可以击中乙而不能击中甲2. 如图所示,静止的传送带上有一木块正在匀速下滑,当传送带突然向下开动时,木块图2滑到底部所需时间t与传送带始终静止不动所需时间t0相比是()A.t=t0B.t<t0C.t>t0D.A、B两种情况都有可能3.如图所示,A、B为两个大小和材料都相同而转向相反的轮子,它们的转轴互相平行且在同一水平面内。
有一把均匀直尺C,它的长度大于两轮转轴距离的2倍。
把该直尺静止地搁在两转轮上,使尺的重心在两轮之间而离B轮较近。
然后放手,考虑到轮子和尺存在摩擦,则直尺将( )A 保持静止。
B 向右运动,直至落下。
C 开始时向左运动,以后就不断作左右来回运动。
D 开始时向右运动,以后就不断作左右来回运动。
4. 在一辆行驶的火车车厢内,有人竖直于车厢地板向上跳起,落回地板时,落地点( )A 在起跳点前面;B 在起跳点后面;C 与起跳点重合;D 与火车运动情况有关,无法判断。
5. 在水平方向作匀速直线高速飞行的轰炸机上投下一颗炸弹,飞机驾驶员和站在地面上的观察者对炸弹运动轨迹的描述如图12所示。
其中有可能正确的是( )图126. 一列长为s 的队伍以速度V 沿笔直的公路匀速前进。
一个传令兵以较快的速度v 从队末向队首传递文件,又立即以同样速度返回到队末。
如果不计递交文件的时间,那么这传令兵往返一次所需时间是。
; ; ; 22222)D (2)C (2)B (2)A (V v sv V v s V v s V s -++7. 甲、乙两车站相距100千米,一辆公共汽车从甲站匀速驶向乙站,速度为40千米/时。
物理竞赛训练试题——运动学
物理竞赛训练试题——运动学班级________姓名________得分________一. 选择题:(3分×10=30分)1.河中有一漂浮物,甲船在漂浮物上游100米处,乙船在漂浮物下游100米处,若两船同时以相同的速度去打捞,则( )A.甲船先到B.乙船先到C.两船同时到达D.无法判断2.隧道长550米,一列火车车厢长50米,正以36千米/时的速度匀速行驶,车厢中某乘客行走的速度为1米/秒,当列车过隧道时,乘客经过隧道的时间至少为( )A.5秒B.50秒C.55秒D.60秒3.蒸汽火车沿平直道行驶,风向自东向西,路边的观察者看到从火车烟囱中冒出的烟雾是竖直向上呈柱形的,由此可知,相对于空气火车的运动方向是( )A.自东向西B.自西向东C.静止不动D.无法确定4.甲乙两船相距50千米同时起船,且保持船速不变,若两船同时在逆水中航行,甲船航行100千米,恰赶上乙船,若两船都在顺水中航行,则甲船赶上乙船需航行( )A.50千米的路程B.100千米的路程C.大于50千米小于100千米路程D.大于100千米的路程5.坐在甲飞机中的某人,在窗口看到大地向飞机迎面冲来,同时看到乙飞机朝甲飞机反向离去,下列判断错误的是( )A.甲飞机正向地面俯冲B.乙飞机一定在作上升运动C.乙飞机可能与甲飞机同向运动D.乙飞机可能静止不动6.一列长为S的队伍以速度u沿笔直的公路匀速前进.一个传令兵以较快的速度v从队末向队首传递文件,又立即以同样速度返回队末.如果不计递交文件的时间,那么这个传令兵往返一次所需的时间是( )A.2S/uB.2S/v+uC.2S v /v2+u2D.2S v /v2—u27.如图所示:甲乙两人同时从A点出发沿直线向B点走去.乙先到达B点,然后返回,在C点遇到甲后再次返回到B点后,又一次返回并在D点第二次遇到甲.设整个过程甲速度始终为V,乙速度大小也恒定保持8V.则S1:S2( )A.8:7B.8:6C.9:8D.9:78.根据图中所示情景,做出如下判断:A.甲船可能向右运动,乙船可能向右运动B.甲船可能向左运动,乙船可能向左运动C.甲船可能静止,乙船可能静止D.甲船可能向左运动,乙船可能向右运动.以上说法中正确的个数是( )A. 0个B.1个C.2个D.3个9.一辆汽车以40千米/时的速度从甲站开往乙站,当它出发时恰好一辆公共汽车从乙站开往甲站,以后每隔15分钟就有一辆公共汽车从乙站开往甲站,卡车在途中遇到6辆公共汽车,则甲乙两站之间的距离可能为( )A.45千米B.55千米C.65千米D.75千米10.AB两汽车同时从甲地驶往乙地.A车在全程1/3路程内以高速V1行驶,在全程1/3路程内以中速V2行驶,在其余1/3路程内以低速V3行驶;B车在全程1/3时间内以高速V1行驶,在全程1/3时间内以中速V2行驶,在其余1/3时间内以低速V3行驶,则( )A.甲车先到达乙地B. B车先到达乙地C.两车同时到达乙地D.无法判断二. 填空题:(4分×10=40分)1,在汽车行驶的正前方有一座高山,汽车以v1=43.2千米/时的速度行驶,汽车鸣笛t=2秒后,司机听到回声。
2024全国高中物理竞赛试题
选择题:关于物体的运动,下列说法正确的是:A. 物体速度变化量大,其加速度一定大B. 物体有加速度,其速度一定增加C. 物体的速度为零时,其加速度可能不为零(正确答案)D. 物体加速度的方向一定与速度方向相同下列关于力的说法中,正确的是:A. 力的产生离不开施力物体,但可以没有受力物体B. 物体受到力的作用,其运动状态一定改变C. 只有直接接触的物体间才有力的作用D. 力是改变物体运动状态的原因(正确答案)关于牛顿运动定律,下列说法正确的是:A. 牛顿第一定律是牛顿第二定律在物体不受外力时的特例B. 物体所受合外力方向与速度方向相同时,物体一定做加速直线运动(正确答案)C. 牛顿第三定律表明作用力和反作用力大小相等,因此它们产生的效果一定相互抵消D. 惯性是物体的固有属性,速度大的物体惯性一定大关于曲线运动,下列说法正确的是:A. 曲线运动一定是变速运动(正确答案)B. 曲线运动的速度方向可能不变C. 曲线运动的速度大小一定变化D. 曲线运动的加速度一定变化关于万有引力定律,下列说法正确的是:A. 万有引力定律只适用于天体间的相互作用B. 物体间的万有引力与它们的质量成正比,与它们之间的距离成反比(正确答案)C. 万有引力定律是由开普勒发现的D. 万有引力定律适用于一切物体间的相互作用(正确答案)关于电场和磁场,下列说法正确的是:A. 电场线和磁感线都是闭合曲线B. 电场线和磁感线都可能相交C. 电场线和磁感线都是用来形象描述场的假想线,实际并不存在(正确答案)D. 电场线和磁感线都可能不存在关于电磁感应,下列说法正确的是:A. 只要导体在磁场中运动,就一定会产生感应电流B. 感应电流的磁场总是阻碍原磁场的变化(正确答案)C. 感应电流的磁场总是与原磁场方向相反D. 感应电流的磁场总是与原磁场方向相同关于光的本性,下列说法正确的是:A. 光具有波动性,又具有粒子性(正确答案)B. 光在传播时往往表现出波动性,而在与物质相互作用时往往表现出粒子性(正确答案)C. 频率越大的光,其粒子性越显著D. 频率越大的光,其波动性越显著关于原子和原子核,下列说法正确的是:A. 原子核能发生β衰变说明原子核内存在电子B. 放射性元素的半衰期随温度的升高而变短(正确答案)C. 氢原子从n=3的能级向低能级跃迁时只会辐射出两种不同频率的光D. 原子核的结合能等于使其完全分解成自由核子所需的最小能量(正确答案)。
全国物理竞赛题目
全国物理竞赛题目一、力学与运动学题目:一质量为m的物体以速度v0向右运动,现对其施加一个力F,该力的垂直速度方向的分量为F1,水平分量F2。
问在多少时间后,物体以速度v0/2向右运动,同时速度方向与F的夹角为45°二、热力学与热传递题目:在一个封闭的容器内有一定质量的气体,气体初始温度为T1。
经过加热后,气体的温度升高到T2。
在此过程中,气体吸收的热量为Q,问该过程中气体对外做功是多少?三、电磁学题目:在真空中,一电荷量为q的点电荷产生的电场中,某一点的电场强度E与q的距离r的关系为E=k*q/r^2,其中k为常数。
现有一试探电荷q'从无穷远处移到点电荷q的附近,其电势能的变化量为ΔE,则ΔE与试探电荷电量q'、点电荷电量q、试探电荷与点电荷的距离r之间的关系为?四、光学题目:光线经过一个直径为d的细圆环,环上均匀分布着厚度为t的光学介质。
求光线经过环上介质后的偏折角。
五、原子物理与量子力学题目:一氢原子从基态跃迁到激发态,其辐射光子的波长为100 nm。
已知氢原子的半径为5.29×10^-11 m,求这个跃迁的能量差是多少电子伏特?六、物理实验与实验设计题目:设计一个实验方案,测量一个未知电阻Rx的值。
要求使用尽可能少的器材和步骤,并给出测量结果的误差分析。
七、相对论简介题目:一列火车以速度v相对于地面运动,地面上的观察者测得火车上的一盏灯发出的光的波长比标准波长要短,求火车相对于地面的速度。
八、非线性物理与混沌理论题目:一质量为m的弹性小球在光滑水平面上做周期为T的简谐振动,其振动幅度为A。
现让小球的振幅突然增大到4A,并观察到此后小球的运动变得杂乱无章。
求该过程中小球所做的总功。
九、物理与其他科学的交叉题目:在生物学中,细胞膜可以被看作是一个半透膜。
当细胞内外溶液的浓度不同时,细胞膜可以允许水分子通过而阻止其他大分子物质通过。
请解释这一现象并用物理原理进行建模分析。
物理竞赛入门之一:运动学单元测试题
一、运动学一、选择题1.如图1-11所示,M 、N 是两个共轴圆筒的横截面.外筒半径为R ,内筒半径比R 小得多,可以忽略不计.筒的两端是封闭的,两筒之间抽成真空.两筒以相同的角速度ω绕其中心轴线(图中垂直于纸面)匀速转动.设从M 筒内部可以通过窄缝S (与M 筒的轴线平行)不断地向外射出,两种不同速率v 1和v 2的微粒,从S 处射出时初速度方向都是沿筒的半径方向,微粒到达N 筒后就附着在N 筒上.如果R 、v 1和v 2都不变,而ω取某一合适的值,则( ) A .有可能使微粒落在N 筒上的位置都在a 处一条与S 缝平行的窄条上B .有可能使微粒落在N 筒上的位置都在某一处如b 处一条与S 缝平行的窄条上C .有可能使微粒落在N 筒上的位置分别在某两处如b 处和c 处与S 缝平行的窄条上D .只要时间足够长,N 筒上将到处落有微粒2.两辆完全相同的汽车,沿平直公路一前一后匀速行驶,速度均为v .若前车以恒定的加速度刹车,在它刚停车时,后车以前车刹车时的加速度开始刹车.已知前车在刹车过程中滑行的距离为s ,若要保证两辆车在上述过程中不相碰,则两车在匀速行驶时应保持距离至少为( )A .sB .2sC .3sD .4s3.一条船渡河时,船相对于静水的速度v 1和水流速度v 2保持不变。
当船以速度v 1沿垂直于河岸的方向开出时,到达对岸的时间为t 1.当船以速度v 1偏向上游沿某一方向开出时,恰可沿垂直于河岸的方向经时间t 2到达对岸.则v 1与v 2的大小之比为( ) A.21221t t t + B.21222t t t + C.21221-t t t D.21222-t t t4.如图1-2所示,一根细绳绕过两个相距2a 的定滑轮(滑轮大小不计),细绳两端分别静止吊着相同的物体A 和物体B .现于两个滑轮间绳子的中点处挂一物体C ,当C 下落距离b 时,其速率为v ,则此时A 、B 的速率为( ) A.v B.bba v 222+ C.22ba bv + D.bba v 22+5.火车站的自动扶梯用l0s 可把站立在扶梯上的人由一楼送到二楼,而如果自动扶梯不动,人沿扶梯由一楼走到二楼需用15s .若人沿开动着的扶梯向上走,则由一楼到达二楼需要的时间为( )A.3sB.5sC.6sD.8s 二、填空题1.如图1-3所示,相互平行的光滑竖直墙壁a 和b ,相距s .现从两墙间的地面上某P 点处,以初速v 0斜抛出一小球,要使小球分别与a 、b 两墙各发生一次弹性碰撞后恰好重新回落P 点处,则抛出小球的抛射角θ= .2.两个质从地面上的同一地点,以相同的初速率v 0和不同的抛射角抛出,当两个质点的射程R 相同时,它们在空中飞行时间的乘积为 .(不计空气阻力)3.以y 轴为抛出点的竖直线(物体做平抛运动),但抛出点未知.AB 是平抛的一段轨迹,已知A 、B 两点到y 轴的水平距离分别为x 1、x 2,A 、B 两点之间的竖直距离为h ,如图1-4所示,则小球抛出时的初速度为 .4.杂技演员把三只球依次竖直向上抛出,形成连续的循环.在循环中,他每抛出一球后,再过一段与刚抛出的球在手中停留时间相等的时间,又接到下一个球.这样,在总的循环过程中,便形成有时空中有3个球,有时空中有两个球,而演员手中则有一半时间内有球,有一半时间内没有球的情况.设每个球上升的高度为1.25m ,取g=10m/s 2,则每个球每次在手中停留的时间.是.5.如图1-5所示,一把雨后张开的雨伞,伞的边缘的圆周半径为R ,距地面的高度为h .当伞绕竖直伞把以角速度ω匀角速转动时,伞边缘的雨滴被甩出,落于地面上同一圆周上,则该圆周的半径为 . 三、解答题1.A 、B 两点间的距离为s ,均分为n 段·一质点从A 点由静止开始以加速度a 运动,若质点到达每一段末端时其加速度都增加na ,试证明质点运动到B 点时的速度为)n1-(3as .2.n 个有共同顶点O 而倾角不同的光滑斜面,分布在同一竖直平内,其倾角在20πα≤<范围内.现将n 个质点同时从顶点O 由静止释放,让其分别沿n 个斜面下滑,试证明任意时刻n 个质点位于同一圆周上,并求出该圆周的半径和圆心位置与时间的关系.3.A 、B 两颗行星,绕一恒星在同一平面上做匀速圆周运动,运动方向相同,A 的周期为T 1,B 的周期为T 2,且T 1>T 2.若某一时刻两颗行星的距离最近,求在以后的运动中: (1)再经历多少时间两颗行星的距离可再度达到最近? (2)再经历多少时间两颗行星的距离可达到最远?4.炮兵由山顶向海上目标射击,发现同一门炮以倾角1α和2α发射相同的炮弹时,都能准确地命中海面上位置不变的同一目标.已知炮弹初速度大小为0v ,求此山的海拔高度(不计空气阻力).5.两只小环O 和O'分别套在静止不动的竖直杆AB 和A'B'上.一根不可伸长的绳子,一端系在A'点上,绳子穿过环O',另一端系在环O 上,如图1-6所示.若环O'以恒定速度v'沿杆向下运动,∠AOO'=α.问:环O 的运动速度多大?。
初中物理竞赛运动学专题训练
初中物理运动学专题训练1、甲、乙二人同时从同一地点A出发,沿直线同向到达点B,甲在前一半路程和后一半路程内的运动速度分别是V1和V2(V1>V2), 乙在前一半时间和后一半时间内的运动速度是V1和V2,则()A.甲先到达B B、乙先到达BC、两人同时到达B地D、条件不足,无法确定2、某科研所每天早晨都派小汽车按时接专家上班。
有一天,专家为早一点赶到科研所,比平时提早1小时出发步行去科研所。
走了一段时间后遇到了来接他的汽车,他上车后汽车立即掉头继续前进。
进入单位大门时,他发现只比平时早到10分钟。
问专家在路上步行了多长时间才遇到汽车?(设专家和汽车都作匀速运动,专家上车及汽车掉头时间不计)3、甲、乙两地相距100千米,一辆汽车以40千米/时的速度从甲地出发开往乙地。
此时恰好有一辆汽车从乙地开出向甲地出发,且以后每隔15分钟乙地均有一辆车发出,车速都是20千米/时,则从甲地发出的那辆车一路上可遇到从乙地发出汽车共 ________辆.(不包括进出车站的车辆)。
4、相距4500米的甲、乙两车站之间是一条笔直的公路。
每隔半分钟,有一辆货车从甲站出发以10米/秒的速度匀速开赴乙站,共开出50辆;于第一辆货车开出的同时有一辆客车从乙站出发匀速开往甲站。
若客车速度是货车速度的2倍,那么客车途中遇到第一辆货车与最后一次遇到货车相隔的时间为多少秒?5、从港口A到港口B的行程历时6昼夜,每天中午12时,由A、B两港口共分别开出一艘轮船驶向B港A港,则每一艘开出的轮船在途中遇到对港口开来的轮船是(不包括在港口遇到的轮船)()A、6艘B、11艘C、12艘D、13艘6、某同学骑自行车从家到县城,原计划用5小时30分,由于途中有3.6千米的道路不平,走这段不平的路时,速度相当于后来的3/4,因此,迟到12分钟,该同学和县城相距多少千米?7、某高校每天早上都派小汽车准时接刘教授上班。
一次,刘教授为早一点赶到学校,比平时提前半小时出发步行去学校。
初中物理竞赛(运动学部分)
物理知识竞赛试题一(运动学部分)一.选择题1.甲、乙两人同时从跑道一端跑向另一端,其中甲在前一半时间内跑步,后一半时间内走;而乙在前半段行程内跑步,后半段行程内走。
假设甲、乙两人跑的速度相等,走的速度也相等,则(A) 甲先到达终点;(B) 乙先到达终点;(C) 同时到达;(D)无法判断。
2.甲、乙两人同时 A 从点出发沿直线向 B 点走去。
乙先到达 B 点,尔后返回,在 C 点碰到甲后再次返回到达 B 点后,又一次返回并 D 在点第二次碰到甲。
设在整个过程中甲速度向来为v,乙速度大小也恒定保持为9v。
若是甲、乙第一次相遇前甲运动了s1米,此后到两人再次相遇时,甲又运动了s2米,那么 s1:s2为(A)5:4 ;(B)9:8 ;(C)1:1 ;(D)2:1 。
3.把带有滴墨水器的小车,放在水平桌面上的纸带上,小车每隔相等时间滴一滴墨水。
当小车向左作直线运动时,在纸带上留下了一系列墨水滴,分布如图 5 所示。
设小车滴墨水时间间隔为 t ,那么研究小车从图中第一滴墨水至最后一滴墨水运动过程中,以下说法中正确的选项是 ( )(A)小车的速度是逐渐增大的。
(B 小车运动的时间是7t 。
(C)小车前一半时间内的平均速度较全程的平均速度大。
(D)小车在任一时间间隔 t 内的平均速度都比全程的平均速度小。
4.在平直公路上的 A 、B 两点相距 s,以下列图。
物体甲以恒定速度v1由 A 沿公路向 B 方向运动,经 t0时间后,物体乙由 B 以恒定速度 v2沿公路开始运动,已知 v2<v1。
经一段时间后,乙与甲到达同一地址,则这段时间()(A) 必然是sv1 t0。
(B)必然是sv2t 0。
v1v2v1v2(C) 可能是sv1 t0。
(D)可能是sv2t 0。
v1v2v1v25.一列蒸汽火车在做匀速直线运动,在远处的人看见火车头上冒出的烟是竖直向上的,这是由于( )(A) 当时外界无风。
(B)火车顺水行驶,车速与风速大小相等。
历届初中物理竞赛运动学题选
历届初中物理竞赛运动学题选1.(1987初赛)一列火车在雨中自东向西行驶,车内乘客观察到雨滴以一定速度垂直下落,那么车外站在月台上的人看到雨滴是( )A 沿偏东方向落下,速度比车内乘客观察到的大。
B 沿偏东方向落下,速度比车内乘客观察到的小。
C 沿偏西方向落下,速度比车内乘客观察到的大。
D 沿偏西方向落下,速度比车内乘客观察到的小。
2.(1987决赛)某人站在离公路垂直距离为60米的A 点,发现公路上有一汽车从B 点以10米/秒的速度沿着公路匀速行驶,B点与人相距100米,如图15所示。
问此人最少要以多大的速度奔跑,才能与汽车相遇?3.(1988初赛)某人从路灯的正下方经过,如他沿地面作的是匀速直线运动,那么他的头顶影子的运动是( )(A)越来越快的变速直线运动; (B)越来越慢的变速直线运动;(C)匀速直线运动; (D)先逐渐加快,后逐渐变慢。
4.(1988复赛)某人沿一条直路用1小时走完了6千米路程,休息半小时后又用1小时继续向前走了4千米路程,这人在整个过程中的平均速度是_____千米/小时。
5(1989决赛)两支队伍同时从相距为s 的A 、B 两点出发,他们以同样大小的速度v 相向而行。
出发时,一个传令兵开始驾车以速度4v 不停地往返于两支队伍的队首之间传达命令,当两支队伍相遇时,传令兵行驶的总路程为( )A s ;B 4s ;C 2s ;D O 。
6.(1994复赛)某人驾驶小艇,沿河逆流而上,从甲地到乙地,又立即从乙地返回甲地。
若小艇在静水中的速率为8米/秒,河水流速为2米/秒,则小艇往返于甲、乙两地之间的平均速率为______米/秒7(1995初赛)某人百米赛跑成绩是14秒,可分为3个阶段。
第一阶段前进14米,平均速度是7米/秒;第二阶段用时9秒,平均速度8米/秒。
第三阶段的平均速度约是( ) 6米/秒; (B)5.5米/秒; (C)4.7米/秒; (D)3.2米/秒.8(1995初赛)声音在金属中的传播速度比在空气中大。
高中物理竞赛习题集02(运动学word)
第二章 质点运动学例题:一火箭从某个无大气层的行星的一个极地竖直向上发射。
由火箭上传递过来的无线电信息知,从火箭发射时的一段时间t 内,火箭上所有物体对支持物的压力或对其悬挂装置的拉力是火箭发射前的1.8倍。
在落回行星表面前的其它时间内,火箭里的物体处于完全失重状态。
试问,从火箭发射到落回行星表面经过多少时间?设行星引力大小随距行星高度的变化可以忽略不计。
解:向上加速的时间t 内有g g a 8.0)18.1(=-= 221at h =at v = 设落回行星表面所用的时间为T221gT vt h -=- 由上解得 T=2t所以,从发射到落回行星表面共经历了3t 的时间。
也可以利v-t 图求解例题:已知某质点的运动学方程42+=t x ,求第1秒未到第2秒未这段时间内的平均速度及瞬时速度和加速度。
解:平均速度为s m t t t t t t x x t x /31258)4()4(1221221212=--=-+-+=--=∆∆方向沿x 轴的正方向,瞬时速度为t tt t t t t t t t x v t t t 22lim )4(4)(lim lim202200=∆∆+∆=∆+-+∆+=∆∆=→∆→∆→∆ 所以,1秒末和2秒末的速度分别为2m/s 和4m/s.加速度为 22)(2lim lim00=∆-∆+=∆∆=→∆→∆ttt t t v a t t例题:蚂蚁离开巢沿直线运动,它的速度与到蚁巢中心的距离成反比,当蚂蚁爬到距巢中心L 1=1m 的A 点处时,速度是v 1=2cm/s 。
问蚂蚁继续由A 点爬到距巢中心L 2=2m 的B 点所需的时间。
解:作出x v-1图像如图为一条通过原点的直线。
面积数值上等于所用的时间211211()()752L L v v T s +-== 例题:磁带录音机的空带轴以恒定角速度转动,重新绕上磁带,绕好后带卷的半径r 末为初半径初r 的3倍,绕带时间为1t 。
物理竞赛习题运动学
高中物理竞赛练习题 运动学部分
得分 评卷人 一、选择题(每小题 3 分,共 24 分)
1. 一质点自 O 点出发作匀加速直线运动,途中依次经过 A、 B 、 C 、 D、 E 诸点,已知 AB = BC = CD = DE ,质点经过 B 点时的瞬时速度为 vB ,质点通过 AE 段的平均速度为 v ¯,则应 有( A ) 。 A .v ¯ > vB C .v ¯ < vB B .v ¯ = vB D .以上三种情况都有可能
第 1 页 (共 111 页)
(1) 质点在前 3s 内的位移是多少? (2) 质点在前 3s 内的路程是多少? (3) 质点在前 6s 内的位移是多少? (4) 质点在前 6s 内的路程是多少? (5) 2s 时的瞬时加速度是多少?
解:从图中可知,前 3s 内的位移和路程都为 S1 = 1 × 3 + 前 6s 内的位移是 S2 = S1 − 前 6s 内的路程是
s km = 10m,相对速度 = 151km/h,正确. 正常车距为 x = 80 8000 t u = 151 − 80 = 71km/h,因此每小时超车数量为 N = ut = 118 x 1 1 (2) 因为在拥阻处车速为正常车速的 ,每车占用道路长为原来的 ,所以此处流量为 4000 4 2 x 辆车,因 辆/小时,流量差为 4000 辆/小时. 设积压长度为 x,由于此长度内本来有 10m x 此有 10 +1 × 4000 = x 得到 x = 10km。 4 5 解: (1) 驾车速度 v =
高中物理竞赛习题专题一:质点运动学(含详解)
高总物理竞赛习题专题一:质点运动学一.选择题1.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v0 收绳,绳不伸长且湖水静止,小船的速率为v,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v =(C) 变加速运动,θcos 0v v =( D) 变减速运动,θcos 0v v =(E) 匀速直线运动,0v v =答案:C2.如上题图1-5,此时小船加速度为( ) A.0 B.θθcos )tan (20l v C.lv 20)tan (θ D.θcos 0v 答案:B3.地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小为( )A.s m /1094.13-⨯B.s m /1094.14-⨯C.0D.s m /100.35-⨯答案:A解析:设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =htg ωt,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v二.计算题4.质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m ·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m ·s-1 ,求质点的运动方程.解析: 由分析知,应有⎰⎰=t t a 0d d 0vv v 得 03314v v +-=t t (1)由 ⎰⎰=t xx t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m ·s-1代入(1) (2)得v0=-1 m ·s-1,x0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 5.一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -Bv,式中A 、B 为正恒量,求石子下落的速度和运动方程.解析:本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式dv =a(v)dt 分离变量为t a d )(d =v v 后再两边积分. 解:选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v v v 得石子速度 )1(Bt e B A --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t eB A y tBt yd )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e B A t B A y6.质点在Oxy 平面内运动,其运动方程为r =2.0ti +(19.0 -2.0t2 )j,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t1=1.0s 到t2 =2.0s 时间内的平均速度;(3) t1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.解析:根据运动方程可直接写出其分量式x =x(t)和y =y(t),从中消去参数t,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t ΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和an ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t, y =19.0-2.0t2消去t 得质点的轨迹方程:y =19.0 -0.50x2(2) 在t1 =1.00s 到t2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t1 =1.00s时的速度v(t)|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 8.已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f(x),可由运动方程的两个分量式x(t)和y(t)中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元ds,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x(t)和y(t)中消去t 后得质点轨迹方程为 2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r 而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r *(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元ds,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入ds,则2s内路程为 m 91.5d 4d 402=+==⎰⎰x x s s Q P9.一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a)图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O ′x ′y ′坐标系,并采用参数方程x ′=x ′(t)和y ′=y ′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x =x0 +x ′和y =y0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O ′x ′y ′坐标系中,因t Tθπ2 ,则质点P 的参数方程为t TR x π2sin =', t T R y π2cos -=' 坐标变换后,在Oxy 坐标系中有 t T R x x π2sin='=, R t T R y y y +-=+'=π2cos 0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sin j i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t10.如图所示,半径为R 的半圆凸轮以等速v0沿水平面 向右运动,带动从动杆AB 沿竖直方向上升,O 为凸轮圆心,P 为其顶点.求:当∠AOP=α时,AB 杆的速度和加速度.根据解析:速度的合成,运用平行四边形定则,得:v 杆=v0tan α。
高中物理竞赛运动学
高中物理竞赛运动学运动学1如图所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D ,BC 段水平,当以恒定水平速度V 拉绳上的自由端时,A 沿水平面前进,求当跨过B 的两段绳子的夹角为α时,A 的运动速度。
(V A=αcos 1+V )2. 缠在轴上的线被绕过滑轮B后,以恒定速度v0拉出。
这时线轴沿水平平面无滑动滚动。
求线轴中心点O的速度随线与水平方向的夹角α 的变化关系。
线轴的内、外半径分别为r和R。
3.均匀光滑细棒AB 长l ,以速度v 搁在半径为r 的固定圆环上作匀速平动,试求在图13位置时,杆与环的交点M 的速度和加速度.图134一个半径为R 的半圆柱体沿水平方向向右做加速度为a 的匀加速运动。
在半圆柱体上搁置一根竖直杆,此杆只能沿竖直方向运动(如图)。
当半圆柱体的速度为 v 时,杆与半圆柱体接触点 P 与柱心的连线与竖直方向的夹角为θ,求此时竖直杆运动的速度和加速度。
5 A ,B ,C 三个芭蕾舞演员同时从边长为l 的三角形顶点A ,B ,C 出发,以相同的速率v 运动;运动中始终保持A 朝着B ,B 朝着C ,C 朝着A .试问经多少时间三人相聚?每个演员跑了多少路径?6.三只小虫A 、B 、C 沿水平面爬行,A 、B 的速度都能达到v =1cm/s 。
开始时,这些虫子位于一个等边三角形的三个顶点上。
C 应具有什么样的速度,才能在A 、B 任意移动的情况下使三小虫仍保持正三角形?7 在掷铅球时,铅球出手时距地面的高度为h ,若出手时的速度为V 0,求以何角度掷球时,水平射程最远?最远射程为多少?(α=gh v v 22sin 2001+-、 x=g gh v v 2200+)7、模型飞机以相对空气v = 39km/h 的速度绕一个边长2km 的等边三角形飞行,设风速u = 21km/h ,方向与三角形的一边平行并与飞机起飞方向相同,试求:飞机绕三角形一周需多少时间?9如图所示,合页构件由两菱形组成,边长分别为2L 和 L ,若顶点A以匀加速度a水平向右运动,当 BC 垂直于 OC 时,A 点速度恰为v ,求此时节点B和节点 C 的加速度各为多大?10、细杆AB长L ,两端分别约束在x 、y轴上运动,(1)试求杆上与A点相距aL(0< a <1)的P点运动轨迹;(2)如果v A为已知,试求P点的x 、y向分速度v Px和v Py 对杆方位角θ的函数。
高中物理竞赛训练题:运动学部分
高中物理竞赛训练题1 运动学部分一.知识点二.习题训练1.轰炸机在h高处以v0沿水平方向飞行,水平距离为L处有一目标。
(1)飞机投弹要击中目标,L应为多大?(2)在目标左侧有一高射炮,以初速v1发射炮弹。
若炮离目标距离D,为要击中炸弹,v1的最小值为多少?(投弹和开炮是同一时间)。
2.灯挂在离地板高h、天花板下H-h处。
灯泡爆破,所有碎片以同样大小的初速度v0朝各个方向飞去,求碎片落到地面上的半径R。
(可认为碎片与天花板的碰撞是弹性的,与地面是完全非弹性的。
) 若H =5m,v0=10m/s,g = 10m/s2,求h为多少时,R有最大值并求出该最大值。
3.一质量为m的小球自离斜面上A处高为h的地方自由落下。
若斜面光滑,小球在斜面上跳动时依次与斜面的碰撞都是完全弹性的,欲使小球恰能掉进斜面上距A点为s的B处小孔中,则球下落高度h应满足的条件是什么?(斜面倾角θ为已知)4.速度v0与水平方向成角α抛出石块,石块沿某一轨道飞行。
如果蚊子以大小恒定的速率v0沿同一轨道飞行。
问蚊子飞到最大高度一半处具有多大加速度?空气阻力不计。
5.快艇系在湖面很大的湖的岸边(湖岸线可以认为是直线),突然快艇被风吹脱,风沿着快艇以恒定的速度v0=2.5km/h沿与湖岸成α=150的角飘去。
你若沿湖岸以速度v1=4km/h行走或在水中以速度v2=2km/h游去(1人能否赶上快艇?(2)要人能赶上快艇,快艇速度最多为多大?(两种解法)6.如图所示,合页构件由两菱形组成,边长分别为2L 和L ,若顶点A以匀加速度a水平向右运动,当BC 垂直于OC 时,A 点速度恰为v ,求此时节点B和节点C 的加速度各为多大?7.一根长为l 的薄板靠在竖直的墙上。
某时刻受一扰动而倒下,试确定一平面曲线 f (x ,y ) = 0,要求该曲线每时每刻与板相切。
(地面水平)。
9.一三角板两直角边分别长a 、b 。
开始时斜面靠在y 轴上,板面垂直于墙,然后A 、B 分别沿y 轴和x 轴运动。
高中物理竞赛试题及答案
高中物理竞赛试题及答案1. 题目:一物体从静止开始做匀加速直线运动,第3秒内通过的位移为15米,求物体的加速度。
答案:根据匀加速直线运动的位移公式,第3秒内的位移为\(\frac{1}{2}a(3^2) - \frac{1}{2}a(2^2) = 15m\),解得\(a =4m/s^2\)。
2. 题目:一个质量为2kg的物体在水平面上以10m/s的速度做匀速直线运动,若受到一个大小为5N的水平力作用,求物体的加速度。
答案:根据牛顿第二定律,\(F = ma\),所以\(a = \frac{F}{m} =\frac{5N}{2kg} = 2.5m/s^2\)。
3. 题目:一个质量为1kg的物体从10m高处自由下落,忽略空气阻力,求物体落地时的速度。
答案:根据自由落体运动的公式,\(v^2 = 2gh\),代入\(g =9.8m/s^2\)和\(h = 10m\),解得\(v = \sqrt{2 \times 9.8 \times 10} = 14.1m/s\)。
4. 题目:一物体在水平面上以10m/s的速度做匀速圆周运动,半径为5m,求物体所受的向心力。
答案:根据向心力公式,\(F = \frac{mv^2}{r}\),代入\(m = 1kg\),\(v = 10m/s\),\(r = 5m\),解得\(F = \frac{1 \times 10^2}{5}= 20N\)。
5. 题目:一物体从高度为20m的斜面顶端以10m/s的初速度滑下,斜面倾角为30°,求物体滑到斜面底端时的速度。
答案:根据能量守恒定律,\(mgh + \frac{1}{2}mv_0^2 =\frac{1}{2}mv^2\),代入\(g = 9.8m/s^2\),\(h = 20m\),\(v_0 = 10m/s\),\(\theta = 30°\),解得\(v = \sqrt{2gh\cos\theta + v_0^2} = \sqrt{2 \times 9.8 \times 20 \times\frac{\sqrt{3}}{2} + 10^2} = 22.6m/s\)。
高中物理竞赛习题专题之质点运动(含答案)
质点运动学学习材料一、选择题1.质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度? ( )(A ) (B ) (C ) (D )【提示:由于质点作曲线运动,所以,加速度的方向指向曲线的内侧,又速率逐渐减小,所以加速度的切向分量与运动方向相反】2. 一质点沿x 轴运动的规律是542+-=t t x (SI 制)。
则前三秒内它的 ( )(A )位移和路程都是3m ;(B )位移和路程都是-3m ; (C )位移是-3m ,路程是3m ; (D )位移是-3m ,路程是5m 。
【提示:将t =3代入公式,得到的是t=3时的位置,位移为t =3时的位置减去t =0时的位置;显然运动规律是一个抛物线方程,可利用求导找出极值点:24d x t dt =-,当t =2时,速度0d xdtυ==,所以前两秒退了4米,后一秒进了1米,路程为5米】3.一质点的运动方程是cos sin r R t i R t j ωω=+,R 、ω为正常数。
从t =ωπ/到t =ωπ/2时间内(1)该质点的位移是 ( )(A ) -2R i ; (B ) 2R i; (C ) -2j ; (D ) 0。
(2)该质点经过的路程是 ( ) (A ) 2R ; (B ) R π; (C ) 0; (D ) R πω。
【提示:轨道方程是一个圆周方程(由运动方程平方相加可得圆方程),t =π/ω到t =2π/ω时间内质点沿圆周跑了半圈,位移为直径,路程半周长】4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度υ滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度 ( )(A )大小为2υ,方向与B 端运动方向相同; (B )大小为2υ,方向与A 端运动方向相同;(C )大小为2υ, 方向沿杆身方向;(D )大小为2cos υθ,方向与水平方向成 θ 角。
【提示:C 点的坐标为sin 2cos 2C C l x l y θθ⎧=⎪⎪⎨⎪=⎪⎩,则cos 2sin 2cx cyl d dt l d dt θυθθυθ⎧=⋅⎪⎪⎨⎪=⋅⎪⎩,有中点C 的速度大小:2C l d dt θυ=⋅。
全国高中物理竞赛运动学训练题答案
练习1 BCD提示:由s s v s t 1.0505===,有m m gt h 05.01.010212122=⨯⨯==,A 错,B 对;当h ≤0.01m 时,由v s t gt h ==,212得s m s m h g s t s v /550/01.021052≥⨯⨯≥==,C 正确;当h ≤0.1m ,由前式可分析得出v ≥s m /225,D 正确,选项BCD 正确。
练习2解析 实际上A 的速度与杆垂直,其大小为L v ω=',因为球与物体紧密接触,两物体的水平方向速度应该相等,也就是说v '的水平分量应该等于v ,将v '如图分解,θωθsin sin L v v ='=。
所以θωsin L v =练习3解析 环被挡住而停下,球将作圆周运动。
lv m mg F 2=-将gl v =代入得:F=2mg表明细绳断裂,球改为以初速度gl v =作平抛运动 若球直接落地,所需时间:gl gh t 42== 球平抛到墙所需时间:gl v l t ==' 因为't t >所以球将先与墙相碰练习4解析 ⑴电场方向未变之前,以小球为研究对象, 受力分析如图甲。
设电场力与飞行方向的夹角为α,小球飞行的加速度为a 。
x 方向:ma mg mg =-030sin cos 3αy 方向:030cos sin 30=-mg mg α解得:030=α ,g a =小球沿着直线飞行的距离:221gt s =速度:gt at v ==电场方向改变之后,以小球为研究对象, 受力分析如图乙,因合力方向与飞行方向在一条直线上,只是方向相反,所以,小球仍然沿原直线飞行,速度越来越小,此时加速度:g m mg mg m F a 2)3()(22=+=='合经过2t 时间,物体的速度:0222=⋅-=⋅'-='tg gt t a v v在2t 时间内,小球飞行的距离:42)(2222gt g gt a v s =='=' 当速度等于零之后,撤去电场,小球做自由落体运动,所以落回点与出发点相距:2083330cos )(gt s s L ='+= (2)设在经过T 时间落回地面:202130sin )(gT s s h ='+=,解得 t T 23=,小球总的飞行时间为:t T t t t 2332+=++=总 练习5解析 (1)花炮引线的总长度m m l h L 7.1)08.0155.0(15=⨯+=+=,s s v L t 8502.07.11===, 最后一个炮体从点火到离开炮筒的时间s s a h t 05.04005.0222=⨯==, 所以s t t t 05.8521=+=。
初中物理竞赛运动学训练题
物理知识竞赛试题一(运动学部分)一.选择题1.甲、乙两人同时从跑道一端跑向另一端,其中甲在前一半时间内跑步,后一半时间内走;而乙在前半段路程内跑步,后半段路程内走。
假设甲、乙两人跑的速度相等,走的速度也相等,则(A)甲先到达终点; (B)乙先到达终点; (C)同时到达; (D)无法判断。
2.甲、乙两人同时A 从点出发沿直线向B 点走去。
乙先到达B 点,然后返回,在C 点遇到甲后再次返回到达B 点后,又一次返回并D 在点第二次遇到甲。
设在整个过程中甲速度始终为v ,乙速度大小也恒定保持为9v 。
如果甲、乙第一次相遇前甲运动了s 1米,此后到两人再次相遇时,甲又运动了s 2米,那么s 1:s 2为(A)5:4; (B)9:8;(C)1:1; (D)2:1。
3.把带有滴墨水器的小车,放在水平桌面上的纸带上,小车每隔相等时间滴一滴墨水。
当小车向左作直线运动时,在纸带上留下了一系列墨水滴,分布如图5所示。
设小车滴墨水时间间隔为t ,那么研究小车从图中第一滴墨水至最后一滴墨水运动过程中,下列说法中正确的是( )(A)小车的速度是逐渐增大的。
(B 小车运动的时间是7t 。
(C)小车前一半时间内的平均速度较全程的平均速度大。
(D)小车在任一时间间隔t 内的平均速度都比全程的平均速度小。
4.在平直公路上的A 、B 两点相距s ,如图所示。
物体甲以恒定速度v 1由A 沿公路向B 方向运动,经t 0时间后,物体乙由B 以恒定速度v 2沿公路开始运动,已知v 2<v 1。
经一段时间后,乙与甲到达同一位置,则这段时间( )(A)一定是2101v v t v s +-。
(B)一定是2102v v t v s +-。
(C)可能是2101v v t v s --。
(D)可能是2102v v t v s --。
5.一列蒸汽火车在做匀速直线运动,在远处的人看见火车头上冒出的烟是竖直向上的,这是由于( )(A)当时外界无风。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 3 页 (共 111 页)
解:根据题述情况,A、B 、C 三者的速度在空间上是对称的,它们应该是大小相等而其方 向则是两两之间夹角均为 120◦ . 据此可作出三者的速度矢量图,如图,由图中的几何关系容 易得到 vB A vA = √ = 12m/s. 3 即三者的速度大小均为 12m/s,B 的速度方向为南偏东 30◦ ,C 的速度方向为北偏东 30◦
′ S2 = S1 +
1 × 2 × 3 = 6m 2
(2)
1 × 3 × 3 = 1.5m 2 1 × 3 × 3 = 10.5m 2
(3)
(4)
从图中看出 1 ∼ 3 秒内加速度是不变的,因此可得第 2 秒时的加速度为: a= 0−3 = −1.5ms−2 2 (5)
4. 火车从 A 城由静止开始沿平直轨道驶向 B 城.A,B 两城相距为 S . 火车先以加速度 a1 作匀加 速运动,当速度达到 v 后再匀速行驶一段时间,然后刹车,并以加速度大小为 a2 作匀减速行 驶,使之正好停在 B 城. 求火车行驶的时间 t.
高中物理竞赛练习题 运动学部分
得分 评卷人 一、选择题(每小题 3 分,共 24 分)
1. 一质点自 O 点出发作匀加速直线运动,途中依次经过 A、 B 、 C 、 D、 E 诸点,已知 AB = BC = CD = DE ,质点经过 B 点时的瞬时速度为 vB ,质点通过 AE 段的平均速度为 v ¯,则应 有( A ) 。 A .v ¯ > vB C .v ¯ < vB B .v ¯ = vB D .以上三种情况都有可能
解:设加速度为 a,AB = BC = CD = DE = l,OA = x, 质点在 A 处速度为 vA , 则 √ √ 2 + 8al vA + vA vA + vE 2 vB = vA + 2al, v ¯= = 2 2 √ 2 √ vA + vA +8al 2 假设 v ¯ > vB ,得到 > vA + 2al 2 √ 2 2 两边平方,化简得 vA vA + 8al > vA 由题意 vA > 0, 因此假设成立,即选 A
2(l1 +l2 ) ,代入 t
v 2 = 2l1 a1 得 a1 =
2(l1 +l2 )2 ,代入 t2 l 1
v2 =
l1 + l2 ,于是最高速度为 t +l2 )2 −2l2 a2 得 a2 = − 2(l1 姚逸 t2 l2
刘泽
6. 公共汽车定时定速地在一条线路上来回行驶,一人沿此路线骑车匀速前进,每隔 t1 = 3min 与 迎面而来的汽车相遇,每隔 t2 = 5min 有一辆后面来的汽车超过他,问公共汽车每隔多少分钟 开出一班?
(7)
第 2 页 (共 111 页)
5. 一物体沿长度为 l1 的斜面从静止开始作匀加速下滑,后又沿水平面作匀减速滑行了距离 l2 ,并 达静止. 已知物体在整个滑行过程中作用的时间为 t.
(1) 求物体沿斜面的加速度 a1 ; (2) 求物体在水平面运动的加速度 a2 .
解:由总位移 l1 + l2 可得加速过程和减速过程共同的平均速度为 v=
第 1 页 (共 111 页)
(1) 质点在前 3s 内的位移是多少? (2) 质点在前 3s 内的路程是多少? (3) 质点在前 6s 内的位移是多少? (4) 质点在前 6s 内的路程是多少? (5) 2s 时的瞬时加速度是多少?
解:从图中可知,前 3s 内的位移和路程都为 S1 = 1 × 3 + 前 6s 内的位移是 S2 = S1 − 前 6s 内的路程是
解:加速过程需要时间 t1 = 速运动的时间
v 1 ,位移为 vt a1 2
减速过程需要时间 t2 =
vt2 2
v 2 ,位移为 vt a2 2
于是匀
t3 = 总时间为
S−
vt1 2
−
v
=
S t1 t2 −பைடு நூலகம்− v 2 2
(6)
t = t1 + t2 + t3 =
S v v + + v 2a1 2a2
解:以人为参考系,设人的速率为 v ,汽车的速率为 u,且相邻两车距离为 l,时间间隔为 t. 由题意可得 l = t1 u+v l = t2 u−v 解得 1 u= 2 故t=
l u
(
l l + t1 t2
)
=
2t1 t2 t1 + t2
= 3.75 min
7. 在狩猎场上,A、B 、C 三名骑手均骑在马上奔驰着,A 骑着马从猎场的东面向正西方匀速奔 驰,并测出 B 、C 在他的前方对称的两侧以相同的速率 v = 20.8m/s 朝他奔驰着,而 B 、C 两 骑手各自看到的也是其他二名骑手以此相同的速率从正前方的对称两侧向自己奔驰. 问: (1) 由对称性可知三骑手奔驰的速度相同,这个速度为多大(m/s) (2) B 骑手向南偏东多少度的方向奔驰?
(1)
得分
评卷人 二、解答题(本大题共 8 个小题,满分 75 分)
2. 某只章鱼状的人造生物企图摧毁地球,于是对其进行观察. 发现其某时刻 t0 位于 (x0 , y0 ) 处的漫 画店;另一时刻 t1 位于 (x1 , y1 ) 处的半价便当争夺队伍中;之后在 t2 时刻回到漫画店。 (1) 求它在 t0 ∼ t1 时间内的位移大小; (2) 求它在 t0 ∼ t1 时间内的位移方向与 x 轴之间的夹角大小; (3) 求它在 t0 ∼ t2 时间内的位移大小. 3. 如图是一质点的速度时间图象,求:
8. 一个学生的学校位于环形地铁的一个车站附近,他的住处在城市的另一端,靠近该环形地铁的另 一个车站. 这样,他可以乘坐任何一个方向的地铁去上学. 所以,他总是哪个方向先来车,就坐 哪辆列车. 以 T 表示开往同一方向的两列火车之间的时间间隔,顺时针方向开出列车与之后最近 一列逆时针方向开来列车之间的时间间隔等于 τ ,求这个学生坐顺时针车的概率与逆时针车的概 率的比值 k . 9. 图中, AOB 是一内表面光滑的楔形槽,固定在水平桌面(图中纸面)上,夹角 α = 15◦ . 现 将一质点在 BOA 面内从 C 处以速度 v = 3m/s 射出,其方向与 AO 间的夹角为 β = 30◦ , OC = 1m. 设质点与桌面间的摩擦可忽略不计,质点与 OB 面及 OA 面的碰撞都是弹性碰撞 (碰撞后速度变化的规律和光反射规律一致) ,且每次碰撞时间极短,可忽略不计,并设 OA 和 OB 都足够长. 试求